]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - fs/ocfs2/cluster/heartbeat.c
ocfs2: test and set teardown flag early in user_dlm_destroy_lock()
[mirror_ubuntu-artful-kernel.git] / fs / ocfs2 / cluster / heartbeat.c
CommitLineData
a7f6a5fb
MF
1/* -*- mode: c; c-basic-offset: 8; -*-
2 * vim: noexpandtab sw=8 ts=8 sts=0:
3 *
4 * Copyright (C) 2004, 2005 Oracle. All rights reserved.
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public
17 * License along with this program; if not, write to the
18 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
19 * Boston, MA 021110-1307, USA.
20 */
21
22#include <linux/kernel.h>
23#include <linux/sched.h>
24#include <linux/jiffies.h>
25#include <linux/module.h>
26#include <linux/fs.h>
27#include <linux/bio.h>
28#include <linux/blkdev.h>
29#include <linux/delay.h>
30#include <linux/file.h>
31#include <linux/kthread.h>
32#include <linux/configfs.h>
33#include <linux/random.h>
34#include <linux/crc32.h>
35#include <linux/time.h>
36
37#include "heartbeat.h"
38#include "tcp.h"
39#include "nodemanager.h"
40#include "quorum.h"
41
42#include "masklog.h"
43
44
45/*
46 * The first heartbeat pass had one global thread that would serialize all hb
47 * callback calls. This global serializing sem should only be removed once
48 * we've made sure that all callees can deal with being called concurrently
49 * from multiple hb region threads.
50 */
51static DECLARE_RWSEM(o2hb_callback_sem);
52
53/*
54 * multiple hb threads are watching multiple regions. A node is live
55 * whenever any of the threads sees activity from the node in its region.
56 */
57static spinlock_t o2hb_live_lock = SPIN_LOCK_UNLOCKED;
58static struct list_head o2hb_live_slots[O2NM_MAX_NODES];
59static unsigned long o2hb_live_node_bitmap[BITS_TO_LONGS(O2NM_MAX_NODES)];
60static LIST_HEAD(o2hb_node_events);
61static DECLARE_WAIT_QUEUE_HEAD(o2hb_steady_queue);
62
63static LIST_HEAD(o2hb_all_regions);
64
65static struct o2hb_callback {
66 struct list_head list;
67} o2hb_callbacks[O2HB_NUM_CB];
68
69static struct o2hb_callback *hbcall_from_type(enum o2hb_callback_type type);
70
71#define O2HB_DEFAULT_BLOCK_BITS 9
72
73unsigned int o2hb_dead_threshold = O2HB_DEFAULT_DEAD_THRESHOLD;
74
75/* Only sets a new threshold if there are no active regions.
76 *
77 * No locking or otherwise interesting code is required for reading
78 * o2hb_dead_threshold as it can't change once regions are active and
79 * it's not interesting to anyone until then anyway. */
80static void o2hb_dead_threshold_set(unsigned int threshold)
81{
82 if (threshold > O2HB_MIN_DEAD_THRESHOLD) {
83 spin_lock(&o2hb_live_lock);
84 if (list_empty(&o2hb_all_regions))
85 o2hb_dead_threshold = threshold;
86 spin_unlock(&o2hb_live_lock);
87 }
88}
89
90struct o2hb_node_event {
91 struct list_head hn_item;
92 enum o2hb_callback_type hn_event_type;
93 struct o2nm_node *hn_node;
94 int hn_node_num;
95};
96
97struct o2hb_disk_slot {
98 struct o2hb_disk_heartbeat_block *ds_raw_block;
99 u8 ds_node_num;
100 u64 ds_last_time;
101 u64 ds_last_generation;
102 u16 ds_equal_samples;
103 u16 ds_changed_samples;
104 struct list_head ds_live_item;
105};
106
107/* each thread owns a region.. when we're asked to tear down the region
108 * we ask the thread to stop, who cleans up the region */
109struct o2hb_region {
110 struct config_item hr_item;
111
112 struct list_head hr_all_item;
113 unsigned hr_unclean_stop:1;
114
115 /* protected by the hr_callback_sem */
116 struct task_struct *hr_task;
117
118 unsigned int hr_blocks;
119 unsigned long long hr_start_block;
120
121 unsigned int hr_block_bits;
122 unsigned int hr_block_bytes;
123
124 unsigned int hr_slots_per_page;
125 unsigned int hr_num_pages;
126
127 struct page **hr_slot_data;
128 struct block_device *hr_bdev;
129 struct o2hb_disk_slot *hr_slots;
130
131 /* let the person setting up hb wait for it to return until it
132 * has reached a 'steady' state. This will be fixed when we have
133 * a more complete api that doesn't lead to this sort of fragility. */
134 atomic_t hr_steady_iterations;
135
136 char hr_dev_name[BDEVNAME_SIZE];
137
138 unsigned int hr_timeout_ms;
139
140 /* randomized as the region goes up and down so that a node
141 * recognizes a node going up and down in one iteration */
142 u64 hr_generation;
143
144 struct work_struct hr_write_timeout_work;
145 unsigned long hr_last_timeout_start;
146
147 /* Used during o2hb_check_slot to hold a copy of the block
148 * being checked because we temporarily have to zero out the
149 * crc field. */
150 struct o2hb_disk_heartbeat_block *hr_tmp_block;
151};
152
153struct o2hb_bio_wait_ctxt {
154 atomic_t wc_num_reqs;
155 struct completion wc_io_complete;
156};
157
158static void o2hb_write_timeout(void *arg)
159{
160 struct o2hb_region *reg = arg;
161
162 mlog(ML_ERROR, "Heartbeat write timeout to device %s after %u "
163 "milliseconds\n", reg->hr_dev_name,
164 jiffies_to_msecs(jiffies - reg->hr_last_timeout_start));
165 o2quo_disk_timeout();
166}
167
168static void o2hb_arm_write_timeout(struct o2hb_region *reg)
169{
170 mlog(0, "Queue write timeout for %u ms\n", O2HB_MAX_WRITE_TIMEOUT_MS);
171
172 cancel_delayed_work(&reg->hr_write_timeout_work);
173 reg->hr_last_timeout_start = jiffies;
174 schedule_delayed_work(&reg->hr_write_timeout_work,
175 msecs_to_jiffies(O2HB_MAX_WRITE_TIMEOUT_MS));
176}
177
178static void o2hb_disarm_write_timeout(struct o2hb_region *reg)
179{
180 cancel_delayed_work(&reg->hr_write_timeout_work);
181 flush_scheduled_work();
182}
183
184static inline void o2hb_bio_wait_init(struct o2hb_bio_wait_ctxt *wc,
185 unsigned int num_ios)
186{
187 atomic_set(&wc->wc_num_reqs, num_ios);
188 init_completion(&wc->wc_io_complete);
189}
190
191/* Used in error paths too */
192static inline void o2hb_bio_wait_dec(struct o2hb_bio_wait_ctxt *wc,
193 unsigned int num)
194{
195 /* sadly atomic_sub_and_test() isn't available on all platforms. The
196 * good news is that the fast path only completes one at a time */
197 while(num--) {
198 if (atomic_dec_and_test(&wc->wc_num_reqs)) {
199 BUG_ON(num > 0);
200 complete(&wc->wc_io_complete);
201 }
202 }
203}
204
205static void o2hb_wait_on_io(struct o2hb_region *reg,
206 struct o2hb_bio_wait_ctxt *wc)
207{
208 struct address_space *mapping = reg->hr_bdev->bd_inode->i_mapping;
209
210 blk_run_address_space(mapping);
211
212 wait_for_completion(&wc->wc_io_complete);
213}
214
215static int o2hb_bio_end_io(struct bio *bio,
216 unsigned int bytes_done,
217 int error)
218{
219 struct o2hb_bio_wait_ctxt *wc = bio->bi_private;
220
221 if (error)
222 mlog(ML_ERROR, "IO Error %d\n", error);
223
224 if (bio->bi_size)
225 return 1;
226
227 o2hb_bio_wait_dec(wc, 1);
228 return 0;
229}
230
231/* Setup a Bio to cover I/O against num_slots slots starting at
232 * start_slot. */
233static struct bio *o2hb_setup_one_bio(struct o2hb_region *reg,
234 struct o2hb_bio_wait_ctxt *wc,
235 unsigned int start_slot,
236 unsigned int num_slots)
237{
238 int i, nr_vecs, len, first_page, last_page;
239 unsigned int vec_len, vec_start;
240 unsigned int bits = reg->hr_block_bits;
241 unsigned int spp = reg->hr_slots_per_page;
242 struct bio *bio;
243 struct page *page;
244
245 nr_vecs = (num_slots + spp - 1) / spp;
246
247 /* Testing has shown this allocation to take long enough under
248 * GFP_KERNEL that the local node can get fenced. It would be
249 * nicest if we could pre-allocate these bios and avoid this
250 * all together. */
251 bio = bio_alloc(GFP_ATOMIC, nr_vecs);
252 if (!bio) {
253 mlog(ML_ERROR, "Could not alloc slots BIO!\n");
254 bio = ERR_PTR(-ENOMEM);
255 goto bail;
256 }
257
258 /* Must put everything in 512 byte sectors for the bio... */
259 bio->bi_sector = (reg->hr_start_block + start_slot) << (bits - 9);
260 bio->bi_bdev = reg->hr_bdev;
261 bio->bi_private = wc;
262 bio->bi_end_io = o2hb_bio_end_io;
263
264 first_page = start_slot / spp;
265 last_page = first_page + nr_vecs;
266 vec_start = (start_slot << bits) % PAGE_CACHE_SIZE;
267 for(i = first_page; i < last_page; i++) {
268 page = reg->hr_slot_data[i];
269
270 vec_len = PAGE_CACHE_SIZE;
271 /* last page might be short */
272 if (((i + 1) * spp) > (start_slot + num_slots))
273 vec_len = ((num_slots + start_slot) % spp) << bits;
274 vec_len -= vec_start;
275
276 mlog(ML_HB_BIO, "page %d, vec_len = %u, vec_start = %u\n",
277 i, vec_len, vec_start);
278
279 len = bio_add_page(bio, page, vec_len, vec_start);
280 if (len != vec_len) {
281 bio_put(bio);
282 bio = ERR_PTR(-EIO);
283
284 mlog(ML_ERROR, "Error adding page to bio i = %d, "
285 "vec_len = %u, len = %d\n, start = %u\n",
286 i, vec_len, len, vec_start);
287 goto bail;
288 }
289
290 vec_start = 0;
291 }
292
293bail:
294 return bio;
295}
296
297/*
298 * Compute the maximum number of sectors the bdev can handle in one bio,
299 * as a power of two.
