]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - fs/ubifs/debug.c
UBIFS: make xattr operations names consistent
[mirror_ubuntu-jammy-kernel.git] / fs / ubifs / debug.c
CommitLineData
1e51764a
AB
1/*
2 * This file is part of UBIFS.
3 *
4 * Copyright (C) 2006-2008 Nokia Corporation
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published by
8 * the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
15 * You should have received a copy of the GNU General Public License along with
16 * this program; if not, write to the Free Software Foundation, Inc., 51
17 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18 *
19 * Authors: Artem Bityutskiy (Битюцкий Артём)
20 * Adrian Hunter
21 */
22
23/*
24 * This file implements most of the debugging stuff which is compiled in only
25 * when it is enabled. But some debugging check functions are implemented in
26 * corresponding subsystem, just because they are closely related and utilize
27 * various local functions of those subsystems.
28 */
29
30#define UBIFS_DBG_PRESERVE_UBI
31
32#include "ubifs.h"
33#include <linux/module.h>
34#include <linux/moduleparam.h>
552ff317 35#include <linux/debugfs.h>
4d61db4f 36#include <linux/math64.h>
1e51764a
AB
37
38#ifdef CONFIG_UBIFS_FS_DEBUG
39
40DEFINE_SPINLOCK(dbg_lock);
41
42static char dbg_key_buf0[128];
43static char dbg_key_buf1[128];
44
cce3f612
AB
45unsigned int ubifs_msg_flags;
46unsigned int ubifs_chk_flags;
1e51764a
AB
47unsigned int ubifs_tst_flags;
48
49module_param_named(debug_msgs, ubifs_msg_flags, uint, S_IRUGO | S_IWUSR);
50module_param_named(debug_chks, ubifs_chk_flags, uint, S_IRUGO | S_IWUSR);
51module_param_named(debug_tsts, ubifs_tst_flags, uint, S_IRUGO | S_IWUSR);
52
53MODULE_PARM_DESC(debug_msgs, "Debug message type flags");
54MODULE_PARM_DESC(debug_chks, "Debug check flags");
55MODULE_PARM_DESC(debug_tsts, "Debug special test flags");
56
57static const char *get_key_fmt(int fmt)
58{
59 switch (fmt) {
60 case UBIFS_SIMPLE_KEY_FMT:
61 return "simple";
62 default:
63 return "unknown/invalid format";
64 }
65}
66
67static const char *get_key_hash(int hash)
68{
69 switch (hash) {
70 case UBIFS_KEY_HASH_R5:
71 return "R5";
72 case UBIFS_KEY_HASH_TEST:
73 return "test";
74 default:
75 return "unknown/invalid name hash";
76 }
77}
78
79static const char *get_key_type(int type)
80{
81 switch (type) {
82 case UBIFS_INO_KEY:
83 return "inode";
84 case UBIFS_DENT_KEY:
85 return "direntry";
86 case UBIFS_XENT_KEY:
87 return "xentry";
88 case UBIFS_DATA_KEY:
89 return "data";
90 case UBIFS_TRUN_KEY:
91 return "truncate";
92 default:
93 return "unknown/invalid key";
94 }
95}
96
97static void sprintf_key(const struct ubifs_info *c, const union ubifs_key *key,
98 char *buffer)
99{
100 char *p = buffer;
101 int type = key_type(c, key);
102
103 if (c->key_fmt == UBIFS_SIMPLE_KEY_FMT) {
104 switch (type) {
105 case UBIFS_INO_KEY:
e84461ad 106 sprintf(p, "(%lu, %s)", (unsigned long)key_inum(c, key),
1e51764a
AB
107 get_key_type(type));
108 break;
109 case UBIFS_DENT_KEY:
110 case UBIFS_XENT_KEY:
e84461ad
AB
111 sprintf(p, "(%lu, %s, %#08x)",
112 (unsigned long)key_inum(c, key),
1e51764a
AB
113 get_key_type(type), key_hash(c, key));
114 break;
115 case UBIFS_DATA_KEY:
e84461ad
AB
116 sprintf(p, "(%lu, %s, %u)",
117 (unsigned long)key_inum(c, key),
1e51764a
AB
118 get_key_type(type), key_block(c, key));
119 break;
120 case UBIFS_TRUN_KEY:
121 sprintf(p, "(%lu, %s)",
e84461ad
AB
122 (unsigned long)key_inum(c, key),
123 get_key_type(type));
1e51764a
AB
124 break;
125 default:
126 sprintf(p, "(bad key type: %#08x, %#08x)",
127 key->u32[0], key->u32[1]);
128 }
129 } else
130 sprintf(p, "bad key format %d", c->key_fmt);
131}
132
133const char *dbg_key_str0(const struct ubifs_info *c, const union ubifs_key *key)
134{
135 /* dbg_lock must be held */
136 sprintf_key(c, key, dbg_key_buf0);
137 return dbg_key_buf0;
138}
139
140const char *dbg_key_str1(const struct ubifs_info *c, const union ubifs_key *key)
141{
142 /* dbg_lock must be held */
143 sprintf_key(c, key, dbg_key_buf1);
144 return dbg_key_buf1;
145}
146
147const char *dbg_ntype(int type)
148{
149 switch (type) {
150 case UBIFS_PAD_NODE:
151 return "padding node";
152 case UBIFS_SB_NODE:
153 return "superblock node";
154 case UBIFS_MST_NODE:
155 return "master node";
156 case UBIFS_REF_NODE:
157 return "reference node";
158 case UBIFS_INO_NODE:
159 return "inode node";
160 case UBIFS_DENT_NODE:
161 return "direntry node";
162 case UBIFS_XENT_NODE:
163 return "xentry node";
164 case UBIFS_DATA_NODE:
165 return "data node";
166 case UBIFS_TRUN_NODE:
167 return "truncate node";
168 case UBIFS_IDX_NODE:
169 return "indexing node";
170 case UBIFS_CS_NODE:
171 return "commit start node";
172 case UBIFS_ORPH_NODE:
173 return "orphan node";
174 default:
175 return "unknown node";
176 }
177}
178
179static const char *dbg_gtype(int type)
180{
181 switch (type) {
182 case UBIFS_NO_NODE_GROUP:
183 return "no node group";
184 case UBIFS_IN_NODE_GROUP:
185 return "in node group";
186 case UBIFS_LAST_OF_NODE_GROUP:
187 return "last of node group";
188 default:
189 return "unknown";
190 }
191}
192
193const char *dbg_cstate(int cmt_state)
194{
195 switch (cmt_state) {
196 case COMMIT_RESTING:
197 return "commit resting";
198 case COMMIT_BACKGROUND:
199 return "background commit requested";
200 case COMMIT_REQUIRED:
201 return "commit required";
202 case COMMIT_RUNNING_BACKGROUND:
203 return "BACKGROUND commit running";
204 case COMMIT_RUNNING_REQUIRED:
205 return "commit running and required";
206 case COMMIT_BROKEN:
207 return "broken commit";
208 default:
209 return "unknown commit state";
210 }
211}
212
77a7ae58
AB
213const char *dbg_jhead(int jhead)
214{
215 switch (jhead) {
216 case GCHD:
217 return "0 (GC)";
218 case BASEHD:
219 return "1 (base)";
220 case DATAHD:
221 return "2 (data)";
222 default:
223 return "unknown journal head";
224 }
225}
226
1e51764a
AB
227static void dump_ch(const struct ubifs_ch *ch)
228{
229 printk(KERN_DEBUG "\tmagic %#x\n", le32_to_cpu(ch->magic));
230 printk(KERN_DEBUG "\tcrc %#x\n", le32_to_cpu(ch->crc));
231 printk(KERN_DEBUG "\tnode_type %d (%s)\n", ch->node_type,
232 dbg_ntype(ch->node_type));
233 printk(KERN_DEBUG "\tgroup_type %d (%s)\n", ch->group_type,
234 dbg_gtype(ch->group_type));
235 printk(KERN_DEBUG "\tsqnum %llu\n",
236 (unsigned long long)le64_to_cpu(ch->sqnum));
237 printk(KERN_DEBUG "\tlen %u\n", le32_to_cpu(ch->len));
238}
239
240void dbg_dump_inode(const struct ubifs_info *c, const struct inode *inode)
241{
242 const struct ubifs_inode *ui = ubifs_inode(inode);
243
b5e426e9
AB
244 printk(KERN_DEBUG "Dump in-memory inode:");
245 printk(KERN_DEBUG "\tinode %lu\n", inode->i_ino);
246 printk(KERN_DEBUG "\tsize %llu\n",
1e51764a 247 (unsigned long long)i_size_read(inode));
b5e426e9
AB
248 printk(KERN_DEBUG "\tnlink %u\n", inode->i_nlink);
249 printk(KERN_DEBUG "\tuid %u\n", (unsigned int)inode->i_uid);
250 printk(KERN_DEBUG "\tgid %u\n", (unsigned int)inode->i_gid);
251 printk(KERN_DEBUG "\tatime %u.%u\n",
1e51764a
AB
252 (unsigned int)inode->i_atime.tv_sec,
253 (unsigned int)inode->i_atime.tv_nsec);
b5e426e9 254 printk(KERN_DEBUG "\tmtime %u.%u\n",
1e51764a
AB
255 (unsigned int)inode->i_mtime.tv_sec,
256 (unsigned int)inode->i_mtime.tv_nsec);
b5e426e9 257 printk(KERN_DEBUG "\tctime %u.%u\n",
1e51764a
AB
258 (unsigned int)inode->i_ctime.tv_sec,
259 (unsigned int)inode->i_ctime.tv_nsec);
b5e426e9
AB
260 printk(KERN_DEBUG "\tcreat_sqnum %llu\n", ui->creat_sqnum);
261 printk(KERN_DEBUG "\txattr_size %u\n", ui->xattr_size);
262 printk(KERN_DEBUG "\txattr_cnt %u\n", ui->xattr_cnt);
263 printk(KERN_DEBUG "\txattr_names %u\n", ui->xattr_names);
264 printk(KERN_DEBUG "\tdirty %u\n", ui->dirty);
265 printk(KERN_DEBUG "\txattr %u\n", ui->xattr);
266 printk(KERN_DEBUG "\tbulk_read %u\n", ui->xattr);
267 printk(KERN_DEBUG "\tsynced_i_size %llu\n",
268 (unsigned long long)ui->synced_i_size);
269 printk(KERN_DEBUG "\tui_size %llu\n",
270 (unsigned long long)ui->ui_size);
271 printk(KERN_DEBUG "\tflags %d\n", ui->flags);
272 printk(KERN_DEBUG "\tcompr_type %d\n", ui->compr_type);
273 printk(KERN_DEBUG "\tlast_page_read %lu\n", ui->last_page_read);
274 printk(KERN_DEBUG "\tread_in_a_row %lu\n", ui->read_in_a_row);
275 printk(KERN_DEBUG "\tdata_len %d\n", ui->data_len);
1e51764a
AB
276}
277
278void dbg_dump_node(const struct ubifs_info *c, const void *node)
279{
280 int i, n;
281 union ubifs_key key;
282 const struct ubifs_ch *ch = node;
283
284 if (dbg_failure_mode)
285 return;
286
287 /* If the magic is incorrect, just hexdump the first bytes */
288 if (le32_to_cpu(ch->magic) != UBIFS_NODE_MAGIC) {
289 printk(KERN_DEBUG "Not a node, first %zu bytes:", UBIFS_CH_SZ);
290 print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 32, 1,
291 (void *)node, UBIFS_CH_SZ, 1);
292 return;
293 }
294
295 spin_lock(&dbg_lock);
296 dump_ch(node);
297
298 switch (ch->node_type) {
299 case UBIFS_PAD_NODE:
300 {
301 const struct ubifs_pad_node *pad = node;
302
303 printk(KERN_DEBUG "\tpad_len %u\n",
304 le32_to_cpu(pad->pad_len));
305 break;
306 }
307 case UBIFS_SB_NODE:
308 {
309 const struct ubifs_sb_node *sup = node;
310 unsigned int sup_flags = le32_to_cpu(sup->flags);
311
312 printk(KERN_DEBUG "\tkey_hash %d (%s)\n",
313 (int)sup->key_hash, get_key_hash(sup->key_hash));
314 printk(KERN_DEBUG "\tkey_fmt %d (%s)\n",
315 (int)sup->key_fmt, get_key_fmt(sup->key_fmt));
316 printk(KERN_DEBUG "\tflags %#x\n", sup_flags);
317 printk(KERN_DEBUG "\t big_lpt %u\n",
318 !!(sup_flags & UBIFS_FLG_BIGLPT));
319 printk(KERN_DEBUG "\tmin_io_size %u\n",
320 le32_to_cpu(sup->min_io_size));
321 printk(KERN_DEBUG "\tleb_size %u\n",
322 le32_to_cpu(sup->leb_size));
323 printk(KERN_DEBUG "\tleb_cnt %u\n",
324 le32_to_cpu(sup->leb_cnt));
325 printk(KERN_DEBUG "\tmax_leb_cnt %u\n",
326 le32_to_cpu(sup->max_leb_cnt));
327 printk(KERN_DEBUG "\tmax_bud_bytes %llu\n",
328 (unsigned long long)le64_to_cpu(sup->max_bud_bytes));
329 printk(KERN_DEBUG "\tlog_lebs %u\n",
330 le32_to_cpu(sup->log_lebs));
331 printk(KERN_DEBUG "\tlpt_lebs %u\n",
332 le32_to_cpu(sup->lpt_lebs));
333 printk(KERN_DEBUG "\torph_lebs %u\n",
334 le32_to_cpu(sup->orph_lebs));
335 printk(KERN_DEBUG "\tjhead_cnt %u\n",
336 le32_to_cpu(sup->jhead_cnt));
337 printk(KERN_DEBUG "\tfanout %u\n",
338 le32_to_cpu(sup->fanout));
339 printk(KERN_DEBUG "\tlsave_cnt %u\n",
340 le32_to_cpu(sup->lsave_cnt));
341 printk(KERN_DEBUG "\tdefault_compr %u\n",
342 (int)le16_to_cpu(sup->default_compr));
343 printk(KERN_DEBUG "\trp_size %llu\n",
