]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - fs/ocfs2/cluster/heartbeat.c
ocfs2: fix write() performance regression
[mirror_ubuntu-artful-kernel.git] / fs / ocfs2 / cluster / heartbeat.c
CommitLineData
a7f6a5fb
MF
1/* -*- mode: c; c-basic-offset: 8; -*-
2 * vim: noexpandtab sw=8 ts=8 sts=0:
3 *
4 * Copyright (C) 2004, 2005 Oracle. All rights reserved.
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public
17 * License along with this program; if not, write to the
18 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
19 * Boston, MA 021110-1307, USA.
20 */
21
22#include <linux/kernel.h>
23#include <linux/sched.h>
24#include <linux/jiffies.h>
25#include <linux/module.h>
26#include <linux/fs.h>
27#include <linux/bio.h>
28#include <linux/blkdev.h>
29#include <linux/delay.h>
30#include <linux/file.h>
31#include <linux/kthread.h>
32#include <linux/configfs.h>
33#include <linux/random.h>
34#include <linux/crc32.h>
35#include <linux/time.h>
36
37#include "heartbeat.h"
38#include "tcp.h"
39#include "nodemanager.h"
40#include "quorum.h"
41
42#include "masklog.h"
43
44
45/*
46 * The first heartbeat pass had one global thread that would serialize all hb
47 * callback calls. This global serializing sem should only be removed once
48 * we've made sure that all callees can deal with being called concurrently
49 * from multiple hb region threads.
50 */
51static DECLARE_RWSEM(o2hb_callback_sem);
52
53/*
54 * multiple hb threads are watching multiple regions. A node is live
55 * whenever any of the threads sees activity from the node in its region.
56 */
34af946a 57static DEFINE_SPINLOCK(o2hb_live_lock);
a7f6a5fb
MF
58static struct list_head o2hb_live_slots[O2NM_MAX_NODES];
59static unsigned long o2hb_live_node_bitmap[BITS_TO_LONGS(O2NM_MAX_NODES)];
60static LIST_HEAD(o2hb_node_events);
61static DECLARE_WAIT_QUEUE_HEAD(o2hb_steady_queue);
62
63static LIST_HEAD(o2hb_all_regions);
64
65static struct o2hb_callback {
66 struct list_head list;
67} o2hb_callbacks[O2HB_NUM_CB];
68
69static struct o2hb_callback *hbcall_from_type(enum o2hb_callback_type type);
70
71#define O2HB_DEFAULT_BLOCK_BITS 9
72
73unsigned int o2hb_dead_threshold = O2HB_DEFAULT_DEAD_THRESHOLD;
74
75/* Only sets a new threshold if there are no active regions.
76 *
77 * No locking or otherwise interesting code is required for reading
78 * o2hb_dead_threshold as it can't change once regions are active and
79 * it's not interesting to anyone until then anyway. */
80static void o2hb_dead_threshold_set(unsigned int threshold)
81{
82 if (threshold > O2HB_MIN_DEAD_THRESHOLD) {
83 spin_lock(&o2hb_live_lock);
84 if (list_empty(&o2hb_all_regions))
85 o2hb_dead_threshold = threshold;
86 spin_unlock(&o2hb_live_lock);
87 }
88}
89
90struct o2hb_node_event {
91 struct list_head hn_item;
92 enum o2hb_callback_type hn_event_type;
93 struct o2nm_node *hn_node;
94 int hn_node_num;
95};
96
97struct o2hb_disk_slot {
98 struct o2hb_disk_heartbeat_block *ds_raw_block;
99 u8 ds_node_num;
100 u64 ds_last_time;
101 u64 ds_last_generation;
102 u16 ds_equal_samples;
103 u16 ds_changed_samples;
104 struct list_head ds_live_item;
105};
106
107/* each thread owns a region.. when we're asked to tear down the region
108 * we ask the thread to stop, who cleans up the region */
109struct o2hb_region {
110 struct config_item hr_item;
111
112 struct list_head hr_all_item;
113 unsigned hr_unclean_stop:1;
114
115 /* protected by the hr_callback_sem */
116 struct task_struct *hr_task;
117
118 unsigned int hr_blocks;
119 unsigned long long hr_start_block;
120
121 unsigned int hr_block_bits;
122 unsigned int hr_block_bytes;
123
124 unsigned int hr_slots_per_page;
125 unsigned int hr_num_pages;
126
127 struct page **hr_slot_data;
128 struct block_device *hr_bdev;
129 struct o2hb_disk_slot *hr_slots;
130
131 /* let the person setting up hb wait for it to return until it
132 * has reached a 'steady' state. This will be fixed when we have
133 * a more complete api that doesn't lead to this sort of fragility. */
134 atomic_t hr_steady_iterations;
135
136 char hr_dev_name[BDEVNAME_SIZE];
137
138 unsigned int hr_timeout_ms;
139
140 /* randomized as the region goes up and down so that a node
141 * recognizes a node going up and down in one iteration */
142 u64 hr_generation;
143
c4028958 144 struct delayed_work hr_write_timeout_work;
a7f6a5fb
MF
145 unsigned long hr_last_timeout_start;
146
147 /* Used during o2hb_check_slot to hold a copy of the block
148 * being checked because we temporarily have to zero out the
149 * crc field. */
150 struct o2hb_disk_heartbeat_block *hr_tmp_block;
151};
152
153struct o2hb_bio_wait_ctxt {
154 atomic_t wc_num_reqs;
155 struct completion wc_io_complete;
a9e2ae39 156 int wc_error;
a7f6a5fb
MF
157};
158
c4028958 159static void o2hb_write_timeout(struct work_struct *work)
a7f6a5fb 160{
c4028958
DH
161 struct o2hb_region *reg =
162 container_of(work, struct o2hb_region,
163 hr_write_timeout_work.work);
a7f6a5fb
MF
164
165 mlog(ML_ERROR, "Heartbeat write timeout to device %s after %u "
166 "milliseconds\n", reg->hr_dev_name,
167 jiffies_to_msecs(jiffies - reg->hr_last_timeout_start));
168 o2quo_disk_timeout();
169}
170
171static void o2hb_arm_write_timeout(struct o2hb_region *reg)
172{
173 mlog(0, "Queue write timeout for %u ms\n", O2HB_MAX_WRITE_TIMEOUT_MS);
174
175 cancel_delayed_work(&reg->hr_write_timeout_work);
176 reg->hr_last_timeout_start = jiffies;
177 schedule_delayed_work(&reg->hr_write_timeout_work,
178 msecs_to_jiffies(O2HB_MAX_WRITE_TIMEOUT_MS));
179}
180
181static void o2hb_disarm_write_timeout(struct o2hb_region *reg)
182{
183 cancel_delayed_work(&reg->hr_write_timeout_work);
184 flush_scheduled_work();
185}
186
b559292e 187static inline void o2hb_bio_wait_init(struct o2hb_bio_wait_ctxt *wc)
a7f6a5fb 188{
b559292e 189 atomic_set(&wc->wc_num_reqs, 1);
a7f6a5fb 190 init_completion(&wc->wc_io_complete);
a9e2ae39 191 wc->wc_error = 0;
a7f6a5fb
MF
192}
193
194/* Used in error paths too */
195static inline void o2hb_bio_wait_dec(struct o2hb_bio_wait_ctxt *wc,
196 unsigned int num)
197{
198 /* sadly atomic_sub_and_test() isn't available on all platforms. The
199 * good news is that the fast path only completes one at a time */
200 while(num--) {
201 if (atomic_dec_and_test(&wc->wc_num_reqs)) {
202 BUG_ON(num > 0);
203 complete(&wc->wc_io_complete);
204 }
205 }
206}
207
208static void o2hb_wait_on_io(struct o2hb_region *reg,
209 struct o2hb_bio_wait_ctxt *wc)
210{
211 struct address_space *mapping = reg->hr_bdev->bd_inode->i_mapping;
212
213 blk_run_address_space(mapping);
b559292e 214 o2hb_bio_wait_dec(wc, 1);
a7f6a5fb
MF
215
216 wait_for_completion(&wc->wc_io_complete);
217}
218
782e3b3b 219static void o2hb_bio_end_io(struct bio *bio,
a7f6a5fb
MF
220 int error)
221{
222 struct o2hb_bio_wait_ctxt *wc = bio->bi_private;
223
a9e2ae39 224 if (error) {
a7f6a5fb 225 mlog(ML_ERROR, "IO Error %d\n", error);
a9e2ae39
MF
226 wc->wc_error = error;
