]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - fs/ocfs2/aops.c
ocfs2: Revert 40bd62e to avoid regression in extended allocation
[mirror_ubuntu-jammy-kernel.git] / fs / ocfs2 / aops.c
CommitLineData
ccd979bd
MF
1/* -*- mode: c; c-basic-offset: 8; -*-
2 * vim: noexpandtab sw=8 ts=8 sts=0:
3 *
4 * Copyright (C) 2002, 2004 Oracle. All rights reserved.
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public
17 * License along with this program; if not, write to the
18 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
19 * Boston, MA 021110-1307, USA.
20 */
21
22#include <linux/fs.h>
23#include <linux/slab.h>
24#include <linux/highmem.h>
25#include <linux/pagemap.h>
26#include <asm/byteorder.h>
9517bac6 27#include <linux/swap.h>
6af67d82 28#include <linux/pipe_fs_i.h>
628a24f5 29#include <linux/mpage.h>
a90714c1 30#include <linux/quotaops.h>
ccd979bd 31
ccd979bd
MF
32#include <cluster/masklog.h>
33
34#include "ocfs2.h"
35
36#include "alloc.h"
37#include "aops.h"
38#include "dlmglue.h"
39#include "extent_map.h"
40#include "file.h"
41#include "inode.h"
42#include "journal.h"
9517bac6 43#include "suballoc.h"
ccd979bd
MF
44#include "super.h"
45#include "symlink.h"
293b2f70 46#include "refcounttree.h"
9558156b 47#include "ocfs2_trace.h"
ccd979bd
MF
48
49#include "buffer_head_io.h"
50
51static int ocfs2_symlink_get_block(struct inode *inode, sector_t iblock,
52 struct buffer_head *bh_result, int create)
53{
54 int err = -EIO;
55 int status;
56 struct ocfs2_dinode *fe = NULL;
57 struct buffer_head *bh = NULL;
58 struct buffer_head *buffer_cache_bh = NULL;
59 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
60 void *kaddr;
61
9558156b
TM
62 trace_ocfs2_symlink_get_block(
63 (unsigned long long)OCFS2_I(inode)->ip_blkno,
64 (unsigned long long)iblock, bh_result, create);
ccd979bd
MF
65
66 BUG_ON(ocfs2_inode_is_fast_symlink(inode));
67
68 if ((iblock << inode->i_sb->s_blocksize_bits) > PATH_MAX + 1) {
69 mlog(ML_ERROR, "block offset > PATH_MAX: %llu",
70 (unsigned long long)iblock);
71 goto bail;
72 }
73
b657c95c 74 status = ocfs2_read_inode_block(inode, &bh);
ccd979bd
MF
75 if (status < 0) {
76 mlog_errno(status);
77 goto bail;
78 }
79 fe = (struct ocfs2_dinode *) bh->b_data;
80
ccd979bd
MF
81 if ((u64)iblock >= ocfs2_clusters_to_blocks(inode->i_sb,
82 le32_to_cpu(fe->i_clusters))) {
83 mlog(ML_ERROR, "block offset is outside the allocated size: "
84 "%llu\n", (unsigned long long)iblock);
85 goto bail;
86 }
87
88 /* We don't use the page cache to create symlink data, so if
89 * need be, copy it over from the buffer cache. */
90 if (!buffer_uptodate(bh_result) && ocfs2_inode_is_new(inode)) {
91 u64 blkno = le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) +
92 iblock;
93 buffer_cache_bh = sb_getblk(osb->sb, blkno);
94 if (!buffer_cache_bh) {
95 mlog(ML_ERROR, "couldn't getblock for symlink!\n");
96 goto bail;
97 }
98
99 /* we haven't locked out transactions, so a commit
100 * could've happened. Since we've got a reference on
101 * the bh, even if it commits while we're doing the
102 * copy, the data is still good. */
103 if (buffer_jbd(buffer_cache_bh)
104 && ocfs2_inode_is_new(inode)) {
c4bc8dcb 105 kaddr = kmap_atomic(bh_result->b_page);
ccd979bd
MF
106 if (!kaddr) {
107 mlog(ML_ERROR, "couldn't kmap!\n");
108 goto bail;
109 }
110 memcpy(kaddr + (bh_result->b_size * iblock),
111 buffer_cache_bh->b_data,
112 bh_result->b_size);
c4bc8dcb 113 kunmap_atomic(kaddr);
ccd979bd
MF
114 set_buffer_uptodate(bh_result);
115 }
116 brelse(buffer_cache_bh);
117 }
118
119 map_bh(bh_result, inode->i_sb,
120 le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) + iblock);
121
122 err = 0;
123
124bail:
a81cb88b 125 brelse(bh);
ccd979bd 126
ccd979bd
MF
127 return err;
128}
129
6f70fa51
TM
130int ocfs2_get_block(struct inode *inode, sector_t iblock,
131 struct buffer_head *bh_result, int create)
ccd979bd
MF
132{
133 int err = 0;
49cb8d2d 134 unsigned int ext_flags;
628a24f5
MF
135 u64 max_blocks = bh_result->b_size >> inode->i_blkbits;
136 u64 p_blkno, count, past_eof;
25baf2da 137 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
ccd979bd 138
9558156b
TM
139 trace_ocfs2_get_block((unsigned long long)OCFS2_I(inode)->ip_blkno,
140 (unsigned long long)iblock, bh_result, create);
ccd979bd
MF
141
142 if (OCFS2_I(inode)->ip_flags & OCFS2_INODE_SYSTEM_FILE)
143 mlog(ML_NOTICE, "get_block on system inode 0x%p (%lu)\n",
144 inode, inode->i_ino);
145
146 if (S_ISLNK(inode->i_mode)) {
147 /* this always does I/O for some reason. */
148 err = ocfs2_symlink_get_block(inode, iblock, bh_result, create);
149 goto bail;
150 }
151
628a24f5 152 err = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno, &count,
49cb8d2d 153 &ext_flags);
ccd979bd
MF
154 if (err) {
155 mlog(ML_ERROR, "Error %d from get_blocks(0x%p, %llu, 1, "
b0697053
MF
156 "%llu, NULL)\n", err, inode, (unsigned long long)iblock,
157 (unsigned long long)p_blkno);
ccd979bd
MF
158 goto bail;
159 }
160
628a24f5
MF
161 if (max_blocks < count)
162 count = max_blocks;
163
25baf2da
MF
164 /*
165 * ocfs2 never allocates in this function - the only time we
166 * need to use BH_New is when we're extending i_size on a file
167 * system which doesn't support holes, in which case BH_New
ebdec241 168 * allows __block_write_begin() to zero.
c0420ad2
CL
169 *
170 * If we see this on a sparse file system, then a truncate has
171 * raced us and removed the cluster. In this case, we clear
172 * the buffers dirty and uptodate bits and let the buffer code
173 * ignore it as a hole.
25baf2da 174 */
c0420ad2
CL
175 if (create && p_blkno == 0 && ocfs2_sparse_alloc(osb)) {
176 clear_buffer_dirty(bh_result);
177 clear_buffer_uptodate(bh_result);
178 goto bail;
179 }
25baf2da 180
49cb8d2d
MF
181 /* Treat the unwritten extent as a hole for zeroing purposes. */
182 if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN))
25baf2da
MF
183 map_bh(bh_result, inode->i_sb, p_blkno);
184
628a24f5
MF
185 bh_result->b_size = count << inode->i_blkbits;
186
25baf2da
MF
187 if (!ocfs2_sparse_alloc(osb)) {
188 if (p_blkno == 0) {
189 err = -EIO;
190 mlog(ML_ERROR,
191 "iblock = %llu p_blkno = %llu blkno=(%llu)\n",
192 (unsigned long long)iblock,
193 (unsigned long long)p_blkno,
194 (unsigned long long)OCFS2_I(inode)->ip_blkno);
195 mlog(ML_ERROR, "Size %llu, clusters %u\n", (unsigned long long)i_size_read(inode), OCFS2_I(inode)->ip_clusters);
196 dump_stack();
1f4cea37 197 goto bail;
25baf2da 198 }
25baf2da 199 }
ccd979bd 200
5693486b 201 past_eof = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
9558156b
TM
202
203 trace_ocfs2_get_block_end((unsigned long long)OCFS2_I(inode)->ip_blkno,
204 (unsigned long long)past_eof);
5693486b
JB
205 if (create && (iblock >= past_eof))
206 set_buffer_new(bh_result);
207
ccd979bd
MF
208bail:
209 if (err < 0)
210 err = -EIO;
211
ccd979bd
MF
212 return err;
213}
214
1afc32b9
MF
215int ocfs2_read_inline_data(struct inode *inode, struct page *page,
216 struct buffer_head *di_bh)
6798d35a
MF
217{
218 void *kaddr;
d2849fb2 219 loff_t size;
6798d35a
MF
220 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
221
222 if (!(le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_DATA_FL)) {
223 ocfs2_error(inode->i_sb, "Inode %llu lost inline data flag",
224 (unsigned long long)OCFS2_I(inode)->ip_blkno);
225 return -EROFS;
226 }
227
228 size = i_size_read(inode);
229
230 if (size > PAGE_CACHE_SIZE ||
d9ae49d6 231 size > ocfs2_max_inline_data_with_xattr(inode->i_sb, di)) {
6798d35a 232 ocfs2_error(inode->i_sb,
d2849fb2
JK
233 "Inode %llu has with inline data has bad size: %Lu",
234 (unsigned long long)OCFS2_I(inode)->ip_blkno,
235 (unsigned long long)size);
6798d35a
MF
236 return -EROFS;
237 }
238
c4bc8dcb 239 kaddr = kmap_atomic(page);
6798d35a
MF
240 if (size)
241 memcpy(kaddr, di->id2.i_data.id_data, size);
242 /* Clear the remaining part of the page */
243 memset(kaddr + size, 0, PAGE_CACHE_SIZE - size);
244 flush_dcache_page(page);
c4bc8dcb 245 kunmap_atomic(kaddr);
6798d35a
MF
246
247 SetPageUptodate(page);
248
249 return 0;
250}
251
252static int ocfs2_readpage_inline(struct inode *inode, struct page *page)
253{
254 int ret;
255 struct buffer_head *di_bh = NULL;
6798d35a
MF
256
257 BUG_ON(!PageLocked(page));
86c838b0 258 BUG_ON(!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL));
6798d35a 259
b657c95c 260 ret = ocfs2_read_inode_block(inode, &di_bh);
6798d35a
MF
261 if (ret) {
262 mlog_errno(ret);
263 goto out;
264 }
265
266 ret = ocfs2_read_inline_data(inode, page, di_bh);
267out:
268 unlock_page(page);
269
270 brelse(di_bh);
271 return ret;
272}
273
ccd979bd
MF
274static int ocfs2_readpage(struct file *file, struct page *page)
275{
276 struct inode *inode = page->mapping->host;
6798d35a 277 struct ocfs2_inode_info *oi = OCFS2_I(inode);
ccd979bd
MF
278 loff_t start = (loff_t)page->index << PAGE_CACHE_SHIFT;
279 int ret, unlock = 1;
280
9558156b
TM
281 trace_ocfs2_readpage((unsigned long long)oi->ip_blkno,
282 (page ? page->index : 0));
ccd979bd 283
e63aecb6 284 ret = ocfs2_inode_lock_with_page(inode, NULL, 0, page);
ccd979bd
MF
285 if (ret != 0) {
286 if (ret == AOP_TRUNCATED_PAGE)
287 unlock = 0;
288 mlog_errno(ret);
289 goto out;
290 }
291
6798d35a 292 if (down_read_trylock(&oi->ip_alloc_sem) == 0) {
c7e25e6e
JK
293 /*
294 * Unlock the page and cycle ip_alloc_sem so that we don't
295 * busyloop waiting for ip_alloc_sem to unlock
296 */
e9dfc0b2 297 ret = AOP_TRUNCATED_PAGE;
c7e25e6e
JK
298 unlock_page(page);
299 unlock = 0;
300 down_read(&oi->ip_alloc_sem);
301 up_read(&oi->ip_alloc_sem);
e63aecb6 302 goto out_inode_unlock;
e9dfc0b2 303 }
ccd979bd
MF
304
305 /*
306 * i_size might have just been updated as we grabed the meta lock. We
307 * might now be discovering a truncate that hit on another node.
