]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - fs/ocfs2/journal.c
ocfs2: remove unused handle argument from ocfs2_meta_lock_full()
[mirror_ubuntu-jammy-kernel.git] / fs / ocfs2 / journal.c
CommitLineData
ccd979bd
MF
1/* -*- mode: c; c-basic-offset: 8; -*-
2 * vim: noexpandtab sw=8 ts=8 sts=0:
3 *
4 * journal.c
5 *
6 * Defines functions of journalling api
7 *
8 * Copyright (C) 2003, 2004 Oracle. All rights reserved.
9 *
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public
12 * License as published by the Free Software Foundation; either
13 * version 2 of the License, or (at your option) any later version.
14 *
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
18 * General Public License for more details.
19 *
20 * You should have received a copy of the GNU General Public
21 * License along with this program; if not, write to the
22 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
23 * Boston, MA 021110-1307, USA.
24 */
25
26#include <linux/fs.h>
27#include <linux/types.h>
28#include <linux/slab.h>
29#include <linux/highmem.h>
30#include <linux/kthread.h>
31
32#define MLOG_MASK_PREFIX ML_JOURNAL
33#include <cluster/masklog.h>
34
35#include "ocfs2.h"
36
37#include "alloc.h"
38#include "dlmglue.h"
39#include "extent_map.h"
40#include "heartbeat.h"
41#include "inode.h"
42#include "journal.h"
43#include "localalloc.h"
44#include "namei.h"
45#include "slot_map.h"
46#include "super.h"
47#include "vote.h"
48#include "sysfile.h"
49
50#include "buffer_head_io.h"
51
34af946a 52DEFINE_SPINLOCK(trans_inc_lock);
ccd979bd
MF
53
54static int ocfs2_force_read_journal(struct inode *inode);
55static int ocfs2_recover_node(struct ocfs2_super *osb,
56 int node_num);
57static int __ocfs2_recovery_thread(void *arg);
58static int ocfs2_commit_cache(struct ocfs2_super *osb);
59static int ocfs2_wait_on_mount(struct ocfs2_super *osb);
ccd979bd
MF
60static int ocfs2_journal_toggle_dirty(struct ocfs2_super *osb,
61 int dirty);
62static int ocfs2_trylock_journal(struct ocfs2_super *osb,
63 int slot_num);
64static int ocfs2_recover_orphans(struct ocfs2_super *osb,
65 int slot);
66static int ocfs2_commit_thread(void *arg);
67
68static int ocfs2_commit_cache(struct ocfs2_super *osb)
69{
70 int status = 0;
71 unsigned int flushed;
72 unsigned long old_id;
73 struct ocfs2_journal *journal = NULL;
74
75 mlog_entry_void();
76
77 journal = osb->journal;
78
79 /* Flush all pending commits and checkpoint the journal. */
80 down_write(&journal->j_trans_barrier);
81
82 if (atomic_read(&journal->j_num_trans) == 0) {
83 up_write(&journal->j_trans_barrier);
84 mlog(0, "No transactions for me to flush!\n");
85 goto finally;
86 }
87
88 journal_lock_updates(journal->j_journal);
89 status = journal_flush(journal->j_journal);
90 journal_unlock_updates(journal->j_journal);
91 if (status < 0) {
92 up_write(&journal->j_trans_barrier);
93 mlog_errno(status);
94 goto finally;
95 }
96
97 old_id = ocfs2_inc_trans_id(journal);
98
99 flushed = atomic_read(&journal->j_num_trans);
100 atomic_set(&journal->j_num_trans, 0);
101 up_write(&journal->j_trans_barrier);
102
103 mlog(0, "commit_thread: flushed transaction %lu (%u handles)\n",
104 journal->j_trans_id, flushed);
105
106 ocfs2_kick_vote_thread(osb);
107 wake_up(&journal->j_checkpointed);
108finally:
109 mlog_exit(status);
110 return status;
111}
112
a301a27d 113static struct ocfs2_journal_handle *ocfs2_alloc_handle(struct ocfs2_super *osb)
ccd979bd
MF
114{
115 struct ocfs2_journal_handle *retval = NULL;
116
afae00ab 117 retval = kcalloc(1, sizeof(*retval), GFP_NOFS);
ccd979bd
MF
118 if (!retval) {
119 mlog(ML_ERROR, "Failed to allocate memory for journal "
120 "handle!\n");
121 return NULL;
122 }
ccd979bd
MF
123 retval->k_handle = NULL;
124
ccd979bd
MF
125 retval->journal = osb->journal;
126
127 return retval;
128}
129
130/* pass it NULL and it will allocate a new handle object for you. If
131 * you pass it a handle however, it may still return error, in which
132 * case it has free'd the passed handle for you. */
133struct ocfs2_journal_handle *ocfs2_start_trans(struct ocfs2_super *osb,
134 struct ocfs2_journal_handle *handle,
135 int max_buffs)
136{
137 int ret;
138 journal_t *journal = osb->journal->j_journal;
139
140 mlog_entry("(max_buffs = %d)\n", max_buffs);
141
ebdec83b 142 BUG_ON(!osb || !osb->journal->j_journal);
ccd979bd
MF
143
144 if (ocfs2_is_hard_readonly(osb)) {
145 ret = -EROFS;
146 goto done_free;
147 }
148
149 BUG_ON(osb->journal->j_state == OCFS2_JOURNAL_FREE);
150 BUG_ON(max_buffs <= 0);
151
152 /* JBD might support this, but our journalling code doesn't yet. */
153 if (journal_current_handle()) {
154 mlog(ML_ERROR, "Recursive transaction attempted!\n");
155 BUG();
156 }
157
158 if (!handle)
159 handle = ocfs2_alloc_handle(osb);
160 if (!handle) {
161 ret = -ENOMEM;
162 mlog(ML_ERROR, "Failed to allocate memory for journal "
163 "handle!\n");
164 goto done_free;
165 }
166
ccd979bd
MF
167 down_read(&osb->journal->j_trans_barrier);
168
169 /* actually start the transaction now */
170 handle->k_handle = journal_start(journal, max_buffs);
171 if (IS_ERR(handle->k_handle)) {
172 up_read(&osb->journal->j_trans_barrier);
173
174 ret = PTR_ERR(handle->k_handle);
175 handle->k_handle = NULL;
176 mlog_errno(ret);
177
178 if (is_journal_aborted(journal)) {
179 ocfs2_abort(osb->sb, "Detected aborted journal");
180 ret = -EROFS;
181 }
182 goto done_free;
183 }
184
185 atomic_inc(&(osb->journal->j_num_trans));
ccd979bd
MF
186
187 mlog_exit_ptr(handle);
188 return handle;
189
190done_free:
191 if (handle)
daf29e9c 192 kfree(handle);
ccd979bd
MF
193
194 mlog_exit(ret);
195 return ERR_PTR(ret);
196}
197
ccd979bd
MF
198void ocfs2_commit_trans(struct ocfs2_journal_handle *handle)
199{
200 handle_t *jbd_handle;
201 int retval;
202 struct ocfs2_journal *journal = handle->journal;
203
204 mlog_entry_void();
205
206 BUG_ON(!handle);
207
c161f89b 208 if (!handle->k_handle) {
daf29e9c 209 kfree(handle);
ccd979bd
MF
210 mlog_exit_void();
211 return;
212 }
213
ccd979bd
MF
214 /* ocfs2_extend_trans may have had to call journal_restart
215 * which will always commit the transaction, but may return
216 * error for any number of reasons. If this is the case, we
217 * clear k_handle as it's not valid any more. */
218 if (handle->k_handle) {
219 jbd_handle = handle->k_handle;
220
ccd979bd
MF
221 /* actually stop the transaction. if we've set h_sync,
222 * it'll have been committed when we return */
223 retval = journal_stop(jbd_handle);
224 if (retval < 0) {
225 mlog_errno(retval);
226 mlog(ML_ERROR, "Could not commit transaction\n");
227 BUG();
228 }
229
230 handle->k_handle = NULL; /* it's been free'd in journal_stop */
231 }
232
ccd979bd
MF
233 up_read(&journal->j_trans_barrier);
234
235 kfree(handle);
236 mlog_exit_void();
237}
238
239/*
240 * 'nblocks' is what you want to add to the current
241 * transaction. extend_trans will either extend the current handle by
242 * nblocks, or commit it and start a new one with nblocks credits.
