]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blame - fs/ocfs2/journal.c
ocfs2: do not BUG if jbd2_journal_dirty_metadata fails
[mirror_ubuntu-focal-kernel.git] / fs / ocfs2 / journal.c
CommitLineData
ccd979bd
MF
1/* -*- mode: c; c-basic-offset: 8; -*-
2 * vim: noexpandtab sw=8 ts=8 sts=0:
3 *
4 * journal.c
5 *
6 * Defines functions of journalling api
7 *
8 * Copyright (C) 2003, 2004 Oracle. All rights reserved.
9 *
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public
12 * License as published by the Free Software Foundation; either
13 * version 2 of the License, or (at your option) any later version.
14 *
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
18 * General Public License for more details.
19 *
20 * You should have received a copy of the GNU General Public
21 * License along with this program; if not, write to the
22 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
23 * Boston, MA 021110-1307, USA.
24 */
25
26#include <linux/fs.h>
27#include <linux/types.h>
28#include <linux/slab.h>
29#include <linux/highmem.h>
30#include <linux/kthread.h>
83273932
SE
31#include <linux/time.h>
32#include <linux/random.h>
55b465b6 33#include <linux/delay.h>
ccd979bd 34
ccd979bd
MF
35#include <cluster/masklog.h>
36
37#include "ocfs2.h"
38
39#include "alloc.h"
50655ae9 40#include "blockcheck.h"
316f4b9f 41#include "dir.h"
ccd979bd
MF
42#include "dlmglue.h"
43#include "extent_map.h"
44#include "heartbeat.h"
45#include "inode.h"
46#include "journal.h"
47#include "localalloc.h"
ccd979bd
MF
48#include "slot_map.h"
49#include "super.h"
ccd979bd 50#include "sysfile.h"
0cf2f763 51#include "uptodate.h"
2205363d 52#include "quota.h"
ed460cff
JQ
53#include "file.h"
54#include "namei.h"
ccd979bd
MF
55
56#include "buffer_head_io.h"
b4107950 57#include "ocfs2_trace.h"
ccd979bd 58
34af946a 59DEFINE_SPINLOCK(trans_inc_lock);
ccd979bd 60
83273932
SE
61#define ORPHAN_SCAN_SCHEDULE_TIMEOUT 300000
62
ccd979bd
MF
63static int ocfs2_force_read_journal(struct inode *inode);
64static int ocfs2_recover_node(struct ocfs2_super *osb,
2205363d 65 int node_num, int slot_num);
ccd979bd
MF
66static int __ocfs2_recovery_thread(void *arg);
67static int ocfs2_commit_cache(struct ocfs2_super *osb);
19ece546 68static int __ocfs2_wait_on_mount(struct ocfs2_super *osb, int quota);
ccd979bd 69static int ocfs2_journal_toggle_dirty(struct ocfs2_super *osb,
539d8264 70 int dirty, int replayed);
ccd979bd
MF
71static int ocfs2_trylock_journal(struct ocfs2_super *osb,
72 int slot_num);
73static int ocfs2_recover_orphans(struct ocfs2_super *osb,
ed460cff
JQ
74 int slot,
75 enum ocfs2_orphan_reco_type orphan_reco_type);
ccd979bd 76static int ocfs2_commit_thread(void *arg);
9140db04
SE
77static void ocfs2_queue_recovery_completion(struct ocfs2_journal *journal,
78 int slot_num,
79 struct ocfs2_dinode *la_dinode,
80 struct ocfs2_dinode *tl_dinode,
ed460cff
JQ
81 struct ocfs2_quota_recovery *qrec,
82 enum ocfs2_orphan_reco_type orphan_reco_type);
ccd979bd 83
19ece546
JK
84static inline int ocfs2_wait_on_mount(struct ocfs2_super *osb)
85{
86 return __ocfs2_wait_on_mount(osb, 0);
87}
88
89static inline int ocfs2_wait_on_quotas(struct ocfs2_super *osb)
90{
91 return __ocfs2_wait_on_mount(osb, 1);
92}
93
9140db04
SE
94/*
95 * This replay_map is to track online/offline slots, so we could recover
96 * offline slots during recovery and mount
97 */
98
99enum ocfs2_replay_state {
100 REPLAY_UNNEEDED = 0, /* Replay is not needed, so ignore this map */
101 REPLAY_NEEDED, /* Replay slots marked in rm_replay_slots */
102 REPLAY_DONE /* Replay was already queued */
103};
104
105struct ocfs2_replay_map {
106 unsigned int rm_slots;
107 enum ocfs2_replay_state rm_state;
108 unsigned char rm_replay_slots[0];
109};
110
111void ocfs2_replay_map_set_state(struct ocfs2_super *osb, int state)
112{
113 if (!osb->replay_map)
114 return;
115
116 /* If we've already queued the replay, we don't have any more to do */
117 if (osb->replay_map->rm_state == REPLAY_DONE)
118 return;
119
120 osb->replay_map->rm_state = state;
121}
122
123int ocfs2_compute_replay_slots(struct ocfs2_super *osb)
124{
125 struct ocfs2_replay_map *replay_map;
126 int i, node_num;
127
128 /* If replay map is already set, we don't do it again */
129 if (osb->replay_map)
130 return 0;
131
132 replay_map = kzalloc(sizeof(struct ocfs2_replay_map) +
133 (osb->max_slots * sizeof(char)), GFP_KERNEL);
134
135 if (!replay_map) {
136 mlog_errno(-ENOMEM);
137 return -ENOMEM;
138 }
139
140 spin_lock(&osb->osb_lock);
141
142 replay_map->rm_slots = osb->max_slots;
143 replay_map->rm_state = REPLAY_UNNEEDED;
144
145 /* set rm_replay_slots for offline slot(s) */
146 for (i = 0; i < replay_map->rm_slots; i++) {
147 if (ocfs2_slot_to_node_num_locked(osb, i, &node_num) == -ENOENT)
148 replay_map->rm_replay_slots[i] = 1;
149 }
150
151 osb->replay_map = replay_map;
152 spin_unlock(&osb->osb_lock);
153 return 0;
154}
155
ed460cff
JQ
156void ocfs2_queue_replay_slots(struct ocfs2_super *osb,
157 enum ocfs2_orphan_reco_type orphan_reco_type)
9140db04
SE
158{
159 struct ocfs2_replay_map *replay_map = osb->replay_map;
160 int i;
161
162 if (!replay_map)
163 return;
164
165 if (replay_map->rm_state != REPLAY_NEEDED)
166 return;
167
168 for (i = 0; i < replay_map->rm_slots; i++)
169 if (replay_map->rm_replay_slots[i])
170 ocfs2_queue_recovery_completion(osb->journal, i, NULL,
ed460cff
JQ
171 NULL, NULL,
172 orphan_reco_type);
9140db04
SE
173 replay_map->rm_state = REPLAY_DONE;
174}
175
176void ocfs2_free_replay_slots(struct ocfs2_super *osb)
177{
178 struct ocfs2_replay_map *replay_map = osb->replay_map;
179
180 if (!osb->replay_map)
181 return;
182
183 kfree(replay_map);
184 osb->replay_map = NULL;
185}
186
553abd04
JB
187int ocfs2_recovery_init(struct ocfs2_super *osb)
188{
189 struct ocfs2_recovery_map *rm;
190
191 mutex_init(&osb->recovery_lock);
192 osb->disable_recovery = 0;
193 osb->recovery_thread_task = NULL;
194 init_waitqueue_head(&osb->recovery_event);
195
196 rm = kzalloc(sizeof(struct ocfs2_recovery_map) +
197 osb->max_slots * sizeof(unsigned int),
198 GFP_KERNEL);
199 if (!rm) {
200 mlog_errno(-ENOMEM);
201 return -ENOMEM;
202 }
203
204 rm->rm_entries = (unsigned int *)((char *)rm +
205 sizeof(struct ocfs2_recovery_map));
206 osb->recovery_map = rm;
207
208 return 0;
209}
210
211/* we can't grab the goofy sem lock from inside wait_event, so we use
212 * memory barriers to make sure that we'll see the null task before
213 * being woken up */
214static int ocfs2_recovery_thread_running(struct ocfs2_super *osb)
215{
216 mb();
217 return osb->recovery_thread_task != NULL;
218}
219
220void ocfs2_recovery_exit(struct ocfs2_super *osb)
221{
222 struct ocfs2_recovery_map *rm;
223
224 /* disable any new recovery threads and wait for any currently
225 * running ones to exit. Do this before setting the vol_state. */
226 mutex_lock(&osb->recovery_lock);
227 osb->disable_recovery = 1;
228 mutex_unlock(&osb->recovery_lock);
229 wait_event(osb->recovery_event, !ocfs2_recovery_thread_running(osb));
230
231 /* At this point, we know that no more recovery threads can be
232 * launched, so wait for any recovery completion work to
233 * complete. */
234 flush_workqueue(ocfs2_wq);
235
236 /*
237 * Now that recovery is shut down, and the osb is about to be
238 * freed, the osb_lock is not taken here.
239 */
240 rm = osb->recovery_map;
241 /* XXX: Should we bug if there are dirty entries? */
242
243 kfree(rm);
244}
245
246static int __ocfs2_recovery_map_test(struct ocfs2_super *osb,
247 unsigned int node_num)
248{
249 int i;
250 struct ocfs2_recovery_map *rm = osb->recovery_map;
251
252 assert_spin_locked(&osb->osb_lock);
253
254 for (i = 0; i < rm->rm_used; i++) {
255 if (rm->rm_entries[i] == node_num)
256 return 1;
257 }
258
259 return 0;
260}
261
262/* Behaves like test-and-set. Returns the previous value */
263static int ocfs2_recovery_map_set(struct ocfs2_super *osb,
264 unsigned int node_num)
265{
266 struct ocfs2_recovery_map *rm = osb->recovery_map;
267
268 spin_lock(&osb->osb_lock);
269 if (__ocfs2_recovery_map_test(osb, node_num)) {
270 spin_unlock(&osb->osb_lock);
271 return 1;
272 }
273
274 /* XXX: Can this be exploited? Not from o2dlm... */
275 BUG_ON(rm->rm_used >= osb->max_slots);
276
277 rm->rm_entries[rm->rm_used] = node_num;
278 rm->rm_used++;
279 spin_unlock(&osb->osb_lock);
280
281 return 0;
282}
283
284static void ocfs2_recovery_map_clear(struct ocfs2_super *osb,
285 unsigned int node_num)
286{
287 int i;
288 struct ocfs2_recovery_map *rm = osb->recovery_map;
289
290 spin_lock(&osb->osb_lock);
291
292 for (i = 0; i < rm->rm_used; i++) {
293 if (rm->rm_entries[i] == node_num)
294 break;
295 }
296
297 if (i < rm->rm_used) {
298 /* XXX: be careful with the pointer math */
299 memmove(&(rm->rm_entries[i]), &(rm->rm_entries[i + 1]),
300 (rm->rm_used - i - 1) * sizeof(unsigned int));
301 rm->rm_used--;
302 }
303
304 spin_unlock(&osb->osb_lock);
305}
306
ccd979bd
MF
307static int ocfs2_commit_cache(struct ocfs2_super *osb)
308{
309 int status = 0;
310 unsigned int flushed;
ccd979bd
MF
311 struct ocfs2_journal *journal = NULL;
312
ccd979bd
MF
313 journal = osb->journal;
314
315 /* Flush all pending commits and checkpoint the journal. */
316 down_write(&journal->j_trans_barrier);
317
b4107950
TM
318 flushed = atomic_read(&journal->j_num_trans);
319 trace_ocfs2_commit_cache_begin(flushed);
320 if (flushed == 0) {
ccd979bd 321 up_write(&journal->j_trans_barrier);
ccd979bd
MF
322 goto finally;
323 }
324
2b4e30fb
JB
325 jbd2_journal_lock_updates(journal->j_journal);
326 status = jbd2_journal_flush(journal->j_journal);
327 jbd2_journal_unlock_updates(journal->j_journal);
ccd979bd
MF
328 if (status < 0) {
329 up_write(&journal->j_trans_barrier);
330 mlog_errno(status);
331 goto finally;
332 }
333
f9c57ada 334 ocfs2_inc_trans_id(journal);
ccd979bd
MF
335
336 flushed = atomic_read(&journal->j_num_trans);
337 atomic_set(&journal->j_num_trans, 0);
338 up_write(&journal->j_trans_barrier);
339
b4107950 340 trace_ocfs2_commit_cache_end(journal->j_trans_id, flushed);
ccd979bd 341
34d024f8 342 ocfs2_wake_downconvert_thread(osb);
ccd979bd
MF
343 wake_up(&journal->j_checkpointed);
344finally:
ccd979bd
MF
345 return status;
346}
347
1fabe148 348handle_t *ocfs2_start_trans(struct ocfs2_super *osb, int max_buffs)
ccd979bd 349{
ccd979bd 350 journal_t *journal = osb->journal->j_journal;
1fabe148 351 handle_t *handle;
ccd979bd 352
ebdec83b 353 BUG_ON(!osb || !osb->journal->j_journal);
ccd979bd 354
65eff9cc
MF
355 if (ocfs2_is_hard_readonly(osb))
356 return ERR_PTR(-EROFS);
ccd979bd
MF
357
358 BUG_ON(osb->journal->j_state == OCFS2_JOURNAL_FREE);
359 BUG_ON(max_buffs <= 0);
360
90e86a63
JK
361 /* Nested transaction? Just return the handle... */
362 if (journal_current_handle())
363 return jbd2_journal_start(journal, max_buffs);
ccd979bd 364
fef6925c
JK
365 sb_start_intwrite(osb->sb);
366
ccd979bd
MF
367 down_read(&osb->journal->j_trans_barrier);
368
2b4e30fb 369 handle = jbd2_journal_start(journal, max_buffs);
1fabe148 370 if (IS_ERR(handle)) {
ccd979bd 371 up_read(&osb->journal->j_trans_barrier);
fef6925c 372 sb_end_intwrite(osb->sb);
ccd979bd 373
1fabe148 374 mlog_errno(PTR_ERR(handle));
ccd979bd
MF
375
376 if (is_journal_aborted(journal)) {
377 ocfs2_abort(osb->sb, "Detected aborted journal");
1fabe148 378 handle = ERR_PTR(-EROFS);
ccd979bd 379 }
c271c5c2
SM
380 } else {
381 if (!ocfs2_mount_local(osb))
382 atomic_inc(&(osb->journal->j_num_trans));
383 }
ccd979bd 384
ccd979bd 385 return handle;
ccd979bd
MF
386}
387
1fabe148
MF
388int ocfs2_commit_trans(struct ocfs2_super *osb,
389 handle_t *handle)
ccd979bd 390{
90e86a63 391 int ret, nested;
02dc1af4 392 struct ocfs2_journal *journal = osb->journal;
ccd979bd
MF
393
394 BUG_ON(!handle);
395
90e86a63 396 nested = handle->h_ref > 1;
2b4e30fb 397 ret = jbd2_journal_stop(handle);
1fabe148
MF
398 if (ret < 0)
399 mlog_errno(ret);
ccd979bd 400
fef6925c 401 if (!nested) {
90e86a63 402 up_read(&journal->j_trans_barrier);
fef6925c
JK
403 sb_end_intwrite(osb->sb);
404 }
ccd979bd 405
1fabe148 406 return ret;
ccd979bd
MF
407}
408
409/*
c901fb00 410 * 'nblocks' is what you want to add to the current transaction.