308 * block_read_full_page->get_block freaks out if it is asked to read
309 * beyond the end of a file, so we check here. Callers
54cb8821 310 * (generic_file_read, vm_ops->fault) are clever enough to check i_size
ccd979bd
MF
311 * and notice that the page they just read isn't needed.
312 *
313 * XXX sys_readahead() seems to get that wrong?
314 */
315 if (start >= i_size_read(inode)) {
eebd2aa3 316 zero_user(page, 0, PAGE_SIZE);
ccd979bd
MF
317 SetPageUptodate(page);
318 ret = 0;
319 goto out_alloc;
320 }
321
6798d35a
MF
322 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
323 ret = ocfs2_readpage_inline(inode, page);
324 else
325 ret = block_read_full_page(page, ocfs2_get_block);
ccd979bd
MF
326 unlock = 0;
327
ccd979bd
MF
328out_alloc:
329 up_read(&OCFS2_I(inode)->ip_alloc_sem);
e63aecb6
MF
330out_inode_unlock:
331 ocfs2_inode_unlock(inode, 0);
ccd979bd
MF
332out:
333 if (unlock)
334 unlock_page(page);
ccd979bd
MF
335 return ret;
336}
337
628a24f5
MF
338/*
339 * This is used only for read-ahead. Failures or difficult to handle
340 * situations are safe to ignore.
341 *
342 * Right now, we don't bother with BH_Boundary - in-inode extent lists
343 * are quite large (243 extents on 4k blocks), so most inodes don't
344 * grow out to a tree. If need be, detecting boundary extents could
345 * trivially be added in a future version of ocfs2_get_block().
346 */
347static int ocfs2_readpages(struct file *filp, struct address_space *mapping,
348 struct list_head *pages, unsigned nr_pages)
349{
350 int ret, err = -EIO;
351 struct inode *inode = mapping->host;
352 struct ocfs2_inode_info *oi = OCFS2_I(inode);
353 loff_t start;
354 struct page *last;
355
356 /*
357 * Use the nonblocking flag for the dlm code to avoid page
358 * lock inversion, but don't bother with retrying.
359 */
360 ret = ocfs2_inode_lock_full(inode, NULL, 0, OCFS2_LOCK_NONBLOCK);
361 if (ret)
362 return err;
363
364 if (down_read_trylock(&oi->ip_alloc_sem) == 0) {
365 ocfs2_inode_unlock(inode, 0);
366 return err;
367 }
368
369 /*
370 * Don't bother with inline-data. There isn't anything
371 * to read-ahead in that case anyway...
372 */
373 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
374 goto out_unlock;
375
376 /*
377 * Check whether a remote node truncated this file - we just
378 * drop out in that case as it's not worth handling here.
379 */
380 last = list_entry(pages->prev, struct page, lru);
381 start = (loff_t)last->index << PAGE_CACHE_SHIFT;
382 if (start >= i_size_read(inode))
383 goto out_unlock;
384
385 err = mpage_readpages(mapping, pages, nr_pages, ocfs2_get_block);
386
387out_unlock:
388 up_read(&oi->ip_alloc_sem);
389 ocfs2_inode_unlock(inode, 0);
390
391 return err;
392}
393
ccd979bd
MF
394/* Note: Because we don't support holes, our allocation has
395 * already happened (allocation writes zeros to the file data)
396 * so we don't have to worry about ordered writes in
397 * ocfs2_writepage.
398 *
399 * ->writepage is called during the process of invalidating the page cache
400 * during blocked lock processing. It can't block on any cluster locks
401 * to during block mapping. It's relying on the fact that the block
402 * mapping can't have disappeared under the dirty pages that it is
403 * being asked to write back.
404 */
405static int ocfs2_writepage(struct page *page, struct writeback_control *wbc)
406{
9558156b
TM
407 trace_ocfs2_writepage(
408 (unsigned long long)OCFS2_I(page->mapping->host)->ip_blkno,
409 page->index);
ccd979bd 410
9558156b 411 return block_write_full_page(page, ocfs2_get_block, wbc);
ccd979bd
MF
412}
413
ccd979bd
MF
414/* Taken from ext3. We don't necessarily need the full blown
415 * functionality yet, but IMHO it's better to cut and paste the whole
416 * thing so we can avoid introducing our own bugs (and easily pick up
417 * their fixes when they happen) --Mark */
60b11392
MF
418int walk_page_buffers( handle_t *handle,
419 struct buffer_head *head,
420 unsigned from,
421 unsigned to,
422 int *partial,
423 int (*fn)( handle_t *handle,
424 struct buffer_head *bh))
ccd979bd
MF
425{
426 struct buffer_head *bh;
427 unsigned block_start, block_end;
428 unsigned blocksize = head->b_size;
429 int err, ret = 0;
430 struct buffer_head *next;
431
432 for ( bh = head, block_start = 0;
433 ret == 0 && (bh != head || !block_start);
434 block_start = block_end, bh = next)
435 {
436 next = bh->b_this_page;
437 block_end = block_start + blocksize;
438 if (block_end <= from || block_start >= to) {
439 if (partial && !buffer_uptodate(bh))
440 *partial = 1;
441 continue;
442 }
443 err = (*fn)(handle, bh);
444 if (!ret)
445 ret = err;
446 }
447 return ret;
448}
449
ccd979bd
MF
450static sector_t ocfs2_bmap(struct address_space *mapping, sector_t block)
451{
452 sector_t status;
453 u64 p_blkno = 0;
454 int err = 0;
455 struct inode *inode = mapping->host;
456
9558156b
TM
457 trace_ocfs2_bmap((unsigned long long)OCFS2_I(inode)->ip_blkno,
458 (unsigned long long)block);
ccd979bd
MF
459
460 /* We don't need to lock journal system files, since they aren't
461 * accessed concurrently from multiple nodes.
462 */
463 if (!INODE_JOURNAL(inode)) {
e63aecb6 464 err = ocfs2_inode_lock(inode, NULL, 0);
ccd979bd
MF
465 if (err) {
466 if (err != -ENOENT)
467 mlog_errno(err);
468 goto bail;
469 }
470 down_read(&OCFS2_I(inode)->ip_alloc_sem);
471 }
472
6798d35a
MF
473 if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
474 err = ocfs2_extent_map_get_blocks(inode, block, &p_blkno, NULL,
475 NULL);
ccd979bd
MF
476
477 if (!INODE_JOURNAL(inode)) {
478 up_read(&OCFS2_I(inode)->ip_alloc_sem);
e63aecb6 479 ocfs2_inode_unlock(inode, 0);
ccd979bd
MF
480 }
481
482 if (err) {
483 mlog(ML_ERROR, "get_blocks() failed, block = %llu\n",
484 (unsigned long long)block);
485 mlog_errno(err);
486 goto bail;
487 }
488
ccd979bd
MF
489bail:
490 status = err ? 0 : p_blkno;
491
ccd979bd
MF
492 return status;
493}
494
495/*
496 * TODO: Make this into a generic get_blocks function.
497 *
498 * From do_direct_io in direct-io.c:
499 * "So what we do is to permit the ->get_blocks function to populate
500 * bh.b_size with the size of IO which is permitted at this offset and
501 * this i_blkbits."
502 *
503 * This function is called directly from get_more_blocks in direct-io.c.
504 *
505 * called like this: dio->get_blocks(dio->inode, fs_startblk,
506 * fs_count, map_bh, dio->rw == WRITE);
5fe878ae
CH
507 *
508 * Note that we never bother to allocate blocks here, and thus ignore the
509 * create argument.
ccd979bd
MF
510 */
511static int ocfs2_direct_IO_get_blocks(struct inode *inode, sector_t iblock,
ccd979bd
MF
512 struct buffer_head *bh_result, int create)
513{
514 int ret;
4f902c37 515 u64 p_blkno, inode_blocks, contig_blocks;
49cb8d2d 516 unsigned int ext_flags;
184d7d20 517 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
1d8fa7a2 518 unsigned long max_blocks = bh_result->b_size >> inode->i_blkbits;
ccd979bd 519
ccd979bd
MF
520 /* This function won't even be called if the request isn't all
521 * nicely aligned and of the right size, so there's no need
522 * for us to check any of that. */
523
25baf2da 524 inode_blocks = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
564f8a32 525
ccd979bd
MF
526 /* This figures out the size of the next contiguous block, and
527 * our logical offset */
363041a5 528 ret = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno,
49cb8d2d 529 &contig_blocks, &ext_flags);
ccd979bd
MF
530 if (ret) {
531 mlog(ML_ERROR, "get_blocks() failed iblock=%llu\n",
532 (unsigned long long)iblock);
533 ret = -EIO;
534 goto bail;
535 }
536
cbaee472
TM
537 /* We should already CoW the refcounted extent in case of create. */
538 BUG_ON(create && (ext_flags & OCFS2_EXT_REFCOUNTED));
539
25baf2da
MF
540 /*
541 * get_more_blocks() expects us to describe a hole by clearing
542 * the mapped bit on bh_result().