243 *
244 * WARNING: This will not release any semaphores or disk locks taken
245 * during the transaction, so make sure they were taken *before*
246 * start_trans or we'll have ordering deadlocks.
247 *
248 * WARNING2: Note that we do *not* drop j_trans_barrier here. This is
249 * good because transaction ids haven't yet been recorded on the
250 * cluster locks associated with this handle.
251 */
1fc58146 252int ocfs2_extend_trans(handle_t *handle, int nblocks)
ccd979bd
MF
253{
254 int status;
255
256 BUG_ON(!handle);
ccd979bd
MF
257 BUG_ON(!nblocks);
258
259 mlog_entry_void();
260
261 mlog(0, "Trying to extend transaction by %d blocks\n", nblocks);
262
1fc58146 263 status = journal_extend(handle, nblocks);
ccd979bd
MF
264 if (status < 0) {
265 mlog_errno(status);
266 goto bail;
267 }
268
269 if (status > 0) {
270 mlog(0, "journal_extend failed, trying journal_restart\n");
1fc58146 271 status = journal_restart(handle, nblocks);
ccd979bd 272 if (status < 0) {
ccd979bd
MF
273 mlog_errno(status);
274 goto bail;
275 }
01ddf1e1 276 }
ccd979bd
MF
277
278 status = 0;
279bail:
280
281 mlog_exit(status);
282 return status;
283}
284
285int ocfs2_journal_access(struct ocfs2_journal_handle *handle,
286 struct inode *inode,
287 struct buffer_head *bh,
288 int type)
289{
290 int status;
291
292 BUG_ON(!inode);
293 BUG_ON(!handle);
294 BUG_ON(!bh);
ccd979bd 295
205f87f6 296 mlog_entry("bh->b_blocknr=%llu, type=%d (\"%s\"), bh->b_size = %zu\n",
ccd979bd
MF
297 (unsigned long long)bh->b_blocknr, type,
298 (type == OCFS2_JOURNAL_ACCESS_CREATE) ?
299 "OCFS2_JOURNAL_ACCESS_CREATE" :
300 "OCFS2_JOURNAL_ACCESS_WRITE",
301 bh->b_size);
302
303 /* we can safely remove this assertion after testing. */
304 if (!buffer_uptodate(bh)) {
305 mlog(ML_ERROR, "giving me a buffer that's not uptodate!\n");
306 mlog(ML_ERROR, "b_blocknr=%llu\n",
307 (unsigned long long)bh->b_blocknr);
308 BUG();
309 }
310
311 /* Set the current transaction information on the inode so
312 * that the locking code knows whether it can drop it's locks
313 * on this inode or not. We're protected from the commit
314 * thread updating the current transaction id until
315 * ocfs2_commit_trans() because ocfs2_start_trans() took
316 * j_trans_barrier for us. */
317 ocfs2_set_inode_lock_trans(OCFS2_SB(inode->i_sb)->journal, inode);
318
251b6ecc 319 mutex_lock(&OCFS2_I(inode)->ip_io_mutex);
ccd979bd
MF
320 switch (type) {
321 case OCFS2_JOURNAL_ACCESS_CREATE:
322 case OCFS2_JOURNAL_ACCESS_WRITE:
323 status = journal_get_write_access(handle->k_handle, bh);
324 break;
325
326 case OCFS2_JOURNAL_ACCESS_UNDO:
327 status = journal_get_undo_access(handle->k_handle, bh);
328 break;
329
330 default:
331 status = -EINVAL;
332 mlog(ML_ERROR, "Uknown access type!\n");
333 }
251b6ecc 334 mutex_unlock(&OCFS2_I(inode)->ip_io_mutex);
ccd979bd
MF
335
336 if (status < 0)
337 mlog(ML_ERROR, "Error %d getting %d access to buffer!\n",
338 status, type);
339
340 mlog_exit(status);
341 return status;
342}
343
344int ocfs2_journal_dirty(struct ocfs2_journal_handle *handle,
345 struct buffer_head *bh)
346{
347 int status;
348
ccd979bd
MF
349 mlog_entry("(bh->b_blocknr=%llu)\n",
350 (unsigned long long)bh->b_blocknr);
351
352 status = journal_dirty_metadata(handle->k_handle, bh);
353 if (status < 0)
354 mlog(ML_ERROR, "Could not dirty metadata buffer. "
355 "(bh->b_blocknr=%llu)\n",
356 (unsigned long long)bh->b_blocknr);
357
358 mlog_exit(status);
359 return status;
360}
361
362int ocfs2_journal_dirty_data(handle_t *handle,
363 struct buffer_head *bh)
364{
365 int err = journal_dirty_data(handle, bh);
366 if (err)
367 mlog_errno(err);
368 /* TODO: When we can handle it, abort the handle and go RO on
369 * error here. */
370
371 return err;
372}
373
ccd979bd
MF
374#define OCFS2_DEFAULT_COMMIT_INTERVAL (HZ * 5)
375
376void ocfs2_set_journal_params(struct ocfs2_super *osb)
377{
378 journal_t *journal = osb->journal->j_journal;
379
380 spin_lock(&journal->j_state_lock);
381 journal->j_commit_interval = OCFS2_DEFAULT_COMMIT_INTERVAL;
382 if (osb->s_mount_opt & OCFS2_MOUNT_BARRIER)
383 journal->j_flags |= JFS_BARRIER;
384 else
385 journal->j_flags &= ~JFS_BARRIER;
386 spin_unlock(&journal->j_state_lock);
387}
388
389int ocfs2_journal_init(struct ocfs2_journal *journal, int *dirty)
390{
391 int status = -1;
392 struct inode *inode = NULL; /* the journal inode */
393 journal_t *j_journal = NULL;
394 struct ocfs2_dinode *di = NULL;
395 struct buffer_head *bh = NULL;