ccd979bd 411 *
2b4e30fb 412 * This might call jbd2_journal_restart() which will commit dirty buffers
e8aed345
MF
413 * and then restart the transaction. Before calling
414 * ocfs2_extend_trans(), any changed blocks should have been
415 * dirtied. After calling it, all blocks which need to be changed must
416 * go through another set of journal_access/journal_dirty calls.
417 *
ccd979bd
MF
418 * WARNING: This will not release any semaphores or disk locks taken
419 * during the transaction, so make sure they were taken *before*
420 * start_trans or we'll have ordering deadlocks.
421 *
422 * WARNING2: Note that we do *not* drop j_trans_barrier here. This is
423 * good because transaction ids haven't yet been recorded on the
424 * cluster locks associated with this handle.
425 */
1fc58146 426int ocfs2_extend_trans(handle_t *handle, int nblocks)
ccd979bd 427{
c901fb00 428 int status, old_nblocks;
ccd979bd
MF
429
430 BUG_ON(!handle);
c901fb00 431 BUG_ON(nblocks < 0);
ccd979bd 432
c901fb00
TM
433 if (!nblocks)
434 return 0;
435
436 old_nblocks = handle->h_buffer_credits;
ccd979bd 437
b4107950 438 trace_ocfs2_extend_trans(old_nblocks, nblocks);
ccd979bd 439
e407e397 440#ifdef CONFIG_OCFS2_DEBUG_FS
0879c584
MF
441 status = 1;
442#else
2b4e30fb 443 status = jbd2_journal_extend(handle, nblocks);
ccd979bd
MF
444 if (status < 0) {
445 mlog_errno(status);
446 goto bail;
447 }
0879c584 448#endif
ccd979bd
MF
449
450 if (status > 0) {
b4107950 451 trace_ocfs2_extend_trans_restart(old_nblocks + nblocks);
c901fb00
TM
452 status = jbd2_journal_restart(handle,
453 old_nblocks + nblocks);
ccd979bd 454 if (status < 0) {
ccd979bd
MF
455 mlog_errno(status);
456 goto bail;
457 }
01ddf1e1 458 }
ccd979bd
MF
459
460 status = 0;
461bail:
ccd979bd
MF
462 return status;
463}
464
2b1e55c3
YL
465/*
466 * If we have fewer than thresh credits, extend by OCFS2_MAX_TRANS_DATA.
467 * If that fails, restart the transaction & regain write access for the
468 * buffer head which is used for metadata modifications.
469 * Taken from Ext4: extend_or_restart_transaction()
470 */
471int ocfs2_allocate_extend_trans(handle_t *handle, int thresh)
472{
473 int status, old_nblks;
474
475 BUG_ON(!handle);
476
477 old_nblks = handle->h_buffer_credits;
478 trace_ocfs2_allocate_extend_trans(old_nblks, thresh);
479
480 if (old_nblks < thresh)
481 return 0;
482
483 status = jbd2_journal_extend(handle, OCFS2_MAX_TRANS_DATA);
484 if (status < 0) {
485 mlog_errno(status);
486 goto bail;
487 }
488
489 if (status > 0) {
490 status = jbd2_journal_restart(handle, OCFS2_MAX_TRANS_DATA);
491 if (status < 0)
492 mlog_errno(status);
493 }
494
495bail:
496 return status;
497}
498
499
50655ae9
JB
500struct ocfs2_triggers {
501 struct jbd2_buffer_trigger_type ot_triggers;
502 int ot_offset;
503};
504
505static inline struct ocfs2_triggers *to_ocfs2_trigger(struct jbd2_buffer_trigger_type *triggers)
506{
507 return container_of(triggers, struct ocfs2_triggers, ot_triggers);
508}
509
13ceef09 510static void ocfs2_frozen_trigger(struct jbd2_buffer_trigger_type *triggers,
50655ae9
JB
511 struct buffer_head *bh,
512 void *data, size_t size)
513{
514 struct ocfs2_triggers *ot = to_ocfs2_trigger(triggers);
515
516 /*
517 * We aren't guaranteed to have the superblock here, so we
518 * must unconditionally compute the ecc data.
519 * __ocfs2_journal_access() will only set the triggers if
520 * metaecc is enabled.
521 */
522 ocfs2_block_check_compute(data, size, data + ot->ot_offset);
523}
524
525/*
526 * Quota blocks have their own trigger because the struct ocfs2_block_check
527 * offset depends on the blocksize.
528 */
13ceef09 529static void ocfs2_dq_frozen_trigger(struct jbd2_buffer_trigger_type *triggers,
50655ae9
JB
530 struct buffer_head *bh,
531 void *data, size_t size)
532{
533 struct ocfs2_disk_dqtrailer *dqt =
534 ocfs2_block_dqtrailer(size, data);
535
536 /*
537 * We aren't guaranteed to have the superblock here, so we
538 * must unconditionally compute the ecc data.
539 * __ocfs2_journal_access() will only set the triggers if
540 * metaecc is enabled.
541 */
542 ocfs2_block_check_compute(data, size, &dqt->dq_check);
543}
544
c175a518
JB
545/*
546 * Directory blocks also have their own trigger because the
547 * struct ocfs2_block_check offset depends on the blocksize.
548 */
13ceef09 549static void ocfs2_db_frozen_trigger(struct jbd2_buffer_trigger_type *triggers,
c175a518
JB
550 struct buffer_head *bh,
551 void *data, size_t size)
552{
553 struct ocfs2_dir_block_trailer *trailer =
554 ocfs2_dir_trailer_from_size(size, data);
555
556 /*
557 * We aren't guaranteed to have the superblock here, so we
558 * must unconditionally compute the ecc data.
559 * __ocfs2_journal_access() will only set the triggers if
560 * metaecc is enabled.