49cb8d2d
MF
543 *
544 * Consider an unwritten extent as a hole.
25baf2da 545 */
49cb8d2d 546 if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN))
25baf2da 547 map_bh(bh_result, inode->i_sb, p_blkno);
5fe878ae 548 else
25baf2da 549 clear_buffer_mapped(bh_result);
ccd979bd
MF
550
551 /* make sure we don't map more than max_blocks blocks here as
552 that's all the kernel will handle at this point. */
553 if (max_blocks < contig_blocks)
554 contig_blocks = max_blocks;
555 bh_result->b_size = contig_blocks << blocksize_bits;
556bail:
557 return ret;
558}
559
2bd63216 560/*
ccd979bd 561 * ocfs2_dio_end_io is called by the dio core when a dio is finished. We're
bd5fe6c5
CH
562 * particularly interested in the aio/dio case. We use the rw_lock DLM lock
563 * to protect io on one node from truncation on another.
ccd979bd
MF
564 */
565static void ocfs2_dio_end_io(struct kiocb *iocb,
566 loff_t offset,
567 ssize_t bytes,
40e2e973
CH
568 void *private,
569 int ret,
570 bool is_async)
ccd979bd 571{
496ad9aa 572 struct inode *inode = file_inode(iocb->ki_filp);
7cdfc3a1 573 int level;
a11f7e63 574 wait_queue_head_t *wq = ocfs2_ioend_wq(inode);
ccd979bd
MF
575
576 /* this io's submitter should not have unlocked this before we could */
577 BUG_ON(!ocfs2_iocb_is_rw_locked(iocb));
7cdfc3a1 578
df2d6f26 579 if (ocfs2_iocb_is_sem_locked(iocb))
39c99f12 580 ocfs2_iocb_clear_sem_locked(iocb);
39c99f12 581
a11f7e63
MF
582 if (ocfs2_iocb_is_unaligned_aio(iocb)) {
583 ocfs2_iocb_clear_unaligned_aio(iocb);
584
585 if (atomic_dec_and_test(&OCFS2_I(inode)->ip_unaligned_aio) &&
586 waitqueue_active(wq)) {
587 wake_up_all(wq);
588 }
589 }
590
ccd979bd 591 ocfs2_iocb_clear_rw_locked(iocb);
7cdfc3a1
MF
592
593 level = ocfs2_iocb_rw_locked_level(iocb);
7cdfc3a1 594 ocfs2_rw_unlock(inode, level);
40e2e973 595
9b171e0c 596 inode_dio_done(inode);
40e2e973
CH
597 if (is_async)
598 aio_complete(iocb, ret, 0);
ccd979bd
MF
599}
600
03f981cf
JB
601/*
602 * ocfs2_invalidatepage() and ocfs2_releasepage() are shamelessly stolen
603 * from ext3. PageChecked() bits have been removed as OCFS2 does not
604 * do journalled data.
605 */
d47992f8
LC
606static void ocfs2_invalidatepage(struct page *page, unsigned int offset,
607 unsigned int length)
03f981cf
JB
608{
609 journal_t *journal = OCFS2_SB(page->mapping->host->i_sb)->journal->j_journal;
610
e5f8d30d 611 jbd2_journal_invalidatepage(journal, page, offset, length);
03f981cf
JB
612}
613
614static int ocfs2_releasepage(struct page *page, gfp_t wait)
615{
616 journal_t *journal = OCFS2_SB(page->mapping->host->i_sb)->journal->j_journal;
617
618 if (!page_has_buffers(page))
619 return 0;
2b4e30fb 620 return jbd2_journal_try_to_free_buffers(journal, page, wait);
03f981cf
JB
621}
622
ccd979bd
MF
623static ssize_t ocfs2_direct_IO(int rw,
624 struct kiocb *iocb,
625 const struct iovec *iov,
626 loff_t offset,
627 unsigned long nr_segs)
628{
629 struct file *file = iocb->ki_filp;
496ad9aa 630 struct inode *inode = file_inode(file)->i_mapping->host;
53013cba 631
6798d35a
MF
632 /*
633 * Fallback to buffered I/O if we see an inode without
634 * extents.
635 */
636 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)
637 return 0;
638
b80474b4
TM
639 /* Fallback to buffered I/O if we are appending. */
640 if (i_size_read(inode) <= offset)
641 return 0;
642
c1e8d35e
TM
643 return __blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev,
644 iov, offset, nr_segs,
645 ocfs2_direct_IO_get_blocks,
646 ocfs2_dio_end_io, NULL, 0);
ccd979bd
MF
647}
648
9517bac6
MF
649static void ocfs2_figure_cluster_boundaries(struct ocfs2_super *osb,
650 u32 cpos,
651 unsigned int *start,
652 unsigned int *end)
653{
654 unsigned int cluster_start = 0, cluster_end = PAGE_CACHE_SIZE;
655
656 if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits)) {
657 unsigned int cpp;
658
659 cpp = 1 << (PAGE_CACHE_SHIFT - osb->s_clustersize_bits);
660
661 cluster_start = cpos % cpp;
662 cluster_start = cluster_start << osb->s_clustersize_bits;
663
664 cluster_end = cluster_start + osb->s_clustersize;
665 }
666
667 BUG_ON(cluster_start > PAGE_SIZE);
668 BUG_ON(cluster_end > PAGE_SIZE);
669
670 if (start)
671 *start = cluster_start;
672 if (end)
673 *end = cluster_end;
674}
675
676/*
677 * 'from' and 'to' are the region in the page to avoid zeroing.
678 *
679 * If pagesize > clustersize, this function will avoid zeroing outside
680 * of the cluster boundary.
681 *
682 * from == to == 0 is code for "zero the entire cluster region"
683 */
684static void ocfs2_clear_page_regions(struct page *page,
685 struct ocfs2_super *osb, u32 cpos,
686 unsigned from, unsigned to)
687{
688 void *kaddr;
689 unsigned int cluster_start, cluster_end;
690
691 ocfs2_figure_cluster_boundaries(osb, cpos, &cluster_start, &cluster_end);
692
c4bc8dcb 693 kaddr = kmap_atomic(page);
9517bac6
MF
694
695 if (from || to) {
696 if (from > cluster_start)
697 memset(kaddr + cluster_start, 0, from - cluster_start);
698 if (to < cluster_end)
699 memset(kaddr + to, 0, cluster_end - to);
700 } else {
701 memset(kaddr + cluster_start, 0, cluster_end - cluster_start);
702 }
703
c4bc8dcb 704 kunmap_atomic(kaddr);
9517bac6
MF
705}
706
4e9563fd
MF
707/*
708 * Nonsparse file systems fully allocate before we get to the write
709 * code. This prevents ocfs2_write() from tagging the write as an
710 * allocating one, which means ocfs2_map_page_blocks() might try to
711 * read-in the blocks at the tail of our file. Avoid reading them by
712 * testing i_size against each block offset.
713 */
714static int ocfs2_should_read_blk(struct inode *inode, struct page *page,
715 unsigned int block_start)
716{
717 u64 offset = page_offset(page) + block_start;
718
719 if (ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)))
720 return 1;
721
722 if (i_size_read(inode) > offset)
723 return 1;
724
725 return 0;
726}
727
9517bac6 728/*
ebdec241 729 * Some of this taken from __block_write_begin(). We already have our
9517bac6
MF
730 * mapping by now though, and the entire write will be allocating or
731 * it won't, so not much need to use BH_New.
732 *
733 * This will also skip zeroing, which is handled externally.
734 */
60b11392
MF
735int ocfs2_map_page_blocks(struct page *page, u64 *p_blkno,
736 struct inode *inode, unsigned int from,
737 unsigned int to, int new)
9517bac6
MF
738{
739 int ret = 0;
740 struct buffer_head *head, *bh, *wait[2], **wait_bh = wait;
741 unsigned int block_end, block_start;
742 unsigned int bsize = 1 << inode->i_blkbits;
743
744 if (!page_has_buffers(page))
745 create_empty_buffers(page, bsize, 0);
746
747 head = page_buffers(page);
748 for (bh = head, block_start = 0; bh != head || !block_start;
749 bh = bh->b_this_page, block_start += bsize) {
750 block_end = block_start + bsize;
751
3a307ffc
MF
752 clear_buffer_new(bh);
753
9517bac6
MF
754 /*
755 * Ignore blocks outside of our i/o range -
756 * they may belong to unallocated clusters.
757 */
60b11392 758 if (block_start >= to || block_end <= from) {
9517bac6
MF
759 if (PageUptodate(page))
760 set_buffer_uptodate(bh);
761 continue;
762 }
763
764 /*
765 * For an allocating write with cluster size >= page
766 * size, we always write the entire page.
767 */
3a307ffc
MF
768 if (new)
769 set_buffer_new(bh);
9517bac6
MF
770
771 if (!buffer_mapped(bh)) {
772 map_bh(bh, inode->i_sb, *p_blkno);
773 unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr);
774 }
775
776 if (PageUptodate(page)) {
777 if (!buffer_uptodate(bh))
778 set_buffer_uptodate(bh);
779 } else if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
bce99768 780 !buffer_new(bh) &&
4e9563fd 781 ocfs2_should_read_blk(inode, page, block_start) &&
bce99768 782 (block_start < from || block_end > to)) {
9517bac6
MF
783 ll_rw_block(READ, 1, &bh);
784 *wait_bh++=bh;
785 }
786
787 *p_blkno = *p_blkno + 1;
788 }
789
790 /*
791 * If we issued read requests - let them complete.
792 */
793 while(wait_bh > wait) {
794 wait_on_buffer(*--wait_bh);
795 if (!buffer_uptodate(*wait_bh))
796 ret = -EIO;
797 }
798
799 if (ret == 0 || !new)
800 return ret;
801
802 /*
803 * If we get -EIO above, zero out any newly allocated blocks
804 * to avoid exposing stale data.
