]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - fs/ubifs/file.c
Merge branch 'linux-5.3' of git://github.com/skeggsb/linux into drm-fixes
[mirror_ubuntu-jammy-kernel.git] / fs / ubifs / file.c
CommitLineData
2b27bdcc 1// SPDX-License-Identifier: GPL-2.0-only
1e51764a
AB
2/*
3 * This file is part of UBIFS.
4 *
5 * Copyright (C) 2006-2008 Nokia Corporation.
6 *
1e51764a
AB
7 * Authors: Artem Bityutskiy (Битюцкий Артём)
8 * Adrian Hunter
9 */
10
11/*
873a64c7 12 * This file implements VFS file and inode operations for regular files, device
1e51764a
AB
13 * nodes and symlinks as well as address space operations.
14 *
873a64c7
AB
15 * UBIFS uses 2 page flags: @PG_private and @PG_checked. @PG_private is set if
16 * the page is dirty and is used for optimization purposes - dirty pages are
17 * not budgeted so the flag shows that 'ubifs_write_end()' should not release
18 * the budget for this page. The @PG_checked flag is set if full budgeting is
19 * required for the page e.g., when it corresponds to a file hole or it is
20 * beyond the file size. The budgeting is done in 'ubifs_write_begin()', because
21 * it is OK to fail in this function, and the budget is released in
22 * 'ubifs_write_end()'. So the @PG_private and @PG_checked flags carry
23 * information about how the page was budgeted, to make it possible to release
24 * the budget properly.
1e51764a 25 *
873a64c7
AB
26 * A thing to keep in mind: inode @i_mutex is locked in most VFS operations we
27 * implement. However, this is not true for 'ubifs_writepage()', which may be
5c57f20b
AB
28 * called with @i_mutex unlocked. For example, when flusher thread is doing
29 * background write-back, it calls 'ubifs_writepage()' with unlocked @i_mutex.
30 * At "normal" work-paths the @i_mutex is locked in 'ubifs_writepage()', e.g.
31 * in the "sys_write -> alloc_pages -> direct reclaim path". So, in
32 * 'ubifs_writepage()' we are only guaranteed that the page is locked.
1e51764a 33 *
873a64c7
AB
34 * Similarly, @i_mutex is not always locked in 'ubifs_readpage()', e.g., the
35 * read-ahead path does not lock it ("sys_read -> generic_file_aio_read ->
eaff8079 36 * ondemand_readahead -> readpage"). In case of readahead, @I_SYNC flag is not
873a64c7 37 * set as well. However, UBIFS disables readahead.
1e51764a
AB
38 */
39
40#include "ubifs.h"
41#include <linux/mount.h>
5a0e3ad6 42#include <linux/slab.h>
4ac1c17b 43#include <linux/migrate.h>
1e51764a
AB
44
45static int read_block(struct inode *inode, void *addr, unsigned int block,
46 struct ubifs_data_node *dn)
47{
48 struct ubifs_info *c = inode->i_sb->s_fs_info;
49 int err, len, out_len;
50 union ubifs_key key;
51 unsigned int dlen;
52
53 data_key_init(c, &key, inode->i_ino, block);
54 err = ubifs_tnc_lookup(c, &key, dn);
55 if (err) {
56 if (err == -ENOENT)
57 /* Not found, so it must be a hole */
58 memset(addr, 0, UBIFS_BLOCK_SIZE);
59 return err;
60 }
61
6eb61d58 62 ubifs_assert(c, le64_to_cpu(dn->ch.sqnum) >
f92b9826 63 ubifs_inode(inode)->creat_sqnum);
1e51764a
AB
64 len = le32_to_cpu(dn->size);
65 if (len <= 0 || len > UBIFS_BLOCK_SIZE)
66 goto dump;
67
68 dlen = le32_to_cpu(dn->ch.len) - UBIFS_DATA_NODE_SZ;
7799953b
RW
69
70 if (ubifs_crypt_is_encrypted(inode)) {
71 err = ubifs_decrypt(inode, dn, &dlen, block);
72 if (err)
73 goto dump;
74 }
75
1e51764a 76 out_len = UBIFS_BLOCK_SIZE;
235c362b 77 err = ubifs_decompress(c, &dn->data, dlen, addr, &out_len,
1e51764a
AB
78 le16_to_cpu(dn->compr_type));
79 if (err || len != out_len)
80 goto dump;
81
82 /*
83 * Data length can be less than a full block, even for blocks that are
84 * not the last in the file (e.g., as a result of making a hole and
85 * appending data). Ensure that the remainder is zeroed out.