227 }
a7f6a5fb 228
a7f6a5fb 229 o2hb_bio_wait_dec(wc, 1);
b559292e 230 bio_put(bio);
a7f6a5fb
MF
231}
232
233/* Setup a Bio to cover I/O against num_slots slots starting at
234 * start_slot. */
235static struct bio *o2hb_setup_one_bio(struct o2hb_region *reg,
236 struct o2hb_bio_wait_ctxt *wc,
b559292e
PR
237 unsigned int *current_slot,
238 unsigned int max_slots)
a7f6a5fb 239{
b559292e 240 int len, current_page;
a7f6a5fb
MF
241 unsigned int vec_len, vec_start;
242 unsigned int bits = reg->hr_block_bits;
243 unsigned int spp = reg->hr_slots_per_page;
b559292e 244 unsigned int cs = *current_slot;
a7f6a5fb
MF
245 struct bio *bio;
246 struct page *page;
247
a7f6a5fb
MF
248 /* Testing has shown this allocation to take long enough under
249 * GFP_KERNEL that the local node can get fenced. It would be
250 * nicest if we could pre-allocate these bios and avoid this
251 * all together. */
b559292e 252 bio = bio_alloc(GFP_ATOMIC, 16);
a7f6a5fb
MF
253 if (!bio) {
254 mlog(ML_ERROR, "Could not alloc slots BIO!\n");
255 bio = ERR_PTR(-ENOMEM);
256 goto bail;
257 }
258
259 /* Must put everything in 512 byte sectors for the bio... */
b559292e 260 bio->bi_sector = (reg->hr_start_block + cs) << (bits - 9);
a7f6a5fb
MF
261 bio->bi_bdev = reg->hr_bdev;
262 bio->bi_private = wc;
263 bio->bi_end_io = o2hb_bio_end_io;
264
b559292e
PR
265 vec_start = (cs << bits) % PAGE_CACHE_SIZE;
266 while(cs < max_slots) {
267 current_page = cs / spp;
268 page = reg->hr_slot_data[current_page];
a7f6a5fb 269
b559292e
PR
270 vec_len = min(PAGE_CACHE_SIZE,
271 (max_slots-cs) * (PAGE_CACHE_SIZE/spp) );
a7f6a5fb
MF
272
273 mlog(ML_HB_BIO, "page %d, vec_len = %u, vec_start = %u\n",
b559292e 274 current_page, vec_len, vec_start);
a7f6a5fb
MF
275
276 len = bio_add_page(bio, page, vec_len, vec_start);
b559292e 277 if (len != vec_len) break;
a7f6a5fb 278
b559292e 279 cs += vec_len / (PAGE_CACHE_SIZE/spp);
a7f6a5fb
MF
280 vec_start = 0;
281 }
282
283bail:
b559292e 284 *current_slot = cs;
a7f6a5fb
MF
285 return bio;
286}
287
a7f6a5fb
MF
288static int o2hb_read_slots(struct o2hb_region *reg,
289 unsigned int max_slots)
290{
b559292e
PR
291 unsigned int current_slot=0;
292 int status;
a7f6a5fb 293 struct o2hb_bio_wait_ctxt wc;
a7f6a5fb
MF
294 struct bio *bio;
295
b559292e 296 o2hb_bio_wait_init(&wc);
a7f6a5fb 297
b559292e
PR
298 while(current_slot < max_slots) {
299 bio = o2hb_setup_one_bio(reg, &wc, &current_slot, max_slots);
a7f6a5fb 300 if (IS_ERR(bio)) {
a7f6a5fb
MF
301 status = PTR_ERR(bio);
302 mlog_errno(status);
303 goto bail_and_wait;
304 }
a7f6a5fb 305
b559292e 306 atomic_inc(&wc.wc_num_reqs);
a7f6a5fb
MF
307 submit_bio(READ, bio);
308 }
309
310 status = 0;
311
312bail_and_wait:
313 o2hb_wait_on_io(reg, &wc);
a9e2ae39
MF
314 if (wc.wc_error && !status)
315 status = wc.wc_error;
a7f6a5fb 316
a7f6a5fb
MF
317 return status;
318}
319
320static int o2hb_issue_node_write(struct o2hb_region *reg,
a7f6a5fb
MF
321 struct o2hb_bio_wait_ctxt *write_wc)
322{
323 int status;
324 unsigned int slot;
325 struct bio *bio;
326
b559292e 327 o2hb_bio_wait_init(write_wc);
a7f6a5fb
MF
328
329 slot = o2nm_this_node();
330
b559292e 331 bio = o2hb_setup_one_bio(reg, write_wc, &slot, slot+1);
a7f6a5fb
MF
332 if (IS_ERR(bio)) {
333 status = PTR_ERR(bio);
334 mlog_errno(status);
335 goto bail;
336 }
337
b559292e 338 atomic_inc(&write_wc->wc_num_reqs);
a7f6a5fb
MF
339 submit_bio(WRITE, bio);
340
a7f6a5fb
MF
341 status = 0;
342bail:
343 return status;
344}
345
346static u32 o2hb_compute_block_crc_le(struct o2hb_region *reg,
347 struct o2hb_disk_heartbeat_block *hb_block)
348{
349 __le32 old_cksum;
350 u32 ret;
351
352 /* We want to compute the block crc with a 0 value in the
353 * hb_cksum field. Save it off here and replace after the
354 * crc. */
355 old_cksum = hb_block->hb_cksum;
356 hb_block->hb_cksum = 0;
357
358 ret = crc32_le(0, (unsigned char *) hb_block, reg->hr_block_bytes);
359
360 hb_block->hb_cksum = old_cksum;
361
362 return ret;
363}
364
365static void o2hb_dump_slot(struct o2hb_disk_heartbeat_block *hb_block)
366{
70bacbdb
MF
367 mlog(ML_ERROR, "Dump slot information: seq = 0x%llx, node = %u, "
368 "cksum = 0x%x, generation 0x%llx\n",
369 (long long)le64_to_cpu(hb_block->hb_seq),
370 hb_block->hb_node, le32_to_cpu(hb_block->hb_cksum),
371 (long long)le64_to_cpu(hb_block->hb_generation));
a7f6a5fb
MF
372}
373
374static int o2hb_verify_crc(struct o2hb_region *reg,
375 struct o2hb_disk_heartbeat_block *hb_block)
376{
377 u32 read, computed;
378
379 read = le32_to_cpu(hb_block->hb_cksum);
380 computed = o2hb_compute_block_crc_le(reg, hb_block);
381
382 return read == computed;
383}
384
385/* We want to make sure that nobody is heartbeating on top of us --
386 * this will help detect an invalid configuration. */
387static int o2hb_check_last_timestamp(struct o2hb_region *reg)
388{
389 int node_num, ret;
390 struct o2hb_disk_slot *slot;
391 struct o2hb_disk_heartbeat_block *hb_block;
392
393 node_num = o2nm_this_node();
394
395 ret = 1;
396 slot = &reg->hr_slots[node_num];
397 /* Don't check on our 1st timestamp */
398 if (slot->ds_last_time) {
399 hb_block = slot->ds_raw_block;
400
401 if (le64_to_cpu(hb_block->hb_seq) != slot->ds_last_time)
402 ret = 0;
403 }
404
405 return ret;
406}
407
408static inline void o2hb_prepare_block(struct o2hb_region *reg,
409 u64 generation)
410{
411 int node_num;
412 u64 cputime;
413 struct o2hb_disk_slot *slot;
414 struct o2hb_disk_heartbeat_block *hb_block;
415
416 node_num = o2nm_this_node();
417 slot = &reg->hr_slots[node_num];
418
419 hb_block = (struct o2hb_disk_heartbeat_block *)slot->ds_raw_block;
420 memset(hb_block, 0, reg->hr_block_bytes);
421 /* TODO: time stuff */
422 cputime = CURRENT_TIME.tv_sec;
423 if (!cputime)
424 cputime = 1;
425
426 hb_block->hb_seq = cpu_to_le64(cputime);
427 hb_block->hb_node = node_num;
428 hb_block->hb_generation = cpu_to_le64(generation);
0db638f4 429 hb_block->hb_dead_ms = cpu_to_le32(o2hb_dead_threshold * O2HB_REGION_TIMEOUT_MS);
a7f6a5fb
MF
430
431 /* This step must always happen last! */
432 hb_block->hb_cksum = cpu_to_le32(o2hb_compute_block_crc_le(reg,
433 hb_block));
434
70bacbdb 435 mlog(ML_HB_BIO, "our node generation = 0x%llx, cksum = 0x%x\n",
5fdf1e67 436 (long long)generation,
70bacbdb 437 le32_to_cpu(hb_block->hb_cksum));
a7f6a5fb
MF
438}
439
440static void o2hb_fire_callbacks(struct o2hb_callback *hbcall,
441 struct o2nm_node *node,
442 int idx)
443{
444 struct list_head *iter;
445 struct o2hb_callback_func *f;
446
447 list_for_each(iter, &hbcall->list) {
448 f = list_entry(iter, struct o2hb_callback_func, hc_item);
449 mlog(ML_HEARTBEAT, "calling funcs %p\n", f);
450 (f->hc_func)(node, idx, f->hc_data);
451 }
452}
453
454/* Will run the list in order until we process the passed event */
455static void o2hb_run_event_list(struct o2hb_node_event *queued_event)
456{
457 int empty;
458 struct o2hb_callback *hbcall;
459 struct o2hb_node_event *event;