561 */
562 ocfs2_block_check_compute(data, size, &trailer->db_check);
563}
564
50655ae9
JB
565static void ocfs2_abort_trigger(struct jbd2_buffer_trigger_type *triggers,
566 struct buffer_head *bh)
567{
568 mlog(ML_ERROR,
569 "ocfs2_abort_trigger called by JBD2. bh = 0x%lx, "
570 "bh->b_blocknr = %llu\n",
571 (unsigned long)bh,
572 (unsigned long long)bh->b_blocknr);
573
574 /* We aren't guaranteed to have the superblock here - but if we
575 * don't, it'll just crash. */
576 ocfs2_error(bh->b_assoc_map->host->i_sb,
577 "JBD2 has aborted our journal, ocfs2 cannot continue\n");
578}
579
580static struct ocfs2_triggers di_triggers = {
581 .ot_triggers = {
13ceef09 582 .t_frozen = ocfs2_frozen_trigger,
50655ae9
JB
583 .t_abort = ocfs2_abort_trigger,
584 },
585 .ot_offset = offsetof(struct ocfs2_dinode, i_check),
586};
587
588static struct ocfs2_triggers eb_triggers = {
589 .ot_triggers = {
13ceef09 590 .t_frozen = ocfs2_frozen_trigger,
50655ae9
JB
591 .t_abort = ocfs2_abort_trigger,
592 },
593 .ot_offset = offsetof(struct ocfs2_extent_block, h_check),
594};
595
93c97087
TM
596static struct ocfs2_triggers rb_triggers = {
597 .ot_triggers = {
13ceef09 598 .t_frozen = ocfs2_frozen_trigger,
93c97087
TM
599 .t_abort = ocfs2_abort_trigger,
600 },
601 .ot_offset = offsetof(struct ocfs2_refcount_block, rf_check),
602};
603
50655ae9
JB
604static struct ocfs2_triggers gd_triggers = {
605 .ot_triggers = {
13ceef09 606 .t_frozen = ocfs2_frozen_trigger,
50655ae9
JB
607 .t_abort = ocfs2_abort_trigger,
608 },
609 .ot_offset = offsetof(struct ocfs2_group_desc, bg_check),
610};
611
c175a518
JB
612static struct ocfs2_triggers db_triggers = {
613 .ot_triggers = {
13ceef09 614 .t_frozen = ocfs2_db_frozen_trigger,
c175a518
JB
615 .t_abort = ocfs2_abort_trigger,
616 },
617};
618
50655ae9
JB
619static struct ocfs2_triggers xb_triggers = {
620 .ot_triggers = {
13ceef09 621 .t_frozen = ocfs2_frozen_trigger,
50655ae9
JB
622 .t_abort = ocfs2_abort_trigger,
623 },
624 .ot_offset = offsetof(struct ocfs2_xattr_block, xb_check),
625};
626
627static struct ocfs2_triggers dq_triggers = {
628 .ot_triggers = {
13ceef09 629 .t_frozen = ocfs2_dq_frozen_trigger,
50655ae9
JB
630 .t_abort = ocfs2_abort_trigger,
631 },
632};
633
9b7895ef
MF
634static struct ocfs2_triggers dr_triggers = {
635 .ot_triggers = {
13ceef09 636 .t_frozen = ocfs2_frozen_trigger,
9b7895ef
MF
637 .t_abort = ocfs2_abort_trigger,
638 },
639 .ot_offset = offsetof(struct ocfs2_dx_root_block, dr_check),
640};
641
642static struct ocfs2_triggers dl_triggers = {
643 .ot_triggers = {
13ceef09 644 .t_frozen = ocfs2_frozen_trigger,
9b7895ef
MF
645 .t_abort = ocfs2_abort_trigger,
646 },
647 .ot_offset = offsetof(struct ocfs2_dx_leaf, dl_check),
648};
649
50655ae9 650static int __ocfs2_journal_access(handle_t *handle,
0cf2f763 651 struct ocfs2_caching_info *ci,
50655ae9
JB
652 struct buffer_head *bh,
653 struct ocfs2_triggers *triggers,
654 int type)
ccd979bd
MF
655{
656 int status;
0cf2f763
JB
657 struct ocfs2_super *osb =
658 OCFS2_SB(ocfs2_metadata_cache_get_super(ci));
ccd979bd 659
0cf2f763 660 BUG_ON(!ci || !ci->ci_ops);
ccd979bd
MF
661 BUG_ON(!handle);
662 BUG_ON(!bh);
ccd979bd 663
b4107950
TM
664 trace_ocfs2_journal_access(
665 (unsigned long long)ocfs2_metadata_cache_owner(ci),
666 (unsigned long long)bh->b_blocknr, type, bh->b_size);
ccd979bd
MF
667
668 /* we can safely remove this assertion after testing. */
669 if (!buffer_uptodate(bh)) {
670 mlog(ML_ERROR, "giving me a buffer that's not uptodate!\n");
671 mlog(ML_ERROR, "b_blocknr=%llu\n",
672 (unsigned long long)bh->b_blocknr);
673 BUG();
674 }
675
0cf2f763 676 /* Set the current transaction information on the ci so
ccd979bd 677 * that the locking code knows whether it can drop it's locks
0cf2f763 678 * on this ci or not. We're protected from the commit
ccd979bd
MF
679 * thread updating the current transaction id until
680 * ocfs2_commit_trans() because ocfs2_start_trans() took
681 * j_trans_barrier for us. */
0cf2f763 682 ocfs2_set_ci_lock_trans(osb->journal, ci);
ccd979bd 683
0cf2f763 684 ocfs2_metadata_cache_io_lock(ci);
ccd979bd
MF
685 switch (type) {
686 case OCFS2_JOURNAL_ACCESS_CREATE:
687 case OCFS2_JOURNAL_ACCESS_WRITE:
2b4e30fb 688 status = jbd2_journal_get_write_access(handle, bh);
ccd979bd
MF
689 break;
690
691 case OCFS2_JOURNAL_ACCESS_UNDO:
2b4e30fb 692 status = jbd2_journal_get_undo_access(handle, bh);
ccd979bd
MF
693 break;
694
695 default:
696 status = -EINVAL;
af901ca1 697 mlog(ML_ERROR, "Unknown access type!\n");
ccd979bd 698 }
0cf2f763 699 if (!status && ocfs2_meta_ecc(osb) && triggers)
50655ae9 700 jbd2_journal_set_triggers(bh, &triggers->ot_triggers);
0cf2f763 701 ocfs2_metadata_cache_io_unlock(ci);
ccd979bd
MF
702
703 if (status < 0)
704 mlog(ML_ERROR, "Error %d getting %d access to buffer!\n",
705 status, type);
706
ccd979bd
MF
707 return status;
708}
709
0cf2f763
JB
710int ocfs2_journal_access_di(handle_t *handle, struct ocfs2_caching_info *ci,
711 struct buffer_head *bh, int type)
50655ae9 712{
0cf2f763 713 return __ocfs2_journal_access(handle, ci, bh, &di_triggers, type);
50655ae9
JB
714}
715
0cf2f763 716int ocfs2_journal_access_eb(handle_t *handle, struct ocfs2_caching_info *ci,
50655ae9
JB
717 struct buffer_head *bh, int type)
718{
0cf2f763 719 return __ocfs2_journal_access(handle, ci, bh, &eb_triggers, type);
50655ae9
JB
720}
721
93c97087
TM
722int ocfs2_journal_access_rb(handle_t *handle, struct ocfs2_caching_info *ci,
723 struct buffer_head *bh, int type)
724{
725 return __ocfs2_journal_access(handle, ci, bh, &rb_triggers,
726 type);
727}
728
0cf2f763 729int ocfs2_journal_access_gd(handle_t *handle, struct ocfs2_caching_info *ci,
50655ae9
JB
730 struct buffer_head *bh, int type)
731{
0cf2f763 732 return __ocfs2_journal_access(handle, ci, bh, &gd_triggers, type);
50655ae9
JB
733}
734
0cf2f763 735int ocfs2_journal_access_db(handle_t *handle, struct ocfs2_caching_info *ci,
50655ae9
JB
736 struct buffer_head *bh, int type)
737{
0cf2f763 738 return __ocfs2_journal_access(handle, ci, bh, &db_triggers, type);
50655ae9
JB
739}
740
0cf2f763 741int ocfs2_journal_access_xb(handle_t *handle, struct ocfs2_caching_info *ci,
50655ae9
JB
742 struct buffer_head *bh, int type)
743{
0cf2f763 744 return __ocfs2_journal_access(handle, ci, bh, &xb_triggers, type);
50655ae9
JB
745}
746
0cf2f763 747int ocfs2_journal_access_dq(handle_t *handle, struct ocfs2_caching_info *ci,
50655ae9
JB
748 struct buffer_head *bh, int type)
749{
0cf2f763 750 return __ocfs2_journal_access(handle, ci, bh, &dq_triggers, type);
50655ae9
JB
751}
752
0cf2f763 753int ocfs2_journal_access_dr(handle_t *handle, struct ocfs2_caching_info *ci,
9b7895ef
MF
754 struct buffer_head *bh, int type)
755{
0cf2f763 756 return __ocfs2_journal_access(handle, ci, bh, &dr_triggers, type);
9b7895ef
MF
757}
758
0cf2f763 759int ocfs2_journal_access_dl(handle_t *handle, struct ocfs2_caching_info *ci,
9b7895ef
MF
760 struct buffer_head *bh, int type)
761{
0cf2f763 762 return __ocfs2_journal_access(handle, ci, bh, &dl_triggers, type);
9b7895ef
MF
763}
764
0cf2f763 765int ocfs2_journal_access(handle_t *handle, struct ocfs2_caching_info *ci,
50655ae9
JB
766 struct buffer_head *bh, int type)
767{
0cf2f763 768 return __ocfs2_journal_access(handle, ci, bh, NULL, type);
50655ae9
JB
769}
770
ec20cec7 771void ocfs2_journal_dirty(handle_t *handle, struct buffer_head *bh)
ccd979bd
MF
772{
773 int status;
774
b4107950 775 trace_ocfs2_journal_dirty((unsigned long long)bh->b_blocknr);
ccd979bd 776
2b4e30fb 777 status = jbd2_journal_dirty_metadata(handle, bh);
e272e7f0
JQ
778 if (status) {
779 mlog_errno(status);
780 if (!is_handle_aborted(handle)) {
781 journal_t *journal = handle->h_transaction->t_journal;
782 struct super_block *sb = bh->b_bdev->bd_super;
783
784 mlog(ML_ERROR, "jbd2_journal_dirty_metadata failed. "
785 "Aborting transaction and journal.\n");
786 handle->h_err = status;
787 jbd2_journal_abort_handle(handle);
788 jbd2_journal_abort(journal, status);
789 ocfs2_abort(sb, "Journal already aborted.\n");
790 }
791 }
ccd979bd
MF
792}
793
2b4e30fb 794#define OCFS2_DEFAULT_COMMIT_INTERVAL (HZ * JBD2_DEFAULT_MAX_COMMIT_AGE)
ccd979bd
MF
795
796void ocfs2_set_journal_params(struct ocfs2_super *osb)
797{
798 journal_t *journal = osb->journal->j_journal;
d147b3d6
MF
799 unsigned long commit_interval = OCFS2_DEFAULT_COMMIT_INTERVAL;
800
801 if (osb->osb_commit_interval)
802 commit_interval = osb->osb_commit_interval;
ccd979bd 803
a931da6a 804 write_lock(&journal->j_state_lock);
d147b3d6 805 journal->j_commit_interval = commit_interval;
ccd979bd 806 if (osb->s_mount_opt & OCFS2_MOUNT_BARRIER)
2b4e30fb 807 journal->j_flags |= JBD2_BARRIER;
ccd979bd 808 else
2b4e30fb 809 journal->j_flags &= ~JBD2_BARRIER;
a931da6a 810 write_unlock(&journal->j_state_lock);
ccd979bd
MF
811}
812
813int ocfs2_journal_init(struct ocfs2_journal *journal, int *dirty)
814{
815 int status = -1;
816 struct inode *inode = NULL; /* the journal inode */
817 journal_t *j_journal = NULL;
818 struct ocfs2_dinode *di = NULL;
819 struct buffer_head *bh = NULL;
820 struct ocfs2_super *osb;
e63aecb6 821 int inode_lock = 0;
ccd979bd 822
ccd979bd
MF
823 BUG_ON(!journal);
824
825 osb = journal->j_osb;
826
827 /* already have the inode for our journal */
828 inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE,
829 osb->slot_num);
830 if (inode == NULL) {
831 status = -EACCES;
832 mlog_errno(status);
833 goto done;
834 }
835 if (is_bad_inode(inode)) {
836 mlog(ML_ERROR, "access error (bad inode)\n");
837 iput(inode);
838 inode = NULL;
839 status = -EACCES;
840 goto done;
841 }
842
843 SET_INODE_JOURNAL(inode);
844 OCFS2_I(inode)->ip_open_count++;
845
6eff5790
MF
846 /* Skip recovery waits here - journal inode metadata never
847 * changes in a live cluster so it can be considered an
848 * exception to the rule. */
e63aecb6 849 status = ocfs2_inode_lock_full(inode, &bh, 1, OCFS2_META_LOCK_RECOVERY);
ccd979bd
MF
850 if (status < 0) {
851 if (status != -ERESTARTSYS)
852 mlog(ML_ERROR, "Could not get lock on journal!\n");
853 goto done;
854 }
855
e63aecb6 856 inode_lock = 1;
ccd979bd
MF
857 di = (struct ocfs2_dinode *)bh->b_data;
858
f17c20dd 859 if (i_size_read(inode) < OCFS2_MIN_JOURNAL_SIZE) {
ccd979bd 860 mlog(ML_ERROR, "Journal file size (%lld) is too small!\n",
f17c20dd 861 i_size_read(inode));
ccd979bd
MF
862 status = -EINVAL;
863 goto done;
864 }
865
f17c20dd 866 trace_ocfs2_journal_init(i_size_read(inode),
b4107950
TM
867 (unsigned long long)inode->i_blocks,
868 OCFS2_I(inode)->ip_clusters);
ccd979bd
MF
869
870 /* call the kernels journal init function now */
2b4e30fb 871 j_journal = jbd2_journal_init_inode(inode);
ccd979bd
MF
872 if (j_journal == NULL) {
873 mlog(ML_ERROR, "Linux journal layer error\n");
874 status = -EINVAL;
875 goto done;
876 }
877
b4107950 878 trace_ocfs2_journal_init_maxlen(j_journal->j_maxlen);
ccd979bd
MF
879
880 *dirty = (le32_to_cpu(di->id1.journal1.ij_flags) &
881 OCFS2_JOURNAL_DIRTY_FL);
882
883 journal->j_journal = j_journal;
884 journal->j_inode = inode;
885 journal->j_bh = bh;
886
887 ocfs2_set_journal_params(osb);
888
889 journal->j_state = OCFS2_JOURNAL_LOADED;
890
891 status = 0;
892done:
893 if (status < 0) {
e63aecb6
MF
894 if (inode_lock)
895 ocfs2_inode_unlock(inode, 1);
a81cb88b 896 brelse(bh);
ccd979bd
MF
897 if (inode) {
898 OCFS2_I(inode)->ip_open_count--;
899 iput(inode);
900 }
901 }
902
ccd979bd
MF
903 return status;
904}
905
539d8264
SM
906static void ocfs2_bump_recovery_generation(struct ocfs2_dinode *di)
907{
908 le32_add_cpu(&(di->id1.journal1.ij_recovery_generation), 1);
909}
910
911static u32 ocfs2_get_recovery_generation(struct ocfs2_dinode *di)
912{
913 return le32_to_cpu(di->id1.journal1.ij_recovery_generation);
914}
915
ccd979bd 916static int ocfs2_journal_toggle_dirty(struct ocfs2_super *osb,
539d8264 917 int dirty, int replayed)
ccd979bd
MF
918{
919 int status;
920 unsigned int flags;
921 struct ocfs2_journal *journal = osb->journal;
922 struct buffer_head *bh = journal->j_bh;
923 struct ocfs2_dinode *fe;
924
ccd979bd 925 fe = (struct ocfs2_dinode *)bh->b_data;
10995aa2
JB
926
927 /* The journal bh on the osb always comes from ocfs2_journal_init()
928 * and was validated there inside ocfs2_inode_lock_full(). It's a
929 * code bug if we mess it up. */
930 BUG_ON(!OCFS2_IS_VALID_DINODE(fe));
ccd979bd
MF
931
932 flags = le32_to_cpu(fe->id1.journal1.ij_flags);
933 if (dirty)
934 flags |= OCFS2_JOURNAL_DIRTY_FL;
935 else
936 flags &= ~OCFS2_JOURNAL_DIRTY_FL;
937 fe->id1.journal1.ij_flags = cpu_to_le32(flags);
938
539d8264
SM
939 if (replayed)
940 ocfs2_bump_recovery_generation(fe);
941
13723d00 942 ocfs2_compute_meta_ecc(osb->sb, bh->b_data, &fe->i_check);
8cb471e8 943 status = ocfs2_write_block(osb, bh, INODE_CACHE(journal->j_inode));
ccd979bd
MF
944 if (status < 0)
945 mlog_errno(status);
946
ccd979bd
MF
947 return status;
948}
949
950/*
951 * If the journal has been kmalloc'd it needs to be freed after this
952 * call.