86 */
87 if (len < UBIFS_BLOCK_SIZE)
88 memset(addr + len, 0, UBIFS_BLOCK_SIZE - len);
89
90 return 0;
91
92dump:
235c362b 93 ubifs_err(c, "bad data node (block %u, inode %lu)",
1e51764a 94 block, inode->i_ino);
edf6be24 95 ubifs_dump_node(c, dn);
1e51764a
AB
96 return -EINVAL;
97}
98
99static int do_readpage(struct page *page)
100{
101 void *addr;
102 int err = 0, i;
103 unsigned int block, beyond;
104 struct ubifs_data_node *dn;
105 struct inode *inode = page->mapping->host;
6eb61d58 106 struct ubifs_info *c = inode->i_sb->s_fs_info;
1e51764a
AB
107 loff_t i_size = i_size_read(inode);
108
109 dbg_gen("ino %lu, pg %lu, i_size %lld, flags %#lx",
110 inode->i_ino, page->index, i_size, page->flags);
6eb61d58
RW
111 ubifs_assert(c, !PageChecked(page));
112 ubifs_assert(c, !PagePrivate(page));
1e51764a
AB
113
114 addr = kmap(page);
115
116 block = page->index << UBIFS_BLOCKS_PER_PAGE_SHIFT;
117 beyond = (i_size + UBIFS_BLOCK_SIZE - 1) >> UBIFS_BLOCK_SHIFT;
118 if (block >= beyond) {
119 /* Reading beyond inode */
120 SetPageChecked(page);
09cbfeaf 121 memset(addr, 0, PAGE_SIZE);
1e51764a
AB
122 goto out;
123 }
124
125 dn = kmalloc(UBIFS_MAX_DATA_NODE_SZ, GFP_NOFS);
126 if (!dn) {
127 err = -ENOMEM;
128 goto error;
129 }
130
131 i = 0;
132 while (1) {
133 int ret;
134
135 if (block >= beyond) {
136 /* Reading beyond inode */
137 err = -ENOENT;
138 memset(addr, 0, UBIFS_BLOCK_SIZE);
139 } else {
140 ret = read_block(inode, addr, block, dn);
141 if (ret) {
142 err = ret;
143 if (err != -ENOENT)
144 break;
ed382d58
AH
145 } else if (block + 1 == beyond) {
146 int dlen = le32_to_cpu(dn->size);
147 int ilen = i_size & (UBIFS_BLOCK_SIZE - 1);
148
149 if (ilen && ilen < dlen)
150 memset(addr + ilen, 0, dlen - ilen);
1e51764a
AB
151 }
152 }
153 if (++i >= UBIFS_BLOCKS_PER_PAGE)
154 break;
155 block += 1;
156 addr += UBIFS_BLOCK_SIZE;
157 }
158 if (err) {
235c362b 159 struct ubifs_info *c = inode->i_sb->s_fs_info;
1e51764a
AB
160 if (err == -ENOENT) {
161 /* Not found, so it must be a hole */
162 SetPageChecked(page);
163 dbg_gen("hole");
164 goto out_free;
165 }
235c362b 166 ubifs_err(c, "cannot read page %lu of inode %lu, error %d",
1e51764a
AB
167 page->index, inode->i_ino, err);
168 goto error;
169 }
170
171out_free:
172 kfree(dn);
173out:
174 SetPageUptodate(page);
175 ClearPageError(page);
176 flush_dcache_page(page);
177 kunmap(page);
178 return 0;
179
180error:
181 kfree(dn);
182 ClearPageUptodate(page);
183 SetPageError(page);
184 flush_dcache_page(page);
185 kunmap(page);
186 return err;
187}
188
189/**
190 * release_new_page_budget - release budget of a new page.
191 * @c: UBIFS file-system description object
192 *
193 * This is a helper function which releases budget corresponding to the budget
194 * of one new page of data.
195 */
196static void release_new_page_budget(struct ubifs_info *c)
197{
198 struct ubifs_budget_req req = { .recalculate = 1, .new_page = 1 };
199
200 ubifs_release_budget(c, &req);
201}
202
203/**
204 * release_existing_page_budget - release budget of an existing page.
