]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - fs/ocfs2/aops.c
block: remove per-queue plugging
[mirror_ubuntu-artful-kernel.git] / fs / ocfs2 / aops.c
CommitLineData
ccd979bd
MF
1/* -*- mode: c; c-basic-offset: 8; -*-
2 * vim: noexpandtab sw=8 ts=8 sts=0:
3 *
4 * Copyright (C) 2002, 2004 Oracle. All rights reserved.
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public
17 * License along with this program; if not, write to the
18 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
19 * Boston, MA 021110-1307, USA.
20 */
21
22#include <linux/fs.h>
23#include <linux/slab.h>
24#include <linux/highmem.h>
25#include <linux/pagemap.h>
26#include <asm/byteorder.h>
9517bac6 27#include <linux/swap.h>
6af67d82 28#include <linux/pipe_fs_i.h>
628a24f5 29#include <linux/mpage.h>
a90714c1 30#include <linux/quotaops.h>
ccd979bd
MF
31
32#define MLOG_MASK_PREFIX ML_FILE_IO
33#include <cluster/masklog.h>
34
35#include "ocfs2.h"
36
37#include "alloc.h"
38#include "aops.h"
39#include "dlmglue.h"
40#include "extent_map.h"
41#include "file.h"
42#include "inode.h"
43#include "journal.h"
9517bac6 44#include "suballoc.h"
ccd979bd
MF
45#include "super.h"
46#include "symlink.h"
293b2f70 47#include "refcounttree.h"
ccd979bd
MF
48
49#include "buffer_head_io.h"
50
51static int ocfs2_symlink_get_block(struct inode *inode, sector_t iblock,
52 struct buffer_head *bh_result, int create)
53{
54 int err = -EIO;
55 int status;
56 struct ocfs2_dinode *fe = NULL;
57 struct buffer_head *bh = NULL;
58 struct buffer_head *buffer_cache_bh = NULL;
59 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
60 void *kaddr;
61
62 mlog_entry("(0x%p, %llu, 0x%p, %d)\n", inode,
63 (unsigned long long)iblock, bh_result, create);
64
65 BUG_ON(ocfs2_inode_is_fast_symlink(inode));
66
67 if ((iblock << inode->i_sb->s_blocksize_bits) > PATH_MAX + 1) {
68 mlog(ML_ERROR, "block offset > PATH_MAX: %llu",
69 (unsigned long long)iblock);
70 goto bail;
71 }
72
b657c95c 73 status = ocfs2_read_inode_block(inode, &bh);
ccd979bd
MF
74 if (status < 0) {
75 mlog_errno(status);
76 goto bail;
77 }
78 fe = (struct ocfs2_dinode *) bh->b_data;
79
ccd979bd
MF
80 if ((u64)iblock >= ocfs2_clusters_to_blocks(inode->i_sb,
81 le32_to_cpu(fe->i_clusters))) {
82 mlog(ML_ERROR, "block offset is outside the allocated size: "
83 "%llu\n", (unsigned long long)iblock);
84 goto bail;
85 }
86
87 /* We don't use the page cache to create symlink data, so if
88 * need be, copy it over from the buffer cache. */
89 if (!buffer_uptodate(bh_result) && ocfs2_inode_is_new(inode)) {
90 u64 blkno = le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) +
91 iblock;
92 buffer_cache_bh = sb_getblk(osb->sb, blkno);
93 if (!buffer_cache_bh) {
94 mlog(ML_ERROR, "couldn't getblock for symlink!\n");
95 goto bail;
96 }
97
98 /* we haven't locked out transactions, so a commit
99 * could've happened. Since we've got a reference on
100 * the bh, even if it commits while we're doing the
101 * copy, the data is still good. */
102 if (buffer_jbd(buffer_cache_bh)
103 && ocfs2_inode_is_new(inode)) {
104 kaddr = kmap_atomic(bh_result->b_page, KM_USER0);
105 if (!kaddr) {
106 mlog(ML_ERROR, "couldn't kmap!\n");
107 goto bail;
108 }
109 memcpy(kaddr + (bh_result->b_size * iblock),
110 buffer_cache_bh->b_data,
111 bh_result->b_size);
112 kunmap_atomic(kaddr, KM_USER0);
113 set_buffer_uptodate(bh_result);
114 }
115 brelse(buffer_cache_bh);
116 }
117
118 map_bh(bh_result, inode->i_sb,
119 le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) + iblock);
120
121 err = 0;
122
123bail:
a81cb88b 124 brelse(bh);
ccd979bd
MF
125
126 mlog_exit(err);
127 return err;
128}
129
6f70fa51
TM
130int ocfs2_get_block(struct inode *inode, sector_t iblock,
131 struct buffer_head *bh_result, int create)
ccd979bd
MF
132{
133 int err = 0;
49cb8d2d 134 unsigned int ext_flags;
628a24f5
MF
135 u64 max_blocks = bh_result->b_size >> inode->i_blkbits;
136 u64 p_blkno, count, past_eof;
25baf2da 137 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
ccd979bd
MF
138
139 mlog_entry("(0x%p, %llu, 0x%p, %d)\n", inode,
140 (unsigned long long)iblock, bh_result, create);
141
142 if (OCFS2_I(inode)->ip_flags & OCFS2_INODE_SYSTEM_FILE)
143 mlog(ML_NOTICE, "get_block on system inode 0x%p (%lu)\n",
144 inode, inode->i_ino);
145
146 if (S_ISLNK(inode->i_mode)) {
147 /* this always does I/O for some reason. */
148 err = ocfs2_symlink_get_block(inode, iblock, bh_result, create);
149 goto bail;
150 }
151
628a24f5 152 err = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno, &count,
49cb8d2d 153 &ext_flags);
ccd979bd
MF
154 if (err) {
155 mlog(ML_ERROR, "Error %d from get_blocks(0x%p, %llu, 1, "
b0697053
MF
156 "%llu, NULL)\n", err, inode, (unsigned long long)iblock,
157 (unsigned long long)p_blkno);
ccd979bd
MF
158 goto bail;
159 }
160
628a24f5
MF
161 if (max_blocks < count)
162 count = max_blocks;
163
25baf2da
MF
164 /*
165 * ocfs2 never allocates in this function - the only time we
166 * need to use BH_New is when we're extending i_size on a file
167 * system which doesn't support holes, in which case BH_New
ebdec241 168 * allows __block_write_begin() to zero.
c0420ad2
CL
169 *
170 * If we see this on a sparse file system, then a truncate has
171 * raced us and removed the cluster. In this case, we clear
172 * the buffers dirty and uptodate bits and let the buffer code
173 * ignore it as a hole.
25baf2da 174 */
c0420ad2
CL
175 if (create && p_blkno == 0 && ocfs2_sparse_alloc(osb)) {
176 clear_buffer_dirty(bh_result);
177 clear_buffer_uptodate(bh_result);
178 goto bail;
179 }
25baf2da 180
49cb8d2d
MF
181 /* Treat the unwritten extent as a hole for zeroing purposes. */
182 if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN))
25baf2da
MF
183 map_bh(bh_result, inode->i_sb, p_blkno);
184
628a24f5
MF
185 bh_result->b_size = count << inode->i_blkbits;
186
25baf2da
MF
187 if (!ocfs2_sparse_alloc(osb)) {
188 if (p_blkno == 0) {
189 err = -EIO;
190 mlog(ML_ERROR,
191 "iblock = %llu p_blkno = %llu blkno=(%llu)\n",
192 (unsigned long long)iblock,
193 (unsigned long long)p_blkno,
194 (unsigned long long)OCFS2_I(inode)->ip_blkno);
195 mlog(ML_ERROR, "Size %llu, clusters %u\n", (unsigned long long)i_size_read(inode), OCFS2_I(inode)->ip_clusters);
196 dump_stack();
1f4cea37 197 goto bail;
25baf2da 198 }
25baf2da 199 }
ccd979bd 200
5693486b
JB
201 past_eof = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
202 mlog(0, "Inode %lu, past_eof = %llu\n", inode->i_ino,
203 (unsigned long long)past_eof);
204 if (create && (iblock >= past_eof))
205 set_buffer_new(bh_result);
206
ccd979bd
MF
207bail:
208 if (err < 0)
209 err = -EIO;
210
211 mlog_exit(err);
212 return err;
213}
214
1afc32b9
MF
215int ocfs2_read_inline_data(struct inode *inode, struct page *page,
216 struct buffer_head *di_bh)
6798d35a
MF
217{
218 void *kaddr;
d2849fb2 219 loff_t size;
6798d35a
MF
220 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
221
222 if (!(le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_DATA_FL)) {
223 ocfs2_error(inode->i_sb, "Inode %llu lost inline data flag",
224 (unsigned long long)OCFS2_I(inode)->ip_blkno);
225 return -EROFS;
226 }
227
228 size = i_size_read(inode);
229
230 if (size > PAGE_CACHE_SIZE ||
d9ae49d6 231 size > ocfs2_max_inline_data_with_xattr(inode->i_sb, di)) {
6798d35a 232 ocfs2_error(inode->i_sb,
d2849fb2
JK
233 "Inode %llu has with inline data has bad size: %Lu",
234 (unsigned long long)OCFS2_I(inode)->ip_blkno,
235 (unsigned long long)size);
6798d35a
MF
236 return -EROFS;
237 }
238
239 kaddr = kmap_atomic(page, KM_USER0);
240 if (size)
241 memcpy(kaddr, di->id2.i_data.id_data, size);
242 /* Clear the remaining part of the page */
243 memset(kaddr + size, 0, PAGE_CACHE_SIZE - size);
244 flush_dcache_page(page);
245 kunmap_atomic(kaddr, KM_USER0);
246
247 SetPageUptodate(page);
248
249 return 0;
250}
251
252static int ocfs2_readpage_inline(struct inode *inode, struct page *page)
253{
254 int ret;
255 struct buffer_head *di_bh = NULL;
6798d35a
MF
256
257 BUG_ON(!PageLocked(page));
86c838b0 258 BUG_ON(!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL));
6798d35a 259
b657c95c 260 ret = ocfs2_read_inode_block(inode, &di_bh);
6798d35a
MF
261 if (ret) {
262 mlog_errno(ret);
263 goto out;
264 }
265
266 ret = ocfs2_read_inline_data(inode, page, di_bh);
267out:
268 unlock_page(page);
269
270 brelse(di_bh);
271 return ret;
272}
273
ccd979bd
MF
274static int ocfs2_readpage(struct file *file, struct page *page)
275{
276 struct inode *inode = page->mapping->host;
6798d35a 277 struct ocfs2_inode_info *oi = OCFS2_I(inode);
ccd979bd
MF
278 loff_t start = (loff_t)page->index << PAGE_CACHE_SHIFT;
279 int ret, unlock = 1;
280
281 mlog_entry("(0x%p, %lu)\n", file, (page ? page->index : 0));
282
e63aecb6 283 ret = ocfs2_inode_lock_with_page(inode, NULL, 0, page);
ccd979bd
MF
284 if (ret != 0) {
285 if (ret == AOP_TRUNCATED_PAGE)
286 unlock = 0;
287 mlog_errno(ret);
288 goto out;
289 }
290
6798d35a 291 if (down_read_trylock(&oi->ip_alloc_sem) == 0) {
e9dfc0b2 292 ret = AOP_TRUNCATED_PAGE;
e63aecb6 293 goto out_inode_unlock;
e9dfc0b2 294 }
ccd979bd
MF
295
296 /*
297 * i_size might have just been updated as we grabed the meta lock. We
298 * might now be discovering a truncate that hit on another node.