300 *
301 * Stolen from oracleasm, thanks Joel!
302 */
303static int compute_max_sectors(struct block_device *bdev)
304{
305 int max_pages, max_sectors, pow_two_sectors;
306
307 struct request_queue *q;
308
309 q = bdev_get_queue(bdev);
310 max_pages = q->max_sectors >> (PAGE_SHIFT - 9);
311 if (max_pages > BIO_MAX_PAGES)
312 max_pages = BIO_MAX_PAGES;
313 if (max_pages > q->max_phys_segments)
314 max_pages = q->max_phys_segments;
315 if (max_pages > q->max_hw_segments)
316 max_pages = q->max_hw_segments;
317 max_pages--; /* Handle I/Os that straddle a page */
318
319 max_sectors = max_pages << (PAGE_SHIFT - 9);
320
321 /* Why is fls() 1-based???? */
322 pow_two_sectors = 1 << (fls(max_sectors) - 1);
323
324 return pow_two_sectors;
325}
326
327static inline void o2hb_compute_request_limits(struct o2hb_region *reg,
328 unsigned int num_slots,
329 unsigned int *num_bios,
330 unsigned int *slots_per_bio)
331{
332 unsigned int max_sectors, io_sectors;
333
334 max_sectors = compute_max_sectors(reg->hr_bdev);
335
336 io_sectors = num_slots << (reg->hr_block_bits - 9);
337
338 *num_bios = (io_sectors + max_sectors - 1) / max_sectors;
339 *slots_per_bio = max_sectors >> (reg->hr_block_bits - 9);
340
341 mlog(ML_HB_BIO, "My io size is %u sectors for %u slots. This "
342 "device can handle %u sectors of I/O\n", io_sectors, num_slots,
343 max_sectors);
344 mlog(ML_HB_BIO, "Will need %u bios holding %u slots each\n",
345 *num_bios, *slots_per_bio);
346}
347
348static int o2hb_read_slots(struct o2hb_region *reg,
349 unsigned int max_slots)
350{
351 unsigned int num_bios, slots_per_bio, start_slot, num_slots;
352 int i, status;
353 struct o2hb_bio_wait_ctxt wc;
354 struct bio **bios;
355 struct bio *bio;
356
357 o2hb_compute_request_limits(reg, max_slots, &num_bios, &slots_per_bio);
358
359 bios = kcalloc(num_bios, sizeof(struct bio *), GFP_KERNEL);
360 if (!bios) {
361 status = -ENOMEM;
362 mlog_errno(status);
363 return status;
364 }
365
366 o2hb_bio_wait_init(&wc, num_bios);
367
368 num_slots = slots_per_bio;
369 for(i = 0; i < num_bios; i++) {
370 start_slot = i * slots_per_bio;
371
372 /* adjust num_slots at last bio */
373 if (max_slots < (start_slot + num_slots))
374 num_slots = max_slots - start_slot;
375
376 bio = o2hb_setup_one_bio(reg, &wc, start_slot, num_slots);
377 if (IS_ERR(bio)) {
378 o2hb_bio_wait_dec(&wc, num_bios - i);
379
380 status = PTR_ERR(bio);
381 mlog_errno(status);
382 goto bail_and_wait;
383 }
384 bios[i] = bio;
385
386 submit_bio(READ, bio);
387 }
388
389 status = 0;
390
391bail_and_wait:
392 o2hb_wait_on_io(reg, &wc);
393
394 if (bios) {
395 for(i = 0; i < num_bios; i++)
396 if (bios[i])
397 bio_put(bios[i]);
398 kfree(bios);
399 }
400
401 return status;
402}
403
404static int o2hb_issue_node_write(struct o2hb_region *reg,
405 struct bio **write_bio,
406 struct o2hb_bio_wait_ctxt *write_wc)
407{
408 int status;
409 unsigned int slot;
410 struct bio *bio;
411
412 o2hb_bio_wait_init(write_wc, 1);
413
414 slot = o2nm_this_node();
415
416 bio = o2hb_setup_one_bio(reg, write_wc, slot, 1);
417 if (IS_ERR(bio)) {
418 status = PTR_ERR(bio);
419 mlog_errno(status);
420 goto bail;
421 }
422
423 submit_bio(WRITE, bio);
424
425 *write_bio = bio;
426 status = 0;
427bail:
428 return status;
429}
430
431static u32 o2hb_compute_block_crc_le(struct o2hb_region *reg,
432 struct o2hb_disk_heartbeat_block *hb_block)
433{
434 __le32 old_cksum;
435 u32 ret;
436
437 /* We want to compute the block crc with a 0 value in the
438 * hb_cksum field. Save it off here and replace after the
439 * crc. */
440 old_cksum = hb_block->hb_cksum;
441 hb_block->hb_cksum = 0;
442
443 ret = crc32_le(0, (unsigned char *) hb_block, reg->hr_block_bytes);
444
445 hb_block->hb_cksum = old_cksum;
446
447 return ret;
448}
449
450static void o2hb_dump_slot(struct o2hb_disk_heartbeat_block *hb_block)
451{
70bacbdb
MF
452 mlog(ML_ERROR, "Dump slot information: seq = 0x%llx, node = %u, "
453 "cksum = 0x%x, generation 0x%llx\n",
454 (long long)le64_to_cpu(hb_block->hb_seq),
455 hb_block->hb_node, le32_to_cpu(hb_block->hb_cksum),
456 (long long)le64_to_cpu(hb_block->hb_generation));
a7f6a5fb
MF
457}
458
459static int o2hb_verify_crc(struct o2hb_region *reg,
460 struct o2hb_disk_heartbeat_block *hb_block)
461{
462 u32 read, computed;
463
464 read = le32_to_cpu(hb_block->hb_cksum);
465 computed = o2hb_compute_block_crc_le(reg, hb_block);
466
467 return read == computed;
468}
469
470/* We want to make sure that nobody is heartbeating on top of us --
471 * this will help detect an invalid configuration. */
472static int o2hb_check_last_timestamp(struct o2hb_region *reg)
473{
474 int node_num, ret;
475 struct o2hb_disk_slot *slot;
476 struct o2hb_disk_heartbeat_block *hb_block;
477
478 node_num = o2nm_this_node();
479
480 ret = 1;
481 slot = &reg->hr_slots[node_num];
482 /* Don't check on our 1st timestamp */
483 if (slot->ds_last_time) {
484 hb_block = slot->ds_raw_block;
485
486 if (le64_to_cpu(hb_block->hb_seq) != slot->ds_last_time)
487 ret = 0;
488 }
489
490 return ret;
491}
492
493static inline void o2hb_prepare_block(struct o2hb_region *reg,
494 u64 generation)
495{
496 int node_num;
497 u64 cputime;
498 struct o2hb_disk_slot *slot;
499 struct o2hb_disk_heartbeat_block *hb_block;
500
501 node_num = o2nm_this_node();
502 slot = &reg->hr_slots[node_num];
503
504 hb_block = (struct o2hb_disk_heartbeat_block *)slot->ds_raw_block;
505 memset(hb_block, 0, reg->hr_block_bytes);
506 /* TODO: time stuff */
507 cputime = CURRENT_TIME.tv_sec;
508 if (!cputime)
509 cputime = 1;
510
511 hb_block->hb_seq = cpu_to_le64(cputime);
512 hb_block->hb_node = node_num;
513 hb_block->hb_generation = cpu_to_le64(generation);
514
515 /* This step must always happen last! */
516 hb_block->hb_cksum = cpu_to_le32(o2hb_compute_block_crc_le(reg,