396 struct ocfs2_super *osb;
397 int meta_lock = 0;
398
399 mlog_entry_void();
400
401 BUG_ON(!journal);
402
403 osb = journal->j_osb;
404
405 /* already have the inode for our journal */
406 inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE,
407 osb->slot_num);
408 if (inode == NULL) {
409 status = -EACCES;
410 mlog_errno(status);
411 goto done;
412 }
413 if (is_bad_inode(inode)) {
414 mlog(ML_ERROR, "access error (bad inode)\n");
415 iput(inode);
416 inode = NULL;
417 status = -EACCES;
418 goto done;
419 }
420
421 SET_INODE_JOURNAL(inode);
422 OCFS2_I(inode)->ip_open_count++;
423
6eff5790
MF
424 /* Skip recovery waits here - journal inode metadata never
425 * changes in a live cluster so it can be considered an
426 * exception to the rule. */
4bcec184 427 status = ocfs2_meta_lock_full(inode, &bh, 1, OCFS2_META_LOCK_RECOVERY);
ccd979bd
MF
428 if (status < 0) {
429 if (status != -ERESTARTSYS)
430 mlog(ML_ERROR, "Could not get lock on journal!\n");
431 goto done;
432 }
433
434 meta_lock = 1;
435 di = (struct ocfs2_dinode *)bh->b_data;
436
437 if (inode->i_size < OCFS2_MIN_JOURNAL_SIZE) {
438 mlog(ML_ERROR, "Journal file size (%lld) is too small!\n",
439 inode->i_size);
440 status = -EINVAL;
441 goto done;
442 }
443
444 mlog(0, "inode->i_size = %lld\n", inode->i_size);
5515eff8
AM
445 mlog(0, "inode->i_blocks = %llu\n",
446 (unsigned long long)inode->i_blocks);
ccd979bd
MF
447 mlog(0, "inode->ip_clusters = %u\n", OCFS2_I(inode)->ip_clusters);
448
449 /* call the kernels journal init function now */
450 j_journal = journal_init_inode(inode);
451 if (j_journal == NULL) {
452 mlog(ML_ERROR, "Linux journal layer error\n");
453 status = -EINVAL;
454 goto done;
455 }
456
457 mlog(0, "Returned from journal_init_inode\n");
458 mlog(0, "j_journal->j_maxlen = %u\n", j_journal->j_maxlen);
459
460 *dirty = (le32_to_cpu(di->id1.journal1.ij_flags) &
461 OCFS2_JOURNAL_DIRTY_FL);
462
463 journal->j_journal = j_journal;
464 journal->j_inode = inode;
465 journal->j_bh = bh;
466
467 ocfs2_set_journal_params(osb);
468
469 journal->j_state = OCFS2_JOURNAL_LOADED;
470
471 status = 0;
472done:
473 if (status < 0) {
474 if (meta_lock)
475 ocfs2_meta_unlock(inode, 1);
476 if (bh != NULL)
477 brelse(bh);
478 if (inode) {
479 OCFS2_I(inode)->ip_open_count--;
480 iput(inode);
481 }
482 }
483
484 mlog_exit(status);
485 return status;
486}
487
488static int ocfs2_journal_toggle_dirty(struct ocfs2_super *osb,
489 int dirty)
490{
491 int status;
492 unsigned int flags;
493 struct ocfs2_journal *journal = osb->journal;
494 struct buffer_head *bh = journal->j_bh;
495 struct ocfs2_dinode *fe;
496
497 mlog_entry_void();
498
499 fe = (struct ocfs2_dinode *)bh->b_data;
500 if (!OCFS2_IS_VALID_DINODE(fe)) {
501 /* This is called from startup/shutdown which will
502 * handle the errors in a specific manner, so no need
503 * to call ocfs2_error() here. */
b0697053
MF
504 mlog(ML_ERROR, "Journal dinode %llu has invalid "
505 "signature: %.*s", (unsigned long long)fe->i_blkno, 7,
506 fe->i_signature);
ccd979bd
MF
507 status = -EIO;
508 goto out;
509 }
510
511 flags = le32_to_cpu(fe->id1.journal1.ij_flags);
512 if (dirty)
513 flags |= OCFS2_JOURNAL_DIRTY_FL;
514 else
515 flags &= ~OCFS2_JOURNAL_DIRTY_FL;
516 fe->id1.journal1.ij_flags = cpu_to_le32(flags);
517
518 status = ocfs2_write_block(osb, bh, journal->j_inode);
519 if (status < 0)
520 mlog_errno(status);
521
522out:
523 mlog_exit(status);
524 return status;
525}
526
527/*
528 * If the journal has been kmalloc'd it needs to be freed after this
529 * call.
530 */
531void ocfs2_journal_shutdown(struct ocfs2_super *osb)
532{
533 struct ocfs2_journal *journal = NULL;
534 int status = 0;
535 struct inode *inode = NULL;
536 int num_running_trans = 0;
537
538 mlog_entry_void();
539
ebdec83b 540 BUG_ON(!osb);
ccd979bd
MF
541
542 journal = osb->journal;
543 if (!journal)
544 goto done;
545
546 inode = journal->j_inode;
547
548 if (journal->j_state != OCFS2_JOURNAL_LOADED)
549 goto done;
550
551 /* need to inc inode use count as journal_destroy will iput. */
552 if (!igrab(inode))
553 BUG();
554
555 num_running_trans = atomic_read(&(osb->journal->j_num_trans));
556 if (num_running_trans > 0)
557 mlog(0, "Shutting down journal: must wait on %d "
558 "running transactions!\n",
559 num_running_trans);
560
561 /* Do a commit_cache here. It will flush our journal, *and*
562 * release any locks that are still held.
563 * set the SHUTDOWN flag and release the trans lock.