953 */
954void ocfs2_journal_shutdown(struct ocfs2_super *osb)
955{
956 struct ocfs2_journal *journal = NULL;
957 int status = 0;
958 struct inode *inode = NULL;
959 int num_running_trans = 0;
960
ebdec83b 961 BUG_ON(!osb);
ccd979bd
MF
962
963 journal = osb->journal;
964 if (!journal)
965 goto done;
966
967 inode = journal->j_inode;
968
969 if (journal->j_state != OCFS2_JOURNAL_LOADED)
970 goto done;
971
2b4e30fb 972 /* need to inc inode use count - jbd2_journal_destroy will iput. */
ccd979bd
MF
973 if (!igrab(inode))
974 BUG();
975
976 num_running_trans = atomic_read(&(osb->journal->j_num_trans));
b4107950 977 trace_ocfs2_journal_shutdown(num_running_trans);
ccd979bd
MF
978
979 /* Do a commit_cache here. It will flush our journal, *and*
980 * release any locks that are still held.
981 * set the SHUTDOWN flag and release the trans lock.
982 * the commit thread will take the trans lock for us below. */
983 journal->j_state = OCFS2_JOURNAL_IN_SHUTDOWN;
984
985 /* The OCFS2_JOURNAL_IN_SHUTDOWN will signal to commit_cache to not
986 * drop the trans_lock (which we want to hold until we
987 * completely destroy the journal. */
988 if (osb->commit_task) {
989 /* Wait for the commit thread */
b4107950 990 trace_ocfs2_journal_shutdown_wait(osb->commit_task);
ccd979bd
MF
991 kthread_stop(osb->commit_task);
992 osb->commit_task = NULL;
993 }
994
995 BUG_ON(atomic_read(&(osb->journal->j_num_trans)) != 0);
996
c271c5c2 997 if (ocfs2_mount_local(osb)) {
2b4e30fb
JB
998 jbd2_journal_lock_updates(journal->j_journal);
999 status = jbd2_journal_flush(journal->j_journal);
1000 jbd2_journal_unlock_updates(journal->j_journal);
c271c5c2
SM
1001 if (status < 0)
1002 mlog_errno(status);
1003 }
1004
1005 if (status == 0) {
1006 /*
1007 * Do not toggle if flush was unsuccessful otherwise
1008 * will leave dirty metadata in a "clean" journal
1009 */
539d8264 1010 status = ocfs2_journal_toggle_dirty(osb, 0, 0);
c271c5c2
SM
1011 if (status < 0)
1012 mlog_errno(status);
1013 }
ccd979bd
MF
1014
1015 /* Shutdown the kernel journal system */
2b4e30fb 1016 jbd2_journal_destroy(journal->j_journal);
ae0dff68 1017 journal->j_journal = NULL;
ccd979bd
MF
1018
1019 OCFS2_I(inode)->ip_open_count--;
1020
1021 /* unlock our journal */
e63aecb6 1022 ocfs2_inode_unlock(inode, 1);
ccd979bd
MF
1023
1024 brelse(journal->j_bh);
1025 journal->j_bh = NULL;
1026
1027 journal->j_state = OCFS2_JOURNAL_FREE;
1028
1029// up_write(&journal->j_trans_barrier);
1030done:
1031 if (inode)
1032 iput(inode);
ccd979bd
MF
1033}
1034
1035static void ocfs2_clear_journal_error(struct super_block *sb,
1036 journal_t *journal,
1037 int slot)
1038{
1039 int olderr;
1040
2b4e30fb 1041 olderr = jbd2_journal_errno(journal);
ccd979bd
MF
1042 if (olderr) {
1043 mlog(ML_ERROR, "File system error %d recorded in "
1044 "journal %u.\n", olderr, slot);
1045 mlog(ML_ERROR, "File system on device %s needs checking.\n",
1046 sb->s_id);
1047
2b4e30fb
JB
1048 jbd2_journal_ack_err(journal);
1049 jbd2_journal_clear_err(journal);
ccd979bd
MF
1050 }
1051}
1052
539d8264 1053int ocfs2_journal_load(struct ocfs2_journal *journal, int local, int replayed)
ccd979bd
MF
1054{
1055 int status = 0;
1056 struct ocfs2_super *osb;
1057
b1f3550f 1058 BUG_ON(!journal);
ccd979bd
MF
1059
1060 osb = journal->j_osb;
1061
2b4e30fb 1062 status = jbd2_journal_load(journal->j_journal);
ccd979bd
MF
1063 if (status < 0) {
1064 mlog(ML_ERROR, "Failed to load journal!\n");
1065 goto done;
1066 }
1067
1068 ocfs2_clear_journal_error(osb->sb, journal->j_journal, osb->slot_num);
1069
539d8264 1070 status = ocfs2_journal_toggle_dirty(osb, 1, replayed);
ccd979bd
MF
1071 if (status < 0) {
1072 mlog_errno(status);
1073 goto done;
1074 }
1075
1076 /* Launch the commit thread */
c271c5c2
SM
1077 if (!local) {
1078 osb->commit_task = kthread_run(ocfs2_commit_thread, osb,
1079 "ocfs2cmt");
1080 if (IS_ERR(osb->commit_task)) {
1081 status = PTR_ERR(osb->commit_task);
1082 osb->commit_task = NULL;
1083 mlog(ML_ERROR, "unable to launch ocfs2commit thread, "
1084 "error=%d", status);
1085 goto done;
1086 }
1087 } else
ccd979bd 1088 osb->commit_task = NULL;
ccd979bd
MF
1089
1090done:
ccd979bd
MF
1091 return status;
1092}
1093
1094
1095/* 'full' flag tells us whether we clear out all blocks or if we just
1096 * mark the journal clean */
1097int ocfs2_journal_wipe(struct ocfs2_journal *journal, int full)
1098{
1099 int status;
1100
ebdec83b 1101 BUG_ON(!journal);
ccd979bd 1102
2b4e30fb 1103 status = jbd2_journal_wipe(journal->j_journal, full);
ccd979bd
MF
1104 if (status < 0) {
1105 mlog_errno(status);
1106 goto bail;
1107 }
1108
539d8264 1109 status = ocfs2_journal_toggle_dirty(journal->j_osb, 0, 0);
ccd979bd
MF
1110 if (status < 0)
1111 mlog_errno(status);
1112
1113bail:
ccd979bd
MF
1114 return status;
1115}
1116
553abd04
JB
1117static int ocfs2_recovery_completed(struct ocfs2_super *osb)
1118{
1119 int empty;
1120 struct ocfs2_recovery_map *rm = osb->recovery_map;
1121
1122 spin_lock(&osb->osb_lock);
1123 empty = (rm->rm_used == 0);
1124 spin_unlock(&osb->osb_lock);
1125
1126 return empty;
1127}
1128
1129void ocfs2_wait_for_recovery(struct ocfs2_super *osb)
1130{
1131 wait_event(osb->recovery_event, ocfs2_recovery_completed(osb));
1132}
1133
ccd979bd
MF
1134/*
1135 * JBD Might read a cached version of another nodes journal file. We
1136 * don't want this as this file changes often and we get no
1137 * notification on those changes. The only way to be sure that we've
1138 * got the most up to date version of those blocks then is to force
1139 * read them off disk. Just searching through the buffer cache won't
1140 * work as there may be pages backing this file which are still marked
1141 * up to date. We know things can't change on this file underneath us
1142 * as we have the lock by now :)
1143 */
1144static int ocfs2_force_read_journal(struct inode *inode)
1145{
1146 int status = 0;
4f902c37 1147 int i;
8110b073 1148 u64 v_blkno, p_blkno, p_blocks, num_blocks;
4f902c37 1149#define CONCURRENT_JOURNAL_FILL 32ULL
ccd979bd
MF
1150 struct buffer_head *bhs[CONCURRENT_JOURNAL_FILL];
1151
ccd979bd
MF
1152 memset(bhs, 0, sizeof(struct buffer_head *) * CONCURRENT_JOURNAL_FILL);
1153
f17c20dd 1154 num_blocks = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
ccd979bd 1155 v_blkno = 0;
8110b073 1156 while (v_blkno < num_blocks) {
ccd979bd 1157 status = ocfs2_extent_map_get_blocks(inode, v_blkno,
49cb8d2d 1158 &p_blkno, &p_blocks, NULL);
ccd979bd
MF
1159 if (status < 0) {
1160 mlog_errno(status);
1161 goto bail;
1162 }
1163
1164 if (p_blocks > CONCURRENT_JOURNAL_FILL)
1165 p_blocks = CONCURRENT_JOURNAL_FILL;
1166
dd4a2c2b
MF
1167 /* We are reading journal data which should not
1168 * be put in the uptodate cache */
da1e9098
JB
1169 status = ocfs2_read_blocks_sync(OCFS2_SB(inode->i_sb),
1170 p_blkno, p_blocks, bhs);
ccd979bd
MF
1171 if (status < 0) {
1172 mlog_errno(status);
1173 goto bail;
1174 }
1175
1176 for(i = 0; i < p_blocks; i++) {
1177 brelse(bhs[i]);
1178 bhs[i] = NULL;
1179 }
1180
1181 v_blkno += p_blocks;
1182 }
1183
1184bail:
1185 for(i = 0; i < CONCURRENT_JOURNAL_FILL; i++)
a81cb88b 1186 brelse(bhs[i]);
ccd979bd
MF
1187 return status;
1188}
1189
1190struct ocfs2_la_recovery_item {
1191 struct list_head lri_list;
1192 int lri_slot;
1193 struct ocfs2_dinode *lri_la_dinode;
1194 struct ocfs2_dinode *lri_tl_dinode;
2205363d 1195 struct ocfs2_quota_recovery *lri_qrec;
ed460cff 1196 enum ocfs2_orphan_reco_type lri_orphan_reco_type;
ccd979bd
MF
1197};
1198
1199/* Does the second half of the recovery process. By this point, the
1200 * node is marked clean and can actually be considered recovered,
1201 * hence it's no longer in the recovery map, but there's still some
1202 * cleanup we can do which shouldn't happen within the recovery thread
1203 * as locking in that context becomes very difficult if we are to take
1204 * recovering nodes into account.
1205 *
1206 * NOTE: This function can and will sleep on recovery of other nodes
1207 * during cluster locking, just like any other ocfs2 process.