517 hb_block));
518
70bacbdb
MF
519 mlog(ML_HB_BIO, "our node generation = 0x%llx, cksum = 0x%x\n",
520 (long long)cpu_to_le64(generation),
521 le32_to_cpu(hb_block->hb_cksum));
a7f6a5fb
MF
522}
523
524static void o2hb_fire_callbacks(struct o2hb_callback *hbcall,
525 struct o2nm_node *node,
526 int idx)
527{
528 struct list_head *iter;
529 struct o2hb_callback_func *f;
530
531 list_for_each(iter, &hbcall->list) {
532 f = list_entry(iter, struct o2hb_callback_func, hc_item);
533 mlog(ML_HEARTBEAT, "calling funcs %p\n", f);
534 (f->hc_func)(node, idx, f->hc_data);
535 }
536}
537
538/* Will run the list in order until we process the passed event */
539static void o2hb_run_event_list(struct o2hb_node_event *queued_event)
540{
541 int empty;
542 struct o2hb_callback *hbcall;
543 struct o2hb_node_event *event;
544
545 spin_lock(&o2hb_live_lock);
546 empty = list_empty(&queued_event->hn_item);
547 spin_unlock(&o2hb_live_lock);
548 if (empty)
549 return;
550
551 /* Holding callback sem assures we don't alter the callback
552 * lists when doing this, and serializes ourselves with other
553 * processes wanting callbacks. */
554 down_write(&o2hb_callback_sem);
555
556 spin_lock(&o2hb_live_lock);
557 while (!list_empty(&o2hb_node_events)
558 && !list_empty(&queued_event->hn_item)) {
559 event = list_entry(o2hb_node_events.next,
560 struct o2hb_node_event,
561 hn_item);
562 list_del_init(&event->hn_item);
563 spin_unlock(&o2hb_live_lock);
564
565 mlog(ML_HEARTBEAT, "Node %s event for %d\n",
566 event->hn_event_type == O2HB_NODE_UP_CB ? "UP" : "DOWN",
567 event->hn_node_num);
568
569 hbcall = hbcall_from_type(event->hn_event_type);
570
571 /* We should *never* have gotten on to the list with a
572 * bad type... This isn't something that we should try
573 * to recover from. */
574 BUG_ON(IS_ERR(hbcall));
575
576 o2hb_fire_callbacks(hbcall, event->hn_node, event->hn_node_num);
577
578 spin_lock(&o2hb_live_lock);
579 }
580 spin_unlock(&o2hb_live_lock);
581
582 up_write(&o2hb_callback_sem);
583}
584
585static void o2hb_queue_node_event(struct o2hb_node_event *event,
586 enum o2hb_callback_type type,
587 struct o2nm_node *node,
588 int node_num)
589{
590 assert_spin_locked(&o2hb_live_lock);
591
592 event->hn_event_type = type;
593 event->hn_node = node;
594 event->hn_node_num = node_num;
595
596 mlog(ML_HEARTBEAT, "Queue node %s event for node %d\n",
597 type == O2HB_NODE_UP_CB ? "UP" : "DOWN", node_num);
598
599 list_add_tail(&event->hn_item, &o2hb_node_events);
600}
601
602static void o2hb_shutdown_slot(struct o2hb_disk_slot *slot)
603{
604 struct o2hb_node_event event =
605 { .hn_item = LIST_HEAD_INIT(event.hn_item), };
606 struct o2nm_node *node;
607
608 node = o2nm_get_node_by_num(slot->ds_node_num);
609 if (!node)
610 return;
611
612 spin_lock(&o2hb_live_lock);
613 if (!list_empty(&slot->ds_live_item)) {
614 mlog(ML_HEARTBEAT, "Shutdown, node %d leaves region\n",
615 slot->ds_node_num);
616
617 list_del_init(&slot->ds_live_item);
618
619 if (list_empty(&o2hb_live_slots[slot->ds_node_num])) {
620 clear_bit(slot->ds_node_num, o2hb_live_node_bitmap);
621
622 o2hb_queue_node_event(&event, O2HB_NODE_DOWN_CB, node,
623 slot->ds_node_num);
624 }
625 }
626 spin_unlock(&o2hb_live_lock);
627
628 o2hb_run_event_list(&event);
629
630 o2nm_node_put(node);
631}
632
633static int o2hb_check_slot(struct o2hb_region *reg,
634 struct o2hb_disk_slot *slot)
635{
636 int changed = 0, gen_changed = 0;
637 struct o2hb_node_event event =
638 { .hn_item = LIST_HEAD_INIT(event.hn_item), };
639 struct o2nm_node *node;
640 struct o2hb_disk_heartbeat_block *hb_block = reg->hr_tmp_block;
641 u64 cputime;
642
643 memcpy(hb_block, slot->ds_raw_block, reg->hr_block_bytes);
644
645 /* Is this correct? Do we assume that the node doesn't exist
646 * if we're not configured for him? */
647 node = o2nm_get_node_by_num(slot->ds_node_num);
648 if (!node)
649 return 0;
650
651 if (!o2hb_verify_crc(reg, hb_block)) {
652 /* all paths from here will drop o2hb_live_lock for
653 * us. */
654 spin_lock(&o2hb_live_lock);
655
656 /* Don't print an error on the console in this case -
657 * a freshly formatted heartbeat area will not have a
658 * crc set on it. */
659 if (list_empty(&slot->ds_live_item))
660 goto out;
661
662 /* The node is live but pushed out a bad crc. We
663 * consider it a transient miss but don't populate any
664 * other values as they may be junk. */
665 mlog(ML_ERROR, "Node %d has written a bad crc to %s\n",
666 slot->ds_node_num, reg->hr_dev_name);
667 o2hb_dump_slot(hb_block);
668
669 slot->ds_equal_samples++;
670 goto fire_callbacks;
671 }
672
673 /* we don't care if these wrap.. the state transitions below
674 * clear at the right places */
675 cputime = le64_to_cpu(hb_block->hb_seq);
676 if (slot->ds_last_time != cputime)
677 slot->ds_changed_samples++;
678 else
679 slot->ds_equal_samples++;
680 slot->ds_last_time = cputime;
681
682 /* The node changed heartbeat generations. We assume this to
683 * mean it dropped off but came back before we timed out. We
684 * want to consider it down for the time being but don't want
685 * to lose any changed_samples state we might build up to
686 * considering it live again. */
687 if (slot->ds_last_generation != le64_to_cpu(hb_block->hb_generation)) {
688 gen_changed = 1;
689 slot->ds_equal_samples = 0;
70bacbdb
MF
690 mlog(ML_HEARTBEAT, "Node %d changed generation (0x%llx "
691 "to 0x%llx)\n", slot->ds_node_num,
692 (long long)slot->ds_last_generation,
693 (long long)le64_to_cpu(hb_block->hb_generation));
a7f6a5fb
MF
694 }
695
696 slot->ds_last_generation = le64_to_cpu(hb_block->hb_generation);
697
70bacbdb
MF
698 mlog(ML_HEARTBEAT, "Slot %d gen 0x%llx cksum 0x%x "
699 "seq %llu last %llu changed %u equal %u\n",