344 (unsigned long long)le64_to_cpu(sup->rp_size));
345 printk(KERN_DEBUG "\trp_uid %u\n",
346 le32_to_cpu(sup->rp_uid));
347 printk(KERN_DEBUG "\trp_gid %u\n",
348 le32_to_cpu(sup->rp_gid));
349 printk(KERN_DEBUG "\tfmt_version %u\n",
350 le32_to_cpu(sup->fmt_version));
351 printk(KERN_DEBUG "\ttime_gran %u\n",
352 le32_to_cpu(sup->time_gran));
7f2f4e72
JP
353 printk(KERN_DEBUG "\tUUID %pUB\n",
354 sup->uuid);
1e51764a
AB
355 break;
356 }
357 case UBIFS_MST_NODE:
358 {
359 const struct ubifs_mst_node *mst = node;
360
361 printk(KERN_DEBUG "\thighest_inum %llu\n",
362 (unsigned long long)le64_to_cpu(mst->highest_inum));
363 printk(KERN_DEBUG "\tcommit number %llu\n",
364 (unsigned long long)le64_to_cpu(mst->cmt_no));
365 printk(KERN_DEBUG "\tflags %#x\n",
366 le32_to_cpu(mst->flags));
367 printk(KERN_DEBUG "\tlog_lnum %u\n",
368 le32_to_cpu(mst->log_lnum));
369 printk(KERN_DEBUG "\troot_lnum %u\n",
370 le32_to_cpu(mst->root_lnum));
371 printk(KERN_DEBUG "\troot_offs %u\n",
372 le32_to_cpu(mst->root_offs));
373 printk(KERN_DEBUG "\troot_len %u\n",
374 le32_to_cpu(mst->root_len));
375 printk(KERN_DEBUG "\tgc_lnum %u\n",
376 le32_to_cpu(mst->gc_lnum));
377 printk(KERN_DEBUG "\tihead_lnum %u\n",
378 le32_to_cpu(mst->ihead_lnum));
379 printk(KERN_DEBUG "\tihead_offs %u\n",
380 le32_to_cpu(mst->ihead_offs));
0ecb9529
HH
381 printk(KERN_DEBUG "\tindex_size %llu\n",
382 (unsigned long long)le64_to_cpu(mst->index_size));
1e51764a
AB
383 printk(KERN_DEBUG "\tlpt_lnum %u\n",
384 le32_to_cpu(mst->lpt_lnum));
385 printk(KERN_DEBUG "\tlpt_offs %u\n",
386 le32_to_cpu(mst->lpt_offs));
387 printk(KERN_DEBUG "\tnhead_lnum %u\n",
388 le32_to_cpu(mst->nhead_lnum));
389 printk(KERN_DEBUG "\tnhead_offs %u\n",
390 le32_to_cpu(mst->nhead_offs));
391 printk(KERN_DEBUG "\tltab_lnum %u\n",
392 le32_to_cpu(mst->ltab_lnum));
393 printk(KERN_DEBUG "\tltab_offs %u\n",
394 le32_to_cpu(mst->ltab_offs));
395 printk(KERN_DEBUG "\tlsave_lnum %u\n",
396 le32_to_cpu(mst->lsave_lnum));
397 printk(KERN_DEBUG "\tlsave_offs %u\n",
398 le32_to_cpu(mst->lsave_offs));
399 printk(KERN_DEBUG "\tlscan_lnum %u\n",
400 le32_to_cpu(mst->lscan_lnum));
401 printk(KERN_DEBUG "\tleb_cnt %u\n",
402 le32_to_cpu(mst->leb_cnt));
403 printk(KERN_DEBUG "\tempty_lebs %u\n",
404 le32_to_cpu(mst->empty_lebs));
405 printk(KERN_DEBUG "\tidx_lebs %u\n",
406 le32_to_cpu(mst->idx_lebs));
407 printk(KERN_DEBUG "\ttotal_free %llu\n",
408 (unsigned long long)le64_to_cpu(mst->total_free));
409 printk(KERN_DEBUG "\ttotal_dirty %llu\n",
410 (unsigned long long)le64_to_cpu(mst->total_dirty));
411 printk(KERN_DEBUG "\ttotal_used %llu\n",
412 (unsigned long long)le64_to_cpu(mst->total_used));
413 printk(KERN_DEBUG "\ttotal_dead %llu\n",
414 (unsigned long long)le64_to_cpu(mst->total_dead));
415 printk(KERN_DEBUG "\ttotal_dark %llu\n",
416 (unsigned long long)le64_to_cpu(mst->total_dark));
417 break;
418 }
419 case UBIFS_REF_NODE:
420 {
421 const struct ubifs_ref_node *ref = node;
422
423 printk(KERN_DEBUG "\tlnum %u\n",
424 le32_to_cpu(ref->lnum));
425 printk(KERN_DEBUG "\toffs %u\n",
426 le32_to_cpu(ref->offs));
427 printk(KERN_DEBUG "\tjhead %u\n",
428 le32_to_cpu(ref->jhead));
429 break;
430 }
431 case UBIFS_INO_NODE:
432 {
433 const struct ubifs_ino_node *ino = node;
434
435 key_read(c, &ino->key, &key);
436 printk(KERN_DEBUG "\tkey %s\n", DBGKEY(&key));
437 printk(KERN_DEBUG "\tcreat_sqnum %llu\n",
438 (unsigned long long)le64_to_cpu(ino->creat_sqnum));
439 printk(KERN_DEBUG "\tsize %llu\n",
440 (unsigned long long)le64_to_cpu(ino->size));
441 printk(KERN_DEBUG "\tnlink %u\n",
442 le32_to_cpu(ino->nlink));
443 printk(KERN_DEBUG "\tatime %lld.%u\n",
444 (long long)le64_to_cpu(ino->atime_sec),
445 le32_to_cpu(ino->atime_nsec));
446 printk(KERN_DEBUG "\tmtime %lld.%u\n",
447 (long long)le64_to_cpu(ino->mtime_sec),
448 le32_to_cpu(ino->mtime_nsec));
449 printk(KERN_DEBUG "\tctime %lld.%u\n",
450 (long long)le64_to_cpu(ino->ctime_sec),
451 le32_to_cpu(ino->ctime_nsec));
452 printk(KERN_DEBUG "\tuid %u\n",
453 le32_to_cpu(ino->uid));
454 printk(KERN_DEBUG "\tgid %u\n",
455 le32_to_cpu(ino->gid));
456 printk(KERN_DEBUG "\tmode %u\n",
457 le32_to_cpu(ino->mode));
458 printk(KERN_DEBUG "\tflags %#x\n",
459 le32_to_cpu(ino->flags));
460 printk(KERN_DEBUG "\txattr_cnt %u\n",
461 le32_to_cpu(ino->xattr_cnt));
462 printk(KERN_DEBUG "\txattr_size %u\n",
463 le32_to_cpu(ino->xattr_size));
464 printk(KERN_DEBUG "\txattr_names %u\n",
465 le32_to_cpu(ino->xattr_names));
466 printk(KERN_DEBUG "\tcompr_type %#x\n",
467 (int)le16_to_cpu(ino->compr_type));
468 printk(KERN_DEBUG "\tdata len %u\n",
469 le32_to_cpu(ino->data_len));
470 break;
471 }
472 case UBIFS_DENT_NODE:
473 case UBIFS_XENT_NODE:
474 {
475 const struct ubifs_dent_node *dent = node;
476 int nlen = le16_to_cpu(dent->nlen);
477
478 key_read(c, &dent->key, &key);
479 printk(KERN_DEBUG "\tkey %s\n", DBGKEY(&key));
480 printk(KERN_DEBUG "\tinum %llu\n",
481 (unsigned long long)le64_to_cpu(dent->inum));
482 printk(KERN_DEBUG "\ttype %d\n", (int)dent->type);
483 printk(KERN_DEBUG "\tnlen %d\n", nlen);
484 printk(KERN_DEBUG "\tname ");
485
486 if (nlen > UBIFS_MAX_NLEN)
487 printk(KERN_DEBUG "(bad name length, not printing, "
488 "bad or corrupted node)");
489 else {
490 for (i = 0; i < nlen && dent->name[i]; i++)
c9927c3e 491 printk(KERN_CONT "%c", dent->name[i]);
1e51764a 492 }
c9927c3e 493 printk(KERN_CONT "\n");
1e51764a
AB
494
495 break;
496 }
497 case UBIFS_DATA_NODE:
498 {
499 const struct ubifs_data_node *dn = node;
500 int dlen = le32_to_cpu(ch->len) - UBIFS_DATA_NODE_SZ;
501
502 key_read(c, &dn->key, &key);
503 printk(KERN_DEBUG "\tkey %s\n", DBGKEY(&key));
504 printk(KERN_DEBUG "\tsize %u\n",
505 le32_to_cpu(dn->size));
506 printk(KERN_DEBUG "\tcompr_typ %d\n",
507 (int)le16_to_cpu(dn->compr_type));
508 printk(KERN_DEBUG "\tdata size %d\n",
509 dlen);
510 printk(KERN_DEBUG "\tdata:\n");
511 print_hex_dump(KERN_DEBUG, "\t", DUMP_PREFIX_OFFSET, 32, 1,
512 (void *)&dn->data, dlen, 0);
513 break;
514 }
515 case UBIFS_TRUN_NODE:
516 {
517 const struct ubifs_trun_node *trun = node;
518
519 printk(KERN_DEBUG "\tinum %u\n",
520 le32_to_cpu(trun->inum));
521 printk(KERN_DEBUG "\told_size %llu\n",
522 (unsigned long long)le64_to_cpu(trun->old_size));
523 printk(KERN_DEBUG "\tnew_size %llu\n",
524 (unsigned long long)le64_to_cpu(trun->new_size));
525 break;
526 }
527 case UBIFS_IDX_NODE:
528 {
529 const struct ubifs_idx_node *idx = node;
530
531 n = le16_to_cpu(idx->child_cnt);
532 printk(KERN_DEBUG "\tchild_cnt %d\n", n);
533 printk(KERN_DEBUG "\tlevel %d\n",
534 (int)le16_to_cpu(idx->level));
535 printk(KERN_DEBUG "\tBranches:\n");
536
537 for (i = 0; i < n && i < c->fanout - 1; i++) {
538 const struct ubifs_branch *br;
539
540 br = ubifs_idx_branch(c, idx, i);
541 key_read(c, &br->key, &key);
542 printk(KERN_DEBUG "\t%d: LEB %d:%d len %d key %s\n",
543 i, le32_to_cpu(br->lnum), le32_to_cpu(br->offs),
544 le32_to_cpu(br->len), DBGKEY(&key));
545 }
546 break;
547 }
548 case UBIFS_CS_NODE:
549 break;
550 case UBIFS_ORPH_NODE:
551 {
552 const struct ubifs_orph_node *orph = node;
553
554 printk(KERN_DEBUG "\tcommit number %llu\n",
555 (unsigned long long)
556 le64_to_cpu(orph->cmt_no) & LLONG_MAX);
557 printk(KERN_DEBUG "\tlast node flag %llu\n",
558 (unsigned long long)(le64_to_cpu(orph->cmt_no)) >> 63);
559 n = (le32_to_cpu(ch->len) - UBIFS_ORPH_NODE_SZ) >> 3;
560 printk(KERN_DEBUG "\t%d orphan inode numbers:\n", n);
561 for (i = 0; i < n; i++)
562 printk(KERN_DEBUG "\t ino %llu\n",
7424bac8 563 (unsigned long long)le64_to_cpu(orph->inos[i]));
1e51764a
AB
564 break;
565 }
566 default:
567 printk(KERN_DEBUG "node type %d was not recognized\n",
568 (int)ch->node_type);
569 }
570 spin_unlock(&dbg_lock);
571}
572
573void dbg_dump_budget_req(const struct ubifs_budget_req *req)
574{
575 spin_lock(&dbg_lock);
576 printk(KERN_DEBUG "Budgeting request: new_ino %d, dirtied_ino %d\n",
577 req->new_ino, req->dirtied_ino);
578 printk(KERN_DEBUG "\tnew_ino_d %d, dirtied_ino_d %d\n",
579 req->new_ino_d, req->dirtied_ino_d);
580 printk(KERN_DEBUG "\tnew_page %d, dirtied_page %d\n",
581 req->new_page, req->dirtied_page);
582 printk(KERN_DEBUG "\tnew_dent %d, mod_dent %d\n",
583 req->new_dent, req->mod_dent);
584 printk(KERN_DEBUG "\tidx_growth %d\n", req->idx_growth);
585 printk(KERN_DEBUG "\tdata_growth %d dd_growth %d\n",
586 req->data_growth, req->dd_growth);
587 spin_unlock(&dbg_lock);
588}
589
590void dbg_dump_lstats(const struct ubifs_lp_stats *lst)
591{
592 spin_lock(&dbg_lock);
1de94159
AB
593 printk(KERN_DEBUG "(pid %d) Lprops statistics: empty_lebs %d, "
594 "idx_lebs %d\n", current->pid, lst->empty_lebs, lst->idx_lebs);
1e51764a
AB
595 printk(KERN_DEBUG "\ttaken_empty_lebs %d, total_free %lld, "
596 "total_dirty %lld\n", lst->taken_empty_lebs, lst->total_free,
597 lst->total_dirty);
598 printk(KERN_DEBUG "\ttotal_used %lld, total_dark %lld, "
599 "total_dead %lld\n", lst->total_used, lst->total_dark,
600 lst->total_dead);
601 spin_unlock(&dbg_lock);
602}
603
f1bd66af 604void dbg_dump_budg(struct ubifs_info *c, const struct ubifs_budg_info *bi)
1e51764a
AB
605{
606 int i;
607 struct rb_node *rb;
608 struct ubifs_bud *bud;
609 struct ubifs_gced_idx_leb *idx_gc;
21a60258 610 long long available, outstanding, free;
1e51764a 611
8ff83089 612 spin_lock(&c->space_lock);
1e51764a 613 spin_lock(&dbg_lock);
8c3067e4
AB
614 printk(KERN_DEBUG "(pid %d) Budgeting info: data budget sum %lld, "
615 "total budget sum %lld\n", current->pid,
f1bd66af
AB
616 bi->data_growth + bi->dd_growth,
617 bi->data_growth + bi->dd_growth + bi->idx_growth);
8c3067e4 618 printk(KERN_DEBUG "\tbudg_data_growth %lld, budg_dd_growth %lld, "
f1bd66af
AB
619 "budg_idx_growth %lld\n", bi->data_growth, bi->dd_growth,
620 bi->idx_growth);
8c3067e4 621 printk(KERN_DEBUG "\tmin_idx_lebs %d, old_idx_sz %llu, "
f1bd66af
AB
622 "uncommitted_idx %lld\n", bi->min_idx_lebs, bi->old_idx_sz,
623 bi->uncommitted_idx);
8c3067e4 624 printk(KERN_DEBUG "\tpage_budget %d, inode_budget %d, dent_budget %d\n",
f1bd66af 625 bi->page_budget, bi->inode_budget, bi->dent_budget);
8c3067e4 626 printk(KERN_DEBUG "\tnospace %u, nospace_rp %u\n",
f1bd66af 627 bi->nospace, bi->nospace_rp);
8c3067e4
AB
628 printk(KERN_DEBUG "\tdark_wm %d, dead_wm %d, max_idx_node_sz %d\n",
629 c->dark_wm, c->dead_wm, c->max_idx_node_sz);
f1bd66af
AB
630
631 if (bi != &c->bi)
632 /*
633 * If we are dumping saved budgeting data, do not print
634 * additional information which is about the current state, not
635 * the old one which corresponded to the saved budgeting data.