460
461 spin_lock(&o2hb_live_lock);
462 empty = list_empty(&queued_event->hn_item);
463 spin_unlock(&o2hb_live_lock);
464 if (empty)
465 return;
466
467 /* Holding callback sem assures we don't alter the callback
468 * lists when doing this, and serializes ourselves with other
469 * processes wanting callbacks. */
470 down_write(&o2hb_callback_sem);
471
472 spin_lock(&o2hb_live_lock);
473 while (!list_empty(&o2hb_node_events)
474 && !list_empty(&queued_event->hn_item)) {
475 event = list_entry(o2hb_node_events.next,
476 struct o2hb_node_event,
477 hn_item);
478 list_del_init(&event->hn_item);
479 spin_unlock(&o2hb_live_lock);
480
481 mlog(ML_HEARTBEAT, "Node %s event for %d\n",
482 event->hn_event_type == O2HB_NODE_UP_CB ? "UP" : "DOWN",
483 event->hn_node_num);
484
485 hbcall = hbcall_from_type(event->hn_event_type);
486
487 /* We should *never* have gotten on to the list with a
488 * bad type... This isn't something that we should try
489 * to recover from. */
490 BUG_ON(IS_ERR(hbcall));
491
492 o2hb_fire_callbacks(hbcall, event->hn_node, event->hn_node_num);
493
494 spin_lock(&o2hb_live_lock);
495 }
496 spin_unlock(&o2hb_live_lock);
497
498 up_write(&o2hb_callback_sem);
499}
500
501static void o2hb_queue_node_event(struct o2hb_node_event *event,
502 enum o2hb_callback_type type,
503 struct o2nm_node *node,
504 int node_num)
505{
506 assert_spin_locked(&o2hb_live_lock);
507
508 event->hn_event_type = type;
509 event->hn_node = node;
510 event->hn_node_num = node_num;
511
512 mlog(ML_HEARTBEAT, "Queue node %s event for node %d\n",
513 type == O2HB_NODE_UP_CB ? "UP" : "DOWN", node_num);
514
515 list_add_tail(&event->hn_item, &o2hb_node_events);
516}
517
518static void o2hb_shutdown_slot(struct o2hb_disk_slot *slot)
519{
520 struct o2hb_node_event event =
521 { .hn_item = LIST_HEAD_INIT(event.hn_item), };
522 struct o2nm_node *node;
523
524 node = o2nm_get_node_by_num(slot->ds_node_num);
525 if (!node)
526 return;
527
528 spin_lock(&o2hb_live_lock);
529 if (!list_empty(&slot->ds_live_item)) {
530 mlog(ML_HEARTBEAT, "Shutdown, node %d leaves region\n",
531 slot->ds_node_num);
532
533 list_del_init(&slot->ds_live_item);
534
535 if (list_empty(&o2hb_live_slots[slot->ds_node_num])) {
536 clear_bit(slot->ds_node_num, o2hb_live_node_bitmap);
537
538 o2hb_queue_node_event(&event, O2HB_NODE_DOWN_CB, node,
539 slot->ds_node_num);
540 }
541 }
542 spin_unlock(&o2hb_live_lock);
543
544 o2hb_run_event_list(&event);
545
546 o2nm_node_put(node);
547}
548
549static int o2hb_check_slot(struct o2hb_region *reg,
550 struct o2hb_disk_slot *slot)
551{
552 int changed = 0, gen_changed = 0;
553 struct o2hb_node_event event =
554 { .hn_item = LIST_HEAD_INIT(event.hn_item), };
555 struct o2nm_node *node;
556 struct o2hb_disk_heartbeat_block *hb_block = reg->hr_tmp_block;
557 u64 cputime;
0db638f4
MF
558 unsigned int dead_ms = o2hb_dead_threshold * O2HB_REGION_TIMEOUT_MS;
559 unsigned int slot_dead_ms;
a7f6a5fb
MF
560
561 memcpy(hb_block, slot->ds_raw_block, reg->hr_block_bytes);
562
563 /* Is this correct? Do we assume that the node doesn't exist
564 * if we're not configured for him? */
565 node = o2nm_get_node_by_num(slot->ds_node_num);
566 if (!node)
567 return 0;
568
569 if (!o2hb_verify_crc(reg, hb_block)) {
570 /* all paths from here will drop o2hb_live_lock for
571 * us. */
572 spin_lock(&o2hb_live_lock);
573
574 /* Don't print an error on the console in this case -
575 * a freshly formatted heartbeat area will not have a
576 * crc set on it. */
577 if (list_empty(&slot->ds_live_item))
578 goto out;
579
580 /* The node is live but pushed out a bad crc. We
581 * consider it a transient miss but don't populate any
582 * other values as they may be junk. */
583 mlog(ML_ERROR, "Node %d has written a bad crc to %s\n",
584 slot->ds_node_num, reg->hr_dev_name);
585 o2hb_dump_slot(hb_block);
586
587 slot->ds_equal_samples++;
588 goto fire_callbacks;
589 }
590
591 /* we don't care if these wrap.. the state transitions below
592 * clear at the right places */
593 cputime = le64_to_cpu(hb_block->hb_seq);
594 if (slot->ds_last_time != cputime)
595 slot->ds_changed_samples++;
596 else
597 slot->ds_equal_samples++;
598 slot->ds_last_time = cputime;
599
600 /* The node changed heartbeat generations. We assume this to
601 * mean it dropped off but came back before we timed out. We
602 * want to consider it down for the time being but don't want
603 * to lose any changed_samples state we might build up to
604 * considering it live again. */
605 if (slot->ds_last_generation != le64_to_cpu(hb_block->hb_generation)) {
606 gen_changed = 1;
607 slot->ds_equal_samples = 0;
70bacbdb
MF
608 mlog(ML_HEARTBEAT, "Node %d changed generation (0x%llx "
609 "to 0x%llx)\n", slot->ds_node_num,
610 (long long)slot->ds_last_generation,
611 (long long)le64_to_cpu(hb_block->hb_generation));
a7f6a5fb
MF
612 }
613
614 slot->ds_last_generation = le64_to_cpu(hb_block->hb_generation);
615
70bacbdb
MF
616 mlog(ML_HEARTBEAT, "Slot %d gen 0x%llx cksum 0x%x "
617 "seq %llu last %llu changed %u equal %u\n",
618 slot->ds_node_num, (long long)slot->ds_last_generation,
619 le32_to_cpu(hb_block->hb_cksum),
620 (unsigned long long)le64_to_cpu(hb_block->hb_seq),
621 (unsigned long long)slot->ds_last_time, slot->ds_changed_samples,
a7f6a5fb
MF
622 slot->ds_equal_samples);
623
624 spin_lock(&o2hb_live_lock);
625
626fire_callbacks:
627 /* dead nodes only come to life after some number of
628 * changes at any time during their dead time */
629 if (list_empty(&slot->ds_live_item) &&
630 slot->ds_changed_samples >= O2HB_LIVE_THRESHOLD) {
70bacbdb
MF
631 mlog(ML_HEARTBEAT, "Node %d (id 0x%llx) joined my region\n",
632 slot->ds_node_num, (long long)slot->ds_last_generation);
a7f6a5fb
MF
633
634 /* first on the list generates a callback */
635 if (list_empty(&o2hb_live_slots[slot->ds_node_num])) {
636 set_bit(slot->ds_node_num, o2hb_live_node_bitmap);
637
638 o2hb_queue_node_event(&event, O2HB_NODE_UP_CB, node,
639 slot->ds_node_num);
640
641 changed = 1;
642 }
643
644 list_add_tail(&slot->ds_live_item,
645 &o2hb_live_slots[slot->ds_node_num]);
646
647 slot->ds_equal_samples = 0;
0db638f4
MF
648
649 /* We want to be sure that all nodes agree on the
650 * number of milliseconds before a node will be
651 * considered dead. The self-fencing timeout is
652 * computed from this value, and a discrepancy might
653 * result in heartbeat calling a node dead when it
654 * hasn't self-fenced yet. */
655 slot_dead_ms = le32_to_cpu(hb_block->hb_dead_ms);
656 if (slot_dead_ms && slot_dead_ms != dead_ms) {
657 /* TODO: Perhaps we can fail the region here. */
658 mlog(ML_ERROR, "Node %d on device %s has a dead count "
659 "of %u ms, but our count is %u ms.\n"
660 "Please double check your configuration values "
661 "for 'O2CB_HEARTBEAT_THRESHOLD'\n",
662 slot->ds_node_num, reg->hr_dev_name, slot_dead_ms,
663 dead_ms);
664 }
a7f6a5fb
MF
665 goto out;
666 }
667