700 slot->ds_node_num, (long long)slot->ds_last_generation,
701 le32_to_cpu(hb_block->hb_cksum),
702 (unsigned long long)le64_to_cpu(hb_block->hb_seq),
703 (unsigned long long)slot->ds_last_time, slot->ds_changed_samples,
a7f6a5fb
MF
704 slot->ds_equal_samples);
705
706 spin_lock(&o2hb_live_lock);
707
708fire_callbacks:
709 /* dead nodes only come to life after some number of
710 * changes at any time during their dead time */
711 if (list_empty(&slot->ds_live_item) &&
712 slot->ds_changed_samples >= O2HB_LIVE_THRESHOLD) {
70bacbdb
MF
713 mlog(ML_HEARTBEAT, "Node %d (id 0x%llx) joined my region\n",
714 slot->ds_node_num, (long long)slot->ds_last_generation);
a7f6a5fb
MF
715
716 /* first on the list generates a callback */
717 if (list_empty(&o2hb_live_slots[slot->ds_node_num])) {
718 set_bit(slot->ds_node_num, o2hb_live_node_bitmap);
719
720 o2hb_queue_node_event(&event, O2HB_NODE_UP_CB, node,
721 slot->ds_node_num);
722
723 changed = 1;
724 }
725
726 list_add_tail(&slot->ds_live_item,
727 &o2hb_live_slots[slot->ds_node_num]);
728
729 slot->ds_equal_samples = 0;
730 goto out;
731 }
732
733 /* if the list is dead, we're done.. */
734 if (list_empty(&slot->ds_live_item))
735 goto out;
736
737 /* live nodes only go dead after enough consequtive missed
738 * samples.. reset the missed counter whenever we see
739 * activity */
740 if (slot->ds_equal_samples >= o2hb_dead_threshold || gen_changed) {
741 mlog(ML_HEARTBEAT, "Node %d left my region\n",
742 slot->ds_node_num);
743
744 /* last off the live_slot generates a callback */
745 list_del_init(&slot->ds_live_item);
746 if (list_empty(&o2hb_live_slots[slot->ds_node_num])) {
747 clear_bit(slot->ds_node_num, o2hb_live_node_bitmap);
748
749 o2hb_queue_node_event(&event, O2HB_NODE_DOWN_CB, node,
750 slot->ds_node_num);
751
752 changed = 1;
753 }
754
755 /* We don't clear this because the node is still
756 * actually writing new blocks. */
757 if (!gen_changed)
758 slot->ds_changed_samples = 0;
759 goto out;
760 }
761 if (slot->ds_changed_samples) {
762 slot->ds_changed_samples = 0;
763 slot->ds_equal_samples = 0;
764 }
765out:
766 spin_unlock(&o2hb_live_lock);
767
768 o2hb_run_event_list(&event);
769
770 o2nm_node_put(node);
771 return changed;
772}
773
774/* This could be faster if we just implmented a find_last_bit, but I
775 * don't think the circumstances warrant it. */
776static int o2hb_highest_node(unsigned long *nodes,
777 int numbits)
778{
779 int highest, node;
780
781 highest = numbits;
782 node = -1;
783 while ((node = find_next_bit(nodes, numbits, node + 1)) != -1) {
784 if (node >= numbits)
785 break;
786
787 highest = node;
788 }
789
790 return highest;
791}
792
793static void o2hb_do_disk_heartbeat(struct o2hb_region *reg)
794{
795 int i, ret, highest_node, change = 0;
796 unsigned long configured_nodes[BITS_TO_LONGS(O2NM_MAX_NODES)];
797 struct bio *write_bio;
798 struct o2hb_bio_wait_ctxt write_wc;
799
800 if (o2nm_configured_node_map(configured_nodes, sizeof(configured_nodes)))
801 return;
802
803 highest_node = o2hb_highest_node(configured_nodes, O2NM_MAX_NODES);
804 if (highest_node >= O2NM_MAX_NODES) {
805 mlog(ML_NOTICE, "ocfs2_heartbeat: no configured nodes found!\n");
806 return;
807 }
808
809 /* No sense in reading the slots of nodes that don't exist
810 * yet. Of course, if the node definitions have holes in them
811 * then we're reading an empty slot anyway... Consider this
812 * best-effort. */
813 ret = o2hb_read_slots(reg, highest_node + 1);
814 if (ret < 0) {
815 mlog_errno(ret);
816 return;
817 }
818
819 /* With an up to date view of the slots, we can check that no
820 * other node has been improperly configured to heartbeat in
821 * our slot. */
822 if (!o2hb_check_last_timestamp(reg))
823 mlog(ML_ERROR, "Device \"%s\": another node is heartbeating "
824 "in our slot!\n", reg->hr_dev_name);
825
826 /* fill in the proper info for our next heartbeat */
827 o2hb_prepare_block(reg, reg->hr_generation);
828
829 /* And fire off the write. Note that we don't wait on this I/O
830 * until later. */
831 ret = o2hb_issue_node_write(reg, &write_bio, &write_wc);
832 if (ret < 0) {
833 mlog_errno(ret);
834 return;
835 }
836
837 i = -1;
838 while((i = find_next_bit(configured_nodes, O2NM_MAX_NODES, i + 1)) < O2NM_MAX_NODES) {
839
840 change |= o2hb_check_slot(reg, &reg->hr_slots[i]);
841 }
842
843 /*
844 * We have to be sure we've advertised ourselves on disk
845 * before we can go to steady state. This ensures that
846 * people we find in our steady state have seen us.
847 */
848 o2hb_wait_on_io(reg, &write_wc);
849 bio_put(write_bio);
850 o2hb_arm_write_timeout(reg);
851
852 /* let the person who launched us know when things are steady */
853 if (!change && (atomic_read(&reg->hr_steady_iterations) != 0)) {
854 if (atomic_dec_and_test(&reg->hr_steady_iterations))
855 wake_up(&o2hb_steady_queue);
856 }
857}
858
859/* Subtract b from a, storing the result in a. a *must* have a larger
860 * value than b. */
861static void o2hb_tv_subtract(struct timeval *a,
862 struct timeval *b)
863{
864 /* just return 0 when a is after b */
865 if (a->tv_sec < b->tv_sec ||
866 (a->tv_sec == b->tv_sec && a->tv_usec < b->tv_usec)) {
867 a->tv_sec = 0;
868 a->tv_usec = 0;
869 return;
870 }
871
872 a->tv_sec -= b->tv_sec;
873 a->tv_usec -= b->tv_usec;
874 while ( a->tv_usec < 0 ) {
875 a->tv_sec--;
876 a->tv_usec += 1000000;
877 }
878}
879
880static unsigned int o2hb_elapsed_msecs(struct timeval *start,
881 struct timeval *end)
882{
883 struct timeval res = *end;
884
885 o2hb_tv_subtract(&res, start);
886
887 return res.tv_sec * 1000 + res.tv_usec / 1000;
888}
889
890/*
891 * we ride the region ref that the region dir holds. before the region
892 * dir is removed and drops it ref it will wait to tear down this
893 * thread.