636 */
637 goto out_unlock;
638
8c3067e4
AB
639 printk(KERN_DEBUG "\tfreeable_cnt %d, calc_idx_sz %lld, idx_gc_cnt %d\n",
640 c->freeable_cnt, c->calc_idx_sz, c->idx_gc_cnt);
1e51764a
AB
641 printk(KERN_DEBUG "\tdirty_pg_cnt %ld, dirty_zn_cnt %ld, "
642 "clean_zn_cnt %ld\n", atomic_long_read(&c->dirty_pg_cnt),
643 atomic_long_read(&c->dirty_zn_cnt),
644 atomic_long_read(&c->clean_zn_cnt));
1e51764a
AB
645 printk(KERN_DEBUG "\tgc_lnum %d, ihead_lnum %d\n",
646 c->gc_lnum, c->ihead_lnum);
f1bd66af 647
84abf972
AB
648 /* If we are in R/O mode, journal heads do not exist */
649 if (c->jheads)
650 for (i = 0; i < c->jhead_cnt; i++)
77a7ae58
AB
651 printk(KERN_DEBUG "\tjhead %s\t LEB %d\n",
652 dbg_jhead(c->jheads[i].wbuf.jhead),
653 c->jheads[i].wbuf.lnum);
1e51764a
AB
654 for (rb = rb_first(&c->buds); rb; rb = rb_next(rb)) {
655 bud = rb_entry(rb, struct ubifs_bud, rb);
656 printk(KERN_DEBUG "\tbud LEB %d\n", bud->lnum);
657 }
658 list_for_each_entry(bud, &c->old_buds, list)
659 printk(KERN_DEBUG "\told bud LEB %d\n", bud->lnum);
660 list_for_each_entry(idx_gc, &c->idx_gc, list)
661 printk(KERN_DEBUG "\tGC'ed idx LEB %d unmap %d\n",
662 idx_gc->lnum, idx_gc->unmap);
663 printk(KERN_DEBUG "\tcommit state %d\n", c->cmt_state);
21a60258
AB
664
665 /* Print budgeting predictions */
b137545c
AB
666 available = ubifs_calc_available(c, c->bi.min_idx_lebs);
667 outstanding = c->bi.data_growth + c->bi.dd_growth;
84abf972 668 free = ubifs_get_free_space_nolock(c);
21a60258
AB
669 printk(KERN_DEBUG "Budgeting predictions:\n");
670 printk(KERN_DEBUG "\tavailable: %lld, outstanding %lld, free %lld\n",
671 available, outstanding, free);
f1bd66af 672out_unlock:
1e51764a 673 spin_unlock(&dbg_lock);
8ff83089 674 spin_unlock(&c->space_lock);
1e51764a
AB
675}
676
677void dbg_dump_lprop(const struct ubifs_info *c, const struct ubifs_lprops *lp)
678{
be9e62a7
AB
679 int i, spc, dark = 0, dead = 0;
680 struct rb_node *rb;
681 struct ubifs_bud *bud;
682
683 spc = lp->free + lp->dirty;
684 if (spc < c->dead_wm)
685 dead = spc;
686 else
687 dark = ubifs_calc_dark(c, spc);
688
689 if (lp->flags & LPROPS_INDEX)
690 printk(KERN_DEBUG "LEB %-7d free %-8d dirty %-8d used %-8d "
691 "free + dirty %-8d flags %#x (", lp->lnum, lp->free,
692 lp->dirty, c->leb_size - spc, spc, lp->flags);
693 else
694 printk(KERN_DEBUG "LEB %-7d free %-8d dirty %-8d used %-8d "
695 "free + dirty %-8d dark %-4d dead %-4d nodes fit %-3d "
696 "flags %#-4x (", lp->lnum, lp->free, lp->dirty,
697 c->leb_size - spc, spc, dark, dead,
698 (int)(spc / UBIFS_MAX_NODE_SZ), lp->flags);
699
700 if (lp->flags & LPROPS_TAKEN) {
701 if (lp->flags & LPROPS_INDEX)
702 printk(KERN_CONT "index, taken");
703 else
704 printk(KERN_CONT "taken");
705 } else {
706 const char *s;
707
708 if (lp->flags & LPROPS_INDEX) {
709 switch (lp->flags & LPROPS_CAT_MASK) {
710 case LPROPS_DIRTY_IDX:
711 s = "dirty index";
712 break;
713 case LPROPS_FRDI_IDX:
714 s = "freeable index";
715 break;
716 default:
717 s = "index";
718 }
719 } else {
720 switch (lp->flags & LPROPS_CAT_MASK) {
721 case LPROPS_UNCAT:
722 s = "not categorized";
723 break;
724 case LPROPS_DIRTY:
725 s = "dirty";
726 break;
727 case LPROPS_FREE:
728 s = "free";
729 break;
730 case LPROPS_EMPTY:
731 s = "empty";
732 break;
733 case LPROPS_FREEABLE:
734 s = "freeable";
735 break;
736 default:
737 s = NULL;
738 break;
739 }
740 }
741 printk(KERN_CONT "%s", s);
742 }
743
744 for (rb = rb_first((struct rb_root *)&c->buds); rb; rb = rb_next(rb)) {
745 bud = rb_entry(rb, struct ubifs_bud, rb);
746 if (bud->lnum == lp->lnum) {
747 int head = 0;
748 for (i = 0; i < c->jhead_cnt; i++) {
749 if (lp->lnum == c->jheads[i].wbuf.lnum) {
750 printk(KERN_CONT ", jhead %s",
751 dbg_jhead(i));
752 head = 1;
753 }
754 }
755 if (!head)
756 printk(KERN_CONT ", bud of jhead %s",
757 dbg_jhead(bud->jhead));
758 }
759 }
760 if (lp->lnum == c->gc_lnum)
761 printk(KERN_CONT ", GC LEB");
762 printk(KERN_CONT ")\n");
1e51764a
AB
763}
764
765void dbg_dump_lprops(struct ubifs_info *c)
766{
767 int lnum, err;
768 struct ubifs_lprops lp;
769 struct ubifs_lp_stats lst;
770
2ba5f7ae
AB
771 printk(KERN_DEBUG "(pid %d) start dumping LEB properties\n",
772 current->pid);
1e51764a
AB
773 ubifs_get_lp_stats(c, &lst);
774 dbg_dump_lstats(&lst);
775
776 for (lnum = c->main_first; lnum < c->leb_cnt; lnum++) {
777 err = ubifs_read_one_lp(c, lnum, &lp);
778 if (err)
779 ubifs_err("cannot read lprops for LEB %d", lnum);
780
781 dbg_dump_lprop(c, &lp);
782 }
2ba5f7ae
AB
783 printk(KERN_DEBUG "(pid %d) finish dumping LEB properties\n",
784 current->pid);
1e51764a
AB
785}
786
73944a6d
AH
787void dbg_dump_lpt_info(struct ubifs_info *c)
788{
789 int i;
790
791 spin_lock(&dbg_lock);
2ba5f7ae 792 printk(KERN_DEBUG "(pid %d) dumping LPT information\n", current->pid);
73944a6d
AH
793 printk(KERN_DEBUG "\tlpt_sz: %lld\n", c->lpt_sz);
794 printk(KERN_DEBUG "\tpnode_sz: %d\n", c->pnode_sz);
795 printk(KERN_DEBUG "\tnnode_sz: %d\n", c->nnode_sz);
796 printk(KERN_DEBUG "\tltab_sz: %d\n", c->ltab_sz);
797 printk(KERN_DEBUG "\tlsave_sz: %d\n", c->lsave_sz);
798 printk(KERN_DEBUG "\tbig_lpt: %d\n", c->big_lpt);
799 printk(KERN_DEBUG "\tlpt_hght: %d\n", c->lpt_hght);
800 printk(KERN_DEBUG "\tpnode_cnt: %d\n", c->pnode_cnt);
801 printk(KERN_DEBUG "\tnnode_cnt: %d\n", c->nnode_cnt);
802 printk(KERN_DEBUG "\tdirty_pn_cnt: %d\n", c->dirty_pn_cnt);
803 printk(KERN_DEBUG "\tdirty_nn_cnt: %d\n", c->dirty_nn_cnt);
804 printk(KERN_DEBUG "\tlsave_cnt: %d\n", c->lsave_cnt);
805 printk(KERN_DEBUG "\tspace_bits: %d\n", c->space_bits);
806 printk(KERN_DEBUG "\tlpt_lnum_bits: %d\n", c->lpt_lnum_bits);
807 printk(KERN_DEBUG "\tlpt_offs_bits: %d\n", c->lpt_offs_bits);
808 printk(KERN_DEBUG "\tlpt_spc_bits: %d\n", c->lpt_spc_bits);
809 printk(KERN_DEBUG "\tpcnt_bits: %d\n", c->pcnt_bits);
810 printk(KERN_DEBUG "\tlnum_bits: %d\n", c->lnum_bits);
811 printk(KERN_DEBUG "\tLPT root is at %d:%d\n", c->lpt_lnum, c->lpt_offs);
812 printk(KERN_DEBUG "\tLPT head is at %d:%d\n",
813 c->nhead_lnum, c->nhead_offs);
f92b9826
AB
814 printk(KERN_DEBUG "\tLPT ltab is at %d:%d\n",
815 c->ltab_lnum, c->ltab_offs);
73944a6d
AH
816 if (c->big_lpt)
817 printk(KERN_DEBUG "\tLPT lsave is at %d:%d\n",
818 c->lsave_lnum, c->lsave_offs);
819 for (i = 0; i < c->lpt_lebs; i++)
820 printk(KERN_DEBUG "\tLPT LEB %d free %d dirty %d tgc %d "
821 "cmt %d\n", i + c->lpt_first, c->ltab[i].free,
822 c->ltab[i].dirty, c->ltab[i].tgc, c->ltab[i].cmt);
823 spin_unlock(&dbg_lock);
824}
825
1e51764a
AB
826void dbg_dump_leb(const struct ubifs_info *c, int lnum)
827{
828 struct ubifs_scan_leb *sleb;
829 struct ubifs_scan_node *snod;
73d9aec3 830 void *buf;
1e51764a
AB
831
832 if (dbg_failure_mode)
833 return;
834
2ba5f7ae
AB
835 printk(KERN_DEBUG "(pid %d) start dumping LEB %d\n",
836 current->pid, lnum);
73d9aec3 837
fc5e58c0 838 buf = __vmalloc(c->leb_size, GFP_NOFS, PAGE_KERNEL);
73d9aec3
AB
839 if (!buf) {
840 ubifs_err("cannot allocate memory for dumping LEB %d", lnum);
841 return;
842 }
843
844 sleb = ubifs_scan(c, lnum, 0, buf, 0);
1e51764a
AB
845 if (IS_ERR(sleb)) {
846 ubifs_err("scan error %d", (int)PTR_ERR(sleb));
73d9aec3 847 goto out;
1e51764a
AB
848 }
849
850 printk(KERN_DEBUG "LEB %d has %d nodes ending at %d\n", lnum,
851 sleb->nodes_cnt, sleb->endpt);
852
853 list_for_each_entry(snod, &sleb->nodes, list) {
854 cond_resched();
855 printk(KERN_DEBUG "Dumping node at LEB %d:%d len %d\n", lnum,
856 snod->offs, snod->len);
857 dbg_dump_node(c, snod->node);
858 }
859
2ba5f7ae
AB
860 printk(KERN_DEBUG "(pid %d) finish dumping LEB %d\n",
861 current->pid, lnum);
1e51764a 862 ubifs_scan_destroy(sleb);
73d9aec3
AB
863
864out:
865 vfree(buf);
1e51764a
AB
866 return;
867}
868
869void dbg_dump_znode(const struct ubifs_info *c,
870 const struct ubifs_znode *znode)
871{
872 int n;
873 const struct ubifs_zbranch *zbr;
874
875 spin_lock(&dbg_lock);
876 if (znode->parent)
877 zbr = &znode->parent->zbranch[znode->iip];
878 else
879 zbr = &c->zroot;
880
881 printk(KERN_DEBUG "znode %p, LEB %d:%d len %d parent %p iip %d level %d"
882 " child_cnt %d flags %lx\n", znode, zbr->lnum, zbr->offs,
883 zbr->len, znode->parent, znode->iip, znode->level,
884 znode->child_cnt, znode->flags);
885
886 if (znode->child_cnt <= 0 || znode->child_cnt > c->fanout) {
887 spin_unlock(&dbg_lock);
888 return;
889 }
890
891 printk(KERN_DEBUG "zbranches:\n");
892 for (n = 0; n < znode->child_cnt; n++) {
893 zbr = &znode->zbranch[n];
894 if (znode->level > 0)
895 printk(KERN_DEBUG "\t%d: znode %p LEB %d:%d len %d key "
896 "%s\n", n, zbr->znode, zbr->lnum,
897 zbr->offs, zbr->len,
898 DBGKEY(&zbr->key));
899 else
900 printk(KERN_DEBUG "\t%d: LNC %p LEB %d:%d len %d key "
901 "%s\n", n, zbr->znode, zbr->lnum,
902 zbr->offs, zbr->len,
903 DBGKEY(&zbr->key));
904 }
905 spin_unlock(&dbg_lock);
906}
907
908void dbg_dump_heap(struct ubifs_info *c, struct ubifs_lpt_heap *heap, int cat)
909{
910 int i;
911
2ba5f7ae 912 printk(KERN_DEBUG "(pid %d) start dumping heap cat %d (%d elements)\n",
1de94159 913 current->pid, cat, heap->cnt);
1e51764a
AB
914 for (i = 0; i < heap->cnt; i++) {
915 struct ubifs_lprops *lprops = heap->arr[i];
916
917 printk(KERN_DEBUG "\t%d. LEB %d hpos %d free %d dirty %d "
918 "flags %d\n", i, lprops->lnum, lprops->hpos,
919 lprops->free, lprops->dirty, lprops->flags);
920 }
2ba5f7ae 921 printk(KERN_DEBUG "(pid %d) finish dumping heap\n", current->pid);
1e51764a
AB
922}
923
924void dbg_dump_pnode(struct ubifs_info *c, struct ubifs_pnode *pnode,
925 struct ubifs_nnode *parent, int iip)
926{
927 int i;
928
2ba5f7ae 929 printk(KERN_DEBUG "(pid %d) dumping pnode:\n", current->pid);
1e51764a
AB
930 printk(KERN_DEBUG "\taddress %zx parent %zx cnext %zx\n",
931 (size_t)pnode, (size_t)parent, (size_t)pnode->cnext);
932 printk(KERN_DEBUG "\tflags %lu iip %d level %d num %d\n",
933 pnode->flags, iip, pnode->level, pnode->num);
934 for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
935 struct ubifs_lprops *lp = &pnode->lprops[i];
936
937 printk(KERN_DEBUG "\t%d: free %d dirty %d flags %d lnum %d\n",
938 i, lp->free, lp->dirty, lp->flags, lp->lnum);
939 }
940}
941
942void dbg_dump_tnc(struct ubifs_info *c)
943{
944 struct ubifs_znode *znode;
945 int level;
946
947 printk(KERN_DEBUG "\n");
2ba5f7ae 948 printk(KERN_DEBUG "(pid %d) start dumping TNC tree\n", current->pid);
1e51764a
AB
949 znode = ubifs_tnc_levelorder_next(c->zroot.znode, NULL);
950 level = znode->level;
951 printk(KERN_DEBUG "== Level %d ==\n", level);
952 while (znode) {
953 if (level != znode->level) {
954 level = znode->level;
955 printk(KERN_DEBUG "== Level %d ==\n", level);
956 }
957 dbg_dump_znode(c, znode);
958 znode = ubifs_tnc_levelorder_next(c->zroot.znode, znode);
959 }
2ba5f7ae 960 printk(KERN_DEBUG "(pid %d) finish dumping TNC tree\n", current->pid);
1e51764a
AB
961}
962
963static int dump_znode(struct ubifs_info *c, struct ubifs_znode *znode,
964 void *priv)
965{
966 dbg_dump_znode(c, znode);
967 return 0;
968}
969
970/**
971 * dbg_dump_index - dump the on-flash index.