299 * block_read_full_page->get_block freaks out if it is asked to read
300 * beyond the end of a file, so we check here. Callers
54cb8821 301 * (generic_file_read, vm_ops->fault) are clever enough to check i_size
ccd979bd
MF
302 * and notice that the page they just read isn't needed.
303 *
304 * XXX sys_readahead() seems to get that wrong?
305 */
306 if (start >= i_size_read(inode)) {
eebd2aa3 307 zero_user(page, 0, PAGE_SIZE);
ccd979bd
MF
308 SetPageUptodate(page);
309 ret = 0;
310 goto out_alloc;
311 }
312
6798d35a
MF
313 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
314 ret = ocfs2_readpage_inline(inode, page);
315 else
316 ret = block_read_full_page(page, ocfs2_get_block);
ccd979bd
MF
317 unlock = 0;
318
ccd979bd
MF
319out_alloc:
320 up_read(&OCFS2_I(inode)->ip_alloc_sem);
e63aecb6
MF
321out_inode_unlock:
322 ocfs2_inode_unlock(inode, 0);
ccd979bd
MF
323out:
324 if (unlock)
325 unlock_page(page);
326 mlog_exit(ret);
327 return ret;
328}
329
628a24f5
MF
330/*
331 * This is used only for read-ahead. Failures or difficult to handle
332 * situations are safe to ignore.
333 *
334 * Right now, we don't bother with BH_Boundary - in-inode extent lists
335 * are quite large (243 extents on 4k blocks), so most inodes don't
336 * grow out to a tree. If need be, detecting boundary extents could
337 * trivially be added in a future version of ocfs2_get_block().
338 */
339static int ocfs2_readpages(struct file *filp, struct address_space *mapping,
340 struct list_head *pages, unsigned nr_pages)
341{
342 int ret, err = -EIO;
343 struct inode *inode = mapping->host;
344 struct ocfs2_inode_info *oi = OCFS2_I(inode);
345 loff_t start;
346 struct page *last;
347
348 /*
349 * Use the nonblocking flag for the dlm code to avoid page
350 * lock inversion, but don't bother with retrying.
351 */
352 ret = ocfs2_inode_lock_full(inode, NULL, 0, OCFS2_LOCK_NONBLOCK);
353 if (ret)
354 return err;
355
356 if (down_read_trylock(&oi->ip_alloc_sem) == 0) {
357 ocfs2_inode_unlock(inode, 0);
358 return err;
359 }
360
361 /*
362 * Don't bother with inline-data. There isn't anything
363 * to read-ahead in that case anyway...
364 */
365 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
366 goto out_unlock;
367
368 /*
369 * Check whether a remote node truncated this file - we just
370 * drop out in that case as it's not worth handling here.
371 */
372 last = list_entry(pages->prev, struct page, lru);
373 start = (loff_t)last->index << PAGE_CACHE_SHIFT;
374 if (start >= i_size_read(inode))
375 goto out_unlock;
376
377 err = mpage_readpages(mapping, pages, nr_pages, ocfs2_get_block);
378
379out_unlock:
380 up_read(&oi->ip_alloc_sem);
381 ocfs2_inode_unlock(inode, 0);
382
383 return err;
384}
385
ccd979bd
MF
386/* Note: Because we don't support holes, our allocation has
387 * already happened (allocation writes zeros to the file data)
388 * so we don't have to worry about ordered writes in
389 * ocfs2_writepage.
390 *
391 * ->writepage is called during the process of invalidating the page cache
392 * during blocked lock processing. It can't block on any cluster locks
393 * to during block mapping. It's relying on the fact that the block
394 * mapping can't have disappeared under the dirty pages that it is
395 * being asked to write back.
396 */
397static int ocfs2_writepage(struct page *page, struct writeback_control *wbc)
398{
399 int ret;
400
401 mlog_entry("(0x%p)\n", page);
402
403 ret = block_write_full_page(page, ocfs2_get_block, wbc);
404
405 mlog_exit(ret);
406
407 return ret;
408}
409
ccd979bd
MF
410/* Taken from ext3. We don't necessarily need the full blown
411 * functionality yet, but IMHO it's better to cut and paste the whole
412 * thing so we can avoid introducing our own bugs (and easily pick up
413 * their fixes when they happen) --Mark */
60b11392
MF
414int walk_page_buffers( handle_t *handle,
415 struct buffer_head *head,
416 unsigned from,
417 unsigned to,
418 int *partial,
419 int (*fn)( handle_t *handle,
420 struct buffer_head *bh))
ccd979bd
MF
421{
422 struct buffer_head *bh;
423 unsigned block_start, block_end;
424 unsigned blocksize = head->b_size;
425 int err, ret = 0;
426 struct buffer_head *next;
427
428 for ( bh = head, block_start = 0;
429 ret == 0 && (bh != head || !block_start);
430 block_start = block_end, bh = next)
431 {
432 next = bh->b_this_page;
433 block_end = block_start + blocksize;
434 if (block_end <= from || block_start >= to) {
435 if (partial && !buffer_uptodate(bh))
436 *partial = 1;
437 continue;
438 }
439 err = (*fn)(handle, bh);
440 if (!ret)
441 ret = err;
442 }
443 return ret;
444}
445
ccd979bd
MF
446static sector_t ocfs2_bmap(struct address_space *mapping, sector_t block)
447{
448 sector_t status;
449 u64 p_blkno = 0;
450 int err = 0;
451 struct inode *inode = mapping->host;
452
453 mlog_entry("(block = %llu)\n", (unsigned long long)block);
454
455 /* We don't need to lock journal system files, since they aren't
456 * accessed concurrently from multiple nodes.
457 */
458 if (!INODE_JOURNAL(inode)) {
e63aecb6 459 err = ocfs2_inode_lock(inode, NULL, 0);
ccd979bd
MF
460 if (err) {
461 if (err != -ENOENT)
462 mlog_errno(err);
463 goto bail;
464 }
465 down_read(&OCFS2_I(inode)->ip_alloc_sem);
466 }
467
6798d35a
MF
468 if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
469 err = ocfs2_extent_map_get_blocks(inode, block, &p_blkno, NULL,
470 NULL);
ccd979bd
MF
471
472 if (!INODE_JOURNAL(inode)) {
473 up_read(&OCFS2_I(inode)->ip_alloc_sem);
e63aecb6 474 ocfs2_inode_unlock(inode, 0);
ccd979bd
MF
475 }
476
477 if (err) {
478 mlog(ML_ERROR, "get_blocks() failed, block = %llu\n",
479 (unsigned long long)block);
480 mlog_errno(err);
481 goto bail;
482 }
483
ccd979bd
MF
484bail:
485 status = err ? 0 : p_blkno;
486
487 mlog_exit((int)status);
488
489 return status;
490}
491
492/*
493 * TODO: Make this into a generic get_blocks function.
494 *
495 * From do_direct_io in direct-io.c:
496 * "So what we do is to permit the ->get_blocks function to populate
497 * bh.b_size with the size of IO which is permitted at this offset and
498 * this i_blkbits."
499 *
500 * This function is called directly from get_more_blocks in direct-io.c.
501 *
502 * called like this: dio->get_blocks(dio->inode, fs_startblk,
503 * fs_count, map_bh, dio->rw == WRITE);
5fe878ae
CH
504 *
505 * Note that we never bother to allocate blocks here, and thus ignore the
506 * create argument.
ccd979bd
MF
507 */
508static int ocfs2_direct_IO_get_blocks(struct inode *inode, sector_t iblock,
ccd979bd
MF
509 struct buffer_head *bh_result, int create)
510{
511 int ret;
4f902c37 512 u64 p_blkno, inode_blocks, contig_blocks;
49cb8d2d 513 unsigned int ext_flags;
184d7d20 514 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
1d8fa7a2 515 unsigned long max_blocks = bh_result->b_size >> inode->i_blkbits;
ccd979bd 516
ccd979bd
MF
517 /* This function won't even be called if the request isn't all
518 * nicely aligned and of the right size, so there's no need
519 * for us to check any of that. */
520
25baf2da 521 inode_blocks = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
564f8a32 522
ccd979bd
MF
523 /* This figures out the size of the next contiguous block, and
524 * our logical offset */
363041a5 525 ret = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno,
49cb8d2d 526 &contig_blocks, &ext_flags);
ccd979bd
MF
527 if (ret) {
528 mlog(ML_ERROR, "get_blocks() failed iblock=%llu\n",
529 (unsigned long long)iblock);
530 ret = -EIO;
531 goto bail;
532 }
533
cbaee472
TM
534 /* We should already CoW the refcounted extent in case of create. */
535 BUG_ON(create && (ext_flags & OCFS2_EXT_REFCOUNTED));
536
25baf2da
MF
537 /*
538 * get_more_blocks() expects us to describe a hole by clearing
539 * the mapped bit on bh_result().