564 * the commit thread will take the trans lock for us below. */
565 journal->j_state = OCFS2_JOURNAL_IN_SHUTDOWN;
566
567 /* The OCFS2_JOURNAL_IN_SHUTDOWN will signal to commit_cache to not
568 * drop the trans_lock (which we want to hold until we
569 * completely destroy the journal. */
570 if (osb->commit_task) {
571 /* Wait for the commit thread */
572 mlog(0, "Waiting for ocfs2commit to exit....\n");
573 kthread_stop(osb->commit_task);
574 osb->commit_task = NULL;
575 }
576
577 BUG_ON(atomic_read(&(osb->journal->j_num_trans)) != 0);
578
579 status = ocfs2_journal_toggle_dirty(osb, 0);
580 if (status < 0)
581 mlog_errno(status);
582
583 /* Shutdown the kernel journal system */
584 journal_destroy(journal->j_journal);
585
586 OCFS2_I(inode)->ip_open_count--;
587
588 /* unlock our journal */
589 ocfs2_meta_unlock(inode, 1);
590
591 brelse(journal->j_bh);
592 journal->j_bh = NULL;
593
594 journal->j_state = OCFS2_JOURNAL_FREE;
595
596// up_write(&journal->j_trans_barrier);
597done:
598 if (inode)
599 iput(inode);
600 mlog_exit_void();
601}
602
603static void ocfs2_clear_journal_error(struct super_block *sb,
604 journal_t *journal,
605 int slot)
606{
607 int olderr;
608
609 olderr = journal_errno(journal);
610 if (olderr) {
611 mlog(ML_ERROR, "File system error %d recorded in "
612 "journal %u.\n", olderr, slot);
613 mlog(ML_ERROR, "File system on device %s needs checking.\n",
614 sb->s_id);
615
616 journal_ack_err(journal);
617 journal_clear_err(journal);
618 }
619}
620
621int ocfs2_journal_load(struct ocfs2_journal *journal)
622{
623 int status = 0;
624 struct ocfs2_super *osb;
625
626 mlog_entry_void();
627
628 if (!journal)
629 BUG();
630
631 osb = journal->j_osb;
632
633 status = journal_load(journal->j_journal);
634 if (status < 0) {
635 mlog(ML_ERROR, "Failed to load journal!\n");
636 goto done;
637 }
638
639 ocfs2_clear_journal_error(osb->sb, journal->j_journal, osb->slot_num);
640
641 status = ocfs2_journal_toggle_dirty(osb, 1);
642 if (status < 0) {
643 mlog_errno(status);
644 goto done;
645 }
646
647 /* Launch the commit thread */
78427043 648 osb->commit_task = kthread_run(ocfs2_commit_thread, osb, "ocfs2cmt");
ccd979bd
MF
649 if (IS_ERR(osb->commit_task)) {
650 status = PTR_ERR(osb->commit_task);
651 osb->commit_task = NULL;
652 mlog(ML_ERROR, "unable to launch ocfs2commit thread, error=%d",
653 status);
654 goto done;
655 }
656
657done:
658 mlog_exit(status);
659 return status;
660}
661
662
663/* 'full' flag tells us whether we clear out all blocks or if we just
664 * mark the journal clean */
665int ocfs2_journal_wipe(struct ocfs2_journal *journal, int full)
666{
667 int status;
668
669 mlog_entry_void();
670
ebdec83b 671 BUG_ON(!journal);
ccd979bd
MF
672
673 status = journal_wipe(journal->j_journal, full);
674 if (status < 0) {
675 mlog_errno(status);
676 goto bail;
677 }
678
679 status = ocfs2_journal_toggle_dirty(journal->j_osb, 0);
680 if (status < 0)
681 mlog_errno(status);
682
683bail:
684 mlog_exit(status);
685 return status;
686}
687
688/*
689 * JBD Might read a cached version of another nodes journal file. We
690 * don't want this as this file changes often and we get no
691 * notification on those changes. The only way to be sure that we've
692 * got the most up to date version of those blocks then is to force
693 * read them off disk. Just searching through the buffer cache won't
694 * work as there may be pages backing this file which are still marked
695 * up to date. We know things can't change on this file underneath us
696 * as we have the lock by now :)
697 */
698static int ocfs2_force_read_journal(struct inode *inode)
699{
700 int status = 0;
701 int i, p_blocks;
702 u64 v_blkno, p_blkno;
703#define CONCURRENT_JOURNAL_FILL 32
704 struct buffer_head *bhs[CONCURRENT_JOURNAL_FILL];
705
706 mlog_entry_void();
707
708 BUG_ON(inode->i_blocks !=
709 ocfs2_align_bytes_to_sectors(i_size_read(inode)));
710
711 memset(bhs, 0, sizeof(struct buffer_head *) * CONCURRENT_JOURNAL_FILL);
712
5515eff8
AM
713 mlog(0, "Force reading %llu blocks\n",
714 (unsigned long long)(inode->i_blocks >>
715 (inode->i_sb->s_blocksize_bits - 9)));
ccd979bd
MF
716
717 v_blkno = 0;
718 while (v_blkno <
719 (inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9))) {
720
721 status = ocfs2_extent_map_get_blocks(inode, v_blkno,
722 1, &p_blkno,
723 &p_blocks);
724 if (status < 0) {
725 mlog_errno(status);
726 goto bail;
727 }
728
729 if (p_blocks > CONCURRENT_JOURNAL_FILL)
730 p_blocks = CONCURRENT_JOURNAL_FILL;
731
dd4a2c2b
MF
732 /* We are reading journal data which should not
733 * be put in the uptodate cache */
ccd979bd
MF
734 status = ocfs2_read_blocks(OCFS2_SB(inode->i_sb),
735 p_blkno, p_blocks, bhs, 0,
dd4a2c2b 736 NULL);
ccd979bd
MF
737 if (status < 0) {
738 mlog_errno(status);
739 goto bail;
740 }
741
742 for(i = 0; i < p_blocks; i++) {
743 brelse(bhs[i]);
744 bhs[i] = NULL;
745 }
746
747 v_blkno += p_blocks;
748 }
749
750bail:
751 for(i = 0; i < CONCURRENT_JOURNAL_FILL; i++)
752 if (bhs[i])
753 brelse(bhs[i]);
754 mlog_exit(status);
755 return status;
756}
757
758struct ocfs2_la_recovery_item {
759 struct list_head lri_list;
760 int lri_slot;
761 struct ocfs2_dinode *lri_la_dinode;
762 struct ocfs2_dinode *lri_tl_dinode;
763};
764
765/* Does the second half of the recovery process. By this point, the
766 * node is marked clean and can actually be considered recovered,
767 * hence it's no longer in the recovery map, but there's still some
768 * cleanup we can do which shouldn't happen within the recovery thread
769 * as locking in that context becomes very difficult if we are to take
770 * recovering nodes into account.
771 *
772 * NOTE: This function can and will sleep on recovery of other nodes
773 * during cluster locking, just like any other ocfs2 process.