1208 */
c4028958 1209void ocfs2_complete_recovery(struct work_struct *work)
ccd979bd 1210{
b4107950 1211 int ret = 0;
c4028958
DH
1212 struct ocfs2_journal *journal =
1213 container_of(work, struct ocfs2_journal, j_recovery_work);
1214 struct ocfs2_super *osb = journal->j_osb;
ccd979bd 1215 struct ocfs2_dinode *la_dinode, *tl_dinode;
800deef3 1216 struct ocfs2_la_recovery_item *item, *n;
2205363d 1217 struct ocfs2_quota_recovery *qrec;
ed460cff 1218 enum ocfs2_orphan_reco_type orphan_reco_type;
ccd979bd
MF
1219 LIST_HEAD(tmp_la_list);
1220
b4107950
TM
1221 trace_ocfs2_complete_recovery(
1222 (unsigned long long)OCFS2_I(journal->j_inode)->ip_blkno);
ccd979bd
MF
1223
1224 spin_lock(&journal->j_lock);
1225 list_splice_init(&journal->j_la_cleanups, &tmp_la_list);
1226 spin_unlock(&journal->j_lock);
1227
800deef3 1228 list_for_each_entry_safe(item, n, &tmp_la_list, lri_list) {
ccd979bd
MF
1229 list_del_init(&item->lri_list);
1230
19ece546
JK
1231 ocfs2_wait_on_quotas(osb);
1232
ccd979bd 1233 la_dinode = item->lri_la_dinode;
b4107950
TM
1234 tl_dinode = item->lri_tl_dinode;
1235 qrec = item->lri_qrec;
ed460cff 1236 orphan_reco_type = item->lri_orphan_reco_type;
ccd979bd 1237
b4107950
TM
1238 trace_ocfs2_complete_recovery_slot(item->lri_slot,
1239 la_dinode ? le64_to_cpu(la_dinode->i_blkno) : 0,
1240 tl_dinode ? le64_to_cpu(tl_dinode->i_blkno) : 0,
1241 qrec);
1242
1243 if (la_dinode) {
ccd979bd
MF
1244 ret = ocfs2_complete_local_alloc_recovery(osb,
1245 la_dinode);
1246 if (ret < 0)
1247 mlog_errno(ret);
1248
1249 kfree(la_dinode);
1250 }
1251
ccd979bd 1252 if (tl_dinode) {
ccd979bd
MF
1253 ret = ocfs2_complete_truncate_log_recovery(osb,
1254 tl_dinode);
1255 if (ret < 0)
1256 mlog_errno(ret);
1257
1258 kfree(tl_dinode);
1259 }
1260
ed460cff
JQ
1261 ret = ocfs2_recover_orphans(osb, item->lri_slot,
1262 orphan_reco_type);
ccd979bd
MF
1263 if (ret < 0)
1264 mlog_errno(ret);
1265
2205363d 1266 if (qrec) {
2205363d
JK
1267 ret = ocfs2_finish_quota_recovery(osb, qrec,
1268 item->lri_slot);
1269 if (ret < 0)
1270 mlog_errno(ret);
1271 /* Recovery info is already freed now */
1272 }
1273
ccd979bd
MF
1274 kfree(item);
1275 }
1276
b4107950 1277 trace_ocfs2_complete_recovery_end(ret);
ccd979bd
MF
1278}
1279
1280/* NOTE: This function always eats your references to la_dinode and
1281 * tl_dinode, either manually on error, or by passing them to
1282 * ocfs2_complete_recovery */
1283static void ocfs2_queue_recovery_completion(struct ocfs2_journal *journal,
1284 int slot_num,
1285 struct ocfs2_dinode *la_dinode,
2205363d 1286 struct ocfs2_dinode *tl_dinode,
ed460cff
JQ
1287 struct ocfs2_quota_recovery *qrec,
1288 enum ocfs2_orphan_reco_type orphan_reco_type)
ccd979bd
MF
1289{
1290 struct ocfs2_la_recovery_item *item;
1291
afae00ab 1292 item = kmalloc(sizeof(struct ocfs2_la_recovery_item), GFP_NOFS);
ccd979bd
MF
1293 if (!item) {
1294 /* Though we wish to avoid it, we are in fact safe in
1295 * skipping local alloc cleanup as fsck.ocfs2 is more
1296 * than capable of reclaiming unused space. */
d787ab09
TG
1297 kfree(la_dinode);
1298 kfree(tl_dinode);
ccd979bd 1299
2205363d
JK
1300 if (qrec)
1301 ocfs2_free_quota_recovery(qrec);
1302
ccd979bd
MF
1303 mlog_errno(-ENOMEM);
1304 return;
1305 }
1306
1307 INIT_LIST_HEAD(&item->lri_list);
1308 item->lri_la_dinode = la_dinode;
1309 item->lri_slot = slot_num;
1310 item->lri_tl_dinode = tl_dinode;
2205363d 1311 item->lri_qrec = qrec;
ed460cff 1312 item->lri_orphan_reco_type = orphan_reco_type;
ccd979bd
MF
1313
1314 spin_lock(&journal->j_lock);
1315 list_add_tail(&item->lri_list, &journal->j_la_cleanups);
1316 queue_work(ocfs2_wq, &journal->j_recovery_work);
1317 spin_unlock(&journal->j_lock);
1318}
1319
1320/* Called by the mount code to queue recovery the last part of
9140db04 1321 * recovery for it's own and offline slot(s). */
ccd979bd
MF
1322void ocfs2_complete_mount_recovery(struct ocfs2_super *osb)
1323{
1324 struct ocfs2_journal *journal = osb->journal;
1325
10b3dd76
SM
1326 if (ocfs2_is_hard_readonly(osb))
1327 return;
1328
9140db04
SE
1329 /* No need to queue up our truncate_log as regular cleanup will catch
1330 * that */
1331 ocfs2_queue_recovery_completion(journal, osb->slot_num,
ed460cff
JQ
1332 osb->local_alloc_copy, NULL, NULL,
1333 ORPHAN_NEED_TRUNCATE);
9140db04 1334 ocfs2_schedule_truncate_log_flush(osb, 0);
ccd979bd 1335
9140db04
SE
1336 osb->local_alloc_copy = NULL;
1337 osb->dirty = 0;
1338
1339 /* queue to recover orphan slots for all offline slots */
1340 ocfs2_replay_map_set_state(osb, REPLAY_NEEDED);
ed460cff 1341 ocfs2_queue_replay_slots(osb, ORPHAN_NEED_TRUNCATE);
9140db04 1342 ocfs2_free_replay_slots(osb);
ccd979bd
MF
1343}
1344
2205363d
JK
1345void ocfs2_complete_quota_recovery(struct ocfs2_super *osb)
1346{
1347 if (osb->quota_rec) {
1348 ocfs2_queue_recovery_completion(osb->journal,
1349 osb->slot_num,
1350 NULL,
1351 NULL,
ed460cff
JQ
1352 osb->quota_rec,
1353 ORPHAN_NEED_TRUNCATE);
2205363d
JK
1354 osb->quota_rec = NULL;
1355 }
1356}
1357
ccd979bd
MF
1358static int __ocfs2_recovery_thread(void *arg)
1359{
2205363d 1360 int status, node_num, slot_num;
ccd979bd 1361 struct ocfs2_super *osb = arg;
553abd04 1362 struct ocfs2_recovery_map *rm = osb->recovery_map;
2205363d
JK
1363 int *rm_quota = NULL;
1364 int rm_quota_used = 0, i;
1365 struct ocfs2_quota_recovery *qrec;
ccd979bd 1366
ccd979bd
MF
1367 status = ocfs2_wait_on_mount(osb);
1368 if (status < 0) {
1369 goto bail;
1370 }
1371
2205363d
JK
1372 rm_quota = kzalloc(osb->max_slots * sizeof(int), GFP_NOFS);
1373 if (!rm_quota) {
1374 status = -ENOMEM;
1375 goto bail;
1376 }
ccd979bd
MF
1377restart:
1378 status = ocfs2_super_lock(osb, 1);
1379 if (status < 0) {
1380 mlog_errno(status);
1381 goto bail;
1382 }
1383
9140db04
SE
1384 status = ocfs2_compute_replay_slots(osb);
1385 if (status < 0)
1386 mlog_errno(status);
1387
1388 /* queue recovery for our own slot */
1389 ocfs2_queue_recovery_completion(osb->journal, osb->slot_num, NULL,
ed460cff 1390 NULL, NULL, ORPHAN_NO_NEED_TRUNCATE);
9140db04 1391
553abd04
JB
1392 spin_lock(&osb->osb_lock);
1393 while (rm->rm_used) {
1394 /* It's always safe to remove entry zero, as we won't
1395 * clear it until ocfs2_recover_node() has succeeded. */
1396 node_num = rm->rm_entries[0];
1397 spin_unlock(&osb->osb_lock);
2205363d 1398 slot_num = ocfs2_node_num_to_slot(osb, node_num);
b4107950 1399 trace_ocfs2_recovery_thread_node(node_num, slot_num);
2205363d
JK
1400 if (slot_num == -ENOENT) {
1401 status = 0;
2205363d
JK
1402 goto skip_recovery;
1403 }
2205363d
JK
1404
1405 /* It is a bit subtle with quota recovery. We cannot do it
1406 * immediately because we have to obtain cluster locks from
1407 * quota files and we also don't want to just skip it because
1408 * then quota usage would be out of sync until some node takes
1409 * the slot. So we remember which nodes need quota recovery
1410 * and when everything else is done, we recover quotas. */
1411 for (i = 0; i < rm_quota_used && rm_quota[i] != slot_num; i++);
1412 if (i == rm_quota_used)
1413 rm_quota[rm_quota_used++] = slot_num;
1414
1415 status = ocfs2_recover_node(osb, node_num, slot_num);
1416skip_recovery:
553abd04
JB
1417 if (!status) {
1418 ocfs2_recovery_map_clear(osb, node_num);
1419 } else {
ccd979bd
MF
1420 mlog(ML_ERROR,
1421 "Error %d recovering node %d on device (%u,%u)!\n",
1422 status, node_num,
1423 MAJOR(osb->sb->s_dev), MINOR(osb->sb->s_dev));
1424 mlog(ML_ERROR, "Volume requires unmount.\n");
ccd979bd
MF
1425 }
1426
553abd04 1427 spin_lock(&osb->osb_lock);
ccd979bd 1428 }
553abd04 1429 spin_unlock(&osb->osb_lock);
b4107950 1430 trace_ocfs2_recovery_thread_end(status);
553abd04 1431
539d8264
SM
1432 /* Refresh all journal recovery generations from disk */
1433 status = ocfs2_check_journals_nolocks(osb);
1434 status = (status == -EROFS) ? 0 : status;
1435 if (status < 0)
1436 mlog_errno(status);
1437
2205363d 1438 /* Now it is right time to recover quotas... We have to do this under
25985edc 1439 * superblock lock so that no one can start using the slot (and crash)
2205363d
JK
1440 * before we recover it */
1441 for (i = 0; i < rm_quota_used; i++) {
1442 qrec = ocfs2_begin_quota_recovery(osb, rm_quota[i]);
1443 if (IS_ERR(qrec)) {
1444 status = PTR_ERR(qrec);
1445 mlog_errno(status);
1446 continue;
1447 }
1448 ocfs2_queue_recovery_completion(osb->journal, rm_quota[i],
ed460cff
JQ
1449 NULL, NULL, qrec,
1450 ORPHAN_NEED_TRUNCATE);
2205363d
JK
1451 }
1452
ccd979bd
MF
1453 ocfs2_super_unlock(osb, 1);
1454
9140db04 1455 /* queue recovery for offline slots */
ed460cff 1456 ocfs2_queue_replay_slots(osb, ORPHAN_NEED_TRUNCATE);
ccd979bd
MF
1457
1458bail:
c74ec2f7 1459 mutex_lock(&osb->recovery_lock);
553abd04 1460 if (!status && !ocfs2_recovery_completed(osb)) {
c74ec2f7 1461 mutex_unlock(&osb->recovery_lock);
ccd979bd
MF
1462 goto restart;
1463 }
1464
9140db04 1465 ocfs2_free_replay_slots(osb);
ccd979bd
MF
1466 osb->recovery_thread_task = NULL;
1467 mb(); /* sync with ocfs2_recovery_thread_running */
1468 wake_up(&osb->recovery_event);
1469
c74ec2f7 1470 mutex_unlock(&osb->recovery_lock);
ccd979bd 1471
d787ab09 1472 kfree(rm_quota);
2205363d 1473
ccd979bd
MF
1474 /* no one is callint kthread_stop() for us so the kthread() api
1475 * requires that we call do_exit(). And it isn't exported, but
1476 * complete_and_exit() seems to be a minimal wrapper around it. */
1477 complete_and_exit(NULL, status);
ccd979bd
MF
1478}
1479
1480void ocfs2_recovery_thread(struct ocfs2_super *osb, int node_num)
1481{
c74ec2f7 1482 mutex_lock(&osb->recovery_lock);
ccd979bd 1483
b4107950
TM
1484 trace_ocfs2_recovery_thread(node_num, osb->node_num,
1485 osb->disable_recovery, osb->recovery_thread_task,
1486 osb->disable_recovery ?