668 /* if the list is dead, we're done.. */
669 if (list_empty(&slot->ds_live_item))
670 goto out;
671
672 /* live nodes only go dead after enough consequtive missed
673 * samples.. reset the missed counter whenever we see
674 * activity */
675 if (slot->ds_equal_samples >= o2hb_dead_threshold || gen_changed) {
676 mlog(ML_HEARTBEAT, "Node %d left my region\n",
677 slot->ds_node_num);
678
679 /* last off the live_slot generates a callback */
680 list_del_init(&slot->ds_live_item);
681 if (list_empty(&o2hb_live_slots[slot->ds_node_num])) {
682 clear_bit(slot->ds_node_num, o2hb_live_node_bitmap);
683
684 o2hb_queue_node_event(&event, O2HB_NODE_DOWN_CB, node,
685 slot->ds_node_num);
686
687 changed = 1;
688 }
689
690 /* We don't clear this because the node is still
691 * actually writing new blocks. */
692 if (!gen_changed)
693 slot->ds_changed_samples = 0;
694 goto out;
695 }
696 if (slot->ds_changed_samples) {
697 slot->ds_changed_samples = 0;
698 slot->ds_equal_samples = 0;
699 }
700out:
701 spin_unlock(&o2hb_live_lock);
702
703 o2hb_run_event_list(&event);
704
705 o2nm_node_put(node);
706 return changed;
707}
708
709/* This could be faster if we just implmented a find_last_bit, but I
710 * don't think the circumstances warrant it. */
711static int o2hb_highest_node(unsigned long *nodes,
712 int numbits)
713{
714 int highest, node;
715
716 highest = numbits;
717 node = -1;
718 while ((node = find_next_bit(nodes, numbits, node + 1)) != -1) {
719 if (node >= numbits)
720 break;
721
722 highest = node;
723 }
724
725 return highest;
726}
727
a9e2ae39 728static int o2hb_do_disk_heartbeat(struct o2hb_region *reg)
a7f6a5fb
MF
729{
730 int i, ret, highest_node, change = 0;
731 unsigned long configured_nodes[BITS_TO_LONGS(O2NM_MAX_NODES)];
a7f6a5fb
MF
732 struct o2hb_bio_wait_ctxt write_wc;
733
a9e2ae39
MF
734 ret = o2nm_configured_node_map(configured_nodes,
735 sizeof(configured_nodes));
736 if (ret) {
737 mlog_errno(ret);
738 return ret;
739 }
a7f6a5fb
MF
740
741 highest_node = o2hb_highest_node(configured_nodes, O2NM_MAX_NODES);
742 if (highest_node >= O2NM_MAX_NODES) {
743 mlog(ML_NOTICE, "ocfs2_heartbeat: no configured nodes found!\n");
a9e2ae39 744 return -EINVAL;
a7f6a5fb
MF
745 }
746
747 /* No sense in reading the slots of nodes that don't exist
748 * yet. Of course, if the node definitions have holes in them
749 * then we're reading an empty slot anyway... Consider this
750 * best-effort. */
751 ret = o2hb_read_slots(reg, highest_node + 1);
752 if (ret < 0) {
753 mlog_errno(ret);
a9e2ae39 754 return ret;
a7f6a5fb
MF
755 }
756
757 /* With an up to date view of the slots, we can check that no
758 * other node has been improperly configured to heartbeat in
759 * our slot. */
760 if (!o2hb_check_last_timestamp(reg))
761 mlog(ML_ERROR, "Device \"%s\": another node is heartbeating "
762 "in our slot!\n", reg->hr_dev_name);
763
764 /* fill in the proper info for our next heartbeat */
765 o2hb_prepare_block(reg, reg->hr_generation);
766
767 /* And fire off the write. Note that we don't wait on this I/O
768 * until later. */
b559292e 769 ret = o2hb_issue_node_write(reg, &write_wc);
a7f6a5fb
MF
770 if (ret < 0) {
771 mlog_errno(ret);
a9e2ae39 772 return ret;
a7f6a5fb
MF
773 }
774
775 i = -1;
776 while((i = find_next_bit(configured_nodes, O2NM_MAX_NODES, i + 1)) < O2NM_MAX_NODES) {
777
778 change |= o2hb_check_slot(reg, &reg->hr_slots[i]);
779 }
780
781 /*
782 * We have to be sure we've advertised ourselves on disk
783 * before we can go to steady state. This ensures that
784 * people we find in our steady state have seen us.
785 */
786 o2hb_wait_on_io(reg, &write_wc);
a9e2ae39
MF
787 if (write_wc.wc_error) {
788 /* Do not re-arm the write timeout on I/O error - we
789 * can't be sure that the new block ever made it to
790 * disk */
791 mlog(ML_ERROR, "Write error %d on device \"%s\"\n",
792 write_wc.wc_error, reg->hr_dev_name);
793 return write_wc.wc_error;
794 }
795
a7f6a5fb
MF
796 o2hb_arm_write_timeout(reg);
797
798 /* let the person who launched us know when things are steady */
799 if (!change && (atomic_read(&reg->hr_steady_iterations) != 0)) {
800 if (atomic_dec_and_test(&reg->hr_steady_iterations))
801 wake_up(&o2hb_steady_queue);
802 }
a9e2ae39
MF
803
804 return 0;
a7f6a5fb
MF
805}
806
807/* Subtract b from a, storing the result in a. a *must* have a larger
808 * value than b. */
809static void o2hb_tv_subtract(struct timeval *a,
810 struct timeval *b)
811{
812 /* just return 0 when a is after b */
813 if (a->tv_sec < b->tv_sec ||
814 (a->tv_sec == b->tv_sec && a->tv_usec < b->tv_usec)) {
815 a->tv_sec = 0;
816 a->tv_usec = 0;
817 return;
818 }
819
820 a->tv_sec -= b->tv_sec;
821 a->tv_usec -= b->tv_usec;
822 while ( a->tv_usec < 0 ) {
823 a->tv_sec--;
824 a->tv_usec += 1000000;
825 }
826}
827
828static unsigned int o2hb_elapsed_msecs(struct timeval *start,
829 struct timeval *end)
830{
831 struct timeval res = *end;
832
833 o2hb_tv_subtract(&res, start);
834
835 return res.tv_sec * 1000 + res.tv_usec / 1000;
836}
837
838/*
839 * we ride the region ref that the region dir holds. before the region
840 * dir is removed and drops it ref it will wait to tear down this
841 * thread.
842 */
843static int o2hb_thread(void *data)
844{
845 int i, ret;
846 struct o2hb_region *reg = data;
a7f6a5fb
MF
847 struct o2hb_bio_wait_ctxt write_wc;
848 struct timeval before_hb, after_hb;
849 unsigned int elapsed_msec;
850
851 mlog(ML_HEARTBEAT|ML_KTHREAD, "hb thread running\n");
852
853 set_user_nice(current, -20);
854
855 while (!kthread_should_stop() && !reg->hr_unclean_stop) {
856 /* We track the time spent inside
857 * o2hb_do_disk_heartbeat so that we avoid more then
858 * hr_timeout_ms between disk writes. On busy systems
859 * this should result in a heartbeat which is less
860 * likely to time itself out. */
861 do_gettimeofday(&before_hb);
862
a9e2ae39
MF
863 i = 0;
864 do {
865 ret = o2hb_do_disk_heartbeat(reg);
866 } while (ret && ++i < 2);
a7f6a5fb
MF
867
868 do_gettimeofday(&after_hb);
869 elapsed_msec = o2hb_elapsed_msecs(&before_hb, &after_hb);
870
871 mlog(0, "start = %lu.%lu, end = %lu.%lu, msec = %u\n",
215c7f9f
MF
872 before_hb.tv_sec, (unsigned long) before_hb.tv_usec,
873 after_hb.tv_sec, (unsigned long) after_hb.tv_usec,
874 elapsed_msec);
a7f6a5fb
MF
875
876 if (elapsed_msec < reg->hr_timeout_ms) {
877 /* the kthread api has blocked signals for us so no
878 * need to record the return value. */
879 msleep_interruptible(reg->hr_timeout_ms - elapsed_msec);
880 }
881 }
882
883 o2hb_disarm_write_timeout(reg);
884
885 /* unclean stop is only used in very bad situation */
886 for(i = 0; !reg->hr_unclean_stop && i < reg->hr_blocks; i++)
887 o2hb_shutdown_slot(&reg->hr_slots[i]);
888
889 /* Explicit down notification - avoid forcing the other nodes
890 * to timeout on this region when we could just as easily
891 * write a clear generation - thus indicating to them that
892 * this node has left this region.