805 */
806 bh = head;
807 block_start = 0;
808 do {
9517bac6
MF
809 block_end = block_start + bsize;
810 if (block_end <= from)
811 goto next_bh;
812 if (block_start >= to)
813 break;
814
eebd2aa3 815 zero_user(page, block_start, bh->b_size);
9517bac6
MF
816 set_buffer_uptodate(bh);
817 mark_buffer_dirty(bh);
818
819next_bh:
820 block_start = block_end;
821 bh = bh->b_this_page;
822 } while (bh != head);
823
824 return ret;
825}
826
3a307ffc
MF
827#if (PAGE_CACHE_SIZE >= OCFS2_MAX_CLUSTERSIZE)
828#define OCFS2_MAX_CTXT_PAGES 1
829#else
830#define OCFS2_MAX_CTXT_PAGES (OCFS2_MAX_CLUSTERSIZE / PAGE_CACHE_SIZE)
831#endif
832
833#define OCFS2_MAX_CLUSTERS_PER_PAGE (PAGE_CACHE_SIZE / OCFS2_MIN_CLUSTERSIZE)
834
6af67d82 835/*
3a307ffc 836 * Describe the state of a single cluster to be written to.
6af67d82 837 */
3a307ffc
MF
838struct ocfs2_write_cluster_desc {
839 u32 c_cpos;
840 u32 c_phys;
841 /*
842 * Give this a unique field because c_phys eventually gets
843 * filled.
844 */
845 unsigned c_new;
b27b7cbc 846 unsigned c_unwritten;
e7432675 847 unsigned c_needs_zero;
3a307ffc 848};
6af67d82 849
3a307ffc
MF
850struct ocfs2_write_ctxt {
851 /* Logical cluster position / len of write */
852 u32 w_cpos;
853 u32 w_clen;
6af67d82 854
e7432675
SM
855 /* First cluster allocated in a nonsparse extend */
856 u32 w_first_new_cpos;
857
3a307ffc 858 struct ocfs2_write_cluster_desc w_desc[OCFS2_MAX_CLUSTERS_PER_PAGE];
6af67d82 859
3a307ffc
MF
860 /*
861 * This is true if page_size > cluster_size.
862 *
863 * It triggers a set of special cases during write which might
864 * have to deal with allocating writes to partial pages.
865 */
866 unsigned int w_large_pages;
6af67d82 867
3a307ffc
MF
868 /*
869 * Pages involved in this write.
870 *
871 * w_target_page is the page being written to by the user.
872 *
873 * w_pages is an array of pages which always contains
874 * w_target_page, and in the case of an allocating write with
875 * page_size < cluster size, it will contain zero'd and mapped
876 * pages adjacent to w_target_page which need to be written
877 * out in so that future reads from that region will get
878 * zero's.
879 */
3a307ffc 880 unsigned int w_num_pages;
83fd9c7f 881 struct page *w_pages[OCFS2_MAX_CTXT_PAGES];
3a307ffc 882 struct page *w_target_page;
eeb47d12 883
5cffff9e
WW
884 /*
885 * w_target_locked is used for page_mkwrite path indicating no unlocking
886 * against w_target_page in ocfs2_write_end_nolock.
887 */
888 unsigned int w_target_locked:1;
889
3a307ffc
MF
890 /*
891 * ocfs2_write_end() uses this to know what the real range to
892 * write in the target should be.
893 */
894 unsigned int w_target_from;
895 unsigned int w_target_to;
896
897 /*
898 * We could use journal_current_handle() but this is cleaner,
899 * IMHO -Mark
900 */
901 handle_t *w_handle;
902
903 struct buffer_head *w_di_bh;
b27b7cbc
MF
904
905 struct ocfs2_cached_dealloc_ctxt w_dealloc;
3a307ffc
MF
906};
907
1d410a6e 908void ocfs2_unlock_and_free_pages(struct page **pages, int num_pages)
3a307ffc
MF
909{
910 int i;
911
1d410a6e
MF
912 for(i = 0; i < num_pages; i++) {
913 if (pages[i]) {
914 unlock_page(pages[i]);
915 mark_page_accessed(pages[i]);
916 page_cache_release(pages[i]);
917 }
6af67d82 918 }
1d410a6e
MF
919}
920
921static void ocfs2_free_write_ctxt(struct ocfs2_write_ctxt *wc)
922{
5cffff9e
WW
923 int i;
924
925 /*
926 * w_target_locked is only set to true in the page_mkwrite() case.
927 * The intent is to allow us to lock the target page from write_begin()
928 * to write_end(). The caller must hold a ref on w_target_page.
929 */
930 if (wc->w_target_locked) {
931 BUG_ON(!wc->w_target_page);
932 for (i = 0; i < wc->w_num_pages; i++) {
933 if (wc->w_target_page == wc->w_pages[i]) {
934 wc->w_pages[i] = NULL;
935 break;
936 }
937 }
938 mark_page_accessed(wc->w_target_page);
939 page_cache_release(wc->w_target_page);
940 }
1d410a6e 941 ocfs2_unlock_and_free_pages(wc->w_pages, wc->w_num_pages);
6af67d82 942
3a307ffc
MF
943 brelse(wc->w_di_bh);
944 kfree(wc);
945}
946
947static int ocfs2_alloc_write_ctxt(struct ocfs2_write_ctxt **wcp,
948 struct ocfs2_super *osb, loff_t pos,
607d44aa 949 unsigned len, struct buffer_head *di_bh)
3a307ffc 950{
30b8548f 951 u32 cend;
3a307ffc
MF
952 struct ocfs2_write_ctxt *wc;
953
954 wc = kzalloc(sizeof(struct ocfs2_write_ctxt), GFP_NOFS);
955 if (!wc)
956 return -ENOMEM;
6af67d82 957
3a307ffc 958 wc->w_cpos = pos >> osb->s_clustersize_bits;
e7432675 959 wc->w_first_new_cpos = UINT_MAX;
30b8548f 960 cend = (pos + len - 1) >> osb->s_clustersize_bits;
961 wc->w_clen = cend - wc->w_cpos + 1;
607d44aa
MF
962 get_bh(di_bh);
963 wc->w_di_bh = di_bh;
6af67d82 964
3a307ffc
MF
965 if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits))
966 wc->w_large_pages = 1;
967 else
968 wc->w_large_pages = 0;
969
b27b7cbc
MF
970 ocfs2_init_dealloc_ctxt(&wc->w_dealloc);
971
3a307ffc 972 *wcp = wc;
6af67d82 973
3a307ffc 974 return 0;
6af67d82
MF
975}
976
9517bac6 977/*
3a307ffc
MF
978 * If a page has any new buffers, zero them out here, and mark them uptodate
979 * and dirty so they'll be written out (in order to prevent uninitialised
980 * block data from leaking). And clear the new bit.
9517bac6 981 */
3a307ffc 982static void ocfs2_zero_new_buffers(struct page *page, unsigned from, unsigned to)
9517bac6 983{
3a307ffc
MF
984 unsigned int block_start, block_end;
985 struct buffer_head *head, *bh;
9517bac6 986
3a307ffc
MF
987 BUG_ON(!PageLocked(page));
988 if (!page_has_buffers(page))
989 return;
9517bac6 990
3a307ffc
MF
991 bh = head = page_buffers(page);
992 block_start = 0;
993 do {
994 block_end = block_start + bh->b_size;
995
996 if (buffer_new(bh)) {
997 if (block_end > from && block_start < to) {
998 if (!PageUptodate(page)) {
999 unsigned start, end;
3a307ffc
MF
1000
1001 start = max(from, block_start);
1002 end = min(to, block_end);
1003
eebd2aa3 1004 zero_user_segment(page, start, end);
3a307ffc
MF
1005 set_buffer_uptodate(bh);
1006 }
1007
1008 clear_buffer_new(bh);
1009 mark_buffer_dirty(bh);
1010 }
1011 }
9517bac6 1012
3a307ffc
MF
1013 block_start = block_end;
1014 bh = bh->b_this_page;
1015 } while (bh != head);
1016}
1017
1018/*
1019 * Only called when we have a failure during allocating write to write
1020 * zero's to the newly allocated region.
1021 */
1022static void ocfs2_write_failure(struct inode *inode,
1023 struct ocfs2_write_ctxt *wc,
1024 loff_t user_pos, unsigned user_len)
1025{
1026 int i;
5c26a7b7
MF
1027 unsigned from = user_pos & (PAGE_CACHE_SIZE - 1),
1028 to = user_pos + user_len;
3a307ffc
MF
1029 struct page *tmppage;
1030
5c26a7b7 1031 ocfs2_zero_new_buffers(wc->w_target_page, from, to);
9517bac6 1032
3a307ffc
MF
1033 for(i = 0; i < wc->w_num_pages; i++) {
1034 tmppage = wc->w_pages[i];
9517bac6 1035
961cecbe 1036 if (page_has_buffers(tmppage)) {
53ef99ca 1037 if (ocfs2_should_order_data(inode))
2b4e30fb 1038 ocfs2_jbd2_file_inode(wc->w_handle, inode);
961cecbe
SM
1039
1040 block_commit_write(tmppage, from, to);
1041 }
9517bac6 1042 }
9517bac6
MF
1043}
1044
3a307ffc
MF
1045static int ocfs2_prepare_page_for_write(struct inode *inode, u64 *p_blkno,
1046 struct ocfs2_write_ctxt *wc,
1047 struct page *page, u32 cpos,
1048 loff_t user_pos, unsigned user_len,
1049 int new)
9517bac6 1050{
3a307ffc
MF
1051 int ret;
1052 unsigned int map_from = 0, map_to = 0;
9517bac6 1053 unsigned int cluster_start, cluster_end;
3a307ffc 1054 unsigned int user_data_from = 0, user_data_to = 0;
9517bac6 1055
3a307ffc 1056 ocfs2_figure_cluster_boundaries(OCFS2_SB(inode->i_sb), cpos,
9517bac6
MF
1057 &cluster_start, &cluster_end);
1058
272b62c1
GR
1059 /* treat the write as new if the a hole/lseek spanned across
1060 * the page boundary.