1487 -1 : ocfs2_recovery_map_set(osb, node_num));
ccd979bd 1488
b4107950
TM
1489 if (osb->disable_recovery)
1490 goto out;
ccd979bd
MF
1491
1492 if (osb->recovery_thread_task)
1493 goto out;
1494
1495 osb->recovery_thread_task = kthread_run(__ocfs2_recovery_thread, osb,
78427043 1496 "ocfs2rec");
ccd979bd
MF
1497 if (IS_ERR(osb->recovery_thread_task)) {
1498 mlog_errno((int)PTR_ERR(osb->recovery_thread_task));
1499 osb->recovery_thread_task = NULL;
1500 }
1501
1502out:
c74ec2f7 1503 mutex_unlock(&osb->recovery_lock);
ccd979bd 1504 wake_up(&osb->recovery_event);
ccd979bd
MF
1505}
1506
539d8264
SM
1507static int ocfs2_read_journal_inode(struct ocfs2_super *osb,
1508 int slot_num,
1509 struct buffer_head **bh,
1510 struct inode **ret_inode)
1511{
1512 int status = -EACCES;
1513 struct inode *inode = NULL;
1514
1515 BUG_ON(slot_num >= osb->max_slots);
1516
1517 inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE,
1518 slot_num);
1519 if (!inode || is_bad_inode(inode)) {
1520 mlog_errno(status);
1521 goto bail;
1522 }
1523 SET_INODE_JOURNAL(inode);
1524
b657c95c 1525 status = ocfs2_read_inode_block_full(inode, bh, OCFS2_BH_IGNORE_CACHE);
539d8264
SM
1526 if (status < 0) {
1527 mlog_errno(status);
1528 goto bail;
1529 }
1530
1531 status = 0;
1532
1533bail:
1534 if (inode) {
1535 if (status || !ret_inode)
1536 iput(inode);
1537 else
1538 *ret_inode = inode;
1539 }
1540 return status;
1541}
1542
ccd979bd
MF
1543/* Does the actual journal replay and marks the journal inode as
1544 * clean. Will only replay if the journal inode is marked dirty. */
1545static int ocfs2_replay_journal(struct ocfs2_super *osb,
1546 int node_num,
1547 int slot_num)
1548{
1549 int status;
1550 int got_lock = 0;
1551 unsigned int flags;
1552 struct inode *inode = NULL;
1553 struct ocfs2_dinode *fe;
1554 journal_t *journal = NULL;
1555 struct buffer_head *bh = NULL;
539d8264 1556 u32 slot_reco_gen;
ccd979bd 1557
539d8264
SM
1558 status = ocfs2_read_journal_inode(osb, slot_num, &bh, &inode);
1559 if (status) {
ccd979bd
MF
1560 mlog_errno(status);
1561 goto done;
1562 }
539d8264
SM
1563
1564 fe = (struct ocfs2_dinode *)bh->b_data;
1565 slot_reco_gen = ocfs2_get_recovery_generation(fe);
1566 brelse(bh);
1567 bh = NULL;
1568
1569 /*
1570 * As the fs recovery is asynchronous, there is a small chance that
1571 * another node mounted (and recovered) the slot before the recovery
1572 * thread could get the lock. To handle that, we dirty read the journal
1573 * inode for that slot to get the recovery generation. If it is
1574 * different than what we expected, the slot has been recovered.
1575 * If not, it needs recovery.
1576 */
1577 if (osb->slot_recovery_generations[slot_num] != slot_reco_gen) {
b4107950 1578 trace_ocfs2_replay_journal_recovered(slot_num,
539d8264
SM
1579 osb->slot_recovery_generations[slot_num], slot_reco_gen);
1580 osb->slot_recovery_generations[slot_num] = slot_reco_gen;
1581 status = -EBUSY;
ccd979bd
MF
1582 goto done;
1583 }
539d8264
SM
1584
1585 /* Continue with recovery as the journal has not yet been recovered */
ccd979bd 1586
e63aecb6 1587 status = ocfs2_inode_lock_full(inode, &bh, 1, OCFS2_META_LOCK_RECOVERY);
ccd979bd 1588 if (status < 0) {
b4107950 1589 trace_ocfs2_replay_journal_lock_err(status);
ccd979bd
MF
1590 if (status != -ERESTARTSYS)
1591 mlog(ML_ERROR, "Could not lock journal!\n");
1592 goto done;
1593 }
1594 got_lock = 1;
1595
1596 fe = (struct ocfs2_dinode *) bh->b_data;
1597
1598 flags = le32_to_cpu(fe->id1.journal1.ij_flags);
539d8264 1599 slot_reco_gen = ocfs2_get_recovery_generation(fe);
ccd979bd
MF
1600
1601 if (!(flags & OCFS2_JOURNAL_DIRTY_FL)) {
b4107950 1602 trace_ocfs2_replay_journal_skip(node_num);
539d8264
SM
1603 /* Refresh recovery generation for the slot */
1604 osb->slot_recovery_generations[slot_num] = slot_reco_gen;
ccd979bd
MF
1605 goto done;
1606 }
1607
9140db04
SE
1608 /* we need to run complete recovery for offline orphan slots */
1609 ocfs2_replay_map_set_state(osb, REPLAY_NEEDED);
1610
619c200d
SM
1611 printk(KERN_NOTICE "ocfs2: Begin replay journal (node %d, slot %d) on "\
1612 "device (%u,%u)\n", node_num, slot_num, MAJOR(osb->sb->s_dev),
1613 MINOR(osb->sb->s_dev));
ccd979bd
MF
1614
1615 OCFS2_I(inode)->ip_clusters = le32_to_cpu(fe->i_clusters);
1616
1617 status = ocfs2_force_read_journal(inode);
1618 if (status < 0) {
1619 mlog_errno(status);
1620 goto done;
1621 }
1622
2b4e30fb 1623 journal = jbd2_journal_init_inode(inode);
ccd979bd
MF
1624 if (journal == NULL) {
1625 mlog(ML_ERROR, "Linux journal layer error\n");
1626 status = -EIO;
1627 goto done;
1628 }
1629
2b4e30fb 1630 status = jbd2_journal_load(journal);
ccd979bd
MF
1631 if (status < 0) {
1632 mlog_errno(status);
1633 if (!igrab(inode))
1634 BUG();
2b4e30fb 1635 jbd2_journal_destroy(journal);
ccd979bd
MF
1636 goto done;
1637 }
1638
1639 ocfs2_clear_journal_error(osb->sb, journal, slot_num);
1640
1641 /* wipe the journal */
2b4e30fb
JB
1642 jbd2_journal_lock_updates(journal);
1643 status = jbd2_journal_flush(journal);
1644 jbd2_journal_unlock_updates(journal);
ccd979bd
MF
1645 if (status < 0)
1646 mlog_errno(status);
1647
1648 /* This will mark the node clean */
1649 flags = le32_to_cpu(fe->id1.journal1.ij_flags);
1650 flags &= ~OCFS2_JOURNAL_DIRTY_FL;
1651 fe->id1.journal1.ij_flags = cpu_to_le32(flags);
1652
539d8264
SM
1653 /* Increment recovery generation to indicate successful recovery */
1654 ocfs2_bump_recovery_generation(fe);
1655 osb->slot_recovery_generations[slot_num] =
1656 ocfs2_get_recovery_generation(fe);
1657
13723d00 1658 ocfs2_compute_meta_ecc(osb->sb, bh->b_data, &fe->i_check);
8cb471e8 1659 status = ocfs2_write_block(osb, bh, INODE_CACHE(inode));
ccd979bd
MF
1660 if (status < 0)
1661 mlog_errno(status);
1662
1663 if (!igrab(inode))
1664 BUG();
1665
2b4e30fb 1666 jbd2_journal_destroy(journal);
ccd979bd 1667
619c200d
SM
1668 printk(KERN_NOTICE "ocfs2: End replay journal (node %d, slot %d) on "\
1669 "device (%u,%u)\n", node_num, slot_num, MAJOR(osb->sb->s_dev),
1670 MINOR(osb->sb->s_dev));
ccd979bd
MF
1671done:
1672 /* drop the lock on this nodes journal */
1673 if (got_lock)
e63aecb6 1674 ocfs2_inode_unlock(inode, 1);
ccd979bd
MF
1675
1676 if (inode)
1677 iput(inode);
1678
a81cb88b 1679 brelse(bh);
ccd979bd 1680
ccd979bd
MF
1681 return status;
1682}
1683
1684/*
1685 * Do the most important parts of node recovery:
1686 * - Replay it's journal
1687 * - Stamp a clean local allocator file
1688 * - Stamp a clean truncate log
1689 * - Mark the node clean
1690 *
1691 * If this function completes without error, a node in OCFS2 can be
1692 * said to have been safely recovered. As a result, failure during the
1693 * second part of a nodes recovery process (local alloc recovery) is
1694 * far less concerning.
1695 */
1696static int ocfs2_recover_node(struct ocfs2_super *osb,
2205363d 1697 int node_num, int slot_num)
ccd979bd
MF
1698{
1699 int status = 0;
ccd979bd
MF
1700 struct ocfs2_dinode *la_copy = NULL;
1701 struct ocfs2_dinode *tl_copy = NULL;
1702
b4107950 1703 trace_ocfs2_recover_node(node_num, slot_num, osb->node_num);
ccd979bd
MF
1704
1705 /* Should not ever be called to recover ourselves -- in that
1706 * case we should've called ocfs2_journal_load instead. */
ebdec83b 1707 BUG_ON(osb->node_num == node_num);
ccd979bd 1708
ccd979bd
MF
1709 status = ocfs2_replay_journal(osb, node_num, slot_num);
1710 if (status < 0) {
539d8264 1711 if (status == -EBUSY) {
b4107950 1712 trace_ocfs2_recover_node_skip(slot_num, node_num);
539d8264
SM
1713 status = 0;
1714 goto done;
1715 }
ccd979bd
MF
1716 mlog_errno(status);
1717 goto done;
1718 }
1719
1720 /* Stamp a clean local alloc file AFTER recovering the journal... */
1721 status = ocfs2_begin_local_alloc_recovery(osb, slot_num, &la_copy);
1722 if (status < 0) {
1723 mlog_errno(status);
1724 goto done;
1725 }
1726
1727 /* An error from begin_truncate_log_recovery is not
1728 * serious enough to warrant halting the rest of
1729 * recovery. */
1730 status = ocfs2_begin_truncate_log_recovery(osb, slot_num, &tl_copy);
1731 if (status < 0)
1732 mlog_errno(status);
1733
1734 /* Likewise, this would be a strange but ultimately not so
1735 * harmful place to get an error... */
8e8a4603 1736 status = ocfs2_clear_slot(osb, slot_num);
ccd979bd
MF
1737 if (status < 0)
1738 mlog_errno(status);
1739
1740 /* This will kfree the memory pointed to by la_copy and tl_copy */
1741 ocfs2_queue_recovery_completion(osb->journal, slot_num, la_copy,
ed460cff 1742 tl_copy, NULL, ORPHAN_NEED_TRUNCATE);
ccd979bd
MF
1743
1744 status = 0;
1745done:
1746
ccd979bd
MF
1747 return status;
1748}
1749
1750/* Test node liveness by trylocking his journal. If we get the lock,
1751 * we drop it here. Return 0 if we got the lock, -EAGAIN if node is
1752 * still alive (we couldn't get the lock) and < 0 on error. */
1753static int ocfs2_trylock_journal(struct ocfs2_super *osb,
1754 int slot_num)
1755{
1756 int status, flags;
1757 struct inode *inode = NULL;
1758
1759 inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE,
1760 slot_num);
1761 if (inode == NULL) {
1762 mlog(ML_ERROR, "access error\n");
1763 status = -EACCES;
1764 goto bail;
1765 }
1766 if (is_bad_inode(inode)) {
1767 mlog(ML_ERROR, "access error (bad inode)\n");
1768 iput(inode);
1769 inode = NULL;
1770 status = -EACCES;
1771 goto bail;
1772 }
1773 SET_INODE_JOURNAL(inode);
1774
1775 flags = OCFS2_META_LOCK_RECOVERY | OCFS2_META_LOCK_NOQUEUE;
e63aecb6 1776 status = ocfs2_inode_lock_full(inode, NULL, 1, flags);
ccd979bd
MF
1777 if (status < 0) {
1778 if (status != -EAGAIN)
1779 mlog_errno(status);
1780 goto bail;
1781 }
1782
e63aecb6 1783 ocfs2_inode_unlock(inode, 1);
ccd979bd
MF
1784bail:
1785 if (inode)
1786 iput(inode);
1787
1788 return status;
1789}
1790
1791/* Call this underneath ocfs2_super_lock. It also assumes that the
1792 * slot info struct has been updated from disk. */
1793int ocfs2_mark_dead_nodes(struct ocfs2_super *osb)
1794{
d85b20e4
JB
1795 unsigned int node_num;
1796 int status, i;
a1af7d15 1797 u32 gen;
539d8264
SM
1798 struct buffer_head *bh = NULL;
1799 struct ocfs2_dinode *di;
ccd979bd
MF
1800
1801 /* This is called with the super block cluster lock, so we
1802 * know that the slot map can't change underneath us. */
1803
d85b20e4 1804 for (i = 0; i < osb->max_slots; i++) {
539d8264
SM
1805 /* Read journal inode to get the recovery generation */
1806 status = ocfs2_read_journal_inode(osb, i, &bh, NULL);
1807 if (status) {
1808 mlog_errno(status);
1809 goto bail;
1810 }
1811 di = (struct ocfs2_dinode *)bh->b_data;
a1af7d15 1812 gen = ocfs2_get_recovery_generation(di);
539d8264
SM
1813 brelse(bh);
1814 bh = NULL;
1815
a1af7d15
MF
1816 spin_lock(&osb->osb_lock);
1817 osb->slot_recovery_generations[i] = gen;
1818
b4107950
TM
1819 trace_ocfs2_mark_dead_nodes(i,
1820 osb->slot_recovery_generations[i]);
539d8264 1821
a1af7d15
MF
1822 if (i == osb->slot_num) {
1823 spin_unlock(&osb->osb_lock);
ccd979bd 1824 continue;
a1af7d15 1825 }
d85b20e4
JB
1826
1827 status = ocfs2_slot_to_node_num_locked(osb, i, &node_num);
a1af7d15
MF
1828 if (status == -ENOENT) {
1829 spin_unlock(&osb->osb_lock);
ccd979bd 1830 continue;
a1af7d15 1831 }
ccd979bd 1832
a1af7d15
MF
1833 if (__ocfs2_recovery_map_test(osb, node_num)) {
1834 spin_unlock(&osb->osb_lock);
ccd979bd 1835 continue;
a1af7d15 1836 }
d85b20e4 1837 spin_unlock(&osb->osb_lock);
ccd979bd
MF
1838
1839 /* Ok, we have a slot occupied by another node which
1840 * is not in the recovery map. We trylock his journal
1841 * file here to test if he's alive. */
1842 status = ocfs2_trylock_journal(osb, i);
1843 if (!status) {
1844 /* Since we're called from mount, we know that
1845 * the recovery thread can't race us on
1846 * setting / checking the recovery bits. */
1847 ocfs2_recovery_thread(osb, node_num);
1848 } else if ((status < 0) && (status != -EAGAIN)) {
1849 mlog_errno(status);
1850 goto bail;
1851 }
ccd979bd 1852 }
ccd979bd
MF
1853
1854 status = 0;
1855bail:
ccd979bd
MF
1856 return status;
1857}
1858
83273932
SE
1859/*
1860 * Scan timer should get fired every ORPHAN_SCAN_SCHEDULE_TIMEOUT. Add some
1861 * randomness to the timeout to minimize multple nodes firing the timer at the
1862 * same time.