49cb8d2d
MF
540 *
541 * Consider an unwritten extent as a hole.
25baf2da 542 */
49cb8d2d 543 if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN))
25baf2da 544 map_bh(bh_result, inode->i_sb, p_blkno);
5fe878ae 545 else
25baf2da 546 clear_buffer_mapped(bh_result);
ccd979bd
MF
547
548 /* make sure we don't map more than max_blocks blocks here as
549 that's all the kernel will handle at this point. */
550 if (max_blocks < contig_blocks)
551 contig_blocks = max_blocks;
552 bh_result->b_size = contig_blocks << blocksize_bits;
553bail:
554 return ret;
555}
556
2bd63216 557/*
ccd979bd
MF
558 * ocfs2_dio_end_io is called by the dio core when a dio is finished. We're
559 * particularly interested in the aio/dio case. Like the core uses
560 * i_alloc_sem, we use the rw_lock DLM lock to protect io on one node from
561 * truncation on another.
562 */
563static void ocfs2_dio_end_io(struct kiocb *iocb,
564 loff_t offset,
565 ssize_t bytes,
40e2e973
CH
566 void *private,
567 int ret,
568 bool is_async)
ccd979bd 569{
d28c9174 570 struct inode *inode = iocb->ki_filp->f_path.dentry->d_inode;
7cdfc3a1 571 int level;
ccd979bd
MF
572
573 /* this io's submitter should not have unlocked this before we could */
574 BUG_ON(!ocfs2_iocb_is_rw_locked(iocb));
7cdfc3a1 575
39c99f12
TY
576 if (ocfs2_iocb_is_sem_locked(iocb)) {
577 up_read(&inode->i_alloc_sem);
578 ocfs2_iocb_clear_sem_locked(iocb);
579 }
580
ccd979bd 581 ocfs2_iocb_clear_rw_locked(iocb);
7cdfc3a1
MF
582
583 level = ocfs2_iocb_rw_locked_level(iocb);
7cdfc3a1 584 ocfs2_rw_unlock(inode, level);
40e2e973
CH
585
586 if (is_async)
587 aio_complete(iocb, ret, 0);
ccd979bd
MF
588}
589
03f981cf
JB
590/*
591 * ocfs2_invalidatepage() and ocfs2_releasepage() are shamelessly stolen
592 * from ext3. PageChecked() bits have been removed as OCFS2 does not
593 * do journalled data.
594 */
595static void ocfs2_invalidatepage(struct page *page, unsigned long offset)
596{
597 journal_t *journal = OCFS2_SB(page->mapping->host->i_sb)->journal->j_journal;
598
2b4e30fb 599 jbd2_journal_invalidatepage(journal, page, offset);
03f981cf
JB
600}
601
602static int ocfs2_releasepage(struct page *page, gfp_t wait)
603{
604 journal_t *journal = OCFS2_SB(page->mapping->host->i_sb)->journal->j_journal;
605
606 if (!page_has_buffers(page))
607 return 0;
2b4e30fb 608 return jbd2_journal_try_to_free_buffers(journal, page, wait);
03f981cf
JB
609}
610
ccd979bd
MF
611static ssize_t ocfs2_direct_IO(int rw,
612 struct kiocb *iocb,
613 const struct iovec *iov,
614 loff_t offset,
615 unsigned long nr_segs)
616{
617 struct file *file = iocb->ki_filp;
d28c9174 618 struct inode *inode = file->f_path.dentry->d_inode->i_mapping->host;
ccd979bd
MF
619 int ret;
620
621 mlog_entry_void();
53013cba 622
6798d35a
MF
623 /*
624 * Fallback to buffered I/O if we see an inode without
625 * extents.
626 */
627 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)
628 return 0;
629
b80474b4
TM
630 /* Fallback to buffered I/O if we are appending. */
631 if (i_size_read(inode) <= offset)
632 return 0;
633
eafdc7d1
CH
634 ret = __blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev,
635 iov, offset, nr_segs,
636 ocfs2_direct_IO_get_blocks,
637 ocfs2_dio_end_io, NULL, 0);
c934a92d 638
ccd979bd
MF
639 mlog_exit(ret);
640 return ret;
641}
642
9517bac6
MF
643static void ocfs2_figure_cluster_boundaries(struct ocfs2_super *osb,
644 u32 cpos,
645 unsigned int *start,
646 unsigned int *end)
647{
648 unsigned int cluster_start = 0, cluster_end = PAGE_CACHE_SIZE;
649
650 if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits)) {
651 unsigned int cpp;
652
653 cpp = 1 << (PAGE_CACHE_SHIFT - osb->s_clustersize_bits);
654
655 cluster_start = cpos % cpp;
656 cluster_start = cluster_start << osb->s_clustersize_bits;
657
658 cluster_end = cluster_start + osb->s_clustersize;
659 }
660
661 BUG_ON(cluster_start > PAGE_SIZE);
662 BUG_ON(cluster_end > PAGE_SIZE);
663
664 if (start)
665 *start = cluster_start;
666 if (end)
667 *end = cluster_end;
668}
669
670/*
671 * 'from' and 'to' are the region in the page to avoid zeroing.
672 *
673 * If pagesize > clustersize, this function will avoid zeroing outside
674 * of the cluster boundary.
675 *
676 * from == to == 0 is code for "zero the entire cluster region"
677 */
678static void ocfs2_clear_page_regions(struct page *page,
679 struct ocfs2_super *osb, u32 cpos,
680 unsigned from, unsigned to)
681{
682 void *kaddr;
683 unsigned int cluster_start, cluster_end;
684
685 ocfs2_figure_cluster_boundaries(osb, cpos, &cluster_start, &cluster_end);
686
687 kaddr = kmap_atomic(page, KM_USER0);
688
689 if (from || to) {
690 if (from > cluster_start)
691 memset(kaddr + cluster_start, 0, from - cluster_start);
692 if (to < cluster_end)
693 memset(kaddr + to, 0, cluster_end - to);
694 } else {
695 memset(kaddr + cluster_start, 0, cluster_end - cluster_start);
696 }
697
698 kunmap_atomic(kaddr, KM_USER0);
699}
700
4e9563fd
MF
701/*
702 * Nonsparse file systems fully allocate before we get to the write
703 * code. This prevents ocfs2_write() from tagging the write as an
704 * allocating one, which means ocfs2_map_page_blocks() might try to
705 * read-in the blocks at the tail of our file. Avoid reading them by
706 * testing i_size against each block offset.
707 */
708static int ocfs2_should_read_blk(struct inode *inode, struct page *page,
709 unsigned int block_start)
710{
711 u64 offset = page_offset(page) + block_start;
712
713 if (ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)))
714 return 1;
715
716 if (i_size_read(inode) > offset)
717 return 1;
718
719 return 0;
720}
721
9517bac6 722/*
ebdec241 723 * Some of this taken from __block_write_begin(). We already have our
9517bac6
MF
724 * mapping by now though, and the entire write will be allocating or
725 * it won't, so not much need to use BH_New.
726 *
727 * This will also skip zeroing, which is handled externally.
728 */
60b11392
MF
729int ocfs2_map_page_blocks(struct page *page, u64 *p_blkno,
730 struct inode *inode, unsigned int from,
731 unsigned int to, int new)
9517bac6
MF
732{
733 int ret = 0;
734 struct buffer_head *head, *bh, *wait[2], **wait_bh = wait;
735 unsigned int block_end, block_start;
736 unsigned int bsize = 1 << inode->i_blkbits;
737
738 if (!page_has_buffers(page))
739 create_empty_buffers(page, bsize, 0);
740
741 head = page_buffers(page);
742 for (bh = head, block_start = 0; bh != head || !block_start;
743 bh = bh->b_this_page, block_start += bsize) {
744 block_end = block_start + bsize;
745
3a307ffc
MF
746 clear_buffer_new(bh);
747
9517bac6
MF
748 /*
749 * Ignore blocks outside of our i/o range -
750 * they may belong to unallocated clusters.
751 */
60b11392 752 if (block_start >= to || block_end <= from) {
9517bac6
MF
753 if (PageUptodate(page))
754 set_buffer_uptodate(bh);
755 continue;
756 }
757
758 /*
759 * For an allocating write with cluster size >= page
760 * size, we always write the entire page.
761 */
3a307ffc
MF
762 if (new)
763 set_buffer_new(bh);
9517bac6
MF
764
765 if (!buffer_mapped(bh)) {
766 map_bh(bh, inode->i_sb, *p_blkno);
767 unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr);
768 }
769
770 if (PageUptodate(page)) {
771 if (!buffer_uptodate(bh))
772 set_buffer_uptodate(bh);
773 } else if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
bce99768 774 !buffer_new(bh) &&
4e9563fd 775 ocfs2_should_read_blk(inode, page, block_start) &&
bce99768 776 (block_start < from || block_end > to)) {
9517bac6
MF
777 ll_rw_block(READ, 1, &bh);
778 *wait_bh++=bh;
779 }
780
781 *p_blkno = *p_blkno + 1;
782 }
783
784 /*
785 * If we issued read requests - let them complete.
786 */
787 while(wait_bh > wait) {
788 wait_on_buffer(*--wait_bh);
789 if (!buffer_uptodate(*wait_bh))
790 ret = -EIO;
791 }
792
793 if (ret == 0 || !new)
794 return ret;
795
796 /*
797 * If we get -EIO above, zero out any newly allocated blocks
798 * to avoid exposing stale data.