972 * @c: UBIFS file-system description object
973 *
974 * This function dumps whole UBIFS indexing B-tree, unlike 'dbg_dump_tnc()'
975 * which dumps only in-memory znodes and does not read znodes which from flash.
976 */
977void dbg_dump_index(struct ubifs_info *c)
978{
979 dbg_walk_index(c, NULL, dump_znode, NULL);
980}
981
84abf972
AB
982/**
983 * dbg_save_space_info - save information about flash space.
984 * @c: UBIFS file-system description object
985 *
986 * This function saves information about UBIFS free space, dirty space, etc, in
987 * order to check it later.
988 */
989void dbg_save_space_info(struct ubifs_info *c)
990{
991 struct ubifs_debug_info *d = c->dbg;
7da6443a 992 int freeable_cnt;
84abf972
AB
993
994 spin_lock(&c->space_lock);
7da6443a 995 memcpy(&d->saved_lst, &c->lst, sizeof(struct ubifs_lp_stats));
f1bd66af
AB
996 memcpy(&d->saved_bi, &c->bi, sizeof(struct ubifs_budg_info));
997 d->saved_idx_gc_cnt = c->idx_gc_cnt;
7da6443a
AB
998
999 /*
1000 * We use a dirty hack here and zero out @c->freeable_cnt, because it
1001 * affects the free space calculations, and UBIFS might not know about
1002 * all freeable eraseblocks. Indeed, we know about freeable eraseblocks
1003 * only when we read their lprops, and we do this only lazily, upon the
1004 * need. So at any given point of time @c->freeable_cnt might be not
1005 * exactly accurate.
1006 *
1007 * Just one example about the issue we hit when we did not zero
1008 * @c->freeable_cnt.
1009 * 1. The file-system is mounted R/O, c->freeable_cnt is %0. We save the
1010 * amount of free space in @d->saved_free
1011 * 2. We re-mount R/W, which makes UBIFS to read the "lsave"
1012 * information from flash, where we cache LEBs from various
1013 * categories ('ubifs_remount_fs()' -> 'ubifs_lpt_init()'
1014 * -> 'lpt_init_wr()' -> 'read_lsave()' -> 'ubifs_lpt_lookup()'
1015 * -> 'ubifs_get_pnode()' -> 'update_cats()'
1016 * -> 'ubifs_add_to_cat()').
1017 * 3. Lsave contains a freeable eraseblock, and @c->freeable_cnt
1018 * becomes %1.
1019 * 4. We calculate the amount of free space when the re-mount is
1020 * finished in 'dbg_check_space_info()' and it does not match
1021 * @d->saved_free.
1022 */
1023 freeable_cnt = c->freeable_cnt;
1024 c->freeable_cnt = 0;
84abf972 1025 d->saved_free = ubifs_get_free_space_nolock(c);
7da6443a 1026 c->freeable_cnt = freeable_cnt;
84abf972
AB
1027 spin_unlock(&c->space_lock);
1028}
1029
1030/**
1031 * dbg_check_space_info - check flash space information.
1032 * @c: UBIFS file-system description object
1033 *
1034 * This function compares current flash space information with the information
1035 * which was saved when the 'dbg_save_space_info()' function was called.
1036 * Returns zero if the information has not changed, and %-EINVAL it it has
1037 * changed.
1038 */
1039int dbg_check_space_info(struct ubifs_info *c)
1040{
1041 struct ubifs_debug_info *d = c->dbg;
1042 struct ubifs_lp_stats lst;
7da6443a
AB
1043 long long free;
1044 int freeable_cnt;
84abf972
AB
1045
1046 spin_lock(&c->space_lock);
7da6443a
AB
1047 freeable_cnt = c->freeable_cnt;
1048 c->freeable_cnt = 0;
1049 free = ubifs_get_free_space_nolock(c);
1050 c->freeable_cnt = freeable_cnt;
84abf972 1051 spin_unlock(&c->space_lock);
84abf972
AB
1052
1053 if (free != d->saved_free) {
1054 ubifs_err("free space changed from %lld to %lld",
1055 d->saved_free, free);
1056 goto out;
1057 }
1058
1059 return 0;
1060
1061out:
1062 ubifs_msg("saved lprops statistics dump");
1063 dbg_dump_lstats(&d->saved_lst);
f1bd66af
AB
1064 ubifs_msg("saved budgeting info dump");
1065 dbg_dump_budg(c, &d->saved_bi);
1066 ubifs_msg("saved idx_gc_cnt %d", d->saved_idx_gc_cnt);
84abf972 1067 ubifs_msg("current lprops statistics dump");
f1bd66af 1068 ubifs_get_lp_stats(c, &lst);
e055f7e8 1069 dbg_dump_lstats(&lst);
f1bd66af
AB
1070 ubifs_msg("current budgeting info dump");
1071 dbg_dump_budg(c, &c->bi);
84abf972
AB
1072 dump_stack();
1073 return -EINVAL;
1074}
1075
1e51764a
AB
1076/**
1077 * dbg_check_synced_i_size - check synchronized inode size.
1078 * @inode: inode to check
1079 *
1080 * If inode is clean, synchronized inode size has to be equivalent to current
1081 * inode size. This function has to be called only for locked inodes (@i_mutex
1082 * has to be locked). Returns %0 if synchronized inode size if correct, and
1083 * %-EINVAL if not.
1084 */
1085int dbg_check_synced_i_size(struct inode *inode)
1086{
1087 int err = 0;
1088 struct ubifs_inode *ui = ubifs_inode(inode);
1089
1090 if (!(ubifs_chk_flags & UBIFS_CHK_GEN))
1091 return 0;
1092 if (!S_ISREG(inode->i_mode))
1093 return 0;
1094
1095 mutex_lock(&ui->ui_mutex);
1096 spin_lock(&ui->ui_lock);
1097 if (ui->ui_size != ui->synced_i_size && !ui->dirty) {
1098 ubifs_err("ui_size is %lld, synced_i_size is %lld, but inode "
1099 "is clean", ui->ui_size, ui->synced_i_size);
1100 ubifs_err("i_ino %lu, i_mode %#x, i_size %lld", inode->i_ino,
1101 inode->i_mode, i_size_read(inode));
1102 dbg_dump_stack();
1103 err = -EINVAL;
1104 }
1105 spin_unlock(&ui->ui_lock);
1106 mutex_unlock(&ui->ui_mutex);
1107 return err;
1108}
1109
1110/*
1111 * dbg_check_dir - check directory inode size and link count.
1112 * @c: UBIFS file-system description object
1113 * @dir: the directory to calculate size for
1114 * @size: the result is returned here
1115 *
1116 * This function makes sure that directory size and link count are correct.
1117 * Returns zero in case of success and a negative error code in case of
1118 * failure.
1119 *
1120 * Note, it is good idea to make sure the @dir->i_mutex is locked before
1121 * calling this function.
1122 */
1123int dbg_check_dir_size(struct ubifs_info *c, const struct inode *dir)
1124{
1125 unsigned int nlink = 2;
1126 union ubifs_key key;
1127 struct ubifs_dent_node *dent, *pdent = NULL;
1128 struct qstr nm = { .name = NULL };
1129 loff_t size = UBIFS_INO_NODE_SZ;
1130
1131 if (!(ubifs_chk_flags & UBIFS_CHK_GEN))
1132 return 0;
1133
1134 if (!S_ISDIR(dir->i_mode))
1135 return 0;
1136
1137 lowest_dent_key(c, &key, dir->i_ino);
1138 while (1) {
1139 int err;
1140
1141 dent = ubifs_tnc_next_ent(c, &key, &nm);
1142 if (IS_ERR(dent)) {
1143 err = PTR_ERR(dent);
1144 if (err == -ENOENT)
1145 break;
1146 return err;
1147 }
1148
1149 nm.name = dent->name;
1150 nm.len = le16_to_cpu(dent->nlen);
1151 size += CALC_DENT_SIZE(nm.len);
1152 if (dent->type == UBIFS_ITYPE_DIR)
1153 nlink += 1;
1154 kfree(pdent);
1155 pdent = dent;
1156 key_read(c, &dent->key, &key);
1157 }
1158 kfree(pdent);
1159
1160 if (i_size_read(dir) != size) {
1161 ubifs_err("directory inode %lu has size %llu, "
1162 "but calculated size is %llu", dir->i_ino,
1163 (unsigned long long)i_size_read(dir),
1164 (unsigned long long)size);
1165 dump_stack();
1166 return -EINVAL;
1167 }
1168 if (dir->i_nlink != nlink) {
1169 ubifs_err("directory inode %lu has nlink %u, but calculated "
1170 "nlink is %u", dir->i_ino, dir->i_nlink, nlink);
1171 dump_stack();
1172 return -EINVAL;
1173 }
1174
1175 return 0;
1176}
1177
1178/**
1179 * dbg_check_key_order - make sure that colliding keys are properly ordered.
1180 * @c: UBIFS file-system description object
1181 * @zbr1: first zbranch
1182 * @zbr2: following zbranch
1183 *
1184 * In UBIFS indexing B-tree colliding keys has to be sorted in binary order of
1185 * names of the direntries/xentries which are referred by the keys. This
1186 * function reads direntries/xentries referred by @zbr1 and @zbr2 and makes
1187 * sure the name of direntry/xentry referred by @zbr1 is less than
1188 * direntry/xentry referred by @zbr2. Returns zero if this is true, %1 if not,
1189 * and a negative error code in case of failure.
1190 */
1191static int dbg_check_key_order(struct ubifs_info *c, struct ubifs_zbranch *zbr1,
1192 struct ubifs_zbranch *zbr2)
1193{
1194 int err, nlen1, nlen2, cmp;
1195 struct ubifs_dent_node *dent1, *dent2;
1196 union ubifs_key key;
1197
1198 ubifs_assert(!keys_cmp(c, &zbr1->key, &zbr2->key));
1199 dent1 = kmalloc(UBIFS_MAX_DENT_NODE_SZ, GFP_NOFS);
1200 if (!dent1)
1201 return -ENOMEM;
1202 dent2 = kmalloc(UBIFS_MAX_DENT_NODE_SZ, GFP_NOFS);
1203 if (!dent2) {
1204 err = -ENOMEM;
1205 goto out_free;
1206 }
1207
1208 err = ubifs_tnc_read_node(c, zbr1, dent1);
1209 if (err)
1210 goto out_free;
1211 err = ubifs_validate_entry(c, dent1);
1212 if (err)
1213 goto out_free;
1214
1215 err = ubifs_tnc_read_node(c, zbr2, dent2);
1216 if (err)
1217 goto out_free;
1218 err = ubifs_validate_entry(c, dent2);
1219 if (err)
1220 goto out_free;
1221
1222 /* Make sure node keys are the same as in zbranch */
1223 err = 1;
1224 key_read(c, &dent1->key, &key);
1225 if (keys_cmp(c, &zbr1->key, &key)) {
5d38b3ac
AB
1226 dbg_err("1st entry at %d:%d has key %s", zbr1->lnum,
1227 zbr1->offs, DBGKEY(&key));
1228 dbg_err("but it should have key %s according to tnc",
1229 DBGKEY(&zbr1->key));
2ba5f7ae 1230 dbg_dump_node(c, dent1);
552ff317 1231 goto out_free;
1e51764a
AB
1232 }
1233
1234 key_read(c, &dent2->key, &key);
1235 if (keys_cmp(c, &zbr2->key, &key)) {
5d38b3ac
AB
1236 dbg_err("2nd entry at %d:%d has key %s", zbr1->lnum,
1237 zbr1->offs, DBGKEY(&key));
1238 dbg_err("but it should have key %s according to tnc",
1239 DBGKEY(&zbr2->key));
2ba5f7ae 1240 dbg_dump_node(c, dent2);
552ff317 1241 goto out_free;
1e51764a
AB
1242 }
1243
1244 nlen1 = le16_to_cpu(dent1->nlen);
1245 nlen2 = le16_to_cpu(dent2->nlen);
1246
1247 cmp = memcmp(dent1->name, dent2->name, min_t(int, nlen1, nlen2));
1248 if (cmp < 0 || (cmp == 0 && nlen1 < nlen2)) {
1249 err = 0;
1250 goto out_free;
1251 }
1252 if (cmp == 0 && nlen1 == nlen2)
5d38b3ac 1253 dbg_err("2 xent/dent nodes with the same name");
1e51764a 1254 else
5d38b3ac 1255 dbg_err("bad order of colliding key %s",
1e51764a
AB
1256 DBGKEY(&key));
1257
552ff317 1258 ubifs_msg("first node at %d:%d\n", zbr1->lnum, zbr1->offs);
1e51764a 1259 dbg_dump_node(c, dent1);
552ff317 1260 ubifs_msg("second node at %d:%d\n", zbr2->lnum, zbr2->offs);
1e51764a
AB
1261 dbg_dump_node(c, dent2);
1262
1263out_free:
1264 kfree(dent2);
1265 kfree(dent1);
1266 return err;
1267}
1268
1269/**
1270 * dbg_check_znode - check if znode is all right.
1271 * @c: UBIFS file-system description object
1272 * @zbr: zbranch which points to this znode
1273 *
1274 * This function makes sure that znode referred to by @zbr is all right.
1275 * Returns zero if it is, and %-EINVAL if it is not.