774 */
775void ocfs2_complete_recovery(void *data)
776{
777 int ret;
778 struct ocfs2_super *osb = data;
779 struct ocfs2_journal *journal = osb->journal;
780 struct ocfs2_dinode *la_dinode, *tl_dinode;
781 struct ocfs2_la_recovery_item *item;
782 struct list_head *p, *n;
783 LIST_HEAD(tmp_la_list);
784
785 mlog_entry_void();
786
787 mlog(0, "completing recovery from keventd\n");
788
789 spin_lock(&journal->j_lock);
790 list_splice_init(&journal->j_la_cleanups, &tmp_la_list);
791 spin_unlock(&journal->j_lock);
792
793 list_for_each_safe(p, n, &tmp_la_list) {
794 item = list_entry(p, struct ocfs2_la_recovery_item, lri_list);
795 list_del_init(&item->lri_list);
796
797 mlog(0, "Complete recovery for slot %d\n", item->lri_slot);
798
799 la_dinode = item->lri_la_dinode;
800 if (la_dinode) {
b0697053
MF
801 mlog(0, "Clean up local alloc %llu\n",
802 (unsigned long long)la_dinode->i_blkno);
ccd979bd
MF
803
804 ret = ocfs2_complete_local_alloc_recovery(osb,
805 la_dinode);
806 if (ret < 0)
807 mlog_errno(ret);
808
809 kfree(la_dinode);
810 }
811
812 tl_dinode = item->lri_tl_dinode;
813 if (tl_dinode) {
b0697053
MF
814 mlog(0, "Clean up truncate log %llu\n",
815 (unsigned long long)tl_dinode->i_blkno);
ccd979bd
MF
816
817 ret = ocfs2_complete_truncate_log_recovery(osb,
818 tl_dinode);
819 if (ret < 0)
820 mlog_errno(ret);
821
822 kfree(tl_dinode);
823 }
824
825 ret = ocfs2_recover_orphans(osb, item->lri_slot);
826 if (ret < 0)
827 mlog_errno(ret);
828
829 kfree(item);
830 }
831
832 mlog(0, "Recovery completion\n");
833 mlog_exit_void();
834}
835
836/* NOTE: This function always eats your references to la_dinode and
837 * tl_dinode, either manually on error, or by passing them to
838 * ocfs2_complete_recovery */
839static void ocfs2_queue_recovery_completion(struct ocfs2_journal *journal,
840 int slot_num,
841 struct ocfs2_dinode *la_dinode,
842 struct ocfs2_dinode *tl_dinode)
843{
844 struct ocfs2_la_recovery_item *item;
845
afae00ab 846 item = kmalloc(sizeof(struct ocfs2_la_recovery_item), GFP_NOFS);
ccd979bd
MF
847 if (!item) {
848 /* Though we wish to avoid it, we are in fact safe in
849 * skipping local alloc cleanup as fsck.ocfs2 is more
850 * than capable of reclaiming unused space. */
851 if (la_dinode)
852 kfree(la_dinode);
853
854 if (tl_dinode)
855 kfree(tl_dinode);
856
857 mlog_errno(-ENOMEM);
858 return;
859 }
860
861 INIT_LIST_HEAD(&item->lri_list);
862 item->lri_la_dinode = la_dinode;
863 item->lri_slot = slot_num;
864 item->lri_tl_dinode = tl_dinode;
865
866 spin_lock(&journal->j_lock);
867 list_add_tail(&item->lri_list, &journal->j_la_cleanups);
868 queue_work(ocfs2_wq, &journal->j_recovery_work);
869 spin_unlock(&journal->j_lock);
870}
871
872/* Called by the mount code to queue recovery the last part of
873 * recovery for it's own slot. */
874void ocfs2_complete_mount_recovery(struct ocfs2_super *osb)
875{
876 struct ocfs2_journal *journal = osb->journal;
877
878 if (osb->dirty) {
879 /* No need to queue up our truncate_log as regular
880 * cleanup will catch that. */
881 ocfs2_queue_recovery_completion(journal,
882 osb->slot_num,
883 osb->local_alloc_copy,
884 NULL);
885 ocfs2_schedule_truncate_log_flush(osb, 0);
886
887 osb->local_alloc_copy = NULL;
888 osb->dirty = 0;
889 }
890}
891
892static int __ocfs2_recovery_thread(void *arg)
893{
894 int status, node_num;
895 struct ocfs2_super *osb = arg;
896
897 mlog_entry_void();
898
899 status = ocfs2_wait_on_mount(osb);
900 if (status < 0) {
901 goto bail;
902 }
903
904restart:
905 status = ocfs2_super_lock(osb, 1);
906 if (status < 0) {
907 mlog_errno(status);
908 goto bail;
909 }
910
911 while(!ocfs2_node_map_is_empty(osb, &osb->recovery_map)) {
912 node_num = ocfs2_node_map_first_set_bit(osb,
913 &osb->recovery_map);
914 if (node_num == O2NM_INVALID_NODE_NUM) {
915 mlog(0, "Out of nodes to recover.\n");
916 break;
917 }
918
919 status = ocfs2_recover_node(osb, node_num);
920 if (status < 0) {
921 mlog(ML_ERROR,
922 "Error %d recovering node %d on device (%u,%u)!\n",
923 status, node_num,
924 MAJOR(osb->sb->s_dev), MINOR(osb->sb->s_dev));
925 mlog(ML_ERROR, "Volume requires unmount.\n");
926 continue;
927 }
928
929 ocfs2_recovery_map_clear(osb, node_num);
930 }
931 ocfs2_super_unlock(osb, 1);
932
933 /* We always run recovery on our own orphan dir - the dead
934 * node(s) may have voted "no" on an inode delete earlier. A
935 * revote is therefore required. */
936 ocfs2_queue_recovery_completion(osb->journal, osb->slot_num, NULL,
937 NULL);
938
939bail:
c74ec2f7 940 mutex_lock(&osb->recovery_lock);
ccd979bd
MF
941 if (!status &&
942 !ocfs2_node_map_is_empty(osb, &osb->recovery_map)) {
c74ec2f7 943 mutex_unlock(&osb->recovery_lock);
ccd979bd
MF
944 goto restart;
945 }
946
947 osb->recovery_thread_task = NULL;
948 mb(); /* sync with ocfs2_recovery_thread_running */
949 wake_up(&osb->recovery_event);
950
c74ec2f7 951 mutex_unlock(&osb->recovery_lock);
ccd979bd
MF
952
953 mlog_exit(status);
954 /* no one is callint kthread_stop() for us so the kthread() api
955 * requires that we call do_exit(). And it isn't exported, but
956 * complete_and_exit() seems to be a minimal wrapper around it. */
957 complete_and_exit(NULL, status);
958 return status;
959}
960
961void ocfs2_recovery_thread(struct ocfs2_super *osb, int node_num)
962{
963 mlog_entry("(node_num=%d, osb->node_num = %d)\n",
964 node_num, osb->node_num);
965
c74ec2f7 966 mutex_lock(&osb->recovery_lock);
ccd979bd
MF
967 if (osb->disable_recovery)
968 goto out;
969
970 /* People waiting on recovery will wait on
971 * the recovery map to empty. */
972 if (!ocfs2_recovery_map_set(osb, node_num))
973 mlog(0, "node %d already be in recovery.\n", node_num);
974
975 mlog(0, "starting recovery thread...\n");
976
977 if (osb->recovery_thread_task)
978 goto out;
979
980 osb->recovery_thread_task = kthread_run(__ocfs2_recovery_thread, osb,
78427043 981 "ocfs2rec");
ccd979bd
MF
982 if (IS_ERR(osb->recovery_thread_task)) {
983 mlog_errno((int)PTR_ERR(osb->recovery_thread_task));
984 osb->recovery_thread_task = NULL;
985 }
986
987out:
c74ec2f7 988 mutex_unlock(&osb->recovery_lock);
ccd979bd
MF
989 wake_up(&osb->recovery_event);
990
991 mlog_exit_void();
992}
993
994/* Does the actual journal replay and marks the journal inode as