893 *
894 * XXX: Should we skip this on unclean_stop? */
895 o2hb_prepare_block(reg, 0);
b559292e 896 ret = o2hb_issue_node_write(reg, &write_wc);
a7f6a5fb
MF
897 if (ret == 0) {
898 o2hb_wait_on_io(reg, &write_wc);
a7f6a5fb
MF
899 } else {
900 mlog_errno(ret);
901 }
902
903 mlog(ML_HEARTBEAT|ML_KTHREAD, "hb thread exiting\n");
904
905 return 0;
906}
907
908void o2hb_init(void)
909{
910 int i;
911
912 for (i = 0; i < ARRAY_SIZE(o2hb_callbacks); i++)
913 INIT_LIST_HEAD(&o2hb_callbacks[i].list);
914
915 for (i = 0; i < ARRAY_SIZE(o2hb_live_slots); i++)
916 INIT_LIST_HEAD(&o2hb_live_slots[i]);
917
918 INIT_LIST_HEAD(&o2hb_node_events);
919
920 memset(o2hb_live_node_bitmap, 0, sizeof(o2hb_live_node_bitmap));
921}
922
923/* if we're already in a callback then we're already serialized by the sem */
924static void o2hb_fill_node_map_from_callback(unsigned long *map,
925 unsigned bytes)
926{
927 BUG_ON(bytes < (BITS_TO_LONGS(O2NM_MAX_NODES) * sizeof(unsigned long)));
928
929 memcpy(map, &o2hb_live_node_bitmap, bytes);
930}
931
932/*
933 * get a map of all nodes that are heartbeating in any regions
934 */
935void o2hb_fill_node_map(unsigned long *map, unsigned bytes)
936{
937 /* callers want to serialize this map and callbacks so that they
938 * can trust that they don't miss nodes coming to the party */
939 down_read(&o2hb_callback_sem);
940 spin_lock(&o2hb_live_lock);
941 o2hb_fill_node_map_from_callback(map, bytes);
942 spin_unlock(&o2hb_live_lock);
943 up_read(&o2hb_callback_sem);
944}
945EXPORT_SYMBOL_GPL(o2hb_fill_node_map);
946
947/*
948 * heartbeat configfs bits. The heartbeat set is a default set under
949 * the cluster set in nodemanager.c.
950 */
951
952static struct o2hb_region *to_o2hb_region(struct config_item *item)
953{
954 return item ? container_of(item, struct o2hb_region, hr_item) : NULL;
955}
956
957/* drop_item only drops its ref after killing the thread, nothing should
958 * be using the region anymore. this has to clean up any state that
959 * attributes might have built up. */
960static void o2hb_region_release(struct config_item *item)
961{
962 int i;
963 struct page *page;
964 struct o2hb_region *reg = to_o2hb_region(item);
965
966 if (reg->hr_tmp_block)
967 kfree(reg->hr_tmp_block);
968
969 if (reg->hr_slot_data) {
970 for (i = 0; i < reg->hr_num_pages; i++) {
971 page = reg->hr_slot_data[i];
972 if (page)
973 __free_page(page);
974 }
975 kfree(reg->hr_slot_data);
976 }
977
978 if (reg->hr_bdev)
979 blkdev_put(reg->hr_bdev);
980
981 if (reg->hr_slots)
982 kfree(reg->hr_slots);
983
984 spin_lock(&o2hb_live_lock);
985 list_del(&reg->hr_all_item);
986 spin_unlock(&o2hb_live_lock);
987
988 kfree(reg);
989}
990
991static int o2hb_read_block_input(struct o2hb_region *reg,
992 const char *page,
993 size_t count,
994 unsigned long *ret_bytes,
995 unsigned int *ret_bits)
996{
997 unsigned long bytes;
998 char *p = (char *)page;
999
1000 bytes = simple_strtoul(p, &p, 0);
1001 if (!p || (*p && (*p != '\n')))
1002 return -EINVAL;
1003
1004 /* Heartbeat and fs min / max block sizes are the same. */
1005 if (bytes > 4096 || bytes < 512)
1006 return -ERANGE;
1007 if (hweight16(bytes) != 1)
1008 return -EINVAL;
1009
1010 if (ret_bytes)
1011 *ret_bytes = bytes;
1012 if (ret_bits)
1013 *ret_bits = ffs(bytes) - 1;
1014
1015 return 0;
1016}
1017
1018static ssize_t o2hb_region_block_bytes_read(struct o2hb_region *reg,
1019 char *page)
1020{
1021 return sprintf(page, "%u\n", reg->hr_block_bytes);
1022}
1023
1024static ssize_t o2hb_region_block_bytes_write(struct o2hb_region *reg,
1025 const char *page,
1026 size_t count)
1027{
1028 int status;
1029 unsigned long block_bytes;
1030 unsigned int block_bits;
1031
1032 if (reg->hr_bdev)
1033 return -EINVAL;
1034
1035 status = o2hb_read_block_input(reg, page, count,
1036 &block_bytes, &block_bits);
1037 if (status)
1038 return status;
1039
1040 reg->hr_block_bytes = (unsigned int)block_bytes;
1041 reg->hr_block_bits = block_bits;
1042
1043 return count;
1044}
1045
1046static ssize_t o2hb_region_start_block_read(struct o2hb_region *reg,
1047 char *page)
1048{
1049 return sprintf(page, "%llu\n", reg->hr_start_block);
1050}
1051
1052static ssize_t o2hb_region_start_block_write(struct o2hb_region *reg,
1053 const char *page,
1054 size_t count)
1055{
1056 unsigned long long tmp;
1057 char *p = (char *)page;
1058
1059 if (reg->hr_bdev)
1060 return -EINVAL;
1061
1062 tmp = simple_strtoull(p, &p, 0);
1063 if (!p || (*p && (*p != '\n')))
1064 return -EINVAL;
1065
1066 reg->hr_start_block = tmp;
1067
1068 return count;
1069}
1070
1071static ssize_t o2hb_region_blocks_read(struct o2hb_region *reg,
1072 char *page)
1073{
1074 return sprintf(page, "%d\n", reg->hr_blocks);
1075}
1076
1077static ssize_t o2hb_region_blocks_write(struct o2hb_region *reg,
1078 const char *page,
1079 size_t count)
1080{
1081 unsigned long tmp;
1082 char *p = (char *)page;
1083
1084 if (reg->hr_bdev)
1085 return -EINVAL;
1086
1087 tmp = simple_strtoul(p, &p, 0);
1088 if (!p || (*p && (*p != '\n')))
1089 return -EINVAL;
1090
1091 if (tmp > O2NM_MAX_NODES || tmp == 0)
1092 return -ERANGE;
1093
1094 reg->hr_blocks = (unsigned int)tmp;
1095
1096 return count;
1097}
1098
1099static ssize_t o2hb_region_dev_read(struct o2hb_region *reg,
1100 char *page)
1101{
1102 unsigned int ret = 0;
1103
1104 if (reg->hr_bdev)
1105 ret = sprintf(page, "%s\n", reg->hr_dev_name);
1106
1107 return ret;
1108}
1109
1110static void o2hb_init_region_params(struct o2hb_region *reg)
1111{
1112 reg->hr_slots_per_page = PAGE_CACHE_SIZE >> reg->hr_block_bits;
1113 reg->hr_timeout_ms = O2HB_REGION_TIMEOUT_MS;
1114
1115 mlog(ML_HEARTBEAT, "hr_start_block = %llu, hr_blocks = %u\n",
1116 reg->hr_start_block, reg->hr_blocks);
1117 mlog(ML_HEARTBEAT, "hr_block_bytes = %u, hr_block_bits = %u\n",
1118 reg->hr_block_bytes, reg->hr_block_bits);
1119 mlog(ML_HEARTBEAT, "hr_timeout_ms = %u\n", reg->hr_timeout_ms);
1120 mlog(ML_HEARTBEAT, "dead threshold = %u\n", o2hb_dead_threshold);
1121}
1122
1123static int o2hb_map_slot_data(struct o2hb_region *reg)
1124{
1125 int i, j;
1126 unsigned int last_slot;
1127 unsigned int spp = reg->hr_slots_per_page;
1128 struct page *page;
1129 char *raw;
1130 struct o2hb_disk_slot *slot;
1131
1132 reg->hr_tmp_block = kmalloc(reg->hr_block_bytes, GFP_KERNEL);
1133 if (reg->hr_tmp_block == NULL) {
1134 mlog_errno(-ENOMEM);
1135 return -ENOMEM;
1136 }
1137
1138 reg->hr_slots = kcalloc(reg->hr_blocks,
1139 sizeof(struct o2hb_disk_slot), GFP_KERNEL);
1140 if (reg->hr_slots == NULL) {
1141 mlog_errno(-ENOMEM);
1142 return -ENOMEM;
1143 }
1144
1145 for(i = 0; i < reg->hr_blocks; i++) {
1146 slot = &reg->hr_slots[i];
1147 slot->ds_node_num = i;
1148 INIT_LIST_HEAD(&slot->ds_live_item);
1149 slot->ds_raw_block = NULL;
1150 }
1151
1152 reg->hr_num_pages = (reg->hr_blocks + spp - 1) / spp;