894 */
895static int o2hb_thread(void *data)
896{
897 int i, ret;
898 struct o2hb_region *reg = data;
899 struct bio *write_bio;
900 struct o2hb_bio_wait_ctxt write_wc;
901 struct timeval before_hb, after_hb;
902 unsigned int elapsed_msec;
903
904 mlog(ML_HEARTBEAT|ML_KTHREAD, "hb thread running\n");
905
906 set_user_nice(current, -20);
907
908 while (!kthread_should_stop() && !reg->hr_unclean_stop) {
909 /* We track the time spent inside
910 * o2hb_do_disk_heartbeat so that we avoid more then
911 * hr_timeout_ms between disk writes. On busy systems
912 * this should result in a heartbeat which is less
913 * likely to time itself out. */
914 do_gettimeofday(&before_hb);
915
916 o2hb_do_disk_heartbeat(reg);
917
918 do_gettimeofday(&after_hb);
919 elapsed_msec = o2hb_elapsed_msecs(&before_hb, &after_hb);
920
921 mlog(0, "start = %lu.%lu, end = %lu.%lu, msec = %u\n",
215c7f9f
MF
922 before_hb.tv_sec, (unsigned long) before_hb.tv_usec,
923 after_hb.tv_sec, (unsigned long) after_hb.tv_usec,
924 elapsed_msec);
a7f6a5fb
MF
925
926 if (elapsed_msec < reg->hr_timeout_ms) {
927 /* the kthread api has blocked signals for us so no
928 * need to record the return value. */
929 msleep_interruptible(reg->hr_timeout_ms - elapsed_msec);
930 }
931 }
932
933 o2hb_disarm_write_timeout(reg);
934
935 /* unclean stop is only used in very bad situation */
936 for(i = 0; !reg->hr_unclean_stop && i < reg->hr_blocks; i++)
937 o2hb_shutdown_slot(&reg->hr_slots[i]);
938
939 /* Explicit down notification - avoid forcing the other nodes
940 * to timeout on this region when we could just as easily
941 * write a clear generation - thus indicating to them that
942 * this node has left this region.
943 *
944 * XXX: Should we skip this on unclean_stop? */
945 o2hb_prepare_block(reg, 0);
946 ret = o2hb_issue_node_write(reg, &write_bio, &write_wc);
947 if (ret == 0) {
948 o2hb_wait_on_io(reg, &write_wc);
949 bio_put(write_bio);
950 } else {
951 mlog_errno(ret);
952 }
953
954 mlog(ML_HEARTBEAT|ML_KTHREAD, "hb thread exiting\n");
955
956 return 0;
957}
958
959void o2hb_init(void)
960{
961 int i;
962
963 for (i = 0; i < ARRAY_SIZE(o2hb_callbacks); i++)
964 INIT_LIST_HEAD(&o2hb_callbacks[i].list);
965
966 for (i = 0; i < ARRAY_SIZE(o2hb_live_slots); i++)
967 INIT_LIST_HEAD(&o2hb_live_slots[i]);
968
969 INIT_LIST_HEAD(&o2hb_node_events);
970
971 memset(o2hb_live_node_bitmap, 0, sizeof(o2hb_live_node_bitmap));
972}
973
974/* if we're already in a callback then we're already serialized by the sem */
975static void o2hb_fill_node_map_from_callback(unsigned long *map,
976 unsigned bytes)
977{
978 BUG_ON(bytes < (BITS_TO_LONGS(O2NM_MAX_NODES) * sizeof(unsigned long)));
979
980 memcpy(map, &o2hb_live_node_bitmap, bytes);
981}
982
983/*
984 * get a map of all nodes that are heartbeating in any regions
985 */
986void o2hb_fill_node_map(unsigned long *map, unsigned bytes)
987{
988 /* callers want to serialize this map and callbacks so that they
989 * can trust that they don't miss nodes coming to the party */
990 down_read(&o2hb_callback_sem);
991 spin_lock(&o2hb_live_lock);
992 o2hb_fill_node_map_from_callback(map, bytes);
993 spin_unlock(&o2hb_live_lock);
994 up_read(&o2hb_callback_sem);
995}
996EXPORT_SYMBOL_GPL(o2hb_fill_node_map);
997
998/*
999 * heartbeat configfs bits. The heartbeat set is a default set under
1000 * the cluster set in nodemanager.c.
1001 */
1002
1003static struct o2hb_region *to_o2hb_region(struct config_item *item)
1004{
1005 return item ? container_of(item, struct o2hb_region, hr_item) : NULL;
1006}
1007
1008/* drop_item only drops its ref after killing the thread, nothing should
1009 * be using the region anymore. this has to clean up any state that
1010 * attributes might have built up. */
1011static void o2hb_region_release(struct config_item *item)
1012{
1013 int i;
1014 struct page *page;
1015 struct o2hb_region *reg = to_o2hb_region(item);
1016
1017 if (reg->hr_tmp_block)
1018 kfree(reg->hr_tmp_block);
1019
1020 if (reg->hr_slot_data) {
1021 for (i = 0; i < reg->hr_num_pages; i++) {
1022 page = reg->hr_slot_data[i];
1023 if (page)
1024 __free_page(page);
1025 }
1026 kfree(reg->hr_slot_data);
1027 }
1028
1029 if (reg->hr_bdev)
1030 blkdev_put(reg->hr_bdev);
1031
1032 if (reg->hr_slots)
1033 kfree(reg->hr_slots);
1034
1035 spin_lock(&o2hb_live_lock);
1036 list_del(&reg->hr_all_item);
1037 spin_unlock(&o2hb_live_lock);
1038
1039 kfree(reg);
1040}
1041
1042static int o2hb_read_block_input(struct o2hb_region *reg,
1043 const char *page,
1044 size_t count,
1045 unsigned long *ret_bytes,
1046 unsigned int *ret_bits)
1047{
1048 unsigned long bytes;
1049 char *p = (char *)page;
1050
1051 bytes = simple_strtoul(p, &p, 0);
1052 if (!p || (*p && (*p != '\n')))
1053 return -EINVAL;
1054
1055 /* Heartbeat and fs min / max block sizes are the same. */
1056 if (bytes > 4096 || bytes < 512)
1057 return -ERANGE;
1058 if (hweight16(bytes) != 1)
1059 return -EINVAL;
1060
1061 if (ret_bytes)
1062 *ret_bytes = bytes;
1063 if (ret_bits)
1064 *ret_bits = ffs(bytes) - 1;
1065
1066 return 0;
1067}
1068
1069static ssize_t o2hb_region_block_bytes_read(struct o2hb_region *reg,
1070 char *page)
1071{
1072 return sprintf(page, "%u\n", reg->hr_block_bytes);
1073}
1074
1075static ssize_t o2hb_region_block_bytes_write(struct o2hb_region *reg,
1076 const char *page,
1077 size_t count)
1078{
1079 int status;
1080 unsigned long block_bytes;
1081 unsigned int block_bits;
1082
1083 if (reg->hr_bdev)
1084 return -EINVAL;
1085
1086 status = o2hb_read_block_input(reg, page, count,
1087 &block_bytes, &block_bits);
1088 if (status)
1089 return status;
1090
1091 reg->hr_block_bytes = (unsigned int)block_bytes;
1092 reg->hr_block_bits = block_bits;
1093
1094 return count;
1095}
1096
1097static ssize_t o2hb_region_start_block_read(struct o2hb_region *reg,
1098 char *page)
1099{
1100 return sprintf(page, "%llu\n", reg->hr_start_block);
1101}
1102
1103static ssize_t o2hb_region_start_block_write(struct o2hb_region *reg,
1104 const char *page,
1105 size_t count)
1106{
1107 unsigned long long tmp;
1108 char *p = (char *)page;
1109
1110 if (reg->hr_bdev)
1111 return -EINVAL;
1112
1113 tmp = simple_strtoull(p, &p, 0);
1114 if (!p || (*p && (*p != '\n')))
1115 return -EINVAL;
1116
1117 reg->hr_start_block = tmp;
1118
1119 return count;
1120}
1121
1122static ssize_t o2hb_region_blocks_read(struct o2hb_region *reg,
1123 char *page)
1124{