1061 */
1062 new = new | ((i_size_read(inode) <= page_offset(page)) &&
1063 (page_offset(page) <= user_pos));
1064
3a307ffc
MF
1065 if (page == wc->w_target_page) {
1066 map_from = user_pos & (PAGE_CACHE_SIZE - 1);
1067 map_to = map_from + user_len;
1068
1069 if (new)
1070 ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1071 cluster_start, cluster_end,
1072 new);
1073 else
1074 ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1075 map_from, map_to, new);
1076 if (ret) {
9517bac6
MF
1077 mlog_errno(ret);
1078 goto out;
1079 }
1080
3a307ffc
MF
1081 user_data_from = map_from;
1082 user_data_to = map_to;
9517bac6 1083 if (new) {
3a307ffc
MF
1084 map_from = cluster_start;
1085 map_to = cluster_end;
9517bac6
MF
1086 }
1087 } else {
1088 /*
1089 * If we haven't allocated the new page yet, we
1090 * shouldn't be writing it out without copying user
1091 * data. This is likely a math error from the caller.
1092 */
1093 BUG_ON(!new);
1094
3a307ffc
MF
1095 map_from = cluster_start;
1096 map_to = cluster_end;
9517bac6
MF
1097
1098 ret = ocfs2_map_page_blocks(page, p_blkno, inode,
3a307ffc 1099 cluster_start, cluster_end, new);
9517bac6
MF
1100 if (ret) {
1101 mlog_errno(ret);
1102 goto out;
1103 }
1104 }
1105
1106 /*
1107 * Parts of newly allocated pages need to be zero'd.
1108 *
1109 * Above, we have also rewritten 'to' and 'from' - as far as
1110 * the rest of the function is concerned, the entire cluster
1111 * range inside of a page needs to be written.
1112 *
1113 * We can skip this if the page is up to date - it's already
1114 * been zero'd from being read in as a hole.
1115 */
1116 if (new && !PageUptodate(page))
1117 ocfs2_clear_page_regions(page, OCFS2_SB(inode->i_sb),
3a307ffc 1118 cpos, user_data_from, user_data_to);
9517bac6
MF
1119
1120 flush_dcache_page(page);
1121
9517bac6 1122out:
3a307ffc 1123 return ret;
9517bac6
MF
1124}
1125
1126/*
3a307ffc 1127 * This function will only grab one clusters worth of pages.
9517bac6 1128 */
3a307ffc
MF
1129static int ocfs2_grab_pages_for_write(struct address_space *mapping,
1130 struct ocfs2_write_ctxt *wc,
693c241a
JB
1131 u32 cpos, loff_t user_pos,
1132 unsigned user_len, int new,
7307de80 1133 struct page *mmap_page)
9517bac6 1134{
3a307ffc 1135 int ret = 0, i;
693c241a 1136 unsigned long start, target_index, end_index, index;
9517bac6 1137 struct inode *inode = mapping->host;
693c241a 1138 loff_t last_byte;
9517bac6 1139
3a307ffc 1140 target_index = user_pos >> PAGE_CACHE_SHIFT;
9517bac6
MF
1141
1142 /*
1143 * Figure out how many pages we'll be manipulating here. For
60b11392 1144 * non allocating write, we just change the one
693c241a
JB
1145 * page. Otherwise, we'll need a whole clusters worth. If we're
1146 * writing past i_size, we only need enough pages to cover the
1147 * last page of the write.
9517bac6 1148 */
9517bac6 1149 if (new) {
3a307ffc
MF
1150 wc->w_num_pages = ocfs2_pages_per_cluster(inode->i_sb);
1151 start = ocfs2_align_clusters_to_page_index(inode->i_sb, cpos);
693c241a
JB
1152 /*
1153 * We need the index *past* the last page we could possibly
1154 * touch. This is the page past the end of the write or
1155 * i_size, whichever is greater.
1156 */
1157 last_byte = max(user_pos + user_len, i_size_read(inode));
1158 BUG_ON(last_byte < 1);
1159 end_index = ((last_byte - 1) >> PAGE_CACHE_SHIFT) + 1;
1160 if ((start + wc->w_num_pages) > end_index)
1161 wc->w_num_pages = end_index - start;
9517bac6 1162 } else {
3a307ffc
MF
1163 wc->w_num_pages = 1;
1164 start = target_index;
9517bac6
MF
1165 }
1166
3a307ffc 1167 for(i = 0; i < wc->w_num_pages; i++) {
9517bac6
MF
1168 index = start + i;
1169
7307de80
MF
1170 if (index == target_index && mmap_page) {
1171 /*
1172 * ocfs2_pagemkwrite() is a little different
1173 * and wants us to directly use the page
1174 * passed in.
1175 */
1176 lock_page(mmap_page);
1177
5cffff9e 1178 /* Exit and let the caller retry */
7307de80 1179 if (mmap_page->mapping != mapping) {
5cffff9e 1180 WARN_ON(mmap_page->mapping);
7307de80 1181 unlock_page(mmap_page);
5cffff9e 1182 ret = -EAGAIN;
7307de80
MF
1183 goto out;
1184 }
1185
1186 page_cache_get(mmap_page);
1187 wc->w_pages[i] = mmap_page;
5cffff9e 1188 wc->w_target_locked = true;
7307de80
MF
1189 } else {
1190 wc->w_pages[i] = find_or_create_page(mapping, index,
1191 GFP_NOFS);
1192 if (!wc->w_pages[i]) {
1193 ret = -ENOMEM;
1194 mlog_errno(ret);
1195 goto out;
1196 }
9517bac6 1197 }
1269529b 1198 wait_for_stable_page(wc->w_pages[i]);
3a307ffc
MF
1199
1200 if (index == target_index)
1201 wc->w_target_page = wc->w_pages[i];
9517bac6 1202 }
3a307ffc 1203out:
5cffff9e
WW
1204 if (ret)
1205 wc->w_target_locked = false;
3a307ffc
MF
1206 return ret;
1207}
1208
1209/*
1210 * Prepare a single cluster for write one cluster into the file.
1211 */
1212static int ocfs2_write_cluster(struct address_space *mapping,
b27b7cbc 1213 u32 phys, unsigned int unwritten,
e7432675 1214 unsigned int should_zero,
b27b7cbc 1215 struct ocfs2_alloc_context *data_ac,
3a307ffc
MF
1216 struct ocfs2_alloc_context *meta_ac,
1217 struct ocfs2_write_ctxt *wc, u32 cpos,
1218 loff_t user_pos, unsigned user_len)
1219{
e7432675 1220 int ret, i, new;
3a307ffc
MF
1221 u64 v_blkno, p_blkno;
1222 struct inode *inode = mapping->host;
f99b9b7c 1223 struct ocfs2_extent_tree et;
3a307ffc
MF
1224
1225 new = phys == 0 ? 1 : 0;
9517bac6 1226 if (new) {
3a307ffc
MF
1227 u32 tmp_pos;
1228
9517bac6
MF
1229 /*
1230 * This is safe to call with the page locks - it won't take
1231 * any additional semaphores or cluster locks.
1232 */
3a307ffc 1233 tmp_pos = cpos;
0eb8d47e
TM
1234 ret = ocfs2_add_inode_data(OCFS2_SB(inode->i_sb), inode,
1235 &tmp_pos, 1, 0, wc->w_di_bh,
1236 wc->w_handle, data_ac,
1237 meta_ac, NULL);
9517bac6
MF
1238 /*
1239 * This shouldn't happen because we must have already
1240 * calculated the correct meta data allocation required. The
1241 * internal tree allocation code should know how to increase
1242 * transaction credits itself.
1243 *
1244 * If need be, we could handle -EAGAIN for a
1245 * RESTART_TRANS here.
1246 */
1247 mlog_bug_on_msg(ret == -EAGAIN,
1248 "Inode %llu: EAGAIN return during allocation.\n",
1249 (unsigned long long)OCFS2_I(inode)->ip_blkno);
1250 if (ret < 0) {
1251 mlog_errno(ret);
1252 goto out;
1253 }
b27b7cbc 1254 } else if (unwritten) {
5e404e9e
JB
1255 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode),
1256 wc->w_di_bh);
f99b9b7c 1257 ret = ocfs2_mark_extent_written(inode, &et,
b27b7cbc 1258 wc->w_handle, cpos, 1, phys,
f99b9b7c 1259 meta_ac, &wc->w_dealloc);
b27b7cbc
MF
1260 if (ret < 0) {
1261 mlog_errno(ret);
1262 goto out;
1263 }
1264 }
3a307ffc 1265
b27b7cbc 1266 if (should_zero)
3a307ffc 1267 v_blkno = ocfs2_clusters_to_blocks(inode->i_sb, cpos);
b27b7cbc 1268 else
3a307ffc 1269 v_blkno = user_pos >> inode->i_sb->s_blocksize_bits;
9517bac6 1270
3a307ffc
MF
1271 /*
1272 * The only reason this should fail is due to an inability to
1273 * find the extent added.
1274 */
49cb8d2d
MF
1275 ret = ocfs2_extent_map_get_blocks(inode, v_blkno, &p_blkno, NULL,
1276 NULL);
9517bac6 1277 if (ret < 0) {
3a307ffc
MF
1278 ocfs2_error(inode->i_sb, "Corrupting extend for inode %llu, "
1279 "at logical block %llu",
1280 (unsigned long long)OCFS2_I(inode)->ip_blkno,
1281 (unsigned long long)v_blkno);
9517bac6
MF
1282 goto out;
1283 }
1284
1285 BUG_ON(p_blkno == 0);
1286
3a307ffc
MF
1287 for(i = 0; i < wc->w_num_pages; i++) {
1288 int tmpret;
9517bac6 1289
3a307ffc
MF
1290 tmpret = ocfs2_prepare_page_for_write(inode, &p_blkno, wc,
1291 wc->w_pages[i], cpos,
b27b7cbc
MF
1292 user_pos, user_len,
1293 should_zero);
3a307ffc
MF
1294 if (tmpret) {
1295 mlog_errno(tmpret);
1296 if (ret == 0)
cbfa9639 1297 ret = tmpret;
3a307ffc 1298 }
9517bac6
MF
1299 }
1300
3a307ffc
MF
1301 /*
1302 * We only have cleanup to do in case of allocating write.