1153 mlog(ML_HEARTBEAT, "Going to require %u pages to cover %u blocks "
1154 "at %u blocks per page\n",
1155 reg->hr_num_pages, reg->hr_blocks, spp);
1156
1157 reg->hr_slot_data = kcalloc(reg->hr_num_pages, sizeof(struct page *),
1158 GFP_KERNEL);
1159 if (!reg->hr_slot_data) {
1160 mlog_errno(-ENOMEM);
1161 return -ENOMEM;
1162 }
1163
1164 for(i = 0; i < reg->hr_num_pages; i++) {
1165 page = alloc_page(GFP_KERNEL);
1166 if (!page) {
1167 mlog_errno(-ENOMEM);
1168 return -ENOMEM;
1169 }
1170
1171 reg->hr_slot_data[i] = page;
1172
1173 last_slot = i * spp;
1174 raw = page_address(page);
1175 for (j = 0;
1176 (j < spp) && ((j + last_slot) < reg->hr_blocks);
1177 j++) {
1178 BUG_ON((j + last_slot) >= reg->hr_blocks);
1179
1180 slot = &reg->hr_slots[j + last_slot];
1181 slot->ds_raw_block =
1182 (struct o2hb_disk_heartbeat_block *) raw;
1183
1184 raw += reg->hr_block_bytes;
1185 }
1186 }
1187
1188 return 0;
1189}
1190
1191/* Read in all the slots available and populate the tracking
1192 * structures so that we can start with a baseline idea of what's
1193 * there. */
1194static int o2hb_populate_slot_data(struct o2hb_region *reg)
1195{
1196 int ret, i;
1197 struct o2hb_disk_slot *slot;
1198 struct o2hb_disk_heartbeat_block *hb_block;
1199
1200 mlog_entry_void();
1201
1202 ret = o2hb_read_slots(reg, reg->hr_blocks);
1203 if (ret) {
1204 mlog_errno(ret);
1205 goto out;
1206 }
1207
1208 /* We only want to get an idea of the values initially in each
1209 * slot, so we do no verification - o2hb_check_slot will
1210 * actually determine if each configured slot is valid and
1211 * whether any values have changed. */
1212 for(i = 0; i < reg->hr_blocks; i++) {
1213 slot = &reg->hr_slots[i];
1214 hb_block = (struct o2hb_disk_heartbeat_block *) slot->ds_raw_block;
1215
1216 /* Only fill the values that o2hb_check_slot uses to
1217 * determine changing slots */
1218 slot->ds_last_time = le64_to_cpu(hb_block->hb_seq);
1219 slot->ds_last_generation = le64_to_cpu(hb_block->hb_generation);
1220 }
1221
1222out:
1223 mlog_exit(ret);
1224 return ret;
1225}
1226
1227/* this is acting as commit; we set up all of hr_bdev and hr_task or nothing */
1228static ssize_t o2hb_region_dev_write(struct o2hb_region *reg,
1229 const char *page,
1230 size_t count)
1231{
e6c352db 1232 struct task_struct *hb_task;
a7f6a5fb
MF
1233 long fd;
1234 int sectsize;
1235 char *p = (char *)page;
1236 struct file *filp = NULL;
1237 struct inode *inode = NULL;
1238 ssize_t ret = -EINVAL;
1239
1240 if (reg->hr_bdev)
1241 goto out;
1242
1243 /* We can't heartbeat without having had our node number
1244 * configured yet. */
1245 if (o2nm_this_node() == O2NM_MAX_NODES)
1246 goto out;
1247
1248 fd = simple_strtol(p, &p, 0);
1249 if (!p || (*p && (*p != '\n')))
1250 goto out;
1251
1252 if (fd < 0 || fd >= INT_MAX)
1253 goto out;
1254
1255 filp = fget(fd);
1256 if (filp == NULL)
1257 goto out;
1258
1259 if (reg->hr_blocks == 0 || reg->hr_start_block == 0 ||
1260 reg->hr_block_bytes == 0)
1261 goto out;
1262
1263 inode = igrab(filp->f_mapping->host);
1264 if (inode == NULL)
1265 goto out;
1266
1267 if (!S_ISBLK(inode->i_mode))
1268 goto out;
1269
1270 reg->hr_bdev = I_BDEV(filp->f_mapping->host);
1271 ret = blkdev_get(reg->hr_bdev, FMODE_WRITE | FMODE_READ, 0);
1272 if (ret) {
1273 reg->hr_bdev = NULL;
1274 goto out;
1275 }
1276 inode = NULL;
1277
1278 bdevname(reg->hr_bdev, reg->hr_dev_name);
1279
1280 sectsize = bdev_hardsect_size(reg->hr_bdev);
1281 if (sectsize != reg->hr_block_bytes) {
1282 mlog(ML_ERROR,
1283 "blocksize %u incorrect for device, expected %d",
1284 reg->hr_block_bytes, sectsize);
1285 ret = -EINVAL;
1286 goto out;
1287 }
1288
1289 o2hb_init_region_params(reg);
1290
1291 /* Generation of zero is invalid */
1292 do {
1293 get_random_bytes(&reg->hr_generation,
1294 sizeof(reg->hr_generation));
1295 } while (reg->hr_generation == 0);
1296
1297 ret = o2hb_map_slot_data(reg);
1298 if (ret) {
1299 mlog_errno(ret);
1300 goto out;
1301 }
1302
1303 ret = o2hb_populate_slot_data(reg);
1304 if (ret) {
1305 mlog_errno(ret);
1306 goto out;
1307 }
1308
c4028958 1309 INIT_DELAYED_WORK(&reg->hr_write_timeout_work, o2hb_write_timeout);
a7f6a5fb
MF
1310
1311 /*
1312 * A node is considered live after it has beat LIVE_THRESHOLD
1313 * times. We're not steady until we've given them a chance
1314 * _after_ our first read.
1315 */
1316 atomic_set(&reg->hr_steady_iterations, O2HB_LIVE_THRESHOLD + 1);
1317
e6c352db
JB
1318 hb_task = kthread_run(o2hb_thread, reg, "o2hb-%s",
1319 reg->hr_item.ci_name);
1320 if (IS_ERR(hb_task)) {
1321 ret = PTR_ERR(hb_task);
a7f6a5fb 1322 mlog_errno(ret);
a7f6a5fb
MF
1323 goto out;
1324 }
1325
e6c352db
JB
1326 spin_lock(&o2hb_live_lock);
1327 reg->hr_task = hb_task;
1328 spin_unlock(&o2hb_live_lock);
1329
a7f6a5fb
MF
1330 ret = wait_event_interruptible(o2hb_steady_queue,
1331 atomic_read(&reg->hr_steady_iterations) == 0);
1332 if (ret) {
e6df3a66 1333 /* We got interrupted (hello ptrace!). Clean up */
e6c352db
JB
1334 spin_lock(&o2hb_live_lock);
1335 hb_task = reg->hr_task;
a7f6a5fb 1336 reg->hr_task = NULL;
e6c352db
JB
1337 spin_unlock(&o2hb_live_lock);
1338
1339 if (hb_task)
1340 kthread_stop(hb_task);
a7f6a5fb
MF
1341 goto out;
1342 }
1343
e6df3a66
JB
1344 /* Ok, we were woken. Make sure it wasn't by drop_item() */
1345 spin_lock(&o2hb_live_lock);
1346 hb_task = reg->hr_task;
1347 spin_unlock(&o2hb_live_lock);
1348
1349 if (hb_task)
1350 ret = count;
1351 else
1352 ret = -EIO;
1353
a7f6a5fb
MF
1354out:
1355 if (filp)
1356 fput(filp);
1357 if (inode)
1358 iput(inode);
1359 if (ret < 0) {
1360 if (reg->hr_bdev) {
1361 blkdev_put(reg->hr_bdev);
1362 reg->hr_bdev = NULL;
1363 }
1364 }
1365 return ret;
1366}
1367
92efc152
ZW
1368static ssize_t o2hb_region_pid_read(struct o2hb_region *reg,
1369 char *page)
1370{
e6c352db
JB
1371 pid_t pid = 0;
1372
1373 spin_lock(&o2hb_live_lock);
1374 if (reg->hr_task)
ba25f9dc 1375 pid = task_pid_nr(reg->hr_task);
e6c352db
JB
1376 spin_unlock(&o2hb_live_lock);
1377
1378 if (!pid)
92efc152
ZW
1379 return 0;
1380
e6c352db 1381 return sprintf(page, "%u\n", pid);
92efc152
ZW
1382}
1383
a7f6a5fb
MF
1384struct o2hb_region_attribute {
1385 struct configfs_attribute attr;
1386 ssize_t (*show)(struct o2hb_region *, char *);
1387 ssize_t (*store)(struct o2hb_region *, const char *, size_t);
1388};
1389
1390static struct o2hb_region_attribute o2hb_region_attr_block_bytes = {
1391 .attr = { .ca_owner = THIS_MODULE,
1392 .ca_name = "block_bytes",
1393 .ca_mode = S_IRUGO | S_IWUSR },
1394 .show = o2hb_region_block_bytes_read,
1395 .store = o2hb_region_block_bytes_write,
1396};
1397
1398static struct o2hb_region_attribute o2hb_region_attr_start_block = {
1399 .attr = { .ca_owner = THIS_MODULE,
1400 .ca_name = "start_block",
1401 .ca_mode = S_IRUGO | S_IWUSR },
1402 .show = o2hb_region_start_block_read,
1403 .store = o2hb_region_start_block_write,