1125 return sprintf(page, "%d\n", reg->hr_blocks);
1126}
1127
1128static ssize_t o2hb_region_blocks_write(struct o2hb_region *reg,
1129 const char *page,
1130 size_t count)
1131{
1132 unsigned long tmp;
1133 char *p = (char *)page;
1134
1135 if (reg->hr_bdev)
1136 return -EINVAL;
1137
1138 tmp = simple_strtoul(p, &p, 0);
1139 if (!p || (*p && (*p != '\n')))
1140 return -EINVAL;
1141
1142 if (tmp > O2NM_MAX_NODES || tmp == 0)
1143 return -ERANGE;
1144
1145 reg->hr_blocks = (unsigned int)tmp;
1146
1147 return count;
1148}
1149
1150static ssize_t o2hb_region_dev_read(struct o2hb_region *reg,
1151 char *page)
1152{
1153 unsigned int ret = 0;
1154
1155 if (reg->hr_bdev)
1156 ret = sprintf(page, "%s\n", reg->hr_dev_name);
1157
1158 return ret;
1159}
1160
1161static void o2hb_init_region_params(struct o2hb_region *reg)
1162{
1163 reg->hr_slots_per_page = PAGE_CACHE_SIZE >> reg->hr_block_bits;
1164 reg->hr_timeout_ms = O2HB_REGION_TIMEOUT_MS;
1165
1166 mlog(ML_HEARTBEAT, "hr_start_block = %llu, hr_blocks = %u\n",
1167 reg->hr_start_block, reg->hr_blocks);
1168 mlog(ML_HEARTBEAT, "hr_block_bytes = %u, hr_block_bits = %u\n",
1169 reg->hr_block_bytes, reg->hr_block_bits);
1170 mlog(ML_HEARTBEAT, "hr_timeout_ms = %u\n", reg->hr_timeout_ms);
1171 mlog(ML_HEARTBEAT, "dead threshold = %u\n", o2hb_dead_threshold);
1172}
1173
1174static int o2hb_map_slot_data(struct o2hb_region *reg)
1175{
1176 int i, j;
1177 unsigned int last_slot;
1178 unsigned int spp = reg->hr_slots_per_page;
1179 struct page *page;
1180 char *raw;
1181 struct o2hb_disk_slot *slot;
1182
1183 reg->hr_tmp_block = kmalloc(reg->hr_block_bytes, GFP_KERNEL);
1184 if (reg->hr_tmp_block == NULL) {
1185 mlog_errno(-ENOMEM);
1186 return -ENOMEM;
1187 }
1188
1189 reg->hr_slots = kcalloc(reg->hr_blocks,
1190 sizeof(struct o2hb_disk_slot), GFP_KERNEL);
1191 if (reg->hr_slots == NULL) {
1192 mlog_errno(-ENOMEM);
1193 return -ENOMEM;
1194 }
1195
1196 for(i = 0; i < reg->hr_blocks; i++) {
1197 slot = &reg->hr_slots[i];
1198 slot->ds_node_num = i;
1199 INIT_LIST_HEAD(&slot->ds_live_item);
1200 slot->ds_raw_block = NULL;
1201 }
1202
1203 reg->hr_num_pages = (reg->hr_blocks + spp - 1) / spp;
1204 mlog(ML_HEARTBEAT, "Going to require %u pages to cover %u blocks "
1205 "at %u blocks per page\n",
1206 reg->hr_num_pages, reg->hr_blocks, spp);
1207
1208 reg->hr_slot_data = kcalloc(reg->hr_num_pages, sizeof(struct page *),
1209 GFP_KERNEL);
1210 if (!reg->hr_slot_data) {
1211 mlog_errno(-ENOMEM);
1212 return -ENOMEM;
1213 }
1214
1215 for(i = 0; i < reg->hr_num_pages; i++) {
1216 page = alloc_page(GFP_KERNEL);
1217 if (!page) {
1218 mlog_errno(-ENOMEM);
1219 return -ENOMEM;
1220 }
1221
1222 reg->hr_slot_data[i] = page;
1223
1224 last_slot = i * spp;
1225 raw = page_address(page);
1226 for (j = 0;
1227 (j < spp) && ((j + last_slot) < reg->hr_blocks);
1228 j++) {
1229 BUG_ON((j + last_slot) >= reg->hr_blocks);
1230
1231 slot = &reg->hr_slots[j + last_slot];
1232 slot->ds_raw_block =
1233 (struct o2hb_disk_heartbeat_block *) raw;
1234
1235 raw += reg->hr_block_bytes;
1236 }
1237 }
1238
1239 return 0;
1240}
1241
1242/* Read in all the slots available and populate the tracking
1243 * structures so that we can start with a baseline idea of what's
1244 * there. */
1245static int o2hb_populate_slot_data(struct o2hb_region *reg)
1246{
1247 int ret, i;
1248 struct o2hb_disk_slot *slot;
1249 struct o2hb_disk_heartbeat_block *hb_block;
1250
1251 mlog_entry_void();
1252
1253 ret = o2hb_read_slots(reg, reg->hr_blocks);
1254 if (ret) {
1255 mlog_errno(ret);
1256 goto out;
1257 }
1258
1259 /* We only want to get an idea of the values initially in each
1260 * slot, so we do no verification - o2hb_check_slot will
1261 * actually determine if each configured slot is valid and
1262 * whether any values have changed. */
1263 for(i = 0; i < reg->hr_blocks; i++) {
1264 slot = &reg->hr_slots[i];
1265 hb_block = (struct o2hb_disk_heartbeat_block *) slot->ds_raw_block;
1266
1267 /* Only fill the values that o2hb_check_slot uses to
1268 * determine changing slots */
1269 slot->ds_last_time = le64_to_cpu(hb_block->hb_seq);
1270 slot->ds_last_generation = le64_to_cpu(hb_block->hb_generation);
1271 }
1272
1273out:
1274 mlog_exit(ret);
1275 return ret;
1276}
1277
1278/* this is acting as commit; we set up all of hr_bdev and hr_task or nothing */
1279static ssize_t o2hb_region_dev_write(struct o2hb_region *reg,
1280 const char *page,
1281 size_t count)
1282{
1283 long fd;
1284 int sectsize;
1285 char *p = (char *)page;
1286 struct file *filp = NULL;
1287 struct inode *inode = NULL;
1288 ssize_t ret = -EINVAL;
1289
1290 if (reg->hr_bdev)
1291 goto out;
1292
1293 /* We can't heartbeat without having had our node number
1294 * configured yet. */
1295 if (o2nm_this_node() == O2NM_MAX_NODES)
1296 goto out;
1297
1298 fd = simple_strtol(p, &p, 0);
1299 if (!p || (*p && (*p != '\n')))
1300 goto out;
1301
1302 if (fd < 0 || fd >= INT_MAX)
1303 goto out;
1304
1305 filp = fget(fd);
1306 if (filp == NULL)
1307 goto out;
1308
1309 if (reg->hr_blocks == 0 || reg->hr_start_block == 0 ||
1310 reg->hr_block_bytes == 0)
1311 goto out;
1312
1313 inode = igrab(filp->f_mapping->host);
1314 if (inode == NULL)
1315 goto out;
1316
1317 if (!S_ISBLK(inode->i_mode))
1318 goto out;
1319
1320 reg->hr_bdev = I_BDEV(filp->f_mapping->host);
1321 ret = blkdev_get(reg->hr_bdev, FMODE_WRITE | FMODE_READ, 0);
1322 if (ret) {
1323 reg->hr_bdev = NULL;
1324 goto out;
1325 }
1326 inode = NULL;
1327
1328 bdevname(reg->hr_bdev, reg->hr_dev_name);
1329
1330 sectsize = bdev_hardsect_size(reg->hr_bdev);
1331 if (sectsize != reg->hr_block_bytes) {
1332 mlog(ML_ERROR,
1333 "blocksize %u incorrect for device, expected %d",
1334 reg->hr_block_bytes, sectsize);
1335 ret = -EINVAL;
1336 goto out;
1337 }
1338
1339 o2hb_init_region_params(reg);
1340
1341 /* Generation of zero is invalid */
1342 do {
1343 get_random_bytes(&reg->hr_generation,
1344 sizeof(reg->hr_generation));
1345 } while (reg->hr_generation == 0);
1346
1347 ret = o2hb_map_slot_data(reg);
1348 if (ret) {
1349 mlog_errno(ret);
1350 goto out;
1351 }
1352
1353 ret = o2hb_populate_slot_data(reg);
1354 if (ret) {
1355 mlog_errno(ret);
1356 goto out;
1357 }
1358
1359 INIT_WORK(&reg->hr_write_timeout_work, o2hb_write_timeout, reg);
1360
1361 /*
1362 * A node is considered live after it has beat LIVE_THRESHOLD
1363 * times. We're not steady until we've given them a chance
1364 * _after_ our first read.