1276 */
1277static int dbg_check_znode(struct ubifs_info *c, struct ubifs_zbranch *zbr)
1278{
1279 struct ubifs_znode *znode = zbr->znode;
1280 struct ubifs_znode *zp = znode->parent;
1281 int n, err, cmp;
1282
1283 if (znode->child_cnt <= 0 || znode->child_cnt > c->fanout) {
1284 err = 1;
1285 goto out;
1286 }
1287 if (znode->level < 0) {
1288 err = 2;
1289 goto out;
1290 }
1291 if (znode->iip < 0 || znode->iip >= c->fanout) {
1292 err = 3;
1293 goto out;
1294 }
1295
1296 if (zbr->len == 0)
1297 /* Only dirty zbranch may have no on-flash nodes */
1298 if (!ubifs_zn_dirty(znode)) {
1299 err = 4;
1300 goto out;
1301 }
1302
1303 if (ubifs_zn_dirty(znode)) {
1304 /*
1305 * If znode is dirty, its parent has to be dirty as well. The
1306 * order of the operation is important, so we have to have
1307 * memory barriers.
1308 */
1309 smp_mb();
1310 if (zp && !ubifs_zn_dirty(zp)) {
1311 /*
1312 * The dirty flag is atomic and is cleared outside the
1313 * TNC mutex, so znode's dirty flag may now have
1314 * been cleared. The child is always cleared before the
1315 * parent, so we just need to check again.
1316 */
1317 smp_mb();
1318 if (ubifs_zn_dirty(znode)) {
1319 err = 5;
1320 goto out;
1321 }
1322 }
1323 }
1324
1325 if (zp) {
1326 const union ubifs_key *min, *max;
1327
1328 if (znode->level != zp->level - 1) {
1329 err = 6;
1330 goto out;
1331 }
1332
1333 /* Make sure the 'parent' pointer in our znode is correct */
1334 err = ubifs_search_zbranch(c, zp, &zbr->key, &n);
1335 if (!err) {
1336 /* This zbranch does not exist in the parent */
1337 err = 7;
1338 goto out;
1339 }
1340
1341 if (znode->iip >= zp->child_cnt) {
1342 err = 8;
1343 goto out;
1344 }
1345
1346 if (znode->iip != n) {
1347 /* This may happen only in case of collisions */
1348 if (keys_cmp(c, &zp->zbranch[n].key,
1349 &zp->zbranch[znode->iip].key)) {
1350 err = 9;
1351 goto out;
1352 }
1353 n = znode->iip;
1354 }
1355
1356 /*
1357 * Make sure that the first key in our znode is greater than or
1358 * equal to the key in the pointing zbranch.
1359 */
1360 min = &zbr->key;
1361 cmp = keys_cmp(c, min, &znode->zbranch[0].key);
1362 if (cmp == 1) {
1363 err = 10;
1364 goto out;
1365 }
1366
1367 if (n + 1 < zp->child_cnt) {
1368 max = &zp->zbranch[n + 1].key;
1369
1370 /*
1371 * Make sure the last key in our znode is less or
7d4e9ccb 1372 * equivalent than the key in the zbranch which goes
1e51764a
AB
1373 * after our pointing zbranch.
1374 */
1375 cmp = keys_cmp(c, max,
1376 &znode->zbranch[znode->child_cnt - 1].key);
1377 if (cmp == -1) {
1378 err = 11;
1379 goto out;
1380 }
1381 }
1382 } else {
1383 /* This may only be root znode */
1384 if (zbr != &c->zroot) {
1385 err = 12;
1386 goto out;
1387 }
1388 }
1389
1390 /*
1391 * Make sure that next key is greater or equivalent then the previous
1392 * one.
1393 */
1394 for (n = 1; n < znode->child_cnt; n++) {
1395 cmp = keys_cmp(c, &znode->zbranch[n - 1].key,
1396 &znode->zbranch[n].key);
1397 if (cmp > 0) {
1398 err = 13;
1399 goto out;
1400 }
1401 if (cmp == 0) {
1402 /* This can only be keys with colliding hash */
1403 if (!is_hash_key(c, &znode->zbranch[n].key)) {
1404 err = 14;
1405 goto out;
1406 }
1407
1408 if (znode->level != 0 || c->replaying)
1409 continue;
1410
1411 /*
1412 * Colliding keys should follow binary order of
1413 * corresponding xentry/dentry names.
1414 */
1415 err = dbg_check_key_order(c, &znode->zbranch[n - 1],
1416 &znode->zbranch[n]);
1417 if (err < 0)
1418 return err;
1419 if (err) {
1420 err = 15;
1421 goto out;
1422 }
1423 }
1424 }
1425
1426 for (n = 0; n < znode->child_cnt; n++) {
1427 if (!znode->zbranch[n].znode &&
1428 (znode->zbranch[n].lnum == 0 ||
1429 znode->zbranch[n].len == 0)) {
1430 err = 16;
1431 goto out;
1432 }
1433
1434 if (znode->zbranch[n].lnum != 0 &&
1435 znode->zbranch[n].len == 0) {
1436 err = 17;
1437 goto out;
1438 }
1439
1440 if (znode->zbranch[n].lnum == 0 &&
1441 znode->zbranch[n].len != 0) {
1442 err = 18;
1443 goto out;
1444 }
1445
1446 if (znode->zbranch[n].lnum == 0 &&
1447 znode->zbranch[n].offs != 0) {
1448 err = 19;
1449 goto out;
1450 }
1451
1452 if (znode->level != 0 && znode->zbranch[n].znode)
1453 if (znode->zbranch[n].znode->parent != znode) {
1454 err = 20;
1455 goto out;
1456 }
1457 }
1458
1459 return 0;
1460
1461out:
1462 ubifs_err("failed, error %d", err);
1463 ubifs_msg("dump of the znode");
1464 dbg_dump_znode(c, znode);
1465 if (zp) {
1466 ubifs_msg("dump of the parent znode");
1467 dbg_dump_znode(c, zp);
1468 }
1469 dump_stack();
1470 return -EINVAL;
1471}
1472
1473/**
1474 * dbg_check_tnc - check TNC tree.
1475 * @c: UBIFS file-system description object
1476 * @extra: do extra checks that are possible at start commit
1477 *
1478 * This function traverses whole TNC tree and checks every znode. Returns zero
1479 * if everything is all right and %-EINVAL if something is wrong with TNC.
1480 */
1481int dbg_check_tnc(struct ubifs_info *c, int extra)
1482{
1483 struct ubifs_znode *znode;
1484 long clean_cnt = 0, dirty_cnt = 0;
1485 int err, last;
1486
1487 if (!(ubifs_chk_flags & UBIFS_CHK_TNC))
1488 return 0;
1489
1490 ubifs_assert(mutex_is_locked(&c->tnc_mutex));
1491 if (!c->zroot.znode)
1492 return 0;
1493
1494 znode = ubifs_tnc_postorder_first(c->zroot.znode);
1495 while (1) {
1496 struct ubifs_znode *prev;
1497 struct ubifs_zbranch *zbr;
1498
1499 if (!znode->parent)
1500 zbr = &c->zroot;
1501 else
1502 zbr = &znode->parent->zbranch[znode->iip];
1503
1504 err = dbg_check_znode(c, zbr);
1505 if (err)
1506 return err;
1507
1508 if (extra) {
1509 if (ubifs_zn_dirty(znode))
1510 dirty_cnt += 1;
1511 else
1512 clean_cnt += 1;
1513 }
1514
1515 prev = znode;
1516 znode = ubifs_tnc_postorder_next(znode);
1517 if (!znode)
1518 break;
1519
1520 /*
1521 * If the last key of this znode is equivalent to the first key
1522 * of the next znode (collision), then check order of the keys.
1523 */
1524 last = prev->child_cnt - 1;
1525 if (prev->level == 0 && znode->level == 0 && !c->replaying &&
1526 !keys_cmp(c, &prev->zbranch[last].key,
1527 &znode->zbranch[0].key)) {
1528 err = dbg_check_key_order(c, &prev->zbranch[last],
1529 &znode->zbranch[0]);
1530 if (err < 0)
1531 return err;
1532 if (err) {
1533 ubifs_msg("first znode");
1534 dbg_dump_znode(c, prev);
1535 ubifs_msg("second znode");
1536 dbg_dump_znode(c, znode);
1537 return -EINVAL;
1538 }
1539 }
1540 }
1541
1542 if (extra) {
1543 if (clean_cnt != atomic_long_read(&c->clean_zn_cnt)) {
1544 ubifs_err("incorrect clean_zn_cnt %ld, calculated %ld",
1545 atomic_long_read(&c->clean_zn_cnt),
1546 clean_cnt);
1547 return -EINVAL;
1548 }
1549 if (dirty_cnt != atomic_long_read(&c->dirty_zn_cnt)) {
1550 ubifs_err("incorrect dirty_zn_cnt %ld, calculated %ld",
1551 atomic_long_read(&c->dirty_zn_cnt),
1552 dirty_cnt);
1553 return -EINVAL;
1554 }
1555 }
1556
1557 return 0;
1558}
1559
1560/**
1561 * dbg_walk_index - walk the on-flash index.
1562 * @c: UBIFS file-system description object
1563 * @leaf_cb: called for each leaf node
1564 * @znode_cb: called for each indexing node
227c75c9 1565 * @priv: private data which is passed to callbacks
1e51764a
AB
1566 *
1567 * This function walks the UBIFS index and calls the @leaf_cb for each leaf
1568 * node and @znode_cb for each indexing node. Returns zero in case of success
1569 * and a negative error code in case of failure.
1570 *
1571 * It would be better if this function removed every znode it pulled to into
1572 * the TNC, so that the behavior more closely matched the non-debugging
1573 * behavior.
1574 */
1575int dbg_walk_index(struct ubifs_info *c, dbg_leaf_callback leaf_cb,
1576 dbg_znode_callback znode_cb, void *priv)
1577{
1578 int err;
1579 struct ubifs_zbranch *zbr;
1580 struct ubifs_znode *znode, *child;
1581
1582 mutex_lock(&c->tnc_mutex);
1583 /* If the root indexing node is not in TNC - pull it */
1584 if (!c->zroot.znode) {
1585 c->zroot.znode = ubifs_load_znode(c, &c->zroot, NULL, 0);
1586 if (IS_ERR(c->zroot.znode)) {
1587 err = PTR_ERR(c->zroot.znode);
1588 c->zroot.znode = NULL;
1589 goto out_unlock;
1590 }
1591 }
1592
1593 /*
1594 * We are going to traverse the indexing tree in the postorder manner.
1595 * Go down and find the leftmost indexing node where we are going to
1596 * start from.
1597 */
1598 znode = c->zroot.znode;
1599 while (znode->level > 0) {
1600 zbr = &znode->zbranch[0];
1601 child = zbr->znode;
1602 if (!child) {
1603 child = ubifs_load_znode(c, zbr, znode, 0);
1604 if (IS_ERR(child)) {
1605 err = PTR_ERR(child);
1606 goto out_unlock;
1607 }
1608 zbr->znode = child;
1609 }
1610
1611 znode = child;
1612 }
1613
1614 /* Iterate over all indexing nodes */
1615 while (1) {
1616 int idx;
1617
1618 cond_resched();
1619
1620 if (znode_cb) {
1621 err = znode_cb(c, znode, priv);
1622 if (err) {
1623 ubifs_err("znode checking function returned "
1624 "error %d", err);
1625 dbg_dump_znode(c, znode);
1626 goto out_dump;
1627 }
1628 }
1629 if (leaf_cb && znode->level == 0) {
1630 for (idx = 0; idx < znode->child_cnt; idx++) {
1631 zbr = &znode->zbranch[idx];
1632 err = leaf_cb(c, zbr, priv);
1633 if (err) {
1634 ubifs_err("leaf checking function "
1635 "returned error %d, for leaf "
1636 "at LEB %d:%d",
1637 err, zbr->lnum, zbr->offs);
1638 goto out_dump;
1639 }
1640 }
1641 }
1642
1643 if (!znode->parent)
1644 break;
1645
1646 idx = znode->iip + 1;
1647 znode = znode->parent;
1648 if (idx < znode->child_cnt) {
1649 /* Switch to the next index in the parent */
1650 zbr = &znode->zbranch[idx];
1651 child = zbr->znode;
1652 if (!child) {
1653 child = ubifs_load_znode(c, zbr, znode, idx);
1654 if (IS_ERR(child)) {
1655 err = PTR_ERR(child);
1656 goto out_unlock;
1657 }
1658 zbr->znode = child;
1659 }
1660 znode = child;
1661 } else
1662 /*
1663 * This is the last child, switch to the parent and
1664 * continue.
1665 */
1666 continue;
1667
1668 /* Go to the lowest leftmost znode in the new sub-tree */
1669 while (znode->level > 0) {
1670 zbr = &znode->zbranch[0];
1671 child = zbr->znode;
1672 if (!child) {
1673 child = ubifs_load_znode(c, zbr, znode, 0);
1674 if (IS_ERR(child)) {
1675 err = PTR_ERR(child);
1676 goto out_unlock;
1677 }
1678 zbr->znode = child;
1679 }
1680 znode = child;
1681 }
1682 }
1683
1684 mutex_unlock(&c->tnc_mutex);
1685 return 0;
1686
1687out_dump:
1688 if (znode->parent)
1689 zbr = &znode->parent->zbranch[znode->iip];
1690 else
1691 zbr = &c->zroot;
1692 ubifs_msg("dump of znode at LEB %d:%d", zbr->lnum, zbr->offs);
1693 dbg_dump_znode(c, znode);
1694out_unlock:
1695 mutex_unlock(&c->tnc_mutex);
1696 return err;
1697}
1698
1699/**
1700 * add_size - add znode size to partially calculated index size.
1701 * @c: UBIFS file-system description object
1702 * @znode: znode to add size for
1703 * @priv: partially calculated index size
1704 *
1705 * This is a helper function for 'dbg_check_idx_size()' which is called for
1706 * every indexing node and adds its size to the 'long long' variable pointed to
1707 * by @priv.
1708 */
1709static int add_size(struct ubifs_info *c, struct ubifs_znode *znode, void *priv)
1710{
1711 long long *idx_size = priv;
1712 int add;
1713
1714 add = ubifs_idx_node_sz(c, znode->child_cnt);
1715 add = ALIGN(add, 8);
1716 *idx_size += add;
1717 return 0;
1718}
1719
1720/**
1721 * dbg_check_idx_size - check index size.
1722 * @c: UBIFS file-system description object
1723 * @idx_size: size to check
1724 *
1725 * This function walks the UBIFS index, calculates its size and checks that the
1726 * size is equivalent to @idx_size. Returns zero in case of success and a
1727 * negative error code in case of failure.
1728 */
1729int dbg_check_idx_size(struct ubifs_info *c, long long idx_size)
1730{
1731 int err;
1732 long long calc = 0;
1733
1734 if (!(ubifs_chk_flags & UBIFS_CHK_IDX_SZ))
1735 return 0;
1736
1737 err = dbg_walk_index(c, NULL, add_size, &calc);
1738 if (err) {
1739 ubifs_err("error %d while walking the index", err);
1740 return err;
1741 }
1742
1743 if (calc != idx_size) {
1744 ubifs_err("index size check failed: calculated size is %lld, "
1745 "should be %lld", calc, idx_size);
1746 dump_stack();
1747 return -EINVAL;
1748 }
1749
1750 return 0;
1751}
1752
1753/**
1754 * struct fsck_inode - information about an inode used when checking the file-system.