1863 */
1864static inline unsigned long ocfs2_orphan_scan_timeout(void)
1865{
1866 unsigned long time;
1867
1868 get_random_bytes(&time, sizeof(time));
1869 time = ORPHAN_SCAN_SCHEDULE_TIMEOUT + (time % 5000);
1870 return msecs_to_jiffies(time);
1871}
1872
1873/*
1874 * ocfs2_queue_orphan_scan calls ocfs2_queue_recovery_completion for
1875 * every slot, queuing a recovery of the slot on the ocfs2_wq thread. This
1876 * is done to catch any orphans that are left over in orphan directories.
1877 *
a035bff6
SM
1878 * It scans all slots, even ones that are in use. It does so to handle the
1879 * case described below:
1880 *
1881 * Node 1 has an inode it was using. The dentry went away due to memory
1882 * pressure. Node 1 closes the inode, but it's on the free list. The node
1883 * has the open lock.
1884 * Node 2 unlinks the inode. It grabs the dentry lock to notify others,
1885 * but node 1 has no dentry and doesn't get the message. It trylocks the
1886 * open lock, sees that another node has a PR, and does nothing.
1887 * Later node 2 runs its orphan dir. It igets the inode, trylocks the
1888 * open lock, sees the PR still, and does nothing.
1889 * Basically, we have to trigger an orphan iput on node 1. The only way
1890 * for this to happen is if node 1 runs node 2's orphan dir.
1891 *
83273932
SE
1892 * ocfs2_queue_orphan_scan gets called every ORPHAN_SCAN_SCHEDULE_TIMEOUT
1893 * seconds. It gets an EX lock on os_lockres and checks sequence number
1894 * stored in LVB. If the sequence number has changed, it means some other
1895 * node has done the scan. This node skips the scan and tracks the
1896 * sequence number. If the sequence number didn't change, it means a scan
1897 * hasn't happened. The node queues a scan and increments the
1898 * sequence number in the LVB.
1899 */
1900void ocfs2_queue_orphan_scan(struct ocfs2_super *osb)
1901{
1902 struct ocfs2_orphan_scan *os;
1903 int status, i;
1904 u32 seqno = 0;
1905
1906 os = &osb->osb_orphan_scan;
1907
692684e1
SM
1908 if (atomic_read(&os->os_state) == ORPHAN_SCAN_INACTIVE)
1909 goto out;
1910
b4107950
TM
1911 trace_ocfs2_queue_orphan_scan_begin(os->os_count, os->os_seqno,
1912 atomic_read(&os->os_state));
1913
df152c24 1914 status = ocfs2_orphan_scan_lock(osb, &seqno);
83273932
SE
1915 if (status < 0) {
1916 if (status != -EAGAIN)
1917 mlog_errno(status);
1918 goto out;
1919 }
1920
692684e1
SM
1921 /* Do no queue the tasks if the volume is being umounted */
1922 if (atomic_read(&os->os_state) == ORPHAN_SCAN_INACTIVE)
1923 goto unlock;
1924
83273932
SE
1925 if (os->os_seqno != seqno) {
1926 os->os_seqno = seqno;
1927 goto unlock;
1928 }
1929
1930 for (i = 0; i < osb->max_slots; i++)
1931 ocfs2_queue_recovery_completion(osb->journal, i, NULL, NULL,
ed460cff 1932 NULL, ORPHAN_NO_NEED_TRUNCATE);
83273932
SE
1933 /*
1934 * We queued a recovery on orphan slots, increment the sequence
1935 * number and update LVB so other node will skip the scan for a while
1936 */
1937 seqno++;
15633a22
SE
1938 os->os_count++;
1939 os->os_scantime = CURRENT_TIME;
83273932 1940unlock:
df152c24 1941 ocfs2_orphan_scan_unlock(osb, seqno);
83273932 1942out:
b4107950
TM
1943 trace_ocfs2_queue_orphan_scan_end(os->os_count, os->os_seqno,
1944 atomic_read(&os->os_state));
83273932
SE
1945 return;
1946}
1947
1948/* Worker task that gets fired every ORPHAN_SCAN_SCHEDULE_TIMEOUT millsec */
1949void ocfs2_orphan_scan_work(struct work_struct *work)
1950{
1951 struct ocfs2_orphan_scan *os;
1952 struct ocfs2_super *osb;
1953
1954 os = container_of(work, struct ocfs2_orphan_scan,
1955 os_orphan_scan_work.work);
1956 osb = os->os_osb;
1957
1958 mutex_lock(&os->os_lock);
1959 ocfs2_queue_orphan_scan(osb);
692684e1 1960 if (atomic_read(&os->os_state) == ORPHAN_SCAN_ACTIVE)
40f165f4 1961 queue_delayed_work(ocfs2_wq, &os->os_orphan_scan_work,
692684e1 1962 ocfs2_orphan_scan_timeout());
83273932
SE
1963 mutex_unlock(&os->os_lock);
1964}
1965
1966void ocfs2_orphan_scan_stop(struct ocfs2_super *osb)
1967{
1968 struct ocfs2_orphan_scan *os;
1969
1970 os = &osb->osb_orphan_scan;
df152c24
SM
1971 if (atomic_read(&os->os_state) == ORPHAN_SCAN_ACTIVE) {
1972 atomic_set(&os->os_state, ORPHAN_SCAN_INACTIVE);
1973 mutex_lock(&os->os_lock);
1974 cancel_delayed_work(&os->os_orphan_scan_work);
1975 mutex_unlock(&os->os_lock);
1976 }
83273932
SE
1977}
1978
df152c24 1979void ocfs2_orphan_scan_init(struct ocfs2_super *osb)
83273932
SE
1980{
1981 struct ocfs2_orphan_scan *os;
1982
1983 os = &osb->osb_orphan_scan;
1984 os->os_osb = osb;
15633a22 1985 os->os_count = 0;
3211949f 1986 os->os_seqno = 0;
83273932 1987 mutex_init(&os->os_lock);
df152c24 1988 INIT_DELAYED_WORK(&os->os_orphan_scan_work, ocfs2_orphan_scan_work);
8b712cd5 1989}
83273932 1990
8b712cd5
JM
1991void ocfs2_orphan_scan_start(struct ocfs2_super *osb)
1992{
1993 struct ocfs2_orphan_scan *os;
1994
1995 os = &osb->osb_orphan_scan;
1996 os->os_scantime = CURRENT_TIME;
df152c24
SM
1997 if (ocfs2_is_hard_readonly(osb) || ocfs2_mount_local(osb))
1998 atomic_set(&os->os_state, ORPHAN_SCAN_INACTIVE);
1999 else {
2000 atomic_set(&os->os_state, ORPHAN_SCAN_ACTIVE);
40f165f4
TM
2001 queue_delayed_work(ocfs2_wq, &os->os_orphan_scan_work,
2002 ocfs2_orphan_scan_timeout());
df152c24 2003 }
83273932
SE
2004}
2005
5eae5b96 2006struct ocfs2_orphan_filldir_priv {
3704412b 2007 struct dir_context ctx;
5eae5b96
MF
2008 struct inode *head;
2009 struct ocfs2_super *osb;
2010};
2011
ac7576f4
MS
2012static int ocfs2_orphan_filldir(struct dir_context *ctx, const char *name,
2013 int name_len, loff_t pos, u64 ino,
2014 unsigned type)
5eae5b96 2015{
ac7576f4
MS
2016 struct ocfs2_orphan_filldir_priv *p =
2017 container_of(ctx, struct ocfs2_orphan_filldir_priv, ctx);
5eae5b96
MF
2018 struct inode *iter;
2019
2020 if (name_len == 1 && !strncmp(".", name, 1))
2021 return 0;
2022 if (name_len == 2 && !strncmp("..", name, 2))
2023 return 0;
2024
2025 /* Skip bad inodes so that recovery can continue */
2026 iter = ocfs2_iget(p->osb, ino,
5fa0613e 2027 OCFS2_FI_FLAG_ORPHAN_RECOVERY, 0);
5eae5b96
MF
2028 if (IS_ERR(iter))
2029 return 0;
2030
ed460cff
JQ
2031 /* Skip inodes which are already added to recover list, since dio may
2032 * happen concurrently with unlink/rename */
2033 if (OCFS2_I(iter)->ip_next_orphan) {
2034 iput(iter);
2035 return 0;
2036 }
2037
b4107950 2038 trace_ocfs2_orphan_filldir((unsigned long long)OCFS2_I(iter)->ip_blkno);
5eae5b96
MF
2039 /* No locking is required for the next_orphan queue as there
2040 * is only ever a single process doing orphan recovery. */
2041 OCFS2_I(iter)->ip_next_orphan = p->head;
2042 p->head = iter;
2043
2044 return 0;
2045}
2046
b4df6ed8
MF
2047static int ocfs2_queue_orphans(struct ocfs2_super *osb,
2048 int slot,
2049 struct inode **head)
ccd979bd 2050{
b4df6ed8 2051 int status;
ccd979bd 2052 struct inode *orphan_dir_inode = NULL;
3704412b
AV
2053 struct ocfs2_orphan_filldir_priv priv = {
2054 .ctx.actor = ocfs2_orphan_filldir,
2055 .osb = osb,
2056 .head = *head
2057 };
ccd979bd
MF
2058
2059 orphan_dir_inode = ocfs2_get_system_file_inode(osb,
2060 ORPHAN_DIR_SYSTEM_INODE,
2061 slot);
2062 if (!orphan_dir_inode) {
2063 status = -ENOENT;
2064 mlog_errno(status);
b4df6ed8 2065 return status;
2bd63216 2066 }
ccd979bd 2067
1b1dcc1b 2068 mutex_lock(&orphan_dir_inode->i_mutex);
e63aecb6 2069 status = ocfs2_inode_lock(orphan_dir_inode, NULL, 0);
ccd979bd 2070 if (status < 0) {
ccd979bd
MF
2071 mlog_errno(status);
2072 goto out;
2073 }
ccd979bd 2074
3704412b 2075 status = ocfs2_dir_foreach(orphan_dir_inode, &priv.ctx);
5eae5b96
MF
2076 if (status) {
2077 mlog_errno(status);
a86370fb 2078 goto out_cluster;
ccd979bd 2079 }
ccd979bd 2080
5eae5b96
MF
2081 *head = priv.head;
2082
a86370fb 2083out_cluster:
e63aecb6 2084 ocfs2_inode_unlock(orphan_dir_inode, 0);
b4df6ed8
MF
2085out:
2086 mutex_unlock(&orphan_dir_inode->i_mutex);
ccd979bd 2087 iput(orphan_dir_inode);
b4df6ed8
MF
2088 return status;
2089}
2090
2091static int ocfs2_orphan_recovery_can_continue(struct ocfs2_super *osb,
2092 int slot)
2093{
2094 int ret;
2095
2096 spin_lock(&osb->osb_lock);
2097 ret = !osb->osb_orphan_wipes[slot];
2098 spin_unlock(&osb->osb_lock);
2099 return ret;
2100}
2101
2102static void ocfs2_mark_recovering_orphan_dir(struct ocfs2_super *osb,
2103 int slot)
2104{
2105 spin_lock(&osb->osb_lock);
2106 /* Mark ourselves such that new processes in delete_inode()
2107 * know to quit early. */
2108 ocfs2_node_map_set_bit(osb, &osb->osb_recovering_orphan_dirs, slot);
2109 while (osb->osb_orphan_wipes[slot]) {
2110 /* If any processes are already in the middle of an
2111 * orphan wipe on this dir, then we need to wait for
2112 * them. */
2113 spin_unlock(&osb->osb_lock);
2114 wait_event_interruptible(osb->osb_wipe_event,
2115 ocfs2_orphan_recovery_can_continue(osb, slot));
2116 spin_lock(&osb->osb_lock);
2117 }
2118 spin_unlock(&osb->osb_lock);
2119}
2120
2121static void ocfs2_clear_recovering_orphan_dir(struct ocfs2_super *osb,
2122 int slot)
2123{
2124 ocfs2_node_map_clear_bit(osb, &osb->osb_recovering_orphan_dirs, slot);
2125}
2126
2127/*
2128 * Orphan recovery. Each mounted node has it's own orphan dir which we
2129 * must run during recovery. Our strategy here is to build a list of
2130 * the inodes in the orphan dir and iget/iput them. The VFS does
2131 * (most) of the rest of the work.