995 * clean. Will only replay if the journal inode is marked dirty. */
996static int ocfs2_replay_journal(struct ocfs2_super *osb,
997 int node_num,
998 int slot_num)
999{
1000 int status;
1001 int got_lock = 0;
1002 unsigned int flags;
1003 struct inode *inode = NULL;
1004 struct ocfs2_dinode *fe;
1005 journal_t *journal = NULL;
1006 struct buffer_head *bh = NULL;
1007
1008 inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE,
1009 slot_num);
1010 if (inode == NULL) {
1011 status = -EACCES;
1012 mlog_errno(status);
1013 goto done;
1014 }
1015 if (is_bad_inode(inode)) {
1016 status = -EACCES;
1017 iput(inode);
1018 inode = NULL;
1019 mlog_errno(status);
1020 goto done;
1021 }
1022 SET_INODE_JOURNAL(inode);
1023
4bcec184 1024 status = ocfs2_meta_lock_full(inode, &bh, 1, OCFS2_META_LOCK_RECOVERY);
ccd979bd
MF
1025 if (status < 0) {
1026 mlog(0, "status returned from ocfs2_meta_lock=%d\n", status);
1027 if (status != -ERESTARTSYS)
1028 mlog(ML_ERROR, "Could not lock journal!\n");
1029 goto done;
1030 }
1031 got_lock = 1;
1032
1033 fe = (struct ocfs2_dinode *) bh->b_data;
1034
1035 flags = le32_to_cpu(fe->id1.journal1.ij_flags);
1036
1037 if (!(flags & OCFS2_JOURNAL_DIRTY_FL)) {
1038 mlog(0, "No recovery required for node %d\n", node_num);
1039 goto done;
1040 }
1041
1042 mlog(ML_NOTICE, "Recovering node %d from slot %d on device (%u,%u)\n",
1043 node_num, slot_num,
1044 MAJOR(osb->sb->s_dev), MINOR(osb->sb->s_dev));
1045
1046 OCFS2_I(inode)->ip_clusters = le32_to_cpu(fe->i_clusters);
1047
1048 status = ocfs2_force_read_journal(inode);
1049 if (status < 0) {
1050 mlog_errno(status);
1051 goto done;
1052 }
1053
1054 mlog(0, "calling journal_init_inode\n");
1055 journal = journal_init_inode(inode);
1056 if (journal == NULL) {
1057 mlog(ML_ERROR, "Linux journal layer error\n");
1058 status = -EIO;
1059 goto done;
1060 }
1061
1062 status = journal_load(journal);
1063 if (status < 0) {
1064 mlog_errno(status);
1065 if (!igrab(inode))
1066 BUG();
1067 journal_destroy(journal);
1068 goto done;
1069 }
1070
1071 ocfs2_clear_journal_error(osb->sb, journal, slot_num);
1072
1073 /* wipe the journal */
1074 mlog(0, "flushing the journal.\n");
1075 journal_lock_updates(journal);
1076 status = journal_flush(journal);
1077 journal_unlock_updates(journal);
1078 if (status < 0)
1079 mlog_errno(status);
1080
1081 /* This will mark the node clean */
1082 flags = le32_to_cpu(fe->id1.journal1.ij_flags);
1083 flags &= ~OCFS2_JOURNAL_DIRTY_FL;
1084 fe->id1.journal1.ij_flags = cpu_to_le32(flags);
1085
1086 status = ocfs2_write_block(osb, bh, inode);
1087 if (status < 0)
1088 mlog_errno(status);
1089
1090 if (!igrab(inode))
1091 BUG();
1092
1093 journal_destroy(journal);
1094
1095done:
1096 /* drop the lock on this nodes journal */
1097 if (got_lock)
1098 ocfs2_meta_unlock(inode, 1);
1099
1100 if (inode)
1101 iput(inode);
1102
1103 if (bh)
1104 brelse(bh);
1105
1106 mlog_exit(status);
1107 return status;
1108}
1109
1110/*
1111 * Do the most important parts of node recovery:
1112 * - Replay it's journal
1113 * - Stamp a clean local allocator file
1114 * - Stamp a clean truncate log
1115 * - Mark the node clean
1116 *
1117 * If this function completes without error, a node in OCFS2 can be
1118 * said to have been safely recovered. As a result, failure during the
1119 * second part of a nodes recovery process (local alloc recovery) is
1120 * far less concerning.
1121 */
1122static int ocfs2_recover_node(struct ocfs2_super *osb,
1123 int node_num)
1124{
1125 int status = 0;
1126 int slot_num;
1127 struct ocfs2_slot_info *si = osb->slot_info;
1128 struct ocfs2_dinode *la_copy = NULL;
1129 struct ocfs2_dinode *tl_copy = NULL;
1130
1131 mlog_entry("(node_num=%d, osb->node_num = %d)\n",
1132 node_num, osb->node_num);
1133
1134 mlog(0, "checking node %d\n", node_num);
1135
1136 /* Should not ever be called to recover ourselves -- in that
1137 * case we should've called ocfs2_journal_load instead. */
ebdec83b 1138 BUG_ON(osb->node_num == node_num);
ccd979bd
MF
1139
1140 slot_num = ocfs2_node_num_to_slot(si, node_num);
1141 if (slot_num == OCFS2_INVALID_SLOT) {
1142 status = 0;
1143 mlog(0, "no slot for this node, so no recovery required.\n");
1144 goto done;
1145 }
1146
1147 mlog(0, "node %d was using slot %d\n", node_num, slot_num);
1148
1149 status = ocfs2_replay_journal(osb, node_num, slot_num);
1150 if (status < 0) {
1151 mlog_errno(status);
1152 goto done;
1153 }
1154
1155 /* Stamp a clean local alloc file AFTER recovering the journal... */
1156 status = ocfs2_begin_local_alloc_recovery(osb, slot_num, &la_copy);
1157 if (status < 0) {
1158 mlog_errno(status);
1159 goto done;
1160 }
1161
1162 /* An error from begin_truncate_log_recovery is not
1163 * serious enough to warrant halting the rest of
1164 * recovery. */
1165 status = ocfs2_begin_truncate_log_recovery(osb, slot_num, &tl_copy);
1166 if (status < 0)
1167 mlog_errno(status);
1168
1169 /* Likewise, this would be a strange but ultimately not so
1170 * harmful place to get an error... */
1171 ocfs2_clear_slot(si, slot_num);
1172 status = ocfs2_update_disk_slots(osb, si);
1173 if (status < 0)
1174 mlog_errno(status);
1175
1176 /* This will kfree the memory pointed to by la_copy and tl_copy */
1177 ocfs2_queue_recovery_completion(osb->journal, slot_num, la_copy,
1178 tl_copy);
1179
1180 status = 0;
1181done:
1182
1183 mlog_exit(status);
1184 return status;
1185}
1186
1187/* Test node liveness by trylocking his journal. If we get the lock,
1188 * we drop it here. Return 0 if we got the lock, -EAGAIN if node is
1189 * still alive (we couldn't get the lock) and < 0 on error. */
1190static int ocfs2_trylock_journal(struct ocfs2_super *osb,
1191 int slot_num)
1192{
1193 int status, flags;
1194 struct inode *inode = NULL;
1195
1196 inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE,
1197 slot_num);
1198 if (inode == NULL) {
1199 mlog(ML_ERROR, "access error\n");
1200 status = -EACCES;
1201 goto bail;
1202 }
1203 if (is_bad_inode(inode)) {
1204 mlog(ML_ERROR, "access error (bad inode)\n");
1205 iput(inode);
1206 inode = NULL;
1207 status = -EACCES;
1208 goto bail;
1209 }
1210 SET_INODE_JOURNAL(inode);
1211
1212 flags = OCFS2_META_LOCK_RECOVERY | OCFS2_META_LOCK_NOQUEUE;