1755 * @rb: link in the RB-tree of inodes
1756 * @inum: inode number
1757 * @mode: inode type, permissions, etc
1758 * @nlink: inode link count
1759 * @xattr_cnt: count of extended attributes
1760 * @references: how many directory/xattr entries refer this inode (calculated
1761 * while walking the index)
1762 * @calc_cnt: for directory inode count of child directories
1763 * @size: inode size (read from on-flash inode)
1764 * @xattr_sz: summary size of all extended attributes (read from on-flash
1765 * inode)
1766 * @calc_sz: for directories calculated directory size
1767 * @calc_xcnt: count of extended attributes
1768 * @calc_xsz: calculated summary size of all extended attributes
1769 * @xattr_nms: sum of lengths of all extended attribute names belonging to this
1770 * inode (read from on-flash inode)
1771 * @calc_xnms: calculated sum of lengths of all extended attribute names
1772 */
1773struct fsck_inode {
1774 struct rb_node rb;
1775 ino_t inum;
1776 umode_t mode;
1777 unsigned int nlink;
1778 unsigned int xattr_cnt;
1779 int references;
1780 int calc_cnt;
1781 long long size;
1782 unsigned int xattr_sz;
1783 long long calc_sz;
1784 long long calc_xcnt;
1785 long long calc_xsz;
1786 unsigned int xattr_nms;
1787 long long calc_xnms;
1788};
1789
1790/**
1791 * struct fsck_data - private FS checking information.
1792 * @inodes: RB-tree of all inodes (contains @struct fsck_inode objects)
1793 */
1794struct fsck_data {
1795 struct rb_root inodes;
1796};
1797
1798/**
1799 * add_inode - add inode information to RB-tree of inodes.
1800 * @c: UBIFS file-system description object
1801 * @fsckd: FS checking information
1802 * @ino: raw UBIFS inode to add
1803 *
1804 * This is a helper function for 'check_leaf()' which adds information about
1805 * inode @ino to the RB-tree of inodes. Returns inode information pointer in
1806 * case of success and a negative error code in case of failure.
1807 */
1808static struct fsck_inode *add_inode(struct ubifs_info *c,
1809 struct fsck_data *fsckd,
1810 struct ubifs_ino_node *ino)
1811{
1812 struct rb_node **p, *parent = NULL;
1813 struct fsck_inode *fscki;
1814 ino_t inum = key_inum_flash(c, &ino->key);
1815
1816 p = &fsckd->inodes.rb_node;
1817 while (*p) {
1818 parent = *p;
1819 fscki = rb_entry(parent, struct fsck_inode, rb);
1820 if (inum < fscki->inum)
1821 p = &(*p)->rb_left;
1822 else if (inum > fscki->inum)
1823 p = &(*p)->rb_right;
1824 else
1825 return fscki;
1826 }
1827
1828 if (inum > c->highest_inum) {
1829 ubifs_err("too high inode number, max. is %lu",
e84461ad 1830 (unsigned long)c->highest_inum);
1e51764a
AB
1831 return ERR_PTR(-EINVAL);
1832 }
1833
1834 fscki = kzalloc(sizeof(struct fsck_inode), GFP_NOFS);
1835 if (!fscki)
1836 return ERR_PTR(-ENOMEM);
1837
1838 fscki->inum = inum;
1839 fscki->nlink = le32_to_cpu(ino->nlink);
1840 fscki->size = le64_to_cpu(ino->size);
1841 fscki->xattr_cnt = le32_to_cpu(ino->xattr_cnt);
1842 fscki->xattr_sz = le32_to_cpu(ino->xattr_size);
1843 fscki->xattr_nms = le32_to_cpu(ino->xattr_names);
1844 fscki->mode = le32_to_cpu(ino->mode);
1845 if (S_ISDIR(fscki->mode)) {
1846 fscki->calc_sz = UBIFS_INO_NODE_SZ;
1847 fscki->calc_cnt = 2;
1848 }
1849 rb_link_node(&fscki->rb, parent, p);
1850 rb_insert_color(&fscki->rb, &fsckd->inodes);
1851 return fscki;
1852}
1853
1854/**
1855 * search_inode - search inode in the RB-tree of inodes.
1856 * @fsckd: FS checking information
1857 * @inum: inode number to search
1858 *
1859 * This is a helper function for 'check_leaf()' which searches inode @inum in
1860 * the RB-tree of inodes and returns an inode information pointer or %NULL if
1861 * the inode was not found.
1862 */
1863static struct fsck_inode *search_inode(struct fsck_data *fsckd, ino_t inum)
1864{
1865 struct rb_node *p;
1866 struct fsck_inode *fscki;
1867
1868 p = fsckd->inodes.rb_node;
1869 while (p) {
1870 fscki = rb_entry(p, struct fsck_inode, rb);
1871 if (inum < fscki->inum)
1872 p = p->rb_left;
1873 else if (inum > fscki->inum)
1874 p = p->rb_right;
1875 else
1876 return fscki;
1877 }
1878 return NULL;
1879}
1880
1881/**
1882 * read_add_inode - read inode node and add it to RB-tree of inodes.
1883 * @c: UBIFS file-system description object
1884 * @fsckd: FS checking information
1885 * @inum: inode number to read
1886 *
1887 * This is a helper function for 'check_leaf()' which finds inode node @inum in
1888 * the index, reads it, and adds it to the RB-tree of inodes. Returns inode
1889 * information pointer in case of success and a negative error code in case of
1890 * failure.
1891 */
1892static struct fsck_inode *read_add_inode(struct ubifs_info *c,
1893 struct fsck_data *fsckd, ino_t inum)
1894{
1895 int n, err;
1896 union ubifs_key key;
1897 struct ubifs_znode *znode;
1898 struct ubifs_zbranch *zbr;
1899 struct ubifs_ino_node *ino;
1900 struct fsck_inode *fscki;
1901
1902 fscki = search_inode(fsckd, inum);
1903 if (fscki)
1904 return fscki;
1905
1906 ino_key_init(c, &key, inum);
1907 err = ubifs_lookup_level0(c, &key, &znode, &n);
1908 if (!err) {
e84461ad 1909 ubifs_err("inode %lu not found in index", (unsigned long)inum);
1e51764a
AB
1910 return ERR_PTR(-ENOENT);
1911 } else if (err < 0) {
e84461ad
AB
1912 ubifs_err("error %d while looking up inode %lu",
1913 err, (unsigned long)inum);
1e51764a
AB
1914 return ERR_PTR(err);
1915 }
1916
1917 zbr = &znode->zbranch[n];
1918 if (zbr->len < UBIFS_INO_NODE_SZ) {
e84461ad
AB
1919 ubifs_err("bad node %lu node length %d",
1920 (unsigned long)inum, zbr->len);
1e51764a
AB
1921 return ERR_PTR(-EINVAL);
1922 }
1923
1924 ino = kmalloc(zbr->len, GFP_NOFS);
1925 if (!ino)
1926 return ERR_PTR(-ENOMEM);
1927
1928 err = ubifs_tnc_read_node(c, zbr, ino);
1929 if (err) {
1930 ubifs_err("cannot read inode node at LEB %d:%d, error %d",
1931 zbr->lnum, zbr->offs, err);
1932 kfree(ino);
1933 return ERR_PTR(err);
1934 }
1935
1936 fscki = add_inode(c, fsckd, ino);
1937 kfree(ino);
1938 if (IS_ERR(fscki)) {
1939 ubifs_err("error %ld while adding inode %lu node",
e84461ad 1940 PTR_ERR(fscki), (unsigned long)inum);
1e51764a
AB
1941 return fscki;
1942 }
1943
1944 return fscki;
1945}
1946
1947/**
1948 * check_leaf - check leaf node.
1949 * @c: UBIFS file-system description object
1950 * @zbr: zbranch of the leaf node to check
1951 * @priv: FS checking information
1952 *
1953 * This is a helper function for 'dbg_check_filesystem()' which is called for
1954 * every single leaf node while walking the indexing tree. It checks that the
1955 * leaf node referred from the indexing tree exists, has correct CRC, and does
1956 * some other basic validation. This function is also responsible for building
1957 * an RB-tree of inodes - it adds all inodes into the RB-tree. It also
1958 * calculates reference count, size, etc for each inode in order to later
1959 * compare them to the information stored inside the inodes and detect possible
1960 * inconsistencies. Returns zero in case of success and a negative error code
1961 * in case of failure.
1962 */
1963static int check_leaf(struct ubifs_info *c, struct ubifs_zbranch *zbr,
1964 void *priv)
1965{
1966 ino_t inum;
1967 void *node;
1968 struct ubifs_ch *ch;
1969 int err, type = key_type(c, &zbr->key);
1970 struct fsck_inode *fscki;
1971
1972 if (zbr->len < UBIFS_CH_SZ) {
1973 ubifs_err("bad leaf length %d (LEB %d:%d)",
1974 zbr->len, zbr->lnum, zbr->offs);
1975 return -EINVAL;
1976 }
1977
1978 node = kmalloc(zbr->len, GFP_NOFS);
1979 if (!node)
1980 return -ENOMEM;
1981
1982 err = ubifs_tnc_read_node(c, zbr, node);
1983 if (err) {
1984 ubifs_err("cannot read leaf node at LEB %d:%d, error %d",
1985 zbr->lnum, zbr->offs, err);
1986 goto out_free;
1987 }
1988
1989 /* If this is an inode node, add it to RB-tree of inodes */
1990 if (type == UBIFS_INO_KEY) {
1991 fscki = add_inode(c, priv, node);
1992 if (IS_ERR(fscki)) {
1993 err = PTR_ERR(fscki);
1994 ubifs_err("error %d while adding inode node", err);
1995 goto out_dump;
1996 }
1997 goto out;
1998 }
1999
2000 if (type != UBIFS_DENT_KEY && type != UBIFS_XENT_KEY &&
2001 type != UBIFS_DATA_KEY) {
2002 ubifs_err("unexpected node type %d at LEB %d:%d",
2003 type, zbr->lnum, zbr->offs);
2004 err = -EINVAL;
2005 goto out_free;
2006 }
2007
2008 ch = node;
2009 if (le64_to_cpu(ch->sqnum) > c->max_sqnum) {
2010 ubifs_err("too high sequence number, max. is %llu",
2011 c->max_sqnum);
2012 err = -EINVAL;
2013 goto out_dump;
2014 }
2015
2016 if (type == UBIFS_DATA_KEY) {
2017 long long blk_offs;
2018 struct ubifs_data_node *dn = node;
2019
2020 /*
2021 * Search the inode node this data node belongs to and insert
2022 * it to the RB-tree of inodes.
2023 */
2024 inum = key_inum_flash(c, &dn->key);
2025 fscki = read_add_inode(c, priv, inum);
2026 if (IS_ERR(fscki)) {
2027 err = PTR_ERR(fscki);
2028 ubifs_err("error %d while processing data node and "
e84461ad
AB
2029 "trying to find inode node %lu",
2030 err, (unsigned long)inum);
1e51764a
AB
2031 goto out_dump;
2032 }
2033
2034 /* Make sure the data node is within inode size */
2035 blk_offs = key_block_flash(c, &dn->key);
2036 blk_offs <<= UBIFS_BLOCK_SHIFT;
2037 blk_offs += le32_to_cpu(dn->size);
2038 if (blk_offs > fscki->size) {
2039 ubifs_err("data node at LEB %d:%d is not within inode "
2040 "size %lld", zbr->lnum, zbr->offs,
2041 fscki->size);
2042 err = -EINVAL;
2043 goto out_dump;
2044 }
2045 } else {
2046 int nlen;
2047 struct ubifs_dent_node *dent = node;
2048 struct fsck_inode *fscki1;
2049
2050 err = ubifs_validate_entry(c, dent);
2051 if (err)
2052 goto out_dump;
2053
2054 /*
2055 * Search the inode node this entry refers to and the parent
2056 * inode node and insert them to the RB-tree of inodes.
2057 */
2058 inum = le64_to_cpu(dent->inum);
2059 fscki = read_add_inode(c, priv, inum);
2060 if (IS_ERR(fscki)) {
2061 err = PTR_ERR(fscki);
2062 ubifs_err("error %d while processing entry node and "
e84461ad
AB
2063 "trying to find inode node %lu",
2064 err, (unsigned long)inum);
1e51764a
AB
2065 goto out_dump;
2066 }
2067
2068 /* Count how many direntries or xentries refers this inode */
2069 fscki->references += 1;
2070
2071 inum = key_inum_flash(c, &dent->key);
2072 fscki1 = read_add_inode(c, priv, inum);
2073 if (IS_ERR(fscki1)) {
b38882f5 2074 err = PTR_ERR(fscki1);
1e51764a
AB
2075 ubifs_err("error %d while processing entry node and "
2076 "trying to find parent inode node %lu",
e84461ad 2077 err, (unsigned long)inum);
1e51764a
AB
2078 goto out_dump;
2079 }
2080
2081 nlen = le16_to_cpu(dent->nlen);
2082 if (type == UBIFS_XENT_KEY) {
2083 fscki1->calc_xcnt += 1;
2084 fscki1->calc_xsz += CALC_DENT_SIZE(nlen);
2085 fscki1->calc_xsz += CALC_XATTR_BYTES(fscki->size);
2086 fscki1->calc_xnms += nlen;
2087 } else {
2088 fscki1->calc_sz += CALC_DENT_SIZE(nlen);
2089 if (dent->type == UBIFS_ITYPE_DIR)
2090 fscki1->calc_cnt += 1;
2091 }
2092 }
2093
2094out:
2095 kfree(node);
2096 return 0;
2097
2098out_dump:
2099 ubifs_msg("dump of node at LEB %d:%d", zbr->lnum, zbr->offs);
2100 dbg_dump_node(c, node);
2101out_free:
2102 kfree(node);
2103 return err;
2104}
2105
2106/**
2107 * free_inodes - free RB-tree of inodes.
2108 * @fsckd: FS checking information
2109 */
2110static void free_inodes(struct fsck_data *fsckd)
2111{
2112 struct rb_node *this = fsckd->inodes.rb_node;
2113 struct fsck_inode *fscki;
2114
2115 while (this) {
2116 if (this->rb_left)
2117 this = this->rb_left;
2118 else if (this->rb_right)
2119 this = this->rb_right;
2120 else {
2121 fscki = rb_entry(this, struct fsck_inode, rb);
2122 this = rb_parent(this);
2123 if (this) {
2124 if (this->rb_left == &fscki->rb)
2125 this->rb_left = NULL;
2126 else
2127 this->rb_right = NULL;
2128 }
2129 kfree(fscki);
2130 }
2131 }
2132}
2133
2134/**
2135 * check_inodes - checks all inodes.