1365 */
1366 atomic_set(&reg->hr_steady_iterations, O2HB_LIVE_THRESHOLD + 1);
1367
1368 reg->hr_task = kthread_run(o2hb_thread, reg, "o2hb-%s",
1369 reg->hr_item.ci_name);
1370 if (IS_ERR(reg->hr_task)) {
1371 ret = PTR_ERR(reg->hr_task);
1372 mlog_errno(ret);
1373 reg->hr_task = NULL;
1374 goto out;
1375 }
1376
1377 ret = wait_event_interruptible(o2hb_steady_queue,
1378 atomic_read(&reg->hr_steady_iterations) == 0);
1379 if (ret) {
1380 kthread_stop(reg->hr_task);
1381 reg->hr_task = NULL;
1382 goto out;
1383 }
1384
1385 ret = count;
1386out:
1387 if (filp)
1388 fput(filp);
1389 if (inode)
1390 iput(inode);
1391 if (ret < 0) {
1392 if (reg->hr_bdev) {
1393 blkdev_put(reg->hr_bdev);
1394 reg->hr_bdev = NULL;
1395 }
1396 }
1397 return ret;
1398}
1399
1400struct o2hb_region_attribute {
1401 struct configfs_attribute attr;
1402 ssize_t (*show)(struct o2hb_region *, char *);
1403 ssize_t (*store)(struct o2hb_region *, const char *, size_t);
1404};
1405
1406static struct o2hb_region_attribute o2hb_region_attr_block_bytes = {
1407 .attr = { .ca_owner = THIS_MODULE,
1408 .ca_name = "block_bytes",
1409 .ca_mode = S_IRUGO | S_IWUSR },
1410 .show = o2hb_region_block_bytes_read,
1411 .store = o2hb_region_block_bytes_write,
1412};
1413
1414static struct o2hb_region_attribute o2hb_region_attr_start_block = {
1415 .attr = { .ca_owner = THIS_MODULE,
1416 .ca_name = "start_block",
1417 .ca_mode = S_IRUGO | S_IWUSR },
1418 .show = o2hb_region_start_block_read,
1419 .store = o2hb_region_start_block_write,
1420};
1421
1422static struct o2hb_region_attribute o2hb_region_attr_blocks = {
1423 .attr = { .ca_owner = THIS_MODULE,
1424 .ca_name = "blocks",
1425 .ca_mode = S_IRUGO | S_IWUSR },
1426 .show = o2hb_region_blocks_read,
1427 .store = o2hb_region_blocks_write,
1428};
1429
1430static struct o2hb_region_attribute o2hb_region_attr_dev = {
1431 .attr = { .ca_owner = THIS_MODULE,
1432 .ca_name = "dev",
1433 .ca_mode = S_IRUGO | S_IWUSR },
1434 .show = o2hb_region_dev_read,
1435 .store = o2hb_region_dev_write,
1436};
1437
1438static struct configfs_attribute *o2hb_region_attrs[] = {
1439 &o2hb_region_attr_block_bytes.attr,
1440 &o2hb_region_attr_start_block.attr,
1441 &o2hb_region_attr_blocks.attr,
1442 &o2hb_region_attr_dev.attr,
1443 NULL,
1444};
1445
1446static ssize_t o2hb_region_show(struct config_item *item,
1447 struct configfs_attribute *attr,
1448 char *page)
1449{
1450 struct o2hb_region *reg = to_o2hb_region(item);
1451 struct o2hb_region_attribute *o2hb_region_attr =
1452 container_of(attr, struct o2hb_region_attribute, attr);
1453 ssize_t ret = 0;
1454
1455 if (o2hb_region_attr->show)
1456 ret = o2hb_region_attr->show(reg, page);
1457 return ret;
1458}
1459
1460static ssize_t o2hb_region_store(struct config_item *item,
1461 struct configfs_attribute *attr,
1462 const char *page, size_t count)
1463{
1464 struct o2hb_region *reg = to_o2hb_region(item);
1465 struct o2hb_region_attribute *o2hb_region_attr =
1466 container_of(attr, struct o2hb_region_attribute, attr);
1467 ssize_t ret = -EINVAL;
1468
1469 if (o2hb_region_attr->store)
1470 ret = o2hb_region_attr->store(reg, page, count);
1471 return ret;
1472}
1473
1474static struct configfs_item_operations o2hb_region_item_ops = {
1475 .release = o2hb_region_release,
1476 .show_attribute = o2hb_region_show,
1477 .store_attribute = o2hb_region_store,
1478};
1479
1480static struct config_item_type o2hb_region_type = {
1481 .ct_item_ops = &o2hb_region_item_ops,
1482 .ct_attrs = o2hb_region_attrs,
1483 .ct_owner = THIS_MODULE,
1484};
1485
1486/* heartbeat set */
1487
1488struct o2hb_heartbeat_group {
1489 struct config_group hs_group;
1490 /* some stuff? */
1491};
1492
1493static struct o2hb_heartbeat_group *to_o2hb_heartbeat_group(struct config_group *group)
1494{
1495 return group ?
1496 container_of(group, struct o2hb_heartbeat_group, hs_group)
1497 : NULL;
1498}
1499
1500static struct config_item *o2hb_heartbeat_group_make_item(struct config_group *group,
1501 const char *name)
1502{
1503 struct o2hb_region *reg = NULL;
1504 struct config_item *ret = NULL;
1505
1506 reg = kcalloc(1, sizeof(struct o2hb_region), GFP_KERNEL);
1507 if (reg == NULL)
1508 goto out; /* ENOMEM */
1509
1510 config_item_init_type_name(&reg->hr_item, name, &o2hb_region_type);
1511
1512 ret = &reg->hr_item;
1513
1514 spin_lock(&o2hb_live_lock);
1515 list_add_tail(&reg->hr_all_item, &o2hb_all_regions);
1516 spin_unlock(&o2hb_live_lock);
1517out:
1518 if (ret == NULL)
1519 kfree(reg);
1520
1521 return ret;
1522}
1523
1524static void o2hb_heartbeat_group_drop_item(struct config_group *group,
1525 struct config_item *item)
1526{
1527 struct o2hb_region *reg = to_o2hb_region(item);
1528
1529 /* stop the thread when the user removes the region dir */
1530 if (reg->hr_task) {
1531 kthread_stop(reg->hr_task);
1532 reg->hr_task = NULL;
1533 }
1534
1535 config_item_put(item);
1536}
1537
1538struct o2hb_heartbeat_group_attribute {
1539 struct configfs_attribute attr;
1540 ssize_t (*show)(struct o2hb_heartbeat_group *, char *);
1541 ssize_t (*store)(struct o2hb_heartbeat_group *, const char *, size_t);
1542};
1543
1544static ssize_t o2hb_heartbeat_group_show(struct config_item *item,
1545 struct configfs_attribute *attr,
1546 char *page)
1547{
1548 struct o2hb_heartbeat_group *reg = to_o2hb_heartbeat_group(to_config_group(item));
1549 struct o2hb_heartbeat_group_attribute *o2hb_heartbeat_group_attr =
1550 container_of(attr, struct o2hb_heartbeat_group_attribute, attr);
1551 ssize_t ret = 0;
1552
1553 if (o2hb_heartbeat_group_attr->show)
1554 ret = o2hb_heartbeat_group_attr->show(reg, page);
1555 return ret;
1556}
1557
1558static ssize_t o2hb_heartbeat_group_store(struct config_item *item,
1559 struct configfs_attribute *attr,
1560 const char *page, size_t count)
1561{
1562 struct o2hb_heartbeat_group *reg = to_o2hb_heartbeat_group(to_config_group(item));
1563 struct o2hb_heartbeat_group_attribute *o2hb_heartbeat_group_attr =
1564 container_of(attr, struct o2hb_heartbeat_group_attribute, attr);
1565 ssize_t ret = -EINVAL;
1566
1567 if (o2hb_heartbeat_group_attr->store)
1568 ret = o2hb_heartbeat_group_attr->store(reg, page, count);
1569 return ret;
1570}
1571
1572static ssize_t o2hb_heartbeat_group_threshold_show(struct o2hb_heartbeat_group *group,
1573 char *page)
1574{
1575 return sprintf(page, "%u\n", o2hb_dead_threshold);