4bcec184 1213 status = ocfs2_meta_lock_full(inode, NULL, 1, flags);
ccd979bd
MF
1214 if (status < 0) {
1215 if (status != -EAGAIN)
1216 mlog_errno(status);
1217 goto bail;
1218 }
1219
1220 ocfs2_meta_unlock(inode, 1);
1221bail:
1222 if (inode)
1223 iput(inode);
1224
1225 return status;
1226}
1227
1228/* Call this underneath ocfs2_super_lock. It also assumes that the
1229 * slot info struct has been updated from disk. */
1230int ocfs2_mark_dead_nodes(struct ocfs2_super *osb)
1231{
1232 int status, i, node_num;
1233 struct ocfs2_slot_info *si = osb->slot_info;
1234
1235 /* This is called with the super block cluster lock, so we
1236 * know that the slot map can't change underneath us. */
1237
1238 spin_lock(&si->si_lock);
1239 for(i = 0; i < si->si_num_slots; i++) {
1240 if (i == osb->slot_num)
1241 continue;
1242 if (ocfs2_is_empty_slot(si, i))
1243 continue;
1244
1245 node_num = si->si_global_node_nums[i];
1246 if (ocfs2_node_map_test_bit(osb, &osb->recovery_map, node_num))
1247 continue;
1248 spin_unlock(&si->si_lock);
1249
1250 /* Ok, we have a slot occupied by another node which
1251 * is not in the recovery map. We trylock his journal
1252 * file here to test if he's alive. */
1253 status = ocfs2_trylock_journal(osb, i);
1254 if (!status) {
1255 /* Since we're called from mount, we know that
1256 * the recovery thread can't race us on
1257 * setting / checking the recovery bits. */
1258 ocfs2_recovery_thread(osb, node_num);
1259 } else if ((status < 0) && (status != -EAGAIN)) {
1260 mlog_errno(status);
1261 goto bail;
1262 }
1263
1264 spin_lock(&si->si_lock);
1265 }
1266 spin_unlock(&si->si_lock);
1267
1268 status = 0;
1269bail:
1270 mlog_exit(status);
1271 return status;
1272}
1273
b4df6ed8
MF
1274static int ocfs2_queue_orphans(struct ocfs2_super *osb,
1275 int slot,
1276 struct inode **head)
ccd979bd 1277{
b4df6ed8 1278 int status;
ccd979bd 1279 struct inode *orphan_dir_inode = NULL;
b4df6ed8 1280 struct inode *iter;
ccd979bd
MF
1281 unsigned long offset, blk, local;
1282 struct buffer_head *bh = NULL;
1283 struct ocfs2_dir_entry *de;
1284 struct super_block *sb = osb->sb;
ccd979bd
MF
1285
1286 orphan_dir_inode = ocfs2_get_system_file_inode(osb,
1287 ORPHAN_DIR_SYSTEM_INODE,
1288 slot);
1289 if (!orphan_dir_inode) {
1290 status = -ENOENT;
1291 mlog_errno(status);
b4df6ed8
MF
1292 return status;
1293 }
ccd979bd 1294
1b1dcc1b 1295 mutex_lock(&orphan_dir_inode->i_mutex);
4bcec184 1296 status = ocfs2_meta_lock(orphan_dir_inode, NULL, 0);
ccd979bd 1297 if (status < 0) {
ccd979bd
MF
1298 mlog_errno(status);
1299 goto out;
1300 }
ccd979bd
MF
1301
1302 offset = 0;
1303 iter = NULL;
1304 while(offset < i_size_read(orphan_dir_inode)) {
1305 blk = offset >> sb->s_blocksize_bits;
1306
1307 bh = ocfs2_bread(orphan_dir_inode, blk, &status, 0);
1308 if (!bh)
1309 status = -EINVAL;
1310 if (status < 0) {
ccd979bd
MF
1311 if (bh)
1312 brelse(bh);
1313 mlog_errno(status);
b4df6ed8 1314 goto out_unlock;
ccd979bd
MF
1315 }
1316
1317 local = 0;
1318 while(offset < i_size_read(orphan_dir_inode)
1319 && local < sb->s_blocksize) {
1320 de = (struct ocfs2_dir_entry *) (bh->b_data + local);
1321
1322 if (!ocfs2_check_dir_entry(orphan_dir_inode,
1323 de, bh, local)) {
ccd979bd
MF
1324 status = -EINVAL;
1325 mlog_errno(status);
1326 brelse(bh);
b4df6ed8 1327 goto out_unlock;
ccd979bd
MF
1328 }
1329
1330 local += le16_to_cpu(de->rec_len);
1331 offset += le16_to_cpu(de->rec_len);
1332
1333 /* I guess we silently fail on no inode? */
1334 if (!le64_to_cpu(de->inode))
1335 continue;
1336 if (de->file_type > OCFS2_FT_MAX) {
1337 mlog(ML_ERROR,
1338 "block %llu contains invalid de: "
b0697053 1339 "inode = %llu, rec_len = %u, "
ccd979bd
MF
1340 "name_len = %u, file_type = %u, "
1341 "name='%.*s'\n",
1342 (unsigned long long)bh->b_blocknr,
b0697053 1343 (unsigned long long)le64_to_cpu(de->inode),
ccd979bd
MF
1344 le16_to_cpu(de->rec_len),
1345 de->name_len,
1346 de->file_type,
1347 de->name_len,
1348 de->name);
1349 continue;
1350 }
1351 if (de->name_len == 1 && !strncmp(".", de->name, 1))
1352 continue;
1353 if (de->name_len == 2 && !strncmp("..", de->name, 2))
1354 continue;
1355
24c19ef4
MF
1356 iter = ocfs2_iget(osb, le64_to_cpu(de->inode),
1357 OCFS2_FI_FLAG_NOLOCK);
ccd979bd
MF
1358 if (IS_ERR(iter))
1359 continue;
1360
b0697053
MF
1361 mlog(0, "queue orphan %llu\n",
1362 (unsigned long long)OCFS2_I(iter)->ip_blkno);
b4df6ed8
MF
1363 /* No locking is required for the next_orphan
1364 * queue as there is only ever a single
1365 * process doing orphan recovery. */
1366 OCFS2_I(iter)->ip_next_orphan = *head;
1367 *head = iter;
ccd979bd
MF
1368 }
1369 brelse(bh);
1370 }
ccd979bd 1371
b4df6ed8 1372out_unlock:
ccd979bd 1373 ocfs2_meta_unlock(orphan_dir_inode, 0);
b4df6ed8
MF
1374out:
1375 mutex_unlock(&orphan_dir_inode->i_mutex);
ccd979bd 1376 iput(orphan_dir_inode);
b4df6ed8
MF
1377 return status;
1378}
1379
1380static int ocfs2_orphan_recovery_can_continue(struct ocfs2_super *osb,
1381 int slot)
1382{
1383 int ret;
1384
1385 spin_lock(&osb->osb_lock);
1386 ret = !osb->osb_orphan_wipes[slot];
1387 spin_unlock(&osb->osb_lock);
1388 return ret;
1389}
1390
1391static void ocfs2_mark_recovering_orphan_dir(struct ocfs2_super *osb,
1392 int slot)
1393{
1394 spin_lock(&osb->osb_lock);
1395 /* Mark ourselves such that new processes in delete_inode()
1396 * know to quit early. */
1397 ocfs2_node_map_set_bit(osb, &osb->osb_recovering_orphan_dirs, slot);
1398 while (osb->osb_orphan_wipes[slot]) {
1399 /* If any processes are already in the middle of an
1400 * orphan wipe on this dir, then we need to wait for
1401 * them. */
1402 spin_unlock(&osb->osb_lock);
1403 wait_event_interruptible(osb->osb_wipe_event,
1404 ocfs2_orphan_recovery_can_continue(osb, slot));
1405 spin_lock(&osb->osb_lock);
1406 }
1407 spin_unlock(&osb->osb_lock);
1408}
1409
1410static void ocfs2_clear_recovering_orphan_dir(struct ocfs2_super *osb,
1411 int slot)
1412{
1413 ocfs2_node_map_clear_bit(osb, &osb->osb_recovering_orphan_dirs, slot);
1414}
1415
1416/*
1417 * Orphan recovery. Each mounted node has it's own orphan dir which we
1418 * must run during recovery. Our strategy here is to build a list of
1419 * the inodes in the orphan dir and iget/iput them. The VFS does
1420 * (most) of the rest of the work.