1404};
1405
1406static struct o2hb_region_attribute o2hb_region_attr_blocks = {
1407 .attr = { .ca_owner = THIS_MODULE,
1408 .ca_name = "blocks",
1409 .ca_mode = S_IRUGO | S_IWUSR },
1410 .show = o2hb_region_blocks_read,
1411 .store = o2hb_region_blocks_write,
1412};
1413
1414static struct o2hb_region_attribute o2hb_region_attr_dev = {
1415 .attr = { .ca_owner = THIS_MODULE,
1416 .ca_name = "dev",
1417 .ca_mode = S_IRUGO | S_IWUSR },
1418 .show = o2hb_region_dev_read,
1419 .store = o2hb_region_dev_write,
1420};
1421
92efc152
ZW
1422static struct o2hb_region_attribute o2hb_region_attr_pid = {
1423 .attr = { .ca_owner = THIS_MODULE,
1424 .ca_name = "pid",
1425 .ca_mode = S_IRUGO | S_IRUSR },
1426 .show = o2hb_region_pid_read,
1427};
1428
a7f6a5fb
MF
1429static struct configfs_attribute *o2hb_region_attrs[] = {
1430 &o2hb_region_attr_block_bytes.attr,
1431 &o2hb_region_attr_start_block.attr,
1432 &o2hb_region_attr_blocks.attr,
1433 &o2hb_region_attr_dev.attr,
92efc152 1434 &o2hb_region_attr_pid.attr,
a7f6a5fb
MF
1435 NULL,
1436};
1437
1438static ssize_t o2hb_region_show(struct config_item *item,
1439 struct configfs_attribute *attr,
1440 char *page)
1441{
1442 struct o2hb_region *reg = to_o2hb_region(item);
1443 struct o2hb_region_attribute *o2hb_region_attr =
1444 container_of(attr, struct o2hb_region_attribute, attr);
1445 ssize_t ret = 0;
1446
1447 if (o2hb_region_attr->show)
1448 ret = o2hb_region_attr->show(reg, page);
1449 return ret;
1450}
1451
1452static ssize_t o2hb_region_store(struct config_item *item,
1453 struct configfs_attribute *attr,
1454 const char *page, size_t count)
1455{
1456 struct o2hb_region *reg = to_o2hb_region(item);
1457 struct o2hb_region_attribute *o2hb_region_attr =
1458 container_of(attr, struct o2hb_region_attribute, attr);
1459 ssize_t ret = -EINVAL;
1460
1461 if (o2hb_region_attr->store)
1462 ret = o2hb_region_attr->store(reg, page, count);
1463 return ret;
1464}
1465
1466static struct configfs_item_operations o2hb_region_item_ops = {
1467 .release = o2hb_region_release,
1468 .show_attribute = o2hb_region_show,
1469 .store_attribute = o2hb_region_store,
1470};
1471
1472static struct config_item_type o2hb_region_type = {
1473 .ct_item_ops = &o2hb_region_item_ops,
1474 .ct_attrs = o2hb_region_attrs,
1475 .ct_owner = THIS_MODULE,
1476};
1477
1478/* heartbeat set */
1479
1480struct o2hb_heartbeat_group {
1481 struct config_group hs_group;
1482 /* some stuff? */
1483};
1484
1485static struct o2hb_heartbeat_group *to_o2hb_heartbeat_group(struct config_group *group)
1486{
1487 return group ?
1488 container_of(group, struct o2hb_heartbeat_group, hs_group)
1489 : NULL;
1490}
1491
1492static struct config_item *o2hb_heartbeat_group_make_item(struct config_group *group,
1493 const char *name)
1494{
1495 struct o2hb_region *reg = NULL;
1496 struct config_item *ret = NULL;
1497
cd861280 1498 reg = kzalloc(sizeof(struct o2hb_region), GFP_KERNEL);
a7f6a5fb
MF
1499 if (reg == NULL)
1500 goto out; /* ENOMEM */
1501
1502 config_item_init_type_name(&reg->hr_item, name, &o2hb_region_type);
1503
1504 ret = &reg->hr_item;
1505
1506 spin_lock(&o2hb_live_lock);
1507 list_add_tail(&reg->hr_all_item, &o2hb_all_regions);
1508 spin_unlock(&o2hb_live_lock);
1509out:
1510 if (ret == NULL)
1511 kfree(reg);
1512
1513 return ret;
1514}
1515
1516static void o2hb_heartbeat_group_drop_item(struct config_group *group,
1517 struct config_item *item)
1518{
e6c352db 1519 struct task_struct *hb_task;
a7f6a5fb
MF
1520 struct o2hb_region *reg = to_o2hb_region(item);
1521
1522 /* stop the thread when the user removes the region dir */
e6c352db
JB
1523 spin_lock(&o2hb_live_lock);
1524 hb_task = reg->hr_task;
1525 reg->hr_task = NULL;
1526 spin_unlock(&o2hb_live_lock);
1527
1528 if (hb_task)
1529 kthread_stop(hb_task);
a7f6a5fb 1530
e6df3a66
JB
1531 /*
1532 * If we're racing a dev_write(), we need to wake them. They will
1533 * check reg->hr_task
1534 */
1535 if (atomic_read(&reg->hr_steady_iterations) != 0) {
1536 atomic_set(&reg->hr_steady_iterations, 0);
1537 wake_up(&o2hb_steady_queue);
1538 }
1539
a7f6a5fb
MF
1540 config_item_put(item);
1541}
1542
1543struct o2hb_heartbeat_group_attribute {
1544 struct configfs_attribute attr;
1545 ssize_t (*show)(struct o2hb_heartbeat_group *, char *);
1546 ssize_t (*store)(struct o2hb_heartbeat_group *, const char *, size_t);
1547};
1548
1549static ssize_t o2hb_heartbeat_group_show(struct config_item *item,
1550 struct configfs_attribute *attr,
1551 char *page)
1552{
1553 struct o2hb_heartbeat_group *reg = to_o2hb_heartbeat_group(to_config_group(item));
1554 struct o2hb_heartbeat_group_attribute *o2hb_heartbeat_group_attr =
1555 container_of(attr, struct o2hb_heartbeat_group_attribute, attr);
1556 ssize_t ret = 0;
1557
1558 if (o2hb_heartbeat_group_attr->show)
1559 ret = o2hb_heartbeat_group_attr->show(reg, page);
1560 return ret;
1561}
1562
1563static ssize_t o2hb_heartbeat_group_store(struct config_item *item,
1564 struct configfs_attribute *attr,
1565 const char *page, size_t count)
1566{
1567 struct o2hb_heartbeat_group *reg = to_o2hb_heartbeat_group(to_config_group(item));
1568 struct o2hb_heartbeat_group_attribute *o2hb_heartbeat_group_attr =
1569 container_of(attr, struct o2hb_heartbeat_group_attribute, attr);
1570 ssize_t ret = -EINVAL;
1571
1572 if (o2hb_heartbeat_group_attr->store)
1573 ret = o2hb_heartbeat_group_attr->store(reg, page, count);
1574 return ret;
1575}
1576
1577static ssize_t o2hb_heartbeat_group_threshold_show(struct o2hb_heartbeat_group *group,
1578 char *page)
1579{
1580 return sprintf(page, "%u\n", o2hb_dead_threshold);
1581}
1582
1583static ssize_t o2hb_heartbeat_group_threshold_store(struct o2hb_heartbeat_group *group,
1584 const char *page,
1585 size_t count)
1586{
1587 unsigned long tmp;
1588 char *p = (char *)page;
1589
1590 tmp = simple_strtoul(p, &p, 10);
1591 if (!p || (*p && (*p != '\n')))
1592 return -EINVAL;
1593
1594 /* this will validate ranges for us. */
1595 o2hb_dead_threshold_set((unsigned int) tmp);
1596
1597 return count;
1598}
1599
1600static struct o2hb_heartbeat_group_attribute o2hb_heartbeat_group_attr_threshold = {
1601 .attr = { .ca_owner = THIS_MODULE,
1602 .ca_name = "dead_threshold",
1603 .ca_mode = S_IRUGO | S_IWUSR },
1604 .show = o2hb_heartbeat_group_threshold_show,
1605 .store = o2hb_heartbeat_group_threshold_store,
1606};
1607
1608static struct configfs_attribute *o2hb_heartbeat_group_attrs[] = {
1609 &o2hb_heartbeat_group_attr_threshold.attr,
1610 NULL,
1611};
1612
1613static struct configfs_item_operations o2hb_hearbeat_group_item_ops = {
1614 .show_attribute = o2hb_heartbeat_group_show,
1615 .store_attribute = o2hb_heartbeat_group_store,
1616};
1617
1618static struct configfs_group_operations o2hb_heartbeat_group_group_ops = {
1619 .make_item = o2hb_heartbeat_group_make_item,