205 * @c: UBIFS file-system description object
206 *
207 * This is a helper function which releases budget corresponding to the budget
208 * of changing one one page of data which already exists on the flash media.
209 */
210static void release_existing_page_budget(struct ubifs_info *c)
211{
b137545c 212 struct ubifs_budget_req req = { .dd_growth = c->bi.page_budget};
1e51764a
AB
213
214 ubifs_release_budget(c, &req);
215}
216
217static int write_begin_slow(struct address_space *mapping,
54566b2c
NP
218 loff_t pos, unsigned len, struct page **pagep,
219 unsigned flags)
1e51764a
AB
220{
221 struct inode *inode = mapping->host;
222 struct ubifs_info *c = inode->i_sb->s_fs_info;
09cbfeaf 223 pgoff_t index = pos >> PAGE_SHIFT;
1e51764a
AB
224 struct ubifs_budget_req req = { .new_page = 1 };
225 int uninitialized_var(err), appending = !!(pos + len > inode->i_size);
226 struct page *page;
227
228 dbg_gen("ino %lu, pos %llu, len %u, i_size %lld",
229 inode->i_ino, pos, len, inode->i_size);
230
231 /*
232 * At the slow path we have to budget before locking the page, because
233 * budgeting may force write-back, which would wait on locked pages and
234 * deadlock if we had the page locked. At this point we do not know
235 * anything about the page, so assume that this is a new page which is
236 * written to a hole. This corresponds to largest budget. Later the
237 * budget will be amended if this is not true.
238 */
239 if (appending)
240 /* We are appending data, budget for inode change */
241 req.dirtied_ino = 1;
242
243 err = ubifs_budget_space(c, &req);
244 if (unlikely(err))
245 return err;
246
54566b2c 247 page = grab_cache_page_write_begin(mapping, index, flags);
1e51764a
AB
248 if (unlikely(!page)) {
249 ubifs_release_budget(c, &req);
250 return -ENOMEM;
251 }
252
253 if (!PageUptodate(page)) {
09cbfeaf 254 if (!(pos & ~PAGE_MASK) && len == PAGE_SIZE)
1e51764a
AB
255 SetPageChecked(page);
256 else {
257 err = do_readpage(page);
258 if (err) {
259 unlock_page(page);
09cbfeaf 260 put_page(page);
789c8993 261 ubifs_release_budget(c, &req);
1e51764a
AB
262 return err;
263 }
264 }
265
266 SetPageUptodate(page);
267 ClearPageError(page);
268 }
269
270 if (PagePrivate(page))
271 /*
272 * The page is dirty, which means it was budgeted twice:
273 * o first time the budget was allocated by the task which
274 * made the page dirty and set the PG_private flag;
275 * o and then we budgeted for it for the second time at the
276 * very beginning of this function.
277 *
278 * So what we have to do is to release the page budget we
279 * allocated.
280 */
281 release_new_page_budget(c);
282 else if (!PageChecked(page))
283 /*
284 * We are changing a page which already exists on the media.
285 * This means that changing the page does not make the amount
286 * of indexing information larger, and this part of the budget
287 * which we have already acquired may be released.
288 */
289 ubifs_convert_page_budget(c);
290
291 if (appending) {
292 struct ubifs_inode *ui = ubifs_inode(inode);
293
294 /*
295 * 'ubifs_write_end()' is optimized from the fast-path part of
296 * 'ubifs_write_begin()' and expects the @ui_mutex to be locked
297 * if data is appended.
298 */
299 mutex_lock(&ui->ui_mutex);
300 if (ui->dirty)
301 /*
302 * The inode is dirty already, so we may free the
303 * budget we allocated.
304 */
305 ubifs_release_dirty_inode_budget(c, ui);
306 }
307
308 *pagep = page;
309 return 0;
310}
311
312/**
313 * allocate_budget - allocate budget for 'ubifs_write_begin()'.