2136 * @c: UBIFS file-system description object
2137 * @fsckd: FS checking information
2138 *
2139 * This is a helper function for 'dbg_check_filesystem()' which walks the
2140 * RB-tree of inodes after the index scan has been finished, and checks that
2141 * inode nlink, size, etc are correct. Returns zero if inodes are fine,
2142 * %-EINVAL if not, and a negative error code in case of failure.
2143 */
2144static int check_inodes(struct ubifs_info *c, struct fsck_data *fsckd)
2145{
2146 int n, err;
2147 union ubifs_key key;
2148 struct ubifs_znode *znode;
2149 struct ubifs_zbranch *zbr;
2150 struct ubifs_ino_node *ino;
2151 struct fsck_inode *fscki;
2152 struct rb_node *this = rb_first(&fsckd->inodes);
2153
2154 while (this) {
2155 fscki = rb_entry(this, struct fsck_inode, rb);
2156 this = rb_next(this);
2157
2158 if (S_ISDIR(fscki->mode)) {
2159 /*
2160 * Directories have to have exactly one reference (they
2161 * cannot have hardlinks), although root inode is an
2162 * exception.
2163 */
2164 if (fscki->inum != UBIFS_ROOT_INO &&
2165 fscki->references != 1) {
2166 ubifs_err("directory inode %lu has %d "
2167 "direntries which refer it, but "
e84461ad
AB
2168 "should be 1",
2169 (unsigned long)fscki->inum,
1e51764a
AB
2170 fscki->references);
2171 goto out_dump;
2172 }
2173 if (fscki->inum == UBIFS_ROOT_INO &&
2174 fscki->references != 0) {
2175 ubifs_err("root inode %lu has non-zero (%d) "
2176 "direntries which refer it",
e84461ad
AB
2177 (unsigned long)fscki->inum,
2178 fscki->references);
1e51764a
AB
2179 goto out_dump;
2180 }
2181 if (fscki->calc_sz != fscki->size) {
2182 ubifs_err("directory inode %lu size is %lld, "
2183 "but calculated size is %lld",
e84461ad
AB
2184 (unsigned long)fscki->inum,
2185 fscki->size, fscki->calc_sz);
1e51764a
AB
2186 goto out_dump;
2187 }
2188 if (fscki->calc_cnt != fscki->nlink) {
2189 ubifs_err("directory inode %lu nlink is %d, "
2190 "but calculated nlink is %d",
e84461ad
AB
2191 (unsigned long)fscki->inum,
2192 fscki->nlink, fscki->calc_cnt);
1e51764a
AB
2193 goto out_dump;
2194 }
2195 } else {
2196 if (fscki->references != fscki->nlink) {
2197 ubifs_err("inode %lu nlink is %d, but "
e84461ad
AB
2198 "calculated nlink is %d",
2199 (unsigned long)fscki->inum,
1e51764a
AB
2200 fscki->nlink, fscki->references);
2201 goto out_dump;
2202 }
2203 }
2204 if (fscki->xattr_sz != fscki->calc_xsz) {
2205 ubifs_err("inode %lu has xattr size %u, but "
2206 "calculated size is %lld",
e84461ad 2207 (unsigned long)fscki->inum, fscki->xattr_sz,
1e51764a
AB
2208 fscki->calc_xsz);
2209 goto out_dump;
2210 }
2211 if (fscki->xattr_cnt != fscki->calc_xcnt) {
2212 ubifs_err("inode %lu has %u xattrs, but "
e84461ad
AB
2213 "calculated count is %lld",
2214 (unsigned long)fscki->inum,
1e51764a
AB
2215 fscki->xattr_cnt, fscki->calc_xcnt);
2216 goto out_dump;
2217 }
2218 if (fscki->xattr_nms != fscki->calc_xnms) {
2219 ubifs_err("inode %lu has xattr names' size %u, but "
2220 "calculated names' size is %lld",
e84461ad 2221 (unsigned long)fscki->inum, fscki->xattr_nms,
1e51764a
AB
2222 fscki->calc_xnms);
2223 goto out_dump;
2224 }
2225 }
2226
2227 return 0;
2228
2229out_dump:
2230 /* Read the bad inode and dump it */
2231 ino_key_init(c, &key, fscki->inum);
2232 err = ubifs_lookup_level0(c, &key, &znode, &n);
2233 if (!err) {
e84461ad
AB
2234 ubifs_err("inode %lu not found in index",
2235 (unsigned long)fscki->inum);
1e51764a
AB
2236 return -ENOENT;
2237 } else if (err < 0) {
2238 ubifs_err("error %d while looking up inode %lu",
e84461ad 2239 err, (unsigned long)fscki->inum);
1e51764a
AB
2240 return err;
2241 }
2242
2243 zbr = &znode->zbranch[n];
2244 ino = kmalloc(zbr->len, GFP_NOFS);
2245 if (!ino)
2246 return -ENOMEM;
2247
2248 err = ubifs_tnc_read_node(c, zbr, ino);
2249 if (err) {
2250 ubifs_err("cannot read inode node at LEB %d:%d, error %d",
2251 zbr->lnum, zbr->offs, err);
2252 kfree(ino);
2253 return err;
2254 }
2255
2256 ubifs_msg("dump of the inode %lu sitting in LEB %d:%d",
e84461ad 2257 (unsigned long)fscki->inum, zbr->lnum, zbr->offs);
1e51764a
AB
2258 dbg_dump_node(c, ino);
2259 kfree(ino);
2260 return -EINVAL;
2261}
2262
2263/**
2264 * dbg_check_filesystem - check the file-system.
2265 * @c: UBIFS file-system description object
2266 *
2267 * This function checks the file system, namely:
2268 * o makes sure that all leaf nodes exist and their CRCs are correct;
2269 * o makes sure inode nlink, size, xattr size/count are correct (for all
2270 * inodes).
2271 *
2272 * The function reads whole indexing tree and all nodes, so it is pretty
2273 * heavy-weight. Returns zero if the file-system is consistent, %-EINVAL if
2274 * not, and a negative error code in case of failure.
2275 */
2276int dbg_check_filesystem(struct ubifs_info *c)
2277{
2278 int err;
2279 struct fsck_data fsckd;
2280
2281 if (!(ubifs_chk_flags & UBIFS_CHK_FS))
2282 return 0;
2283
2284 fsckd.inodes = RB_ROOT;
2285 err = dbg_walk_index(c, check_leaf, NULL, &fsckd);
2286 if (err)
2287 goto out_free;
2288
2289 err = check_inodes(c, &fsckd);
2290 if (err)
2291 goto out_free;
2292
2293 free_inodes(&fsckd);
2294 return 0;
2295
2296out_free:
2297 ubifs_err("file-system check failed with error %d", err);
2298 dump_stack();
2299 free_inodes(&fsckd);
2300 return err;
2301}
2302
3bb66b47
AB
2303/**
2304 * dbg_check_data_nodes_order - check that list of data nodes is sorted.
2305 * @c: UBIFS file-system description object
2306 * @head: the list of nodes ('struct ubifs_scan_node' objects)
2307 *
2308 * This function returns zero if the list of data nodes is sorted correctly,
2309 * and %-EINVAL if not.
2310 */
2311int dbg_check_data_nodes_order(struct ubifs_info *c, struct list_head *head)
2312{
2313 struct list_head *cur;
2314 struct ubifs_scan_node *sa, *sb;
2315
2316 if (!(ubifs_chk_flags & UBIFS_CHK_GEN))
2317 return 0;
2318
2319 for (cur = head->next; cur->next != head; cur = cur->next) {
2320 ino_t inuma, inumb;
2321 uint32_t blka, blkb;
2322
2323 cond_resched();
2324 sa = container_of(cur, struct ubifs_scan_node, list);
2325 sb = container_of(cur->next, struct ubifs_scan_node, list);
2326
2327 if (sa->type != UBIFS_DATA_NODE) {
2328 ubifs_err("bad node type %d", sa->type);
2329 dbg_dump_node(c, sa->node);
2330 return -EINVAL;
2331 }
2332 if (sb->type != UBIFS_DATA_NODE) {
2333 ubifs_err("bad node type %d", sb->type);
2334 dbg_dump_node(c, sb->node);
2335 return -EINVAL;
2336 }
2337
2338 inuma = key_inum(c, &sa->key);
2339 inumb = key_inum(c, &sb->key);
2340
2341 if (inuma < inumb)
2342 continue;
2343 if (inuma > inumb) {
2344 ubifs_err("larger inum %lu goes before inum %lu",
2345 (unsigned long)inuma, (unsigned long)inumb);
2346 goto error_dump;
2347 }
2348
2349 blka = key_block(c, &sa->key);
2350 blkb = key_block(c, &sb->key);
2351
2352 if (blka > blkb) {
2353 ubifs_err("larger block %u goes before %u", blka, blkb);
2354 goto error_dump;
2355 }
2356 if (blka == blkb) {
2357 ubifs_err("two data nodes for the same block");
2358 goto error_dump;
2359 }
2360 }
2361
2362 return 0;
2363
2364error_dump:
2365 dbg_dump_node(c, sa->node);
2366 dbg_dump_node(c, sb->node);
2367 return -EINVAL;
2368}
2369
2370/**
2371 * dbg_check_nondata_nodes_order - check that list of data nodes is sorted.
2372 * @c: UBIFS file-system description object
2373 * @head: the list of nodes ('struct ubifs_scan_node' objects)
2374 *
2375 * This function returns zero if the list of non-data nodes is sorted correctly,
2376 * and %-EINVAL if not.
2377 */
2378int dbg_check_nondata_nodes_order(struct ubifs_info *c, struct list_head *head)
2379{
2380 struct list_head *cur;
2381 struct ubifs_scan_node *sa, *sb;
2382
2383 if (!(ubifs_chk_flags & UBIFS_CHK_GEN))
2384 return 0;
2385
2386 for (cur = head->next; cur->next != head; cur = cur->next) {
2387 ino_t inuma, inumb;
2388 uint32_t hasha, hashb;
2389
2390 cond_resched();
2391 sa = container_of(cur, struct ubifs_scan_node, list);
2392 sb = container_of(cur->next, struct ubifs_scan_node, list);
2393
2394 if (sa->type != UBIFS_INO_NODE && sa->type != UBIFS_DENT_NODE &&
2395 sa->type != UBIFS_XENT_NODE) {
2396 ubifs_err("bad node type %d", sa->type);
2397 dbg_dump_node(c, sa->node);
2398 return -EINVAL;
2399 }
2400 if (sa->type != UBIFS_INO_NODE && sa->type != UBIFS_DENT_NODE &&
2401 sa->type != UBIFS_XENT_NODE) {
2402 ubifs_err("bad node type %d", sb->type);
2403 dbg_dump_node(c, sb->node);
2404 return -EINVAL;
2405 }
2406
2407 if (sa->type != UBIFS_INO_NODE && sb->type == UBIFS_INO_NODE) {
2408 ubifs_err("non-inode node goes before inode node");
2409 goto error_dump;
2410 }
2411
2412 if (sa->type == UBIFS_INO_NODE && sb->type != UBIFS_INO_NODE)
2413 continue;
2414
2415 if (sa->type == UBIFS_INO_NODE && sb->type == UBIFS_INO_NODE) {
2416 /* Inode nodes are sorted in descending size order */
2417 if (sa->len < sb->len) {
2418 ubifs_err("smaller inode node goes first");
2419 goto error_dump;
2420 }
2421 continue;
2422 }
2423
2424 /*
2425 * This is either a dentry or xentry, which should be sorted in
2426 * ascending (parent ino, hash) order.