799 */
800 bh = head;
801 block_start = 0;
802 do {
9517bac6
MF
803 block_end = block_start + bsize;
804 if (block_end <= from)
805 goto next_bh;
806 if (block_start >= to)
807 break;
808
eebd2aa3 809 zero_user(page, block_start, bh->b_size);
9517bac6
MF
810 set_buffer_uptodate(bh);
811 mark_buffer_dirty(bh);
812
813next_bh:
814 block_start = block_end;
815 bh = bh->b_this_page;
816 } while (bh != head);
817
818 return ret;
819}
820
3a307ffc
MF
821#if (PAGE_CACHE_SIZE >= OCFS2_MAX_CLUSTERSIZE)
822#define OCFS2_MAX_CTXT_PAGES 1
823#else
824#define OCFS2_MAX_CTXT_PAGES (OCFS2_MAX_CLUSTERSIZE / PAGE_CACHE_SIZE)
825#endif
826
827#define OCFS2_MAX_CLUSTERS_PER_PAGE (PAGE_CACHE_SIZE / OCFS2_MIN_CLUSTERSIZE)
828
6af67d82 829/*
3a307ffc 830 * Describe the state of a single cluster to be written to.
6af67d82 831 */
3a307ffc
MF
832struct ocfs2_write_cluster_desc {
833 u32 c_cpos;
834 u32 c_phys;
835 /*
836 * Give this a unique field because c_phys eventually gets
837 * filled.
838 */
839 unsigned c_new;
b27b7cbc 840 unsigned c_unwritten;
e7432675 841 unsigned c_needs_zero;
3a307ffc 842};
6af67d82 843
3a307ffc
MF
844struct ocfs2_write_ctxt {
845 /* Logical cluster position / len of write */
846 u32 w_cpos;
847 u32 w_clen;
6af67d82 848
e7432675
SM
849 /* First cluster allocated in a nonsparse extend */
850 u32 w_first_new_cpos;
851
3a307ffc 852 struct ocfs2_write_cluster_desc w_desc[OCFS2_MAX_CLUSTERS_PER_PAGE];
6af67d82 853
3a307ffc
MF
854 /*
855 * This is true if page_size > cluster_size.
856 *
857 * It triggers a set of special cases during write which might
858 * have to deal with allocating writes to partial pages.
859 */
860 unsigned int w_large_pages;
6af67d82 861
3a307ffc
MF
862 /*
863 * Pages involved in this write.
864 *
865 * w_target_page is the page being written to by the user.
866 *
867 * w_pages is an array of pages which always contains
868 * w_target_page, and in the case of an allocating write with
869 * page_size < cluster size, it will contain zero'd and mapped
870 * pages adjacent to w_target_page which need to be written
871 * out in so that future reads from that region will get
872 * zero's.
873 */
3a307ffc 874 unsigned int w_num_pages;
83fd9c7f 875 struct page *w_pages[OCFS2_MAX_CTXT_PAGES];
3a307ffc 876 struct page *w_target_page;
eeb47d12 877
3a307ffc
MF
878 /*
879 * ocfs2_write_end() uses this to know what the real range to
880 * write in the target should be.
881 */
882 unsigned int w_target_from;
883 unsigned int w_target_to;
884
885 /*
886 * We could use journal_current_handle() but this is cleaner,
887 * IMHO -Mark
888 */
889 handle_t *w_handle;
890
891 struct buffer_head *w_di_bh;
b27b7cbc
MF
892
893 struct ocfs2_cached_dealloc_ctxt w_dealloc;
3a307ffc
MF
894};
895
1d410a6e 896void ocfs2_unlock_and_free_pages(struct page **pages, int num_pages)
3a307ffc
MF
897{
898 int i;
899
1d410a6e
MF
900 for(i = 0; i < num_pages; i++) {
901 if (pages[i]) {
902 unlock_page(pages[i]);
903 mark_page_accessed(pages[i]);
904 page_cache_release(pages[i]);
905 }
6af67d82 906 }
1d410a6e
MF
907}
908
909static void ocfs2_free_write_ctxt(struct ocfs2_write_ctxt *wc)
910{
911 ocfs2_unlock_and_free_pages(wc->w_pages, wc->w_num_pages);
6af67d82 912
3a307ffc
MF
913 brelse(wc->w_di_bh);
914 kfree(wc);
915}
916
917static int ocfs2_alloc_write_ctxt(struct ocfs2_write_ctxt **wcp,
918 struct ocfs2_super *osb, loff_t pos,
607d44aa 919 unsigned len, struct buffer_head *di_bh)
3a307ffc 920{
30b8548f 921 u32 cend;
3a307ffc
MF
922 struct ocfs2_write_ctxt *wc;
923
924 wc = kzalloc(sizeof(struct ocfs2_write_ctxt), GFP_NOFS);
925 if (!wc)
926 return -ENOMEM;
6af67d82 927
3a307ffc 928 wc->w_cpos = pos >> osb->s_clustersize_bits;
e7432675 929 wc->w_first_new_cpos = UINT_MAX;
30b8548f 930 cend = (pos + len - 1) >> osb->s_clustersize_bits;
931 wc->w_clen = cend - wc->w_cpos + 1;
607d44aa
MF
932 get_bh(di_bh);
933 wc->w_di_bh = di_bh;
6af67d82 934
3a307ffc
MF
935 if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits))
936 wc->w_large_pages = 1;
937 else
938 wc->w_large_pages = 0;
939
b27b7cbc
MF
940 ocfs2_init_dealloc_ctxt(&wc->w_dealloc);
941
3a307ffc 942 *wcp = wc;
6af67d82 943
3a307ffc 944 return 0;
6af67d82
MF
945}
946
9517bac6 947/*
3a307ffc
MF
948 * If a page has any new buffers, zero them out here, and mark them uptodate
949 * and dirty so they'll be written out (in order to prevent uninitialised
950 * block data from leaking). And clear the new bit.
9517bac6 951 */
3a307ffc 952static void ocfs2_zero_new_buffers(struct page *page, unsigned from, unsigned to)
9517bac6 953{
3a307ffc
MF
954 unsigned int block_start, block_end;
955 struct buffer_head *head, *bh;
9517bac6 956
3a307ffc
MF
957 BUG_ON(!PageLocked(page));
958 if (!page_has_buffers(page))
959 return;
9517bac6 960
3a307ffc
MF
961 bh = head = page_buffers(page);
962 block_start = 0;
963 do {
964 block_end = block_start + bh->b_size;
965
966 if (buffer_new(bh)) {
967 if (block_end > from && block_start < to) {
968 if (!PageUptodate(page)) {
969 unsigned start, end;
3a307ffc
MF
970
971 start = max(from, block_start);
972 end = min(to, block_end);
973
eebd2aa3 974 zero_user_segment(page, start, end);
3a307ffc
MF
975 set_buffer_uptodate(bh);
976 }
977
978 clear_buffer_new(bh);
979 mark_buffer_dirty(bh);
980 }
981 }
9517bac6 982
3a307ffc
MF
983 block_start = block_end;
984 bh = bh->b_this_page;
985 } while (bh != head);
986}
987
988/*
989 * Only called when we have a failure during allocating write to write
990 * zero's to the newly allocated region.
991 */
992static void ocfs2_write_failure(struct inode *inode,
993 struct ocfs2_write_ctxt *wc,
994 loff_t user_pos, unsigned user_len)
995{
996 int i;
5c26a7b7
MF
997 unsigned from = user_pos & (PAGE_CACHE_SIZE - 1),
998 to = user_pos + user_len;
3a307ffc
MF
999 struct page *tmppage;
1000
5c26a7b7 1001 ocfs2_zero_new_buffers(wc->w_target_page, from, to);
9517bac6 1002
3a307ffc
MF
1003 for(i = 0; i < wc->w_num_pages; i++) {
1004 tmppage = wc->w_pages[i];
9517bac6 1005
961cecbe 1006 if (page_has_buffers(tmppage)) {
53ef99ca 1007 if (ocfs2_should_order_data(inode))
2b4e30fb 1008 ocfs2_jbd2_file_inode(wc->w_handle, inode);
961cecbe
SM
1009
1010 block_commit_write(tmppage, from, to);
1011 }
9517bac6 1012 }
9517bac6
MF
1013}
1014
3a307ffc
MF
1015static int ocfs2_prepare_page_for_write(struct inode *inode, u64 *p_blkno,
1016 struct ocfs2_write_ctxt *wc,
1017 struct page *page, u32 cpos,
1018 loff_t user_pos, unsigned user_len,
1019 int new)
9517bac6 1020{
3a307ffc
MF
1021 int ret;
1022 unsigned int map_from = 0, map_to = 0;
9517bac6 1023 unsigned int cluster_start, cluster_end;
3a307ffc 1024 unsigned int user_data_from = 0, user_data_to = 0;
9517bac6 1025
3a307ffc 1026 ocfs2_figure_cluster_boundaries(OCFS2_SB(inode->i_sb), cpos,
9517bac6
MF
1027 &cluster_start, &cluster_end);
1028
3a307ffc
MF
1029 if (page == wc->w_target_page) {
1030 map_from = user_pos & (PAGE_CACHE_SIZE - 1);
1031 map_to = map_from + user_len;
1032
1033 if (new)
1034 ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1035 cluster_start, cluster_end,
1036 new);
1037 else
1038 ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1039 map_from, map_to, new);
1040 if (ret) {
9517bac6
MF
1041 mlog_errno(ret);
1042 goto out;
1043 }
1044
3a307ffc
MF
1045 user_data_from = map_from;
1046 user_data_to = map_to;
9517bac6 1047 if (new) {
3a307ffc
MF
1048 map_from = cluster_start;
1049 map_to = cluster_end;
9517bac6
MF
1050 }
1051 } else {
1052 /*
1053 * If we haven't allocated the new page yet, we
1054 * shouldn't be writing it out without copying user
1055 * data. This is likely a math error from the caller.