1303 */
1304 if (ret && new)
1305 ocfs2_write_failure(inode, wc, user_pos, user_len);
1306
9517bac6 1307out:
9517bac6 1308
3a307ffc 1309 return ret;
9517bac6
MF
1310}
1311
0d172baa
MF
1312static int ocfs2_write_cluster_by_desc(struct address_space *mapping,
1313 struct ocfs2_alloc_context *data_ac,
1314 struct ocfs2_alloc_context *meta_ac,
1315 struct ocfs2_write_ctxt *wc,
1316 loff_t pos, unsigned len)
1317{
1318 int ret, i;
db56246c
MF
1319 loff_t cluster_off;
1320 unsigned int local_len = len;
0d172baa 1321 struct ocfs2_write_cluster_desc *desc;
db56246c 1322 struct ocfs2_super *osb = OCFS2_SB(mapping->host->i_sb);
0d172baa
MF
1323
1324 for (i = 0; i < wc->w_clen; i++) {
1325 desc = &wc->w_desc[i];
1326
db56246c
MF
1327 /*
1328 * We have to make sure that the total write passed in
1329 * doesn't extend past a single cluster.
1330 */
1331 local_len = len;
1332 cluster_off = pos & (osb->s_clustersize - 1);
1333 if ((cluster_off + local_len) > osb->s_clustersize)
1334 local_len = osb->s_clustersize - cluster_off;
1335
b27b7cbc 1336 ret = ocfs2_write_cluster(mapping, desc->c_phys,
e7432675
SM
1337 desc->c_unwritten,
1338 desc->c_needs_zero,
1339 data_ac, meta_ac,
db56246c 1340 wc, desc->c_cpos, pos, local_len);
0d172baa
MF
1341 if (ret) {
1342 mlog_errno(ret);
1343 goto out;
1344 }
db56246c
MF
1345
1346 len -= local_len;
1347 pos += local_len;
0d172baa
MF
1348 }
1349
1350 ret = 0;
1351out:
1352 return ret;
1353}
1354
3a307ffc
MF
1355/*
1356 * ocfs2_write_end() wants to know which parts of the target page it
1357 * should complete the write on. It's easiest to compute them ahead of
1358 * time when a more complete view of the write is available.
1359 */
1360static void ocfs2_set_target_boundaries(struct ocfs2_super *osb,
1361 struct ocfs2_write_ctxt *wc,
1362 loff_t pos, unsigned len, int alloc)
9517bac6 1363{
3a307ffc 1364 struct ocfs2_write_cluster_desc *desc;
9517bac6 1365
3a307ffc
MF
1366 wc->w_target_from = pos & (PAGE_CACHE_SIZE - 1);
1367 wc->w_target_to = wc->w_target_from + len;
1368
1369 if (alloc == 0)
1370 return;
1371
1372 /*
1373 * Allocating write - we may have different boundaries based
1374 * on page size and cluster size.
1375 *
1376 * NOTE: We can no longer compute one value from the other as
1377 * the actual write length and user provided length may be
1378 * different.
1379 */
9517bac6 1380
3a307ffc
MF
1381 if (wc->w_large_pages) {
1382 /*
1383 * We only care about the 1st and last cluster within
b27b7cbc 1384 * our range and whether they should be zero'd or not. Either
3a307ffc
MF
1385 * value may be extended out to the start/end of a
1386 * newly allocated cluster.
1387 */
1388 desc = &wc->w_desc[0];
e7432675 1389 if (desc->c_needs_zero)
3a307ffc
MF
1390 ocfs2_figure_cluster_boundaries(osb,
1391 desc->c_cpos,
1392 &wc->w_target_from,
1393 NULL);
1394
1395 desc = &wc->w_desc[wc->w_clen - 1];
e7432675 1396 if (desc->c_needs_zero)
3a307ffc
MF
1397 ocfs2_figure_cluster_boundaries(osb,
1398 desc->c_cpos,
1399 NULL,
1400 &wc->w_target_to);
1401 } else {
1402 wc->w_target_from = 0;
1403 wc->w_target_to = PAGE_CACHE_SIZE;
1404 }
9517bac6
MF
1405}
1406
0d172baa
MF
1407/*
1408 * Populate each single-cluster write descriptor in the write context
1409 * with information about the i/o to be done.
b27b7cbc
MF
1410 *
1411 * Returns the number of clusters that will have to be allocated, as
1412 * well as a worst case estimate of the number of extent records that
1413 * would have to be created during a write to an unwritten region.
0d172baa
MF
1414 */
1415static int ocfs2_populate_write_desc(struct inode *inode,
1416 struct ocfs2_write_ctxt *wc,
b27b7cbc
MF
1417 unsigned int *clusters_to_alloc,
1418 unsigned int *extents_to_split)
9517bac6 1419{
0d172baa 1420 int ret;
3a307ffc 1421 struct ocfs2_write_cluster_desc *desc;
0d172baa 1422 unsigned int num_clusters = 0;
b27b7cbc 1423 unsigned int ext_flags = 0;
0d172baa
MF
1424 u32 phys = 0;
1425 int i;
9517bac6 1426
b27b7cbc
MF
1427 *clusters_to_alloc = 0;
1428 *extents_to_split = 0;
1429
3a307ffc
MF
1430 for (i = 0; i < wc->w_clen; i++) {
1431 desc = &wc->w_desc[i];
1432 desc->c_cpos = wc->w_cpos + i;
1433
1434 if (num_clusters == 0) {
b27b7cbc
MF
1435 /*
1436 * Need to look up the next extent record.
1437 */
3a307ffc 1438 ret = ocfs2_get_clusters(inode, desc->c_cpos, &phys,
b27b7cbc 1439 &num_clusters, &ext_flags);
3a307ffc
MF
1440 if (ret) {
1441 mlog_errno(ret);
607d44aa 1442 goto out;
3a307ffc 1443 }
b27b7cbc 1444
293b2f70
TM
1445 /* We should already CoW the refcountd extent. */
1446 BUG_ON(ext_flags & OCFS2_EXT_REFCOUNTED);
1447
b27b7cbc
MF
1448 /*
1449 * Assume worst case - that we're writing in
1450 * the middle of the extent.
1451 *
1452 * We can assume that the write proceeds from
1453 * left to right, in which case the extent
1454 * insert code is smart enough to coalesce the
1455 * next splits into the previous records created.
1456 */
1457 if (ext_flags & OCFS2_EXT_UNWRITTEN)
1458 *extents_to_split = *extents_to_split + 2;
3a307ffc
MF
1459 } else if (phys) {
1460 /*
1461 * Only increment phys if it doesn't describe
1462 * a hole.
1463 */
1464 phys++;
1465 }
1466
e7432675
SM
1467 /*
1468 * If w_first_new_cpos is < UINT_MAX, we have a non-sparse
1469 * file that got extended. w_first_new_cpos tells us
1470 * where the newly allocated clusters are so we can
1471 * zero them.
1472 */
1473 if (desc->c_cpos >= wc->w_first_new_cpos) {
1474 BUG_ON(phys == 0);
1475 desc->c_needs_zero = 1;
1476 }
1477
3a307ffc
MF
1478 desc->c_phys = phys;
1479 if (phys == 0) {
1480 desc->c_new = 1;
e7432675 1481 desc->c_needs_zero = 1;
0d172baa 1482 *clusters_to_alloc = *clusters_to_alloc + 1;
3a307ffc 1483 }
e7432675
SM
1484
1485 if (ext_flags & OCFS2_EXT_UNWRITTEN) {
b27b7cbc 1486 desc->c_unwritten = 1;
e7432675
SM
1487 desc->c_needs_zero = 1;
1488 }
3a307ffc
MF
1489
1490 num_clusters--;
9517bac6
MF
1491 }
1492
0d172baa
MF
1493 ret = 0;
1494out:
1495 return ret;
1496}
1497
1afc32b9
MF
1498static int ocfs2_write_begin_inline(struct address_space *mapping,
1499 struct inode *inode,
1500 struct ocfs2_write_ctxt *wc)
1501{
1502 int ret;
1503 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1504 struct page *page;
1505 handle_t *handle;
1506 struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1507
1508 page = find_or_create_page(mapping, 0, GFP_NOFS);
1509 if (!page) {
1510 ret = -ENOMEM;
1511 mlog_errno(ret);
1512 goto out;
1513 }
1514 /*
1515 * If we don't set w_num_pages then this page won't get unlocked
1516 * and freed on cleanup of the write context.
1517 */
1518 wc->w_pages[0] = wc->w_target_page = page;
1519 wc->w_num_pages = 1;
1520
1521 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1522 if (IS_ERR(handle)) {
1523 ret = PTR_ERR(handle);
1524 mlog_errno(ret);
1525 goto out;
1526 }
1527
0cf2f763 1528 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh,
13723d00 1529 OCFS2_JOURNAL_ACCESS_WRITE);
1afc32b9
MF
1530 if (ret) {
1531 ocfs2_commit_trans(osb, handle);
1532
1533 mlog_errno(ret);
1534 goto out;
1535 }
1536
1537 if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
1538 ocfs2_set_inode_data_inline(inode, di);
1539
1540 if (!PageUptodate(page)) {
1541 ret = ocfs2_read_inline_data(inode, page, wc->w_di_bh);
1542 if (ret) {
1543 ocfs2_commit_trans(osb, handle);
1544
1545 goto out;
1546 }
1547 }
1548
1549 wc->w_handle = handle;
1550out:
1551 return ret;
1552}
1553
1554int ocfs2_size_fits_inline_data(struct buffer_head *di_bh, u64 new_size)
1555{
1556 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
1557
0d8a4e0c 1558 if (new_size <= le16_to_cpu(di->id2.i_data.id_count))
1afc32b9
MF
1559 return 1;
1560 return 0;
1561}
1562
1563static int ocfs2_try_to_write_inline_data(struct address_space *mapping,
1564 struct inode *inode, loff_t pos,
1565 unsigned len, struct page *mmap_page,
1566 struct ocfs2_write_ctxt *wc)
1567{
1568 int ret, written = 0;
1569 loff_t end = pos + len;
1570 struct ocfs2_inode_info *oi = OCFS2_I(inode);
d9ae49d6 1571 struct ocfs2_dinode *di = NULL;
1afc32b9 1572
9558156b
TM
1573 trace_ocfs2_try_to_write_inline_data((unsigned long long)oi->ip_blkno,
1574 len, (unsigned long long)pos,
1575 oi->ip_dyn_features);
1afc32b9
MF
1576
1577 /*
1578 * Handle inodes which already have inline data 1st.
1579 */
1580 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1581 if (mmap_page == NULL &&
1582 ocfs2_size_fits_inline_data(wc->w_di_bh, end))
1583 goto do_inline_write;
1584
1585 /*
1586 * The write won't fit - we have to give this inode an
1587 * inline extent list now.