314 * @c: UBIFS file-system description object
315 * @page: page to allocate budget for
316 * @ui: UBIFS inode object the page belongs to
317 * @appending: non-zero if the page is appended
318 *
319 * This is a helper function for 'ubifs_write_begin()' which allocates budget
320 * for the operation. The budget is allocated differently depending on whether
321 * this is appending, whether the page is dirty or not, and so on. This
322 * function leaves the @ui->ui_mutex locked in case of appending. Returns zero
323 * in case of success and %-ENOSPC in case of failure.
324 */
325static int allocate_budget(struct ubifs_info *c, struct page *page,
326 struct ubifs_inode *ui, int appending)
327{
328 struct ubifs_budget_req req = { .fast = 1 };
329
330 if (PagePrivate(page)) {
331 if (!appending)
332 /*
333 * The page is dirty and we are not appending, which
334 * means no budget is needed at all.
335 */
336 return 0;
337
338 mutex_lock(&ui->ui_mutex);
339 if (ui->dirty)
340 /*
341 * The page is dirty and we are appending, so the inode
342 * has to be marked as dirty. However, it is already
343 * dirty, so we do not need any budget. We may return,
344 * but @ui->ui_mutex hast to be left locked because we
345 * should prevent write-back from flushing the inode
346 * and freeing the budget. The lock will be released in
347 * 'ubifs_write_end()'.
348 */
349 return 0;
350
351 /*
352 * The page is dirty, we are appending, the inode is clean, so
353 * we need to budget the inode change.
354 */
355 req.dirtied_ino = 1;
356 } else {
357 if (PageChecked(page))
358 /*
359 * The page corresponds to a hole and does not
360 * exist on the media. So changing it makes
361 * make the amount of indexing information
362 * larger, and we have to budget for a new
363 * page.
364 */
365 req.new_page = 1;
366 else
367 /*
368 * Not a hole, the change will not add any new
369 * indexing information, budget for page
370 * change.
371 */
372 req.dirtied_page = 1;
373
374 if (appending) {
375 mutex_lock(&ui->ui_mutex);
376 if (!ui->dirty)
377 /*
378 * The inode is clean but we will have to mark
379 * it as dirty because we are appending. This
380 * needs a budget.
381 */
382 req.dirtied_ino = 1;
383 }
384 }
385
386 return ubifs_budget_space(c, &req);
387}
388
389/*
390 * This function is called when a page of data is going to be written. Since
391 * the page of data will not necessarily go to the flash straight away, UBIFS
392 * has to reserve space on the media for it, which is done by means of
393 * budgeting.
394 *
395 * This is the hot-path of the file-system and we are trying to optimize it as
396 * much as possible. For this reasons it is split on 2 parts - slow and fast.
397 *
398 * There many budgeting cases:
399 * o a new page is appended - we have to budget for a new page and for
400 * changing the inode; however, if the inode is already dirty, there is
401 * no need to budget for it;
402 * o an existing clean page is changed - we have budget for it; if the page
403 * does not exist on the media (a hole), we have to budget for a new
404 * page; otherwise, we may budget for changing an existing page; the
405 * difference between these cases is that changing an existing page does
406 * not introduce anything new to the FS indexing information, so it does
407 * not grow, and smaller budget is acquired in this case;
408 * o an existing dirty page is changed - no need to budget at all, because
409 * the page budget has been acquired by earlier, when the page has been
410 * marked dirty.
411 *
412 * UBIFS budgeting sub-system may force write-back if it thinks there is no
413 * space to reserve. This imposes some locking restrictions and makes it
414 * impossible to take into account the above cases, and makes it impossible to
415 * optimize budgeting.
416 *
417 * The solution for this is that the fast path of 'ubifs_write_begin()' assumes
418 * there is a plenty of flash space and the budget will be acquired quickly,
419 * without forcing write-back. The slow path does not make this assumption.