1056 */
1057 BUG_ON(!new);
1058
3a307ffc
MF
1059 map_from = cluster_start;
1060 map_to = cluster_end;
9517bac6
MF
1061
1062 ret = ocfs2_map_page_blocks(page, p_blkno, inode,
3a307ffc 1063 cluster_start, cluster_end, new);
9517bac6
MF
1064 if (ret) {
1065 mlog_errno(ret);
1066 goto out;
1067 }
1068 }
1069
1070 /*
1071 * Parts of newly allocated pages need to be zero'd.
1072 *
1073 * Above, we have also rewritten 'to' and 'from' - as far as
1074 * the rest of the function is concerned, the entire cluster
1075 * range inside of a page needs to be written.
1076 *
1077 * We can skip this if the page is up to date - it's already
1078 * been zero'd from being read in as a hole.
1079 */
1080 if (new && !PageUptodate(page))
1081 ocfs2_clear_page_regions(page, OCFS2_SB(inode->i_sb),
3a307ffc 1082 cpos, user_data_from, user_data_to);
9517bac6
MF
1083
1084 flush_dcache_page(page);
1085
9517bac6 1086out:
3a307ffc 1087 return ret;
9517bac6
MF
1088}
1089
1090/*
3a307ffc 1091 * This function will only grab one clusters worth of pages.
9517bac6 1092 */
3a307ffc
MF
1093static int ocfs2_grab_pages_for_write(struct address_space *mapping,
1094 struct ocfs2_write_ctxt *wc,
693c241a
JB
1095 u32 cpos, loff_t user_pos,
1096 unsigned user_len, int new,
7307de80 1097 struct page *mmap_page)
9517bac6 1098{
3a307ffc 1099 int ret = 0, i;
693c241a 1100 unsigned long start, target_index, end_index, index;
9517bac6 1101 struct inode *inode = mapping->host;
693c241a 1102 loff_t last_byte;
9517bac6 1103
3a307ffc 1104 target_index = user_pos >> PAGE_CACHE_SHIFT;
9517bac6
MF
1105
1106 /*
1107 * Figure out how many pages we'll be manipulating here. For
60b11392 1108 * non allocating write, we just change the one
693c241a
JB
1109 * page. Otherwise, we'll need a whole clusters worth. If we're
1110 * writing past i_size, we only need enough pages to cover the
1111 * last page of the write.
9517bac6 1112 */
9517bac6 1113 if (new) {
3a307ffc
MF
1114 wc->w_num_pages = ocfs2_pages_per_cluster(inode->i_sb);
1115 start = ocfs2_align_clusters_to_page_index(inode->i_sb, cpos);
693c241a
JB
1116 /*
1117 * We need the index *past* the last page we could possibly
1118 * touch. This is the page past the end of the write or
1119 * i_size, whichever is greater.
1120 */
1121 last_byte = max(user_pos + user_len, i_size_read(inode));
1122 BUG_ON(last_byte < 1);
1123 end_index = ((last_byte - 1) >> PAGE_CACHE_SHIFT) + 1;
1124 if ((start + wc->w_num_pages) > end_index)
1125 wc->w_num_pages = end_index - start;
9517bac6 1126 } else {
3a307ffc
MF
1127 wc->w_num_pages = 1;
1128 start = target_index;
9517bac6
MF
1129 }
1130
3a307ffc 1131 for(i = 0; i < wc->w_num_pages; i++) {
9517bac6
MF
1132 index = start + i;
1133
7307de80
MF
1134 if (index == target_index && mmap_page) {
1135 /*
1136 * ocfs2_pagemkwrite() is a little different
1137 * and wants us to directly use the page
1138 * passed in.
1139 */
1140 lock_page(mmap_page);
1141
1142 if (mmap_page->mapping != mapping) {
1143 unlock_page(mmap_page);
1144 /*
1145 * Sanity check - the locking in
1146 * ocfs2_pagemkwrite() should ensure
1147 * that this code doesn't trigger.
1148 */
1149 ret = -EINVAL;
1150 mlog_errno(ret);
1151 goto out;
1152 }
1153
1154 page_cache_get(mmap_page);
1155 wc->w_pages[i] = mmap_page;
1156 } else {
1157 wc->w_pages[i] = find_or_create_page(mapping, index,
1158 GFP_NOFS);
1159 if (!wc->w_pages[i]) {
1160 ret = -ENOMEM;
1161 mlog_errno(ret);
1162 goto out;
1163 }
9517bac6 1164 }
3a307ffc
MF
1165
1166 if (index == target_index)
1167 wc->w_target_page = wc->w_pages[i];
9517bac6 1168 }
3a307ffc
MF
1169out:
1170 return ret;
1171}
1172
1173/*
1174 * Prepare a single cluster for write one cluster into the file.
1175 */
1176static int ocfs2_write_cluster(struct address_space *mapping,
b27b7cbc 1177 u32 phys, unsigned int unwritten,
e7432675 1178 unsigned int should_zero,
b27b7cbc 1179 struct ocfs2_alloc_context *data_ac,
3a307ffc
MF
1180 struct ocfs2_alloc_context *meta_ac,
1181 struct ocfs2_write_ctxt *wc, u32 cpos,
1182 loff_t user_pos, unsigned user_len)
1183{
e7432675 1184 int ret, i, new;
3a307ffc
MF
1185 u64 v_blkno, p_blkno;
1186 struct inode *inode = mapping->host;
f99b9b7c 1187 struct ocfs2_extent_tree et;
3a307ffc
MF
1188
1189 new = phys == 0 ? 1 : 0;
9517bac6 1190 if (new) {
3a307ffc
MF
1191 u32 tmp_pos;
1192
9517bac6
MF
1193 /*
1194 * This is safe to call with the page locks - it won't take
1195 * any additional semaphores or cluster locks.
1196 */
3a307ffc 1197 tmp_pos = cpos;
0eb8d47e
TM
1198 ret = ocfs2_add_inode_data(OCFS2_SB(inode->i_sb), inode,
1199 &tmp_pos, 1, 0, wc->w_di_bh,
1200 wc->w_handle, data_ac,
1201 meta_ac, NULL);
9517bac6
MF
1202 /*
1203 * This shouldn't happen because we must have already
1204 * calculated the correct meta data allocation required. The
1205 * internal tree allocation code should know how to increase
1206 * transaction credits itself.
1207 *
1208 * If need be, we could handle -EAGAIN for a
1209 * RESTART_TRANS here.
1210 */
1211 mlog_bug_on_msg(ret == -EAGAIN,
1212 "Inode %llu: EAGAIN return during allocation.\n",
1213 (unsigned long long)OCFS2_I(inode)->ip_blkno);
1214 if (ret < 0) {
1215 mlog_errno(ret);
1216 goto out;
1217 }
b27b7cbc 1218 } else if (unwritten) {
5e404e9e
JB
1219 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode),
1220 wc->w_di_bh);
f99b9b7c 1221 ret = ocfs2_mark_extent_written(inode, &et,
b27b7cbc 1222 wc->w_handle, cpos, 1, phys,
f99b9b7c 1223 meta_ac, &wc->w_dealloc);
b27b7cbc
MF
1224 if (ret < 0) {
1225 mlog_errno(ret);
1226 goto out;
1227 }
1228 }
3a307ffc 1229
b27b7cbc 1230 if (should_zero)
3a307ffc 1231 v_blkno = ocfs2_clusters_to_blocks(inode->i_sb, cpos);
b27b7cbc 1232 else
3a307ffc 1233 v_blkno = user_pos >> inode->i_sb->s_blocksize_bits;
9517bac6 1234
3a307ffc
MF
1235 /*
1236 * The only reason this should fail is due to an inability to
1237 * find the extent added.
1238 */
49cb8d2d
MF
1239 ret = ocfs2_extent_map_get_blocks(inode, v_blkno, &p_blkno, NULL,
1240 NULL);
9517bac6 1241 if (ret < 0) {
3a307ffc
MF
1242 ocfs2_error(inode->i_sb, "Corrupting extend for inode %llu, "
1243 "at logical block %llu",
1244 (unsigned long long)OCFS2_I(inode)->ip_blkno,
1245 (unsigned long long)v_blkno);
9517bac6
MF
1246 goto out;
1247 }
1248
1249 BUG_ON(p_blkno == 0);
1250
3a307ffc
MF
1251 for(i = 0; i < wc->w_num_pages; i++) {
1252 int tmpret;
9517bac6 1253
3a307ffc
MF
1254 tmpret = ocfs2_prepare_page_for_write(inode, &p_blkno, wc,
1255 wc->w_pages[i], cpos,
b27b7cbc
MF
1256 user_pos, user_len,
1257 should_zero);
3a307ffc
MF
1258 if (tmpret) {
1259 mlog_errno(tmpret);
1260 if (ret == 0)
cbfa9639 1261 ret = tmpret;
3a307ffc 1262 }
9517bac6
MF
1263 }
1264
3a307ffc
MF
1265 /*
1266 * We only have cleanup to do in case of allocating write.
1267 */
1268 if (ret && new)
1269 ocfs2_write_failure(inode, wc, user_pos, user_len);
1270
9517bac6 1271out:
9517bac6 1272
3a307ffc 1273 return ret;
9517bac6
MF
1274}
1275
0d172baa
MF
1276static int ocfs2_write_cluster_by_desc(struct address_space *mapping,
1277 struct ocfs2_alloc_context *data_ac,
1278 struct ocfs2_alloc_context *meta_ac,
1279 struct ocfs2_write_ctxt *wc,
1280 loff_t pos, unsigned len)
1281{
1282 int ret, i;
db56246c
MF
1283 loff_t cluster_off;
1284 unsigned int local_len = len;
0d172baa 1285 struct ocfs2_write_cluster_desc *desc;
db56246c 1286 struct ocfs2_super *osb = OCFS2_SB(mapping->host->i_sb);
0d172baa
MF
1287
1288 for (i = 0; i < wc->w_clen; i++) {
1289 desc = &wc->w_desc[i];
1290
db56246c
MF
1291 /*
1292 * We have to make sure that the total write passed in
1293 * doesn't extend past a single cluster.