1421 *
1422 * Orphan recovery can happen at any time, not just mount so we have a
1423 * couple of extra considerations.
1424 *
1425 * - We grab as many inodes as we can under the orphan dir lock -
1426 * doing iget() outside the orphan dir risks getting a reference on
1427 * an invalid inode.
1428 * - We must be sure not to deadlock with other processes on the
1429 * system wanting to run delete_inode(). This can happen when they go
1430 * to lock the orphan dir and the orphan recovery process attempts to
1431 * iget() inside the orphan dir lock. This can be avoided by
1432 * advertising our state to ocfs2_delete_inode().
1433 */
1434static int ocfs2_recover_orphans(struct ocfs2_super *osb,
1435 int slot)
1436{
1437 int ret = 0;
1438 struct inode *inode = NULL;
1439 struct inode *iter;
1440 struct ocfs2_inode_info *oi;
1441
1442 mlog(0, "Recover inodes from orphan dir in slot %d\n", slot);
1443
1444 ocfs2_mark_recovering_orphan_dir(osb, slot);
1445 ret = ocfs2_queue_orphans(osb, slot, &inode);
1446 ocfs2_clear_recovering_orphan_dir(osb, slot);
1447
1448 /* Error here should be noted, but we want to continue with as
1449 * many queued inodes as we've got. */
1450 if (ret)
1451 mlog_errno(ret);
ccd979bd
MF
1452
1453 while (inode) {
1454 oi = OCFS2_I(inode);
b0697053 1455 mlog(0, "iput orphan %llu\n", (unsigned long long)oi->ip_blkno);
ccd979bd
MF
1456
1457 iter = oi->ip_next_orphan;
1458
1459 spin_lock(&oi->ip_lock);
1460 /* Delete voting may have set these on the assumption
1461 * that the other node would wipe them successfully.
1462 * If they are still in the node's orphan dir, we need
1463 * to reset that state. */
1464 oi->ip_flags &= ~(OCFS2_INODE_DELETED|OCFS2_INODE_SKIP_DELETE);
1465
1466 /* Set the proper information to get us going into
1467 * ocfs2_delete_inode. */
1468 oi->ip_flags |= OCFS2_INODE_MAYBE_ORPHANED;
1469 oi->ip_orphaned_slot = slot;
1470 spin_unlock(&oi->ip_lock);
1471
1472 iput(inode);
1473
1474 inode = iter;
1475 }
1476
b4df6ed8 1477 return ret;
ccd979bd
MF
1478}
1479
1480static int ocfs2_wait_on_mount(struct ocfs2_super *osb)
1481{
1482 /* This check is good because ocfs2 will wait on our recovery
1483 * thread before changing it to something other than MOUNTED
1484 * or DISABLED. */
1485 wait_event(osb->osb_mount_event,
1486 atomic_read(&osb->vol_state) == VOLUME_MOUNTED ||
1487 atomic_read(&osb->vol_state) == VOLUME_DISABLED);
1488
1489 /* If there's an error on mount, then we may never get to the
1490 * MOUNTED flag, but this is set right before
1491 * dismount_volume() so we can trust it. */
1492 if (atomic_read(&osb->vol_state) == VOLUME_DISABLED) {
1493 mlog(0, "mount error, exiting!\n");
1494 return -EBUSY;
1495 }
1496
1497 return 0;
1498}
1499
1500static int ocfs2_commit_thread(void *arg)
1501{
1502 int status;
1503 struct ocfs2_super *osb = arg;
1504 struct ocfs2_journal *journal = osb->journal;
1505
1506 /* we can trust j_num_trans here because _should_stop() is only set in
1507 * shutdown and nobody other than ourselves should be able to start
1508 * transactions. committing on shutdown might take a few iterations
1509 * as final transactions put deleted inodes on the list */
1510 while (!(kthread_should_stop() &&
1511 atomic_read(&journal->j_num_trans) == 0)) {
1512
745ae8ba
MF
1513 wait_event_interruptible(osb->checkpoint_event,
1514 atomic_read(&journal->j_num_trans)
1515 || kthread_should_stop());
ccd979bd
MF
1516
1517 status = ocfs2_commit_cache(osb);
1518 if (status < 0)
1519 mlog_errno(status);
1520
1521 if (kthread_should_stop() && atomic_read(&journal->j_num_trans)){
1522 mlog(ML_KTHREAD,
1523 "commit_thread: %u transactions pending on "
1524 "shutdown\n",
1525 atomic_read(&journal->j_num_trans));
1526 }
1527 }
1528
1529 return 0;
1530}
1531
1532/* Look for a dirty journal without taking any cluster locks. Used for
1533 * hard readonly access to determine whether the file system journals
1534 * require recovery. */
1535int ocfs2_check_journals_nolocks(struct ocfs2_super *osb)
1536{
1537 int ret = 0;
1538 unsigned int slot;
1539 struct buffer_head *di_bh;
1540 struct ocfs2_dinode *di;
1541 struct inode *journal = NULL;
1542
1543 for(slot = 0; slot < osb->max_slots; slot++) {
1544 journal = ocfs2_get_system_file_inode(osb,
1545 JOURNAL_SYSTEM_INODE,
1546 slot);
1547 if (!journal || is_bad_inode(journal)) {
1548 ret = -EACCES;
1549 mlog_errno(ret);
1550 goto out;
1551 }
1552
1553 di_bh = NULL;
1554 ret = ocfs2_read_block(osb, OCFS2_I(journal)->ip_blkno, &di_bh,
1555 0, journal);
1556 if (ret < 0) {
1557 mlog_errno(ret);
1558 goto out;
1559 }
1560
1561 di = (struct ocfs2_dinode *) di_bh->b_data;
1562
1563 if (le32_to_cpu(di->id1.journal1.ij_flags) &
1564 OCFS2_JOURNAL_DIRTY_FL)
1565 ret = -EROFS;
1566
1567 brelse(di_bh);
1568 if (ret)
1569 break;
1570 }
1571
1572out:
1573 if (journal)
1574 iput(journal);
1575
1576 return ret;
1577}