1588 */
1589 ret = ocfs2_convert_inline_data_to_extents(inode, wc->w_di_bh);
1590 if (ret)
1591 mlog_errno(ret);
1592 goto out;
1593 }
1594
1595 /*
1596 * Check whether the inode can accept inline data.
1597 */
1598 if (oi->ip_clusters != 0 || i_size_read(inode) != 0)
1599 return 0;
1600
1601 /*
1602 * Check whether the write can fit.
1603 */
d9ae49d6
TY
1604 di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1605 if (mmap_page ||
1606 end > ocfs2_max_inline_data_with_xattr(inode->i_sb, di))
1afc32b9
MF
1607 return 0;
1608
1609do_inline_write:
1610 ret = ocfs2_write_begin_inline(mapping, inode, wc);
1611 if (ret) {
1612 mlog_errno(ret);
1613 goto out;
1614 }
1615
1616 /*
1617 * This signals to the caller that the data can be written
1618 * inline.
1619 */
1620 written = 1;
1621out:
1622 return written ? written : ret;
1623}
1624
65ed39d6
MF
1625/*
1626 * This function only does anything for file systems which can't
1627 * handle sparse files.
1628 *
1629 * What we want to do here is fill in any hole between the current end
1630 * of allocation and the end of our write. That way the rest of the
1631 * write path can treat it as an non-allocating write, which has no
1632 * special case code for sparse/nonsparse files.
1633 */
5693486b
JB
1634static int ocfs2_expand_nonsparse_inode(struct inode *inode,
1635 struct buffer_head *di_bh,
1636 loff_t pos, unsigned len,
65ed39d6
MF
1637 struct ocfs2_write_ctxt *wc)
1638{
1639 int ret;
65ed39d6
MF
1640 loff_t newsize = pos + len;
1641
5693486b 1642 BUG_ON(ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)));
65ed39d6
MF
1643
1644 if (newsize <= i_size_read(inode))
1645 return 0;
1646
5693486b 1647 ret = ocfs2_extend_no_holes(inode, di_bh, newsize, pos);
65ed39d6
MF
1648 if (ret)
1649 mlog_errno(ret);
1650
e7432675
SM
1651 wc->w_first_new_cpos =
1652 ocfs2_clusters_for_bytes(inode->i_sb, i_size_read(inode));
1653
65ed39d6
MF
1654 return ret;
1655}
1656
5693486b
JB
1657static int ocfs2_zero_tail(struct inode *inode, struct buffer_head *di_bh,
1658 loff_t pos)
1659{
1660 int ret = 0;
1661
1662 BUG_ON(!ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)));
1663 if (pos > i_size_read(inode))
1664 ret = ocfs2_zero_extend(inode, di_bh, pos);
1665
1666 return ret;
1667}
1668
50308d81
TM
1669/*
1670 * Try to flush truncate logs if we can free enough clusters from it.
1671 * As for return value, "< 0" means error, "0" no space and "1" means
1672 * we have freed enough spaces and let the caller try to allocate again.
1673 */
1674static int ocfs2_try_to_free_truncate_log(struct ocfs2_super *osb,
1675 unsigned int needed)
1676{
1677 tid_t target;
1678 int ret = 0;
1679 unsigned int truncated_clusters;
1680
1681 mutex_lock(&osb->osb_tl_inode->i_mutex);
1682 truncated_clusters = osb->truncated_clusters;
1683 mutex_unlock(&osb->osb_tl_inode->i_mutex);
1684
1685 /*
1686 * Check whether we can succeed in allocating if we free
1687 * the truncate log.
1688 */
1689 if (truncated_clusters < needed)
1690 goto out;
1691
1692 ret = ocfs2_flush_truncate_log(osb);
1693 if (ret) {
1694 mlog_errno(ret);
1695 goto out;
1696 }
1697
1698 if (jbd2_journal_start_commit(osb->journal->j_journal, &target)) {
1699 jbd2_log_wait_commit(osb->journal->j_journal, target);
1700 ret = 1;
1701 }
1702out:
1703 return ret;
1704}
1705
0378da0f
TM
1706int ocfs2_write_begin_nolock(struct file *filp,
1707 struct address_space *mapping,
0d172baa
MF
1708 loff_t pos, unsigned len, unsigned flags,
1709 struct page **pagep, void **fsdata,
1710 struct buffer_head *di_bh, struct page *mmap_page)
1711{
e7432675 1712 int ret, cluster_of_pages, credits = OCFS2_INODE_UPDATE_CREDITS;
50308d81 1713 unsigned int clusters_to_alloc, extents_to_split, clusters_need = 0;
0d172baa
MF
1714 struct ocfs2_write_ctxt *wc;
1715 struct inode *inode = mapping->host;
1716 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1717 struct ocfs2_dinode *di;
1718 struct ocfs2_alloc_context *data_ac = NULL;
1719 struct ocfs2_alloc_context *meta_ac = NULL;
1720 handle_t *handle;
f99b9b7c 1721 struct ocfs2_extent_tree et;
50308d81 1722 int try_free = 1, ret1;
0d172baa 1723
50308d81 1724try_again:
0d172baa
MF
1725 ret = ocfs2_alloc_write_ctxt(&wc, osb, pos, len, di_bh);
1726 if (ret) {
1727 mlog_errno(ret);
1728 return ret;
1729 }
1730
1afc32b9
MF
1731 if (ocfs2_supports_inline_data(osb)) {
1732 ret = ocfs2_try_to_write_inline_data(mapping, inode, pos, len,
1733 mmap_page, wc);
1734 if (ret == 1) {
1735 ret = 0;
1736 goto success;
1737 }
1738 if (ret < 0) {
1739 mlog_errno(ret);
1740 goto out;
1741 }
1742 }
1743
5693486b
JB
1744 if (ocfs2_sparse_alloc(osb))
1745 ret = ocfs2_zero_tail(inode, di_bh, pos);
1746 else
1747 ret = ocfs2_expand_nonsparse_inode(inode, di_bh, pos, len,
1748 wc);
65ed39d6
MF
1749 if (ret) {
1750 mlog_errno(ret);
1751 goto out;
1752 }
1753
293b2f70
TM
1754 ret = ocfs2_check_range_for_refcount(inode, pos, len);
1755 if (ret < 0) {
1756 mlog_errno(ret);
1757 goto out;
1758 } else if (ret == 1) {
50308d81 1759 clusters_need = wc->w_clen;
15502712 1760 ret = ocfs2_refcount_cow(inode, filp, di_bh,
37f8a2bf 1761 wc->w_cpos, wc->w_clen, UINT_MAX);
293b2f70
TM
1762 if (ret) {
1763 mlog_errno(ret);
1764 goto out;
1765 }
1766 }
1767
b27b7cbc
MF
1768 ret = ocfs2_populate_write_desc(inode, wc, &clusters_to_alloc,
1769 &extents_to_split);
0d172baa
MF
1770 if (ret) {
1771 mlog_errno(ret);
1772 goto out;
1773 }
50308d81 1774 clusters_need += clusters_to_alloc;
0d172baa
MF
1775
1776 di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1777
9558156b
TM
1778 trace_ocfs2_write_begin_nolock(
1779 (unsigned long long)OCFS2_I(inode)->ip_blkno,
1780 (long long)i_size_read(inode),
1781 le32_to_cpu(di->i_clusters),
1782 pos, len, flags, mmap_page,
1783 clusters_to_alloc, extents_to_split);
1784
3a307ffc
MF
1785 /*
1786 * We set w_target_from, w_target_to here so that
1787 * ocfs2_write_end() knows which range in the target page to
1788 * write out. An allocation requires that we write the entire
1789 * cluster range.
1790 */
b27b7cbc 1791 if (clusters_to_alloc || extents_to_split) {
3a307ffc
MF
1792 /*
1793 * XXX: We are stretching the limits of
b27b7cbc 1794 * ocfs2_lock_allocators(). It greatly over-estimates
3a307ffc
MF
1795 * the work to be done.
1796 */
5e404e9e
JB
1797 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode),
1798 wc->w_di_bh);
f99b9b7c 1799 ret = ocfs2_lock_allocators(inode, &et,
231b87d1 1800 clusters_to_alloc, extents_to_split,
f99b9b7c 1801 &data_ac, &meta_ac);
9517bac6
MF
1802 if (ret) {
1803 mlog_errno(ret);
607d44aa 1804 goto out;
9517bac6
MF
1805 }
1806
4fe370af
MF
1807 if (data_ac)
1808 data_ac->ac_resv = &OCFS2_I(inode)->ip_la_data_resv;
1809
811f933d
TM
1810 credits = ocfs2_calc_extend_credits(inode->i_sb,
1811 &di->id2.i_list,
3a307ffc
MF
1812 clusters_to_alloc);
1813
9517bac6
MF
1814 }
1815
e7432675
SM
1816 /*
1817 * We have to zero sparse allocated clusters, unwritten extent clusters,
1818 * and non-sparse clusters we just extended. For non-sparse writes,
1819 * we know zeros will only be needed in the first and/or last cluster.
1820 */
1821 if (clusters_to_alloc || extents_to_split ||
8379e7c4
SM
1822 (wc->w_clen && (wc->w_desc[0].c_needs_zero ||
1823 wc->w_desc[wc->w_clen - 1].c_needs_zero)))
e7432675
SM
1824 cluster_of_pages = 1;
1825 else
1826 cluster_of_pages = 0;
1827
1828 ocfs2_set_target_boundaries(osb, wc, pos, len, cluster_of_pages);
3a307ffc 1829
9517bac6
MF
1830 handle = ocfs2_start_trans(osb, credits);
1831 if (IS_ERR(handle)) {
1832 ret = PTR_ERR(handle);
1833 mlog_errno(ret);
607d44aa 1834 goto out;
9517bac6
MF
1835 }
1836
3a307ffc
MF
1837 wc->w_handle = handle;
1838
5dd4056d
CH
1839 if (clusters_to_alloc) {
1840 ret = dquot_alloc_space_nodirty(inode,
1841 ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc));
1842 if (ret)
1843 goto out_commit;
a90714c1 1844 }
3a307ffc
MF
1845 /*
1846 * We don't want this to fail in ocfs2_write_end(), so do it
1847 * here.