1294 */
1295 local_len = len;
1296 cluster_off = pos & (osb->s_clustersize - 1);
1297 if ((cluster_off + local_len) > osb->s_clustersize)
1298 local_len = osb->s_clustersize - cluster_off;
1299
b27b7cbc 1300 ret = ocfs2_write_cluster(mapping, desc->c_phys,
e7432675
SM
1301 desc->c_unwritten,
1302 desc->c_needs_zero,
1303 data_ac, meta_ac,
db56246c 1304 wc, desc->c_cpos, pos, local_len);
0d172baa
MF
1305 if (ret) {
1306 mlog_errno(ret);
1307 goto out;
1308 }
db56246c
MF
1309
1310 len -= local_len;
1311 pos += local_len;
0d172baa
MF
1312 }
1313
1314 ret = 0;
1315out:
1316 return ret;
1317}
1318
3a307ffc
MF
1319/*
1320 * ocfs2_write_end() wants to know which parts of the target page it
1321 * should complete the write on. It's easiest to compute them ahead of
1322 * time when a more complete view of the write is available.
1323 */
1324static void ocfs2_set_target_boundaries(struct ocfs2_super *osb,
1325 struct ocfs2_write_ctxt *wc,
1326 loff_t pos, unsigned len, int alloc)
9517bac6 1327{
3a307ffc 1328 struct ocfs2_write_cluster_desc *desc;
9517bac6 1329
3a307ffc
MF
1330 wc->w_target_from = pos & (PAGE_CACHE_SIZE - 1);
1331 wc->w_target_to = wc->w_target_from + len;
1332
1333 if (alloc == 0)
1334 return;
1335
1336 /*
1337 * Allocating write - we may have different boundaries based
1338 * on page size and cluster size.
1339 *
1340 * NOTE: We can no longer compute one value from the other as
1341 * the actual write length and user provided length may be
1342 * different.
1343 */
9517bac6 1344
3a307ffc
MF
1345 if (wc->w_large_pages) {
1346 /*
1347 * We only care about the 1st and last cluster within
b27b7cbc 1348 * our range and whether they should be zero'd or not. Either
3a307ffc
MF
1349 * value may be extended out to the start/end of a
1350 * newly allocated cluster.
1351 */
1352 desc = &wc->w_desc[0];
e7432675 1353 if (desc->c_needs_zero)
3a307ffc
MF
1354 ocfs2_figure_cluster_boundaries(osb,
1355 desc->c_cpos,
1356 &wc->w_target_from,
1357 NULL);
1358
1359 desc = &wc->w_desc[wc->w_clen - 1];
e7432675 1360 if (desc->c_needs_zero)
3a307ffc
MF
1361 ocfs2_figure_cluster_boundaries(osb,
1362 desc->c_cpos,
1363 NULL,
1364 &wc->w_target_to);
1365 } else {
1366 wc->w_target_from = 0;
1367 wc->w_target_to = PAGE_CACHE_SIZE;
1368 }
9517bac6
MF
1369}
1370
0d172baa
MF
1371/*
1372 * Populate each single-cluster write descriptor in the write context
1373 * with information about the i/o to be done.
b27b7cbc
MF
1374 *
1375 * Returns the number of clusters that will have to be allocated, as
1376 * well as a worst case estimate of the number of extent records that
1377 * would have to be created during a write to an unwritten region.
0d172baa
MF
1378 */
1379static int ocfs2_populate_write_desc(struct inode *inode,
1380 struct ocfs2_write_ctxt *wc,
b27b7cbc
MF
1381 unsigned int *clusters_to_alloc,
1382 unsigned int *extents_to_split)
9517bac6 1383{
0d172baa 1384 int ret;
3a307ffc 1385 struct ocfs2_write_cluster_desc *desc;
0d172baa 1386 unsigned int num_clusters = 0;
b27b7cbc 1387 unsigned int ext_flags = 0;
0d172baa
MF
1388 u32 phys = 0;
1389 int i;
9517bac6 1390
b27b7cbc
MF
1391 *clusters_to_alloc = 0;
1392 *extents_to_split = 0;
1393
3a307ffc
MF
1394 for (i = 0; i < wc->w_clen; i++) {
1395 desc = &wc->w_desc[i];
1396 desc->c_cpos = wc->w_cpos + i;
1397
1398 if (num_clusters == 0) {
b27b7cbc
MF
1399 /*
1400 * Need to look up the next extent record.
1401 */
3a307ffc 1402 ret = ocfs2_get_clusters(inode, desc->c_cpos, &phys,
b27b7cbc 1403 &num_clusters, &ext_flags);
3a307ffc
MF
1404 if (ret) {
1405 mlog_errno(ret);
607d44aa 1406 goto out;
3a307ffc 1407 }
b27b7cbc 1408
293b2f70
TM
1409 /* We should already CoW the refcountd extent. */
1410 BUG_ON(ext_flags & OCFS2_EXT_REFCOUNTED);
1411
b27b7cbc
MF
1412 /*
1413 * Assume worst case - that we're writing in
1414 * the middle of the extent.
1415 *
1416 * We can assume that the write proceeds from
1417 * left to right, in which case the extent
1418 * insert code is smart enough to coalesce the
1419 * next splits into the previous records created.
1420 */
1421 if (ext_flags & OCFS2_EXT_UNWRITTEN)
1422 *extents_to_split = *extents_to_split + 2;
3a307ffc
MF
1423 } else if (phys) {
1424 /*
1425 * Only increment phys if it doesn't describe
1426 * a hole.
1427 */
1428 phys++;
1429 }
1430
e7432675
SM
1431 /*
1432 * If w_first_new_cpos is < UINT_MAX, we have a non-sparse
1433 * file that got extended. w_first_new_cpos tells us
1434 * where the newly allocated clusters are so we can
1435 * zero them.
1436 */
1437 if (desc->c_cpos >= wc->w_first_new_cpos) {
1438 BUG_ON(phys == 0);
1439 desc->c_needs_zero = 1;
1440 }
1441
3a307ffc
MF
1442 desc->c_phys = phys;
1443 if (phys == 0) {
1444 desc->c_new = 1;
e7432675 1445 desc->c_needs_zero = 1;
0d172baa 1446 *clusters_to_alloc = *clusters_to_alloc + 1;
3a307ffc 1447 }
e7432675
SM
1448
1449 if (ext_flags & OCFS2_EXT_UNWRITTEN) {
b27b7cbc 1450 desc->c_unwritten = 1;
e7432675
SM
1451 desc->c_needs_zero = 1;
1452 }
3a307ffc
MF
1453
1454 num_clusters--;
9517bac6
MF
1455 }
1456
0d172baa
MF
1457 ret = 0;
1458out:
1459 return ret;
1460}
1461
1afc32b9
MF
1462static int ocfs2_write_begin_inline(struct address_space *mapping,
1463 struct inode *inode,
1464 struct ocfs2_write_ctxt *wc)
1465{
1466 int ret;
1467 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1468 struct page *page;
1469 handle_t *handle;
1470 struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1471
1472 page = find_or_create_page(mapping, 0, GFP_NOFS);
1473 if (!page) {
1474 ret = -ENOMEM;
1475 mlog_errno(ret);
1476 goto out;
1477 }
1478 /*
1479 * If we don't set w_num_pages then this page won't get unlocked
1480 * and freed on cleanup of the write context.
1481 */
1482 wc->w_pages[0] = wc->w_target_page = page;
1483 wc->w_num_pages = 1;
1484
1485 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1486 if (IS_ERR(handle)) {
1487 ret = PTR_ERR(handle);
1488 mlog_errno(ret);
1489 goto out;
1490 }
1491
0cf2f763 1492 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh,
13723d00 1493 OCFS2_JOURNAL_ACCESS_WRITE);
1afc32b9
MF
1494 if (ret) {
1495 ocfs2_commit_trans(osb, handle);
1496
1497 mlog_errno(ret);
1498 goto out;
1499 }
1500
1501 if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
1502 ocfs2_set_inode_data_inline(inode, di);
1503
1504 if (!PageUptodate(page)) {
1505 ret = ocfs2_read_inline_data(inode, page, wc->w_di_bh);
1506 if (ret) {
1507 ocfs2_commit_trans(osb, handle);
1508
1509 goto out;
1510 }
1511 }
1512
1513 wc->w_handle = handle;
1514out:
1515 return ret;
1516}
1517
1518int ocfs2_size_fits_inline_data(struct buffer_head *di_bh, u64 new_size)
1519{
1520 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
1521
0d8a4e0c 1522 if (new_size <= le16_to_cpu(di->id2.i_data.id_count))
1afc32b9
MF
1523 return 1;
1524 return 0;
1525}
1526
1527static int ocfs2_try_to_write_inline_data(struct address_space *mapping,
1528 struct inode *inode, loff_t pos,
1529 unsigned len, struct page *mmap_page,
1530 struct ocfs2_write_ctxt *wc)
1531{
1532 int ret, written = 0;
1533 loff_t end = pos + len;
1534 struct ocfs2_inode_info *oi = OCFS2_I(inode);
d9ae49d6 1535 struct ocfs2_dinode *di = NULL;
1afc32b9
MF
1536
1537 mlog(0, "Inode %llu, write of %u bytes at off %llu. features: 0x%x\n",
1538 (unsigned long long)oi->ip_blkno, len, (unsigned long long)pos,
1539 oi->ip_dyn_features);
1540
1541 /*
1542 * Handle inodes which already have inline data 1st.
1543 */
1544 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1545 if (mmap_page == NULL &&
1546 ocfs2_size_fits_inline_data(wc->w_di_bh, end))
1547 goto do_inline_write;
1548
1549 /*
1550 * The write won't fit - we have to give this inode an
1551 * inline extent list now.
1552 */
1553 ret = ocfs2_convert_inline_data_to_extents(inode, wc->w_di_bh);
1554 if (ret)
1555 mlog_errno(ret);
1556 goto out;
1557 }
1558
1559 /*
1560 * Check whether the inode can accept inline data.