2427 */
2428 inuma = key_inum(c, &sa->key);
2429 inumb = key_inum(c, &sb->key);
2430
2431 if (inuma < inumb)
2432 continue;
2433 if (inuma > inumb) {
2434 ubifs_err("larger inum %lu goes before inum %lu",
2435 (unsigned long)inuma, (unsigned long)inumb);
2436 goto error_dump;
2437 }
2438
2439 hasha = key_block(c, &sa->key);
2440 hashb = key_block(c, &sb->key);
2441
2442 if (hasha > hashb) {
c4361570
AB
2443 ubifs_err("larger hash %u goes before %u",
2444 hasha, hashb);
3bb66b47
AB
2445 goto error_dump;
2446 }
2447 }
2448
2449 return 0;
2450
2451error_dump:
2452 ubifs_msg("dumping first node");
2453 dbg_dump_node(c, sa->node);
2454 ubifs_msg("dumping second node");
2455 dbg_dump_node(c, sb->node);
2456 return -EINVAL;
2457 return 0;
2458}
2459
1e51764a
AB
2460int dbg_force_in_the_gaps(void)
2461{
bc3f07f0 2462 if (!(ubifs_chk_flags & UBIFS_CHK_GEN))
1e51764a 2463 return 0;
bc3f07f0
AB
2464
2465 return !(random32() & 7);
1e51764a
AB
2466}
2467
2468/* Failure mode for recovery testing */
2469
2470#define chance(n, d) (simple_rand() <= (n) * 32768LL / (d))
2471
2472struct failure_mode_info {
2473 struct list_head list;
2474 struct ubifs_info *c;
2475};
2476
2477static LIST_HEAD(fmi_list);
2478static DEFINE_SPINLOCK(fmi_lock);
2479
2480static unsigned int next;
2481
2482static int simple_rand(void)
2483{
2484 if (next == 0)
2485 next = current->pid;
2486 next = next * 1103515245 + 12345;
2487 return (next >> 16) & 32767;
2488}
2489
17c2f9f8 2490static void failure_mode_init(struct ubifs_info *c)
1e51764a
AB
2491{
2492 struct failure_mode_info *fmi;
2493
2494 fmi = kmalloc(sizeof(struct failure_mode_info), GFP_NOFS);
2495 if (!fmi) {
552ff317 2496 ubifs_err("Failed to register failure mode - no memory");
1e51764a
AB
2497 return;
2498 }
2499 fmi->c = c;
2500 spin_lock(&fmi_lock);
2501 list_add_tail(&fmi->list, &fmi_list);
2502 spin_unlock(&fmi_lock);
2503}
2504
17c2f9f8 2505static void failure_mode_exit(struct ubifs_info *c)
1e51764a
AB
2506{
2507 struct failure_mode_info *fmi, *tmp;
2508
2509 spin_lock(&fmi_lock);
2510 list_for_each_entry_safe(fmi, tmp, &fmi_list, list)
2511 if (fmi->c == c) {
2512 list_del(&fmi->list);
2513 kfree(fmi);
2514 }
2515 spin_unlock(&fmi_lock);
2516}
2517
2518static struct ubifs_info *dbg_find_info(struct ubi_volume_desc *desc)
2519{
2520 struct failure_mode_info *fmi;
2521
2522 spin_lock(&fmi_lock);
2523 list_for_each_entry(fmi, &fmi_list, list)
2524 if (fmi->c->ubi == desc) {
2525 struct ubifs_info *c = fmi->c;
2526
2527 spin_unlock(&fmi_lock);
2528 return c;
2529 }
2530 spin_unlock(&fmi_lock);
2531 return NULL;
2532}
2533
2534static int in_failure_mode(struct ubi_volume_desc *desc)
2535{
2536 struct ubifs_info *c = dbg_find_info(desc);
2537
2538 if (c && dbg_failure_mode)
17c2f9f8 2539 return c->dbg->failure_mode;
1e51764a
AB
2540 return 0;
2541}
2542
2543static int do_fail(struct ubi_volume_desc *desc, int lnum, int write)
2544{
2545 struct ubifs_info *c = dbg_find_info(desc);
17c2f9f8 2546 struct ubifs_debug_info *d;
1e51764a
AB
2547
2548 if (!c || !dbg_failure_mode)
2549 return 0;
17c2f9f8
AB
2550 d = c->dbg;
2551 if (d->failure_mode)
1e51764a 2552 return 1;
17c2f9f8 2553 if (!d->fail_cnt) {
1e51764a
AB
2554 /* First call - decide delay to failure */
2555 if (chance(1, 2)) {
2556 unsigned int delay = 1 << (simple_rand() >> 11);
2557
2558 if (chance(1, 2)) {
17c2f9f8
AB
2559 d->fail_delay = 1;
2560 d->fail_timeout = jiffies +
1e51764a
AB
2561 msecs_to_jiffies(delay);
2562 dbg_rcvry("failing after %ums", delay);
2563 } else {
17c2f9f8
AB
2564 d->fail_delay = 2;
2565 d->fail_cnt_max = delay;
1e51764a
AB
2566 dbg_rcvry("failing after %u calls", delay);
2567 }
2568 }
17c2f9f8 2569 d->fail_cnt += 1;
1e51764a
AB
2570 }
2571 /* Determine if failure delay has expired */
17c2f9f8
AB
2572 if (d->fail_delay == 1) {
2573 if (time_before(jiffies, d->fail_timeout))
1e51764a 2574 return 0;
17c2f9f8
AB
2575 } else if (d->fail_delay == 2)
2576 if (d->fail_cnt++ < d->fail_cnt_max)
1e51764a
AB
2577 return 0;
2578 if (lnum == UBIFS_SB_LNUM) {
2579 if (write) {
2580 if (chance(1, 2))
2581 return 0;
2582 } else if (chance(19, 20))
2583 return 0;
2584 dbg_rcvry("failing in super block LEB %d", lnum);
2585 } else if (lnum == UBIFS_MST_LNUM || lnum == UBIFS_MST_LNUM + 1) {
2586 if (chance(19, 20))
2587 return 0;
2588 dbg_rcvry("failing in master LEB %d", lnum);
2589 } else if (lnum >= UBIFS_LOG_LNUM && lnum <= c->log_last) {
2590 if (write) {
2591 if (chance(99, 100))
2592 return 0;
2593 } else if (chance(399, 400))
2594 return 0;
2595 dbg_rcvry("failing in log LEB %d", lnum);
2596 } else if (lnum >= c->lpt_first && lnum <= c->lpt_last) {
2597 if (write) {
2598 if (chance(7, 8))
2599 return 0;
2600 } else if (chance(19, 20))
2601 return 0;
2602 dbg_rcvry("failing in LPT LEB %d", lnum);
2603 } else if (lnum >= c->orph_first && lnum <= c->orph_last) {
2604 if (write) {
2605 if (chance(1, 2))
2606 return 0;
2607 } else if (chance(9, 10))
2608 return 0;
2609 dbg_rcvry("failing in orphan LEB %d", lnum);
2610 } else if (lnum == c->ihead_lnum) {
2611 if (chance(99, 100))
2612 return 0;
2613 dbg_rcvry("failing in index head LEB %d", lnum);
2614 } else if (c->jheads && lnum == c->jheads[GCHD].wbuf.lnum) {
2615 if (chance(9, 10))
2616 return 0;
2617 dbg_rcvry("failing in GC head LEB %d", lnum);
2618 } else if (write && !RB_EMPTY_ROOT(&c->buds) &&
2619 !ubifs_search_bud(c, lnum)) {
2620 if (chance(19, 20))
2621 return 0;
2622 dbg_rcvry("failing in non-bud LEB %d", lnum);
2623 } else if (c->cmt_state == COMMIT_RUNNING_BACKGROUND ||
2624 c->cmt_state == COMMIT_RUNNING_REQUIRED) {
2625 if (chance(999, 1000))
2626 return 0;
2627 dbg_rcvry("failing in bud LEB %d commit running", lnum);
2628 } else {
2629 if (chance(9999, 10000))
2630 return 0;
2631 dbg_rcvry("failing in bud LEB %d commit not running", lnum);
2632 }
2633 ubifs_err("*** SETTING FAILURE MODE ON (LEB %d) ***", lnum);
17c2f9f8 2634 d->failure_mode = 1;
1e51764a
AB
2635 dump_stack();
2636 return 1;
2637}
2638
2639static void cut_data(const void *buf, int len)
2640{
2641 int flen, i;
2642 unsigned char *p = (void *)buf;
2643
2644 flen = (len * (long long)simple_rand()) >> 15;
2645 for (i = flen; i < len; i++)
2646 p[i] = 0xff;
2647}
2648
2649int dbg_leb_read(struct ubi_volume_desc *desc, int lnum, char *buf, int offset,
2650 int len, int check)
2651{
2652 if (in_failure_mode(desc))
2653 return -EIO;
2654 return ubi_leb_read(desc, lnum, buf, offset, len, check);
2655}
2656
2657int dbg_leb_write(struct ubi_volume_desc *desc, int lnum, const void *buf,
2658 int offset, int len, int dtype)
2659{
16dfd804 2660 int err, failing;
1e51764a
AB
2661
2662 if (in_failure_mode(desc))
2663 return -EIO;
16dfd804
AH
2664 failing = do_fail(desc, lnum, 1);
2665 if (failing)
1e51764a
AB
2666 cut_data(buf, len);
2667 err = ubi_leb_write(desc, lnum, buf, offset, len, dtype);
2668 if (err)
2669 return err;
16dfd804 2670 if (failing)
1e51764a
AB
2671 return -EIO;
2672 return 0;
2673}
2674
2675int dbg_leb_change(struct ubi_volume_desc *desc, int lnum, const void *buf,
2676 int len, int dtype)
2677{
2678 int err;
2679
2680 if (do_fail(desc, lnum, 1))
2681 return -EIO;
2682 err = ubi_leb_change(desc, lnum, buf, len, dtype);
2683 if (err)
2684 return err;
2685 if (do_fail(desc, lnum, 1))
2686 return -EIO;
2687 return 0;
2688}
2689
2690int dbg_leb_erase(struct ubi_volume_desc *desc, int lnum)
2691{
2692 int err;
2693
2694 if (do_fail(desc, lnum, 0))
2695 return -EIO;
2696 err = ubi_leb_erase(desc, lnum);
2697 if (err)
2698 return err;
2699 if (do_fail(desc, lnum, 0))
2700 return -EIO;
2701 return 0;
2702}
2703
2704int dbg_leb_unmap(struct ubi_volume_desc *desc, int lnum)
2705{
2706 int err;
2707
2708 if (do_fail(desc, lnum, 0))
2709 return -EIO;
2710 err = ubi_leb_unmap(desc, lnum);
2711 if (err)
2712 return err;
2713 if (do_fail(desc, lnum, 0))
2714 return -EIO;
2715 return 0;
2716}
2717
2718int dbg_is_mapped(struct ubi_volume_desc *desc, int lnum)
2719{
2720 if (in_failure_mode(desc))
2721 return -EIO;
2722 return ubi_is_mapped(desc, lnum);
2723}
2724
2725int dbg_leb_map(struct ubi_volume_desc *desc, int lnum, int dtype)
2726{
2727 int err;
2728
2729 if (do_fail(desc, lnum, 0))
2730 return -EIO;
2731 err = ubi_leb_map(desc, lnum, dtype);
2732 if (err)
2733 return err;
2734 if (do_fail(desc, lnum, 0))
2735 return -EIO;
2736 return 0;
2737}
2738
17c2f9f8
AB
2739/**
2740 * ubifs_debugging_init - initialize UBIFS debugging.
2741 * @c: UBIFS file-system description object
2742 *
2743 * This function initializes debugging-related data for the file system.
2744 * Returns zero in case of success and a negative error code in case of
2745 * failure.
2746 */
2747int ubifs_debugging_init(struct ubifs_info *c)
2748{
2749 c->dbg = kzalloc(sizeof(struct ubifs_debug_info), GFP_KERNEL);
2750 if (!c->dbg)
2751 return -ENOMEM;
2752
17c2f9f8
AB
2753 failure_mode_init(c);
2754 return 0;
17c2f9f8
AB
2755}
2756
2757/**
2758 * ubifs_debugging_exit - free debugging data.
2759 * @c: UBIFS file-system description object
2760 */
2761void ubifs_debugging_exit(struct ubifs_info *c)
2762{
2763 failure_mode_exit(c);
17c2f9f8
AB
2764 kfree(c->dbg);
2765}
2766
552ff317
AB
2767/*
2768 * Root directory for UBIFS stuff in debugfs. Contains sub-directories which
2769 * contain the stuff specific to particular file-system mounts.
2770 */
84abf972 2771static struct dentry *dfs_rootdir;
552ff317
AB
2772
2773/**
2774 * dbg_debugfs_init - initialize debugfs file-system.
2775 *
2776 * UBIFS uses debugfs file-system to expose various debugging knobs to
2777 * user-space. This function creates "ubifs" directory in the debugfs
2778 * file-system. Returns zero in case of success and a negative error code in
2779 * case of failure.
2780 */
2781int dbg_debugfs_init(void)
2782{
84abf972
AB
2783 dfs_rootdir = debugfs_create_dir("ubifs", NULL);
2784 if (IS_ERR(dfs_rootdir)) {
2785 int err = PTR_ERR(dfs_rootdir);
552ff317
AB
2786 ubifs_err("cannot create \"ubifs\" debugfs directory, "
2787 "error %d\n", err);
2788 return err;
2789 }
2790
2791 return 0;
2792}
2793
2794/**
2795 * dbg_debugfs_exit - remove the "ubifs" directory from debugfs file-system.
2796 */
2797void dbg_debugfs_exit(void)
2798{
84abf972 2799 debugfs_remove(dfs_rootdir);
552ff317
AB
2800}
2801
2802static int open_debugfs_file(struct inode *inode, struct file *file)
2803{
2804 file->private_data = inode->i_private;
1bbfc848 2805 return nonseekable_open(inode, file);
552ff317
AB
2806}
2807
2808static ssize_t write_debugfs_file(struct file *file, const char __user *buf,
2809 size_t count, loff_t *ppos)
2810{
2811 struct ubifs_info *c = file->private_data;
2812 struct ubifs_debug_info *d = c->dbg;
2813
84abf972 2814 if (file->f_path.dentry == d->dfs_dump_lprops)
552ff317 2815 dbg_dump_lprops(c);
8ff83089 2816 else if (file->f_path.dentry == d->dfs_dump_budg)
f1bd66af 2817 dbg_dump_budg(c, &c->bi);
8ff83089 2818 else if (file->f_path.dentry == d->dfs_dump_tnc) {
552ff317
AB
2819 mutex_lock(&c->tnc_mutex);
2820 dbg_dump_tnc(c);
2821 mutex_unlock(&c->tnc_mutex);
2822 } else
2823 return -EINVAL;
2824
2825 *ppos += count;
2826 return count;
2827}
2828
84abf972 2829static const struct file_operations dfs_fops = {
552ff317
AB
2830 .open = open_debugfs_file,
2831 .write = write_debugfs_file,
2832 .owner = THIS_MODULE,
1bbfc848 2833 .llseek = no_llseek,
552ff317
AB
2834};
2835
2836/**
2837 * dbg_debugfs_init_fs - initialize debugfs for UBIFS instance.
2838 * @c: UBIFS file-system description object
2839 *
2840 * This function creates all debugfs files for this instance of UBIFS. Returns
2841 * zero in case of success and a negative error code in case of failure.
2842 *
2843 * Note, the only reason we have not merged this function with the
2844 * 'ubifs_debugging_init()' function is because it is better to initialize
2845 * debugfs interfaces at the very end of the mount process, and remove them at
2846 * the very beginning of the mount process.
2847 */
2848int dbg_debugfs_init_fs(struct ubifs_info *c)
2849{
2850 int err;
2851 const char *fname;
2852 struct dentry *dent;
2853 struct ubifs_debug_info *d = c->dbg;
2854
84abf972 2855 sprintf(d->dfs_dir_name, "ubi%d_%d", c->vi.ubi_num, c->vi.vol_id);
cc6a86b9
AB
2856 fname = d->dfs_dir_name;
2857 dent = debugfs_create_dir(fname, dfs_rootdir);
95169535 2858 if (IS_ERR_OR_NULL(dent))
552ff317 2859 goto out;
cc6a86b9 2860 d->dfs_dir = dent;
552ff317
AB
2861
2862 fname = "dump_lprops";
8c559d30 2863 dent = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, c, &dfs_fops);
95169535 2864 if (IS_ERR_OR_NULL(dent))
552ff317 2865 goto out_remove;
84abf972 2866 d->dfs_dump_lprops = dent;
552ff317
AB
2867
2868 fname = "dump_budg";
8c559d30 2869 dent = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, c, &dfs_fops);
95169535 2870 if (IS_ERR_OR_NULL(dent))
552ff317 2871 goto out_remove;
84abf972 2872 d->dfs_dump_budg = dent;
552ff317
AB
2873
2874 fname = "dump_tnc";
8c559d30 2875 dent = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, c, &dfs_fops);
95169535 2876 if (IS_ERR_OR_NULL(dent))
552ff317 2877 goto out_remove;
84abf972 2878 d->dfs_dump_tnc = dent;
552ff317
AB
2879
2880 return 0;
2881
2882out_remove:
cc6a86b9
AB
2883 debugfs_remove_recursive(d->dfs_dir);
2884out:
95169535 2885 err = dent ? PTR_ERR(dent) : -ENODEV;
552ff317
AB
2886 ubifs_err("cannot create \"%s\" debugfs directory, error %d\n",
2887 fname, err);
552ff317
AB
2888 return err;
2889}
2890
2891/**
2892 * dbg_debugfs_exit_fs - remove all debugfs files.
2893 * @c: UBIFS file-system description object
2894 */
2895void dbg_debugfs_exit_fs(struct ubifs_info *c)
2896{
84abf972 2897 debugfs_remove_recursive(c->dbg->dfs_dir);
552ff317
AB
2898}
2899
1e51764a 2900#endif /* CONFIG_UBIFS_FS_DEBUG */