420 */
421static int ubifs_write_begin(struct file *file, struct address_space *mapping,
422 loff_t pos, unsigned len, unsigned flags,
423 struct page **pagep, void **fsdata)
424{
425 struct inode *inode = mapping->host;
426 struct ubifs_info *c = inode->i_sb->s_fs_info;
427 struct ubifs_inode *ui = ubifs_inode(inode);
09cbfeaf 428 pgoff_t index = pos >> PAGE_SHIFT;
1e51764a 429 int uninitialized_var(err), appending = !!(pos + len > inode->i_size);
f55aa591 430 int skipped_read = 0;
1e51764a
AB
431 struct page *page;
432
6eb61d58
RW
433 ubifs_assert(c, ubifs_inode(inode)->ui_size == inode->i_size);
434 ubifs_assert(c, !c->ro_media && !c->ro_mount);
1e51764a 435
2680d722 436 if (unlikely(c->ro_error))
1e51764a
AB
437 return -EROFS;
438
439 /* Try out the fast-path part first */
54566b2c 440 page = grab_cache_page_write_begin(mapping, index, flags);
1e51764a
AB
441 if (unlikely(!page))
442 return -ENOMEM;
443
444 if (!PageUptodate(page)) {
445 /* The page is not loaded from the flash */
09cbfeaf 446 if (!(pos & ~PAGE_MASK) && len == PAGE_SIZE) {
1e51764a
AB
447 /*
448 * We change whole page so no need to load it. But we
6ed09c34
AB
449 * do not know whether this page exists on the media or
450 * not, so we assume the latter because it requires
451 * larger budget. The assumption is that it is better
452 * to budget a bit more than to read the page from the
453 * media. Thus, we are setting the @PG_checked flag
454 * here.
1e51764a
AB
455 */
456 SetPageChecked(page);
f55aa591
AH
457 skipped_read = 1;
458 } else {
1e51764a
AB
459 err = do_readpage(page);
460 if (err) {
461 unlock_page(page);
09cbfeaf 462 put_page(page);
1e51764a
AB
463 return err;
464 }
465 }
466
467 SetPageUptodate(page);
468 ClearPageError(page);
469 }
470
471 err = allocate_budget(c, page, ui, appending);
472 if (unlikely(err)) {
6eb61d58 473 ubifs_assert(c, err == -ENOSPC);
f55aa591
AH
474 /*
475 * If we skipped reading the page because we were going to
476 * write all of it, then it is not up to date.
477 */
478 if (skipped_read) {
479 ClearPageChecked(page);
480 ClearPageUptodate(page);
481 }
1e51764a
AB
482 /*
483 * Budgeting failed which means it would have to force
484 * write-back but didn't, because we set the @fast flag in the
485 * request. Write-back cannot be done now, while we have the
486 * page locked, because it would deadlock. Unlock and free
487 * everything and fall-back to slow-path.
488 */
489 if (appending) {
6eb61d58 490 ubifs_assert(c, mutex_is_locked(&ui->ui_mutex));
1e51764a
AB
491 mutex_unlock(&ui->ui_mutex);
492 }
493 unlock_page(page);
09cbfeaf 494 put_page(page);
1e51764a 495
54566b2c 496 return write_begin_slow(mapping, pos, len, pagep, flags);
1e51764a
AB
497 }
498
499 /*
873a64c7
AB
500 * Whee, we acquired budgeting quickly - without involving
501 * garbage-collection, committing or forcing write-back. We return
1e51764a
AB
502 * with @ui->ui_mutex locked if we are appending pages, and unlocked
503 * otherwise. This is an optimization (slightly hacky though).
504 */
505 *pagep = page;
506 return 0;
507
508}
509
510/**
511 * cancel_budget - cancel budget.
512 * @c: UBIFS file-system description object
513 * @page: page to cancel budget for
514 * @ui: UBIFS inode object the page belongs to
515 * @appending: non-zero if the page is appended
516 *
517 * This is a helper function for a page write operation. It unlocks the
518 * @ui->ui_mutex in case of appending.
519 */
520static void cancel_budget(struct ubifs_info *c, struct page *page,
521 struct ubifs_inode *ui, int appending)
522{
523 if (appending) {
524 if (!ui->dirty)
525 ubifs_release_dirty_inode_budget(c, ui);
526 mutex_unlock(&ui->ui_mutex);
527 }
528 if (!PagePrivate(page)) {
529 if (PageChecked(page))
530 release_new_page_budget(c);
531 else
532 release_existing_page_budget(c);
533 }
534}
535
536static int ubifs_write_end(struct file *file, struct address_space *mapping,
537 loff_t pos, unsigned len, unsigned copied,
538 struct page *page, void *fsdata)
539{
540 struct inode *inode = mapping->host;
541 struct ubifs_inode *ui = ubifs_inode(inode);
542 struct ubifs_info *c = inode->i_sb->s_fs_info;
543 loff_t end_pos = pos + len;
544 int appending = !!(end_pos