1561 */
1562 if (oi->ip_clusters != 0 || i_size_read(inode) != 0)
1563 return 0;
1564
1565 /*
1566 * Check whether the write can fit.
1567 */
d9ae49d6
TY
1568 di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1569 if (mmap_page ||
1570 end > ocfs2_max_inline_data_with_xattr(inode->i_sb, di))
1afc32b9
MF
1571 return 0;
1572
1573do_inline_write:
1574 ret = ocfs2_write_begin_inline(mapping, inode, wc);
1575 if (ret) {
1576 mlog_errno(ret);
1577 goto out;
1578 }
1579
1580 /*
1581 * This signals to the caller that the data can be written
1582 * inline.
1583 */
1584 written = 1;
1585out:
1586 return written ? written : ret;
1587}
1588
65ed39d6
MF
1589/*
1590 * This function only does anything for file systems which can't
1591 * handle sparse files.
1592 *
1593 * What we want to do here is fill in any hole between the current end
1594 * of allocation and the end of our write. That way the rest of the
1595 * write path can treat it as an non-allocating write, which has no
1596 * special case code for sparse/nonsparse files.
1597 */
5693486b
JB
1598static int ocfs2_expand_nonsparse_inode(struct inode *inode,
1599 struct buffer_head *di_bh,
1600 loff_t pos, unsigned len,
65ed39d6
MF
1601 struct ocfs2_write_ctxt *wc)
1602{
1603 int ret;
65ed39d6
MF
1604 loff_t newsize = pos + len;
1605
5693486b 1606 BUG_ON(ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)));
65ed39d6
MF
1607
1608 if (newsize <= i_size_read(inode))
1609 return 0;
1610
5693486b 1611 ret = ocfs2_extend_no_holes(inode, di_bh, newsize, pos);
65ed39d6
MF
1612 if (ret)
1613 mlog_errno(ret);
1614
e7432675
SM
1615 wc->w_first_new_cpos =
1616 ocfs2_clusters_for_bytes(inode->i_sb, i_size_read(inode));
1617
65ed39d6
MF
1618 return ret;
1619}
1620
5693486b
JB
1621static int ocfs2_zero_tail(struct inode *inode, struct buffer_head *di_bh,
1622 loff_t pos)
1623{
1624 int ret = 0;
1625
1626 BUG_ON(!ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)));
1627 if (pos > i_size_read(inode))
1628 ret = ocfs2_zero_extend(inode, di_bh, pos);
1629
1630 return ret;
1631}
1632
50308d81
TM
1633/*
1634 * Try to flush truncate logs if we can free enough clusters from it.
1635 * As for return value, "< 0" means error, "0" no space and "1" means
1636 * we have freed enough spaces and let the caller try to allocate again.
1637 */
1638static int ocfs2_try_to_free_truncate_log(struct ocfs2_super *osb,
1639 unsigned int needed)
1640{
1641 tid_t target;
1642 int ret = 0;
1643 unsigned int truncated_clusters;
1644
1645 mutex_lock(&osb->osb_tl_inode->i_mutex);
1646 truncated_clusters = osb->truncated_clusters;
1647 mutex_unlock(&osb->osb_tl_inode->i_mutex);
1648
1649 /*
1650 * Check whether we can succeed in allocating if we free
1651 * the truncate log.
1652 */
1653 if (truncated_clusters < needed)
1654 goto out;
1655
1656 ret = ocfs2_flush_truncate_log(osb);
1657 if (ret) {
1658 mlog_errno(ret);
1659 goto out;
1660 }
1661
1662 if (jbd2_journal_start_commit(osb->journal->j_journal, &target)) {
1663 jbd2_log_wait_commit(osb->journal->j_journal, target);
1664 ret = 1;
1665 }
1666out:
1667 return ret;
1668}
1669
0378da0f
TM
1670int ocfs2_write_begin_nolock(struct file *filp,
1671 struct address_space *mapping,
0d172baa
MF
1672 loff_t pos, unsigned len, unsigned flags,
1673 struct page **pagep, void **fsdata,
1674 struct buffer_head *di_bh, struct page *mmap_page)
1675{
e7432675 1676 int ret, cluster_of_pages, credits = OCFS2_INODE_UPDATE_CREDITS;
50308d81 1677 unsigned int clusters_to_alloc, extents_to_split, clusters_need = 0;
0d172baa
MF
1678 struct ocfs2_write_ctxt *wc;
1679 struct inode *inode = mapping->host;
1680 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1681 struct ocfs2_dinode *di;
1682 struct ocfs2_alloc_context *data_ac = NULL;
1683 struct ocfs2_alloc_context *meta_ac = NULL;
1684 handle_t *handle;
f99b9b7c 1685 struct ocfs2_extent_tree et;
50308d81 1686 int try_free = 1, ret1;
0d172baa 1687
50308d81 1688try_again:
0d172baa
MF
1689 ret = ocfs2_alloc_write_ctxt(&wc, osb, pos, len, di_bh);
1690 if (ret) {
1691 mlog_errno(ret);
1692 return ret;
1693 }
1694
1afc32b9
MF
1695 if (ocfs2_supports_inline_data(osb)) {
1696 ret = ocfs2_try_to_write_inline_data(mapping, inode, pos, len,
1697 mmap_page, wc);
1698 if (ret == 1) {
1699 ret = 0;
1700 goto success;
1701 }
1702 if (ret < 0) {
1703 mlog_errno(ret);
1704 goto out;
1705 }
1706 }
1707
5693486b
JB
1708 if (ocfs2_sparse_alloc(osb))
1709 ret = ocfs2_zero_tail(inode, di_bh, pos);
1710 else
1711 ret = ocfs2_expand_nonsparse_inode(inode, di_bh, pos, len,
1712 wc);
65ed39d6
MF
1713 if (ret) {
1714 mlog_errno(ret);
1715 goto out;
1716 }
1717
293b2f70
TM
1718 ret = ocfs2_check_range_for_refcount(inode, pos, len);
1719 if (ret < 0) {
1720 mlog_errno(ret);
1721 goto out;
1722 } else if (ret == 1) {
50308d81 1723 clusters_need = wc->w_clen;
15502712 1724 ret = ocfs2_refcount_cow(inode, filp, di_bh,
37f8a2bf 1725 wc->w_cpos, wc->w_clen, UINT_MAX);
293b2f70
TM
1726 if (ret) {
1727 mlog_errno(ret);
1728 goto out;
1729 }
1730 }
1731
b27b7cbc
MF
1732 ret = ocfs2_populate_write_desc(inode, wc, &clusters_to_alloc,
1733 &extents_to_split);
0d172baa
MF
1734 if (ret) {
1735 mlog_errno(ret);
1736 goto out;
1737 }
50308d81 1738 clusters_need += clusters_to_alloc;
0d172baa
MF
1739
1740 di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1741
3a307ffc
MF
1742 /*
1743 * We set w_target_from, w_target_to here so that
1744 * ocfs2_write_end() knows which range in the target page to
1745 * write out. An allocation requires that we write the entire
1746 * cluster range.
1747 */
b27b7cbc 1748 if (clusters_to_alloc || extents_to_split) {
3a307ffc
MF
1749 /*
1750 * XXX: We are stretching the limits of
b27b7cbc 1751 * ocfs2_lock_allocators(). It greatly over-estimates
3a307ffc
MF
1752 * the work to be done.
1753 */
e7d4cb6b
TM
1754 mlog(0, "extend inode %llu, i_size = %lld, di->i_clusters = %u,"
1755 " clusters_to_add = %u, extents_to_split = %u\n",
1756 (unsigned long long)OCFS2_I(inode)->ip_blkno,
1757 (long long)i_size_read(inode), le32_to_cpu(di->i_clusters),
1758 clusters_to_alloc, extents_to_split);
1759
5e404e9e
JB
1760 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode),
1761 wc->w_di_bh);
f99b9b7c 1762 ret = ocfs2_lock_allocators(inode, &et,
231b87d1 1763 clusters_to_alloc, extents_to_split,
f99b9b7c 1764 &data_ac, &meta_ac);
9517bac6
MF
1765 if (ret) {
1766 mlog_errno(ret);
607d44aa 1767 goto out;
9517bac6
MF
1768 }
1769
4fe370af
MF
1770 if (data_ac)
1771 data_ac->ac_resv = &OCFS2_I(inode)->ip_la_data_resv;
1772
811f933d
TM
1773 credits = ocfs2_calc_extend_credits(inode->i_sb,
1774 &di->id2.i_list,
3a307ffc
MF
1775 clusters_to_alloc);
1776
9517bac6
MF
1777 }
1778
e7432675
SM
1779 /*
1780 * We have to zero sparse allocated clusters, unwritten extent clusters,
1781 * and non-sparse clusters we just extended. For non-sparse writes,
1782 * we know zeros will only be needed in the first and/or last cluster.
1783 */
1784 if (clusters_to_alloc || extents_to_split ||
8379e7c4
SM
1785 (wc->w_clen && (wc->w_desc[0].c_needs_zero ||
1786 wc->w_desc[wc->w_clen - 1].c_needs_zero)))
e7432675
SM
1787 cluster_of_pages = 1;
1788 else
1789 cluster_of_pages = 0;
1790
1791 ocfs2_set_target_boundaries(osb, wc, pos, len, cluster_of_pages);
3a307ffc 1792
9517bac6
MF
1793 handle = ocfs2_start_trans(osb, credits);
1794 if (IS_ERR(handle)) {
1795 ret = PTR_ERR(handle);
1796 mlog_errno(ret);
607d44aa 1797 goto out;
9517bac6
MF
1798 }
1799
3a307ffc
MF
1800 wc->w_handle = handle;
1801
5dd4056d
CH
1802 if (clusters_to_alloc) {
1803 ret = dquot_alloc_space_nodirty(inode,
1804 ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc));
1805 if (ret)
1806 goto out_commit;
a90714c1 1807 }
3a307ffc
MF
1808 /*
1809 * We don't want this to fail in ocfs2_write_end(), so do it
1810 * here.