1848 */
0cf2f763 1849 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh,
13723d00 1850 OCFS2_JOURNAL_ACCESS_WRITE);
3a307ffc 1851 if (ret) {
9517bac6 1852 mlog_errno(ret);
a90714c1 1853 goto out_quota;
9517bac6
MF
1854 }
1855
3a307ffc
MF
1856 /*
1857 * Fill our page array first. That way we've grabbed enough so
1858 * that we can zero and flush if we error after adding the
1859 * extent.
1860 */
693c241a 1861 ret = ocfs2_grab_pages_for_write(mapping, wc, wc->w_cpos, pos, len,
e7432675 1862 cluster_of_pages, mmap_page);
5cffff9e 1863 if (ret && ret != -EAGAIN) {
9517bac6 1864 mlog_errno(ret);
a90714c1 1865 goto out_quota;
9517bac6
MF
1866 }
1867
5cffff9e
WW
1868 /*
1869 * ocfs2_grab_pages_for_write() returns -EAGAIN if it could not lock
1870 * the target page. In this case, we exit with no error and no target
1871 * page. This will trigger the caller, page_mkwrite(), to re-try
1872 * the operation.
1873 */
1874 if (ret == -EAGAIN) {
1875 BUG_ON(wc->w_target_page);
1876 ret = 0;
1877 goto out_quota;
1878 }
1879
0d172baa
MF
1880 ret = ocfs2_write_cluster_by_desc(mapping, data_ac, meta_ac, wc, pos,
1881 len);
1882 if (ret) {
1883 mlog_errno(ret);
a90714c1 1884 goto out_quota;
9517bac6 1885 }
9517bac6 1886
3a307ffc
MF
1887 if (data_ac)
1888 ocfs2_free_alloc_context(data_ac);
1889 if (meta_ac)
1890 ocfs2_free_alloc_context(meta_ac);
9517bac6 1891
1afc32b9 1892success:
3a307ffc
MF
1893 *pagep = wc->w_target_page;
1894 *fsdata = wc;
1895 return 0;
a90714c1
JK
1896out_quota:
1897 if (clusters_to_alloc)
5dd4056d 1898 dquot_free_space(inode,
a90714c1 1899 ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc));
9517bac6
MF
1900out_commit:
1901 ocfs2_commit_trans(osb, handle);
1902
9517bac6 1903out:
3a307ffc
MF
1904 ocfs2_free_write_ctxt(wc);
1905
9517bac6
MF
1906 if (data_ac)
1907 ocfs2_free_alloc_context(data_ac);
1908 if (meta_ac)
1909 ocfs2_free_alloc_context(meta_ac);
50308d81
TM
1910
1911 if (ret == -ENOSPC && try_free) {
1912 /*
1913 * Try to free some truncate log so that we can have enough
1914 * clusters to allocate.
1915 */
1916 try_free = 0;
1917
1918 ret1 = ocfs2_try_to_free_truncate_log(osb, clusters_need);
1919 if (ret1 == 1)
1920 goto try_again;
1921
1922 if (ret1 < 0)
1923 mlog_errno(ret1);
1924 }
1925
3a307ffc
MF
1926 return ret;
1927}
1928
b6af1bcd
NP
1929static int ocfs2_write_begin(struct file *file, struct address_space *mapping,
1930 loff_t pos, unsigned len, unsigned flags,
1931 struct page **pagep, void **fsdata)
607d44aa
MF
1932{
1933 int ret;
1934 struct buffer_head *di_bh = NULL;
1935 struct inode *inode = mapping->host;
1936
e63aecb6 1937 ret = ocfs2_inode_lock(inode, &di_bh, 1);
607d44aa
MF
1938 if (ret) {
1939 mlog_errno(ret);
1940 return ret;
1941 }
1942
1943 /*
1944 * Take alloc sem here to prevent concurrent lookups. That way
1945 * the mapping, zeroing and tree manipulation within
1946 * ocfs2_write() will be safe against ->readpage(). This
1947 * should also serve to lock out allocation from a shared
1948 * writeable region.
1949 */
1950 down_write(&OCFS2_I(inode)->ip_alloc_sem);
1951
0378da0f 1952 ret = ocfs2_write_begin_nolock(file, mapping, pos, len, flags, pagep,
7307de80 1953 fsdata, di_bh, NULL);
607d44aa
MF
1954 if (ret) {
1955 mlog_errno(ret);
c934a92d 1956 goto out_fail;
607d44aa
MF
1957 }
1958
1959 brelse(di_bh);
1960
1961 return 0;
1962
607d44aa
MF
1963out_fail:
1964 up_write(&OCFS2_I(inode)->ip_alloc_sem);
1965
1966 brelse(di_bh);
e63aecb6 1967 ocfs2_inode_unlock(inode, 1);
607d44aa
MF
1968
1969 return ret;
1970}
1971
1afc32b9
MF
1972static void ocfs2_write_end_inline(struct inode *inode, loff_t pos,
1973 unsigned len, unsigned *copied,
1974 struct ocfs2_dinode *di,
1975 struct ocfs2_write_ctxt *wc)
1976{
1977 void *kaddr;
1978
1979 if (unlikely(*copied < len)) {
1980 if (!PageUptodate(wc->w_target_page)) {
1981 *copied = 0;
1982 return;
1983 }
1984 }
1985
c4bc8dcb 1986 kaddr = kmap_atomic(wc->w_target_page);
1afc32b9 1987 memcpy(di->id2.i_data.id_data + pos, kaddr + pos, *copied);
c4bc8dcb 1988 kunmap_atomic(kaddr);
1afc32b9 1989
9558156b
TM
1990 trace_ocfs2_write_end_inline(
1991 (unsigned long long)OCFS2_I(inode)->ip_blkno,
1afc32b9
MF
1992 (unsigned long long)pos, *copied,
1993 le16_to_cpu(di->id2.i_data.id_count),
1994 le16_to_cpu(di->i_dyn_features));
1995}
1996
7307de80
MF
1997int ocfs2_write_end_nolock(struct address_space *mapping,
1998 loff_t pos, unsigned len, unsigned copied,
1999 struct page *page, void *fsdata)
3a307ffc
MF
2000{
2001 int i;
2002 unsigned from, to, start = pos & (PAGE_CACHE_SIZE - 1);
2003 struct inode *inode = mapping->host;
2004 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
2005 struct ocfs2_write_ctxt *wc = fsdata;
2006 struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
2007 handle_t *handle = wc->w_handle;
2008 struct page *tmppage;
2009
1afc32b9
MF
2010 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
2011 ocfs2_write_end_inline(inode, pos, len, &copied, di, wc);
2012 goto out_write_size;
2013 }
2014
3a307ffc
MF
2015 if (unlikely(copied < len)) {
2016 if (!PageUptodate(wc->w_target_page))
2017 copied = 0;
2018
2019 ocfs2_zero_new_buffers(wc->w_target_page, start+copied,
2020 start+len);
2021 }
2022 flush_dcache_page(wc->w_target_page);
2023
2024 for(i = 0; i < wc->w_num_pages; i++) {
2025 tmppage = wc->w_pages[i];
2026
2027 if (tmppage == wc->w_target_page) {
2028 from = wc->w_target_from;
2029 to = wc->w_target_to;
2030
2031 BUG_ON(from > PAGE_CACHE_SIZE ||
2032 to > PAGE_CACHE_SIZE ||
2033 to < from);
2034 } else {
2035 /*
2036 * Pages adjacent to the target (if any) imply
2037 * a hole-filling write in which case we want
2038 * to flush their entire range.
2039 */
2040 from = 0;
2041 to = PAGE_CACHE_SIZE;
2042 }
2043
961cecbe 2044 if (page_has_buffers(tmppage)) {
53ef99ca 2045 if (ocfs2_should_order_data(inode))
2b4e30fb 2046 ocfs2_jbd2_file_inode(wc->w_handle, inode);
961cecbe
SM
2047 block_commit_write(tmppage, from, to);
2048 }
3a307ffc
MF
2049 }
2050
1afc32b9 2051out_write_size:
3a307ffc
MF
2052 pos += copied;
2053 if (pos > inode->i_size) {
2054 i_size_write(inode, pos);
2055 mark_inode_dirty(inode);
2056 }
2057 inode->i_blocks = ocfs2_inode_sector_count(inode);
2058 di->i_size = cpu_to_le64((u64)i_size_read(inode));
2059 inode->i_mtime = inode->i_ctime = CURRENT_TIME;
2060 di->i_mtime = di->i_ctime = cpu_to_le64(inode->i_mtime.tv_sec);
2061 di->i_mtime_nsec = di->i_ctime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec);
3a307ffc
MF
2062 ocfs2_journal_dirty(handle, wc->w_di_bh);
2063
2064 ocfs2_commit_trans(osb, handle);
59a5e416 2065
b27b7cbc
MF
2066 ocfs2_run_deallocs(osb, &wc->w_dealloc);
2067
607d44aa
MF
2068 ocfs2_free_write_ctxt(wc);
2069
2070 return copied;
2071}
2072
b6af1bcd
NP
2073static int ocfs2_write_end(struct file *file, struct address_space *mapping,
2074 loff_t pos, unsigned len, unsigned copied,
2075 struct page *page, void *fsdata)
607d44aa
MF
2076{
2077 int ret;
2078 struct inode *inode = mapping->host;
2079
2080 ret = ocfs2_write_end_nolock(mapping, pos, len, copied, page, fsdata);
2081
3a307ffc 2082 up_write(&OCFS2_I(inode)->ip_alloc_sem);
e63aecb6 2083 ocfs2_inode_unlock(inode, 1);
9517bac6 2084
607d44aa 2085 return ret;
9517bac6
MF
2086}
2087
f5e54d6e 2088const struct address_space_operations ocfs2_aops = {
1fca3a05
HH
2089 .readpage = ocfs2_readpage,
2090 .readpages = ocfs2_readpages,
2091 .writepage = ocfs2_writepage,
2092 .write_begin = ocfs2_write_begin,
2093 .write_end = ocfs2_write_end,
2094 .bmap = ocfs2_bmap,
1fca3a05
HH
2095 .direct_IO = ocfs2_direct_IO,
2096 .invalidatepage = ocfs2_invalidatepage,
2097 .releasepage = ocfs2_releasepage,
2098 .migratepage = buffer_migrate_page,
2099 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 2100 .error_remove_page = generic_error_remove_page,
ccd979bd 2101};