1620 .drop_item = o2hb_heartbeat_group_drop_item,
1621};
1622
1623static struct config_item_type o2hb_heartbeat_group_type = {
1624 .ct_group_ops = &o2hb_heartbeat_group_group_ops,
1625 .ct_item_ops = &o2hb_hearbeat_group_item_ops,
1626 .ct_attrs = o2hb_heartbeat_group_attrs,
1627 .ct_owner = THIS_MODULE,
1628};
1629
1630/* this is just here to avoid touching group in heartbeat.h which the
1631 * entire damn world #includes */
1632struct config_group *o2hb_alloc_hb_set(void)
1633{
1634 struct o2hb_heartbeat_group *hs = NULL;
1635 struct config_group *ret = NULL;
1636
cd861280 1637 hs = kzalloc(sizeof(struct o2hb_heartbeat_group), GFP_KERNEL);
a7f6a5fb
MF
1638 if (hs == NULL)
1639 goto out;
1640
1641 config_group_init_type_name(&hs->hs_group, "heartbeat",
1642 &o2hb_heartbeat_group_type);
1643
1644 ret = &hs->hs_group;
1645out:
1646 if (ret == NULL)
1647 kfree(hs);
1648 return ret;
1649}
1650
1651void o2hb_free_hb_set(struct config_group *group)
1652{
1653 struct o2hb_heartbeat_group *hs = to_o2hb_heartbeat_group(group);
1654 kfree(hs);
1655}
1656
1657/* hb callback registration and issueing */
1658
1659static struct o2hb_callback *hbcall_from_type(enum o2hb_callback_type type)
1660{
1661 if (type == O2HB_NUM_CB)
1662 return ERR_PTR(-EINVAL);
1663
1664 return &o2hb_callbacks[type];
1665}
1666
1667void o2hb_setup_callback(struct o2hb_callback_func *hc,
1668 enum o2hb_callback_type type,
1669 o2hb_cb_func *func,
1670 void *data,
1671 int priority)
1672{
1673 INIT_LIST_HEAD(&hc->hc_item);
1674 hc->hc_func = func;
1675 hc->hc_data = data;
1676 hc->hc_priority = priority;
1677 hc->hc_type = type;
1678 hc->hc_magic = O2HB_CB_MAGIC;
1679}
1680EXPORT_SYMBOL_GPL(o2hb_setup_callback);
1681
14829422
JB
1682static struct o2hb_region *o2hb_find_region(const char *region_uuid)
1683{
1684 struct o2hb_region *p, *reg = NULL;
1685
1686 assert_spin_locked(&o2hb_live_lock);
1687
1688 list_for_each_entry(p, &o2hb_all_regions, hr_all_item) {
1689 if (!strcmp(region_uuid, config_item_name(&p->hr_item))) {
1690 reg = p;
1691 break;
1692 }
1693 }
1694
1695 return reg;
1696}
1697
1698static int o2hb_region_get(const char *region_uuid)
1699{
1700 int ret = 0;
1701 struct o2hb_region *reg;
1702
1703 spin_lock(&o2hb_live_lock);
1704
1705 reg = o2hb_find_region(region_uuid);
1706 if (!reg)
1707 ret = -ENOENT;
1708 spin_unlock(&o2hb_live_lock);
1709
16c6a4f2
JB
1710 if (ret)
1711 goto out;
1712
1713 ret = o2nm_depend_this_node();
1714 if (ret)
1715 goto out;
14829422 1716
16c6a4f2
JB
1717 ret = o2nm_depend_item(&reg->hr_item);
1718 if (ret)
1719 o2nm_undepend_this_node();
1720
1721out:
14829422
JB
1722 return ret;
1723}
1724
1725static void o2hb_region_put(const char *region_uuid)
1726{
1727 struct o2hb_region *reg;
1728
1729 spin_lock(&o2hb_live_lock);
1730
1731 reg = o2hb_find_region(region_uuid);
1732
1733 spin_unlock(&o2hb_live_lock);
1734
16c6a4f2 1735 if (reg) {
14829422 1736 o2nm_undepend_item(&reg->hr_item);
16c6a4f2
JB
1737 o2nm_undepend_this_node();
1738 }
14829422
JB
1739}
1740
1741int o2hb_register_callback(const char *region_uuid,
1742 struct o2hb_callback_func *hc)
a7f6a5fb
MF
1743{
1744 struct o2hb_callback_func *tmp;
1745 struct list_head *iter;
1746 struct o2hb_callback *hbcall;
1747 int ret;
1748
1749 BUG_ON(hc->hc_magic != O2HB_CB_MAGIC);
1750 BUG_ON(!list_empty(&hc->hc_item));
1751
1752 hbcall = hbcall_from_type(hc->hc_type);
1753 if (IS_ERR(hbcall)) {
1754 ret = PTR_ERR(hbcall);
1755 goto out;
1756 }
1757
14829422
JB
1758 if (region_uuid) {
1759 ret = o2hb_region_get(region_uuid);
1760 if (ret)
1761 goto out;
1762 }
1763
a7f6a5fb
MF
1764 down_write(&o2hb_callback_sem);
1765
1766 list_for_each(iter, &hbcall->list) {
1767 tmp = list_entry(iter, struct o2hb_callback_func, hc_item);
1768 if (hc->hc_priority < tmp->hc_priority) {
1769 list_add_tail(&hc->hc_item, iter);
1770 break;
1771 }
1772 }
1773 if (list_empty(&hc->hc_item))
1774 list_add_tail(&hc->hc_item, &hbcall->list);
1775
1776 up_write(&o2hb_callback_sem);
1777 ret = 0;
1778out:
1779 mlog(ML_HEARTBEAT, "returning %d on behalf of %p for funcs %p\n",
1780 ret, __builtin_return_address(0), hc);
1781 return ret;
1782}
1783EXPORT_SYMBOL_GPL(o2hb_register_callback);
1784
14829422
JB
1785void o2hb_unregister_callback(const char *region_uuid,
1786 struct o2hb_callback_func *hc)
a7f6a5fb
MF
1787{
1788 BUG_ON(hc->hc_magic != O2HB_CB_MAGIC);
1789
1790 mlog(ML_HEARTBEAT, "on behalf of %p for funcs %p\n",
1791 __builtin_return_address(0), hc);
1792
14829422 1793 /* XXX Can this happen _with_ a region reference? */
a7f6a5fb 1794 if (list_empty(&hc->hc_item))
c24f72cc 1795 return;
a7f6a5fb 1796
14829422
JB
1797 if (region_uuid)
1798 o2hb_region_put(region_uuid);
1799
a7f6a5fb
MF
1800 down_write(&o2hb_callback_sem);
1801
1802 list_del_init(&hc->hc_item);
1803
1804 up_write(&o2hb_callback_sem);
a7f6a5fb
MF
1805}
1806EXPORT_SYMBOL_GPL(o2hb_unregister_callback);
1807
1808int o2hb_check_node_heartbeating(u8 node_num)
1809{
1810 unsigned long testing_map[BITS_TO_LONGS(O2NM_MAX_NODES)];
1811
1812 o2hb_fill_node_map(testing_map, sizeof(testing_map));
1813 if (!test_bit(node_num, testing_map)) {
1814 mlog(ML_HEARTBEAT,
1815 "node (%u) does not have heartbeating enabled.\n",
1816 node_num);
1817 return 0;
1818 }
1819
1820 return 1;
1821}
1822EXPORT_SYMBOL_GPL(o2hb_check_node_heartbeating);
1823
1824int o2hb_check_node_heartbeating_from_callback(u8 node_num)
1825{
1826 unsigned long testing_map[BITS_TO_LONGS(O2NM_MAX_NODES)];
1827
1828 o2hb_fill_node_map_from_callback(testing_map, sizeof(testing_map));
1829 if (!test_bit(node_num, testing_map)) {
1830 mlog(ML_HEARTBEAT,
1831 "node (%u) does not have heartbeating enabled.\n",
1832 node_num);
1833 return 0;
1834 }
1835
1836 return 1;
1837}
1838EXPORT_SYMBOL_GPL(o2hb_check_node_heartbeating_from_callback);
1839
1840/* Makes sure our local node is configured with a node number, and is
1841 * heartbeating. */
1842int o2hb_check_local_node_heartbeating(void)
1843{
1844 u8 node_num;
1845
1846 /* if this node was set then we have networking */
1847 node_num = o2nm_this_node();
1848 if (node_num == O2NM_MAX_NODES) {
1849 mlog(ML_HEARTBEAT, "this node has not been configured.\n");
1850 return 0;
1851 }
1852
1853 return o2hb_check_node_heartbeating(node_num);
1854}
1855EXPORT_SYMBOL_GPL(o2hb_check_local_node_heartbeating);
1856
1857/*
1858 * this is just a hack until we get the plumbing which flips file systems
1859 * read only and drops the hb ref instead of killing the node dead.
1860 */
1861void o2hb_stop_all_regions(void)
1862{
1863 struct o2hb_region *reg;
1864
1865 mlog(ML_ERROR, "stopping heartbeat on all active regions.\n");
1866
1867 spin_lock(&o2hb_live_lock);
1868
1869 list_for_each_entry(reg, &o2hb_all_regions, hr_all_item)
1870 reg->hr_unclean_stop = 1;
1871
1872 spin_unlock(&o2hb_live_lock);
1873}
1874EXPORT_SYMBOL_GPL(o2hb_stop_all_regions);