1576}
1577
1578static ssize_t o2hb_heartbeat_group_threshold_store(struct o2hb_heartbeat_group *group,
1579 const char *page,
1580 size_t count)
1581{
1582 unsigned long tmp;
1583 char *p = (char *)page;
1584
1585 tmp = simple_strtoul(p, &p, 10);
1586 if (!p || (*p && (*p != '\n')))
1587 return -EINVAL;
1588
1589 /* this will validate ranges for us. */
1590 o2hb_dead_threshold_set((unsigned int) tmp);
1591
1592 return count;
1593}
1594
1595static struct o2hb_heartbeat_group_attribute o2hb_heartbeat_group_attr_threshold = {
1596 .attr = { .ca_owner = THIS_MODULE,
1597 .ca_name = "dead_threshold",
1598 .ca_mode = S_IRUGO | S_IWUSR },
1599 .show = o2hb_heartbeat_group_threshold_show,
1600 .store = o2hb_heartbeat_group_threshold_store,
1601};
1602
1603static struct configfs_attribute *o2hb_heartbeat_group_attrs[] = {
1604 &o2hb_heartbeat_group_attr_threshold.attr,
1605 NULL,
1606};
1607
1608static struct configfs_item_operations o2hb_hearbeat_group_item_ops = {
1609 .show_attribute = o2hb_heartbeat_group_show,
1610 .store_attribute = o2hb_heartbeat_group_store,
1611};
1612
1613static struct configfs_group_operations o2hb_heartbeat_group_group_ops = {
1614 .make_item = o2hb_heartbeat_group_make_item,
1615 .drop_item = o2hb_heartbeat_group_drop_item,
1616};
1617
1618static struct config_item_type o2hb_heartbeat_group_type = {
1619 .ct_group_ops = &o2hb_heartbeat_group_group_ops,
1620 .ct_item_ops = &o2hb_hearbeat_group_item_ops,
1621 .ct_attrs = o2hb_heartbeat_group_attrs,
1622 .ct_owner = THIS_MODULE,
1623};
1624
1625/* this is just here to avoid touching group in heartbeat.h which the
1626 * entire damn world #includes */
1627struct config_group *o2hb_alloc_hb_set(void)
1628{
1629 struct o2hb_heartbeat_group *hs = NULL;
1630 struct config_group *ret = NULL;
1631
1632 hs = kcalloc(1, sizeof(struct o2hb_heartbeat_group), GFP_KERNEL);
1633 if (hs == NULL)
1634 goto out;
1635
1636 config_group_init_type_name(&hs->hs_group, "heartbeat",
1637 &o2hb_heartbeat_group_type);
1638
1639 ret = &hs->hs_group;
1640out:
1641 if (ret == NULL)
1642 kfree(hs);
1643 return ret;
1644}
1645
1646void o2hb_free_hb_set(struct config_group *group)
1647{
1648 struct o2hb_heartbeat_group *hs = to_o2hb_heartbeat_group(group);
1649 kfree(hs);
1650}
1651
1652/* hb callback registration and issueing */
1653
1654static struct o2hb_callback *hbcall_from_type(enum o2hb_callback_type type)
1655{
1656 if (type == O2HB_NUM_CB)
1657 return ERR_PTR(-EINVAL);
1658
1659 return &o2hb_callbacks[type];
1660}
1661
1662void o2hb_setup_callback(struct o2hb_callback_func *hc,
1663 enum o2hb_callback_type type,
1664 o2hb_cb_func *func,
1665 void *data,
1666 int priority)
1667{
1668 INIT_LIST_HEAD(&hc->hc_item);
1669 hc->hc_func = func;
1670 hc->hc_data = data;
1671 hc->hc_priority = priority;
1672 hc->hc_type = type;
1673 hc->hc_magic = O2HB_CB_MAGIC;
1674}
1675EXPORT_SYMBOL_GPL(o2hb_setup_callback);
1676
1677int o2hb_register_callback(struct o2hb_callback_func *hc)
1678{
1679 struct o2hb_callback_func *tmp;
1680 struct list_head *iter;
1681 struct o2hb_callback *hbcall;
1682 int ret;
1683
1684 BUG_ON(hc->hc_magic != O2HB_CB_MAGIC);
1685 BUG_ON(!list_empty(&hc->hc_item));
1686
1687 hbcall = hbcall_from_type(hc->hc_type);
1688 if (IS_ERR(hbcall)) {
1689 ret = PTR_ERR(hbcall);
1690 goto out;
1691 }
1692
1693 down_write(&o2hb_callback_sem);
1694
1695 list_for_each(iter, &hbcall->list) {
1696 tmp = list_entry(iter, struct o2hb_callback_func, hc_item);
1697 if (hc->hc_priority < tmp->hc_priority) {
1698 list_add_tail(&hc->hc_item, iter);
1699 break;
1700 }
1701 }
1702 if (list_empty(&hc->hc_item))
1703 list_add_tail(&hc->hc_item, &hbcall->list);
1704
1705 up_write(&o2hb_callback_sem);
1706 ret = 0;
1707out:
1708 mlog(ML_HEARTBEAT, "returning %d on behalf of %p for funcs %p\n",
1709 ret, __builtin_return_address(0), hc);
1710 return ret;
1711}
1712EXPORT_SYMBOL_GPL(o2hb_register_callback);
1713
1714int o2hb_unregister_callback(struct o2hb_callback_func *hc)
1715{
1716 BUG_ON(hc->hc_magic != O2HB_CB_MAGIC);
1717
1718 mlog(ML_HEARTBEAT, "on behalf of %p for funcs %p\n",
1719 __builtin_return_address(0), hc);
1720
1721 if (list_empty(&hc->hc_item))
1722 return 0;
1723
1724 down_write(&o2hb_callback_sem);
1725
1726 list_del_init(&hc->hc_item);
1727
1728 up_write(&o2hb_callback_sem);
1729
1730 return 0;
1731}
1732EXPORT_SYMBOL_GPL(o2hb_unregister_callback);
1733
1734int o2hb_check_node_heartbeating(u8 node_num)
1735{
1736 unsigned long testing_map[BITS_TO_LONGS(O2NM_MAX_NODES)];
1737
1738 o2hb_fill_node_map(testing_map, sizeof(testing_map));
1739 if (!test_bit(node_num, testing_map)) {
1740 mlog(ML_HEARTBEAT,
1741 "node (%u) does not have heartbeating enabled.\n",
1742 node_num);
1743 return 0;
1744 }
1745
1746 return 1;
1747}
1748EXPORT_SYMBOL_GPL(o2hb_check_node_heartbeating);
1749
1750int o2hb_check_node_heartbeating_from_callback(u8 node_num)
1751{
1752 unsigned long testing_map[BITS_TO_LONGS(O2NM_MAX_NODES)];
1753
1754 o2hb_fill_node_map_from_callback(testing_map, sizeof(testing_map));
1755 if (!test_bit(node_num, testing_map)) {
1756 mlog(ML_HEARTBEAT,
1757 "node (%u) does not have heartbeating enabled.\n",
1758 node_num);
1759 return 0;
1760 }
1761
1762 return 1;
1763}
1764EXPORT_SYMBOL_GPL(o2hb_check_node_heartbeating_from_callback);
1765
1766/* Makes sure our local node is configured with a node number, and is
1767 * heartbeating. */
1768int o2hb_check_local_node_heartbeating(void)
1769{
1770 u8 node_num;
1771
1772 /* if this node was set then we have networking */
1773 node_num = o2nm_this_node();
1774 if (node_num == O2NM_MAX_NODES) {
1775 mlog(ML_HEARTBEAT, "this node has not been configured.\n");
1776 return 0;
1777 }
1778
1779 return o2hb_check_node_heartbeating(node_num);
1780}
1781EXPORT_SYMBOL_GPL(o2hb_check_local_node_heartbeating);
1782
1783/*
1784 * this is just a hack until we get the plumbing which flips file systems
1785 * read only and drops the hb ref instead of killing the node dead.
1786 */
1787void o2hb_stop_all_regions(void)
1788{
1789 struct o2hb_region *reg;
1790
1791 mlog(ML_ERROR, "stopping heartbeat on all active regions.\n");
1792
1793 spin_lock(&o2hb_live_lock);
1794
1795 list_for_each_entry(reg, &o2hb_all_regions, hr_all_item)
1796 reg->hr_unclean_stop = 1;
1797
1798 spin_unlock(&o2hb_live_lock);
1799}
1800EXPORT_SYMBOL_GPL(o2hb_stop_all_regions);