1811 */
0cf2f763 1812 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh,
13723d00 1813 OCFS2_JOURNAL_ACCESS_WRITE);
3a307ffc 1814 if (ret) {
9517bac6 1815 mlog_errno(ret);
a90714c1 1816 goto out_quota;
9517bac6
MF
1817 }
1818
3a307ffc
MF
1819 /*
1820 * Fill our page array first. That way we've grabbed enough so
1821 * that we can zero and flush if we error after adding the
1822 * extent.
1823 */
693c241a 1824 ret = ocfs2_grab_pages_for_write(mapping, wc, wc->w_cpos, pos, len,
e7432675 1825 cluster_of_pages, mmap_page);
9517bac6
MF
1826 if (ret) {
1827 mlog_errno(ret);
a90714c1 1828 goto out_quota;
9517bac6
MF
1829 }
1830
0d172baa
MF
1831 ret = ocfs2_write_cluster_by_desc(mapping, data_ac, meta_ac, wc, pos,
1832 len);
1833 if (ret) {
1834 mlog_errno(ret);
a90714c1 1835 goto out_quota;
9517bac6 1836 }
9517bac6 1837
3a307ffc
MF
1838 if (data_ac)
1839 ocfs2_free_alloc_context(data_ac);
1840 if (meta_ac)
1841 ocfs2_free_alloc_context(meta_ac);
9517bac6 1842
1afc32b9 1843success:
3a307ffc
MF
1844 *pagep = wc->w_target_page;
1845 *fsdata = wc;
1846 return 0;
a90714c1
JK
1847out_quota:
1848 if (clusters_to_alloc)
5dd4056d 1849 dquot_free_space(inode,
a90714c1 1850 ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc));
9517bac6
MF
1851out_commit:
1852 ocfs2_commit_trans(osb, handle);
1853
9517bac6 1854out:
3a307ffc
MF
1855 ocfs2_free_write_ctxt(wc);
1856
9517bac6
MF
1857 if (data_ac)
1858 ocfs2_free_alloc_context(data_ac);
1859 if (meta_ac)
1860 ocfs2_free_alloc_context(meta_ac);
50308d81
TM
1861
1862 if (ret == -ENOSPC && try_free) {
1863 /*
1864 * Try to free some truncate log so that we can have enough
1865 * clusters to allocate.
1866 */
1867 try_free = 0;
1868
1869 ret1 = ocfs2_try_to_free_truncate_log(osb, clusters_need);
1870 if (ret1 == 1)
1871 goto try_again;
1872
1873 if (ret1 < 0)
1874 mlog_errno(ret1);
1875 }
1876
3a307ffc
MF
1877 return ret;
1878}
1879
b6af1bcd
NP
1880static int ocfs2_write_begin(struct file *file, struct address_space *mapping,
1881 loff_t pos, unsigned len, unsigned flags,
1882 struct page **pagep, void **fsdata)
607d44aa
MF
1883{
1884 int ret;
1885 struct buffer_head *di_bh = NULL;
1886 struct inode *inode = mapping->host;
1887
e63aecb6 1888 ret = ocfs2_inode_lock(inode, &di_bh, 1);
607d44aa
MF
1889 if (ret) {
1890 mlog_errno(ret);
1891 return ret;
1892 }
1893
1894 /*
1895 * Take alloc sem here to prevent concurrent lookups. That way
1896 * the mapping, zeroing and tree manipulation within
1897 * ocfs2_write() will be safe against ->readpage(). This
1898 * should also serve to lock out allocation from a shared
1899 * writeable region.
1900 */
1901 down_write(&OCFS2_I(inode)->ip_alloc_sem);
1902
0378da0f 1903 ret = ocfs2_write_begin_nolock(file, mapping, pos, len, flags, pagep,
7307de80 1904 fsdata, di_bh, NULL);
607d44aa
MF
1905 if (ret) {
1906 mlog_errno(ret);
c934a92d 1907 goto out_fail;
607d44aa
MF
1908 }
1909
1910 brelse(di_bh);
1911
1912 return 0;
1913
607d44aa
MF
1914out_fail:
1915 up_write(&OCFS2_I(inode)->ip_alloc_sem);
1916
1917 brelse(di_bh);
e63aecb6 1918 ocfs2_inode_unlock(inode, 1);
607d44aa
MF
1919
1920 return ret;
1921}
1922
1afc32b9
MF
1923static void ocfs2_write_end_inline(struct inode *inode, loff_t pos,
1924 unsigned len, unsigned *copied,
1925 struct ocfs2_dinode *di,
1926 struct ocfs2_write_ctxt *wc)
1927{
1928 void *kaddr;
1929
1930 if (unlikely(*copied < len)) {
1931 if (!PageUptodate(wc->w_target_page)) {
1932 *copied = 0;
1933 return;
1934 }
1935 }
1936
1937 kaddr = kmap_atomic(wc->w_target_page, KM_USER0);
1938 memcpy(di->id2.i_data.id_data + pos, kaddr + pos, *copied);
1939 kunmap_atomic(kaddr, KM_USER0);
1940
1941 mlog(0, "Data written to inode at offset %llu. "
1942 "id_count = %u, copied = %u, i_dyn_features = 0x%x\n",
1943 (unsigned long long)pos, *copied,
1944 le16_to_cpu(di->id2.i_data.id_count),
1945 le16_to_cpu(di->i_dyn_features));
1946}
1947
7307de80
MF
1948int ocfs2_write_end_nolock(struct address_space *mapping,
1949 loff_t pos, unsigned len, unsigned copied,
1950 struct page *page, void *fsdata)
3a307ffc
MF
1951{
1952 int i;
1953 unsigned from, to, start = pos & (PAGE_CACHE_SIZE - 1);
1954 struct inode *inode = mapping->host;
1955 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1956 struct ocfs2_write_ctxt *wc = fsdata;
1957 struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1958 handle_t *handle = wc->w_handle;
1959 struct page *tmppage;
1960
1afc32b9
MF
1961 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1962 ocfs2_write_end_inline(inode, pos, len, &copied, di, wc);
1963 goto out_write_size;
1964 }
1965
3a307ffc
MF
1966 if (unlikely(copied < len)) {
1967 if (!PageUptodate(wc->w_target_page))
1968 copied = 0;
1969
1970 ocfs2_zero_new_buffers(wc->w_target_page, start+copied,
1971 start+len);
1972 }
1973 flush_dcache_page(wc->w_target_page);
1974
1975 for(i = 0; i < wc->w_num_pages; i++) {
1976 tmppage = wc->w_pages[i];
1977
1978 if (tmppage == wc->w_target_page) {
1979 from = wc->w_target_from;
1980 to = wc->w_target_to;
1981
1982 BUG_ON(from > PAGE_CACHE_SIZE ||
1983 to > PAGE_CACHE_SIZE ||
1984 to < from);
1985 } else {
1986 /*
1987 * Pages adjacent to the target (if any) imply
1988 * a hole-filling write in which case we want
1989 * to flush their entire range.
1990 */
1991 from = 0;
1992 to = PAGE_CACHE_SIZE;
1993 }
1994
961cecbe 1995 if (page_has_buffers(tmppage)) {
53ef99ca 1996 if (ocfs2_should_order_data(inode))
2b4e30fb 1997 ocfs2_jbd2_file_inode(wc->w_handle, inode);
961cecbe
SM
1998 block_commit_write(tmppage, from, to);
1999 }
3a307ffc
MF
2000 }
2001
1afc32b9 2002out_write_size:
3a307ffc
MF
2003 pos += copied;
2004 if (pos > inode->i_size) {
2005 i_size_write(inode, pos);
2006 mark_inode_dirty(inode);
2007 }
2008 inode->i_blocks = ocfs2_inode_sector_count(inode);
2009 di->i_size = cpu_to_le64((u64)i_size_read(inode));
2010 inode->i_mtime = inode->i_ctime = CURRENT_TIME;
2011 di->i_mtime = di->i_ctime = cpu_to_le64(inode->i_mtime.tv_sec);
2012 di->i_mtime_nsec = di->i_ctime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec);
3a307ffc
MF
2013 ocfs2_journal_dirty(handle, wc->w_di_bh);
2014
2015 ocfs2_commit_trans(osb, handle);
59a5e416 2016
b27b7cbc
MF
2017 ocfs2_run_deallocs(osb, &wc->w_dealloc);
2018
607d44aa
MF
2019 ocfs2_free_write_ctxt(wc);
2020
2021 return copied;
2022}
2023
b6af1bcd
NP
2024static int ocfs2_write_end(struct file *file, struct address_space *mapping,
2025 loff_t pos, unsigned len, unsigned copied,
2026 struct page *page, void *fsdata)
607d44aa
MF
2027{
2028 int ret;
2029 struct inode *inode = mapping->host;
2030
2031 ret = ocfs2_write_end_nolock(mapping, pos, len, copied, page, fsdata);
2032
3a307ffc 2033 up_write(&OCFS2_I(inode)->ip_alloc_sem);
e63aecb6 2034 ocfs2_inode_unlock(inode, 1);
9517bac6 2035
607d44aa 2036 return ret;
9517bac6
MF
2037}
2038
f5e54d6e 2039const struct address_space_operations ocfs2_aops = {
1fca3a05
HH
2040 .readpage = ocfs2_readpage,
2041 .readpages = ocfs2_readpages,
2042 .writepage = ocfs2_writepage,
2043 .write_begin = ocfs2_write_begin,
2044 .write_end = ocfs2_write_end,
2045 .bmap = ocfs2_bmap,
1fca3a05
HH
2046 .direct_IO = ocfs2_direct_IO,
2047 .invalidatepage = ocfs2_invalidatepage,
2048 .releasepage = ocfs2_releasepage,
2049 .migratepage = buffer_migrate_page,
2050 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 2051 .error_remove_page = generic_error_remove_page,
ccd979bd 2052};