2132 *
2133 * Orphan recovery can happen at any time, not just mount so we have a
2134 * couple of extra considerations.
2135 *
2136 * - We grab as many inodes as we can under the orphan dir lock -
2137 * doing iget() outside the orphan dir risks getting a reference on
2138 * an invalid inode.
2139 * - We must be sure not to deadlock with other processes on the
2140 * system wanting to run delete_inode(). This can happen when they go
2141 * to lock the orphan dir and the orphan recovery process attempts to
2142 * iget() inside the orphan dir lock. This can be avoided by
2143 * advertising our state to ocfs2_delete_inode().
2144 */
2145static int ocfs2_recover_orphans(struct ocfs2_super *osb,
ed460cff
JQ
2146 int slot,
2147 enum ocfs2_orphan_reco_type orphan_reco_type)
b4df6ed8
MF
2148{
2149 int ret = 0;
2150 struct inode *inode = NULL;
2151 struct inode *iter;
2152 struct ocfs2_inode_info *oi;
cf1776a9
JQ
2153 struct buffer_head *di_bh = NULL;
2154 struct ocfs2_dinode *di = NULL;
b4df6ed8 2155
b4107950 2156 trace_ocfs2_recover_orphans(slot);
b4df6ed8
MF
2157
2158 ocfs2_mark_recovering_orphan_dir(osb, slot);
2159 ret = ocfs2_queue_orphans(osb, slot, &inode);
2160 ocfs2_clear_recovering_orphan_dir(osb, slot);
2161
2162 /* Error here should be noted, but we want to continue with as
2163 * many queued inodes as we've got. */
2164 if (ret)
2165 mlog_errno(ret);
ccd979bd
MF
2166
2167 while (inode) {
2168 oi = OCFS2_I(inode);
b4107950
TM
2169 trace_ocfs2_recover_orphans_iput(
2170 (unsigned long long)oi->ip_blkno);
ccd979bd
MF
2171
2172 iter = oi->ip_next_orphan;
ed460cff 2173 oi->ip_next_orphan = NULL;
ccd979bd 2174
cf1776a9
JQ
2175 ret = ocfs2_rw_lock(inode, 1);
2176 if (ret < 0) {
2177 mlog_errno(ret);
2178 goto next;
2179 }
ed460cff
JQ
2180 /*
2181 * We need to take and drop the inode lock to
2182 * force read inode from disk.
2183 */
cf1776a9 2184 ret = ocfs2_inode_lock(inode, &di_bh, 1);
ed460cff
JQ
2185 if (ret) {
2186 mlog_errno(ret);
cf1776a9 2187 goto unlock_rw;
ed460cff 2188 }
cf1776a9
JQ
2189
2190 di = (struct ocfs2_dinode *)di_bh->b_data;
ed460cff
JQ
2191
2192 if (inode->i_nlink == 0) {
2193 spin_lock(&oi->ip_lock);
2194 /* Set the proper information to get us going into
2195 * ocfs2_delete_inode. */
2196 oi->ip_flags |= OCFS2_INODE_MAYBE_ORPHANED;
2197 spin_unlock(&oi->ip_lock);
cf1776a9
JQ
2198 } else if ((orphan_reco_type == ORPHAN_NEED_TRUNCATE) &&
2199 (di->i_flags & cpu_to_le32(OCFS2_DIO_ORPHANED_FL))) {
ed460cff
JQ
2200 ret = ocfs2_truncate_file(inode, di_bh,
2201 i_size_read(inode));
ed460cff
JQ
2202 if (ret < 0) {
2203 if (ret != -ENOSPC)
2204 mlog_errno(ret);
cf1776a9 2205 goto unlock_inode;
ed460cff
JQ
2206 }
2207
cf1776a9 2208 ret = ocfs2_del_inode_from_orphan(osb, inode, di_bh, 0, 0);
ed460cff
JQ
2209 if (ret)
2210 mlog_errno(ret);
4813962b
JQ
2211
2212 wake_up(&OCFS2_I(inode)->append_dio_wq);
ed460cff 2213 } /* else if ORPHAN_NO_NEED_TRUNCATE, do nothing */
cf1776a9
JQ
2214unlock_inode:
2215 ocfs2_inode_unlock(inode, 1);
2216unlock_rw:
2217 ocfs2_rw_unlock(inode, 1);
ed460cff 2218next:
ccd979bd 2219 iput(inode);
cf1776a9
JQ
2220 brelse(di_bh);
2221 di_bh = NULL;
ccd979bd
MF
2222 inode = iter;
2223 }
2224
b4df6ed8 2225 return ret;
ccd979bd
MF
2226}
2227
19ece546 2228static int __ocfs2_wait_on_mount(struct ocfs2_super *osb, int quota)
ccd979bd
MF
2229{
2230 /* This check is good because ocfs2 will wait on our recovery
2231 * thread before changing it to something other than MOUNTED
2232 * or DISABLED. */
2233 wait_event(osb->osb_mount_event,
19ece546
JK
2234 (!quota && atomic_read(&osb->vol_state) == VOLUME_MOUNTED) ||
2235 atomic_read(&osb->vol_state) == VOLUME_MOUNTED_QUOTAS ||
ccd979bd
MF
2236 atomic_read(&osb->vol_state) == VOLUME_DISABLED);
2237
2238 /* If there's an error on mount, then we may never get to the
2239 * MOUNTED flag, but this is set right before
2240 * dismount_volume() so we can trust it. */
2241 if (atomic_read(&osb->vol_state) == VOLUME_DISABLED) {
b4107950 2242 trace_ocfs2_wait_on_mount(VOLUME_DISABLED);
ccd979bd
MF
2243 mlog(0, "mount error, exiting!\n");
2244 return -EBUSY;
2245 }
2246
2247 return 0;
2248}
2249
2250static int ocfs2_commit_thread(void *arg)
2251{
2252 int status;
2253 struct ocfs2_super *osb = arg;
2254 struct ocfs2_journal *journal = osb->journal;
2255
2256 /* we can trust j_num_trans here because _should_stop() is only set in
2257 * shutdown and nobody other than ourselves should be able to start
2258 * transactions. committing on shutdown might take a few iterations
2259 * as final transactions put deleted inodes on the list */
2260 while (!(kthread_should_stop() &&
2261 atomic_read(&journal->j_num_trans) == 0)) {
2262
745ae8ba
MF
2263 wait_event_interruptible(osb->checkpoint_event,
2264 atomic_read(&journal->j_num_trans)
2265 || kthread_should_stop());
ccd979bd
MF
2266
2267 status = ocfs2_commit_cache(osb);
55b465b6
JQ
2268 if (status < 0) {
2269 static unsigned long abort_warn_time;
2270
2271 /* Warn about this once per minute */
2272 if (printk_timed_ratelimit(&abort_warn_time, 60*HZ))
2273 mlog(ML_ERROR, "status = %d, journal is "
2274 "already aborted.\n", status);
2275 /*
2276 * After ocfs2_commit_cache() fails, j_num_trans has a
2277 * non-zero value. Sleep here to avoid a busy-wait
2278 * loop.
2279 */
2280 msleep_interruptible(1000);
2281 }
ccd979bd
MF
2282
2283 if (kthread_should_stop() && atomic_read(&journal->j_num_trans)){
2284 mlog(ML_KTHREAD,
2285 "commit_thread: %u transactions pending on "
2286 "shutdown\n",
2287 atomic_read(&journal->j_num_trans));
2288 }
2289 }
2290
2291 return 0;
2292}
2293
539d8264
SM
2294/* Reads all the journal inodes without taking any cluster locks. Used
2295 * for hard readonly access to determine whether any journal requires
2296 * recovery. Also used to refresh the recovery generation numbers after
2297 * a journal has been recovered by another node.
2298 */
ccd979bd
MF
2299int ocfs2_check_journals_nolocks(struct ocfs2_super *osb)
2300{
2301 int ret = 0;
2302 unsigned int slot;
539d8264 2303 struct buffer_head *di_bh = NULL;
ccd979bd 2304 struct ocfs2_dinode *di;
539d8264 2305 int journal_dirty = 0;
ccd979bd
MF
2306
2307 for(slot = 0; slot < osb->max_slots; slot++) {
539d8264
SM
2308 ret = ocfs2_read_journal_inode(osb, slot, &di_bh, NULL);
2309 if (ret) {
ccd979bd
MF
2310 mlog_errno(ret);
2311 goto out;
2312 }
2313
2314 di = (struct ocfs2_dinode *) di_bh->b_data;
2315
539d8264
SM
2316 osb->slot_recovery_generations[slot] =
2317 ocfs2_get_recovery_generation(di);
2318
ccd979bd
MF
2319 if (le32_to_cpu(di->id1.journal1.ij_flags) &
2320 OCFS2_JOURNAL_DIRTY_FL)
539d8264 2321 journal_dirty = 1;
ccd979bd
MF
2322
2323 brelse(di_bh);
539d8264 2324 di_bh = NULL;
ccd979bd
MF
2325 }
2326
2327out:
539d8264
SM
2328 if (journal_dirty)
2329 ret = -EROFS;
ccd979bd
MF
2330 return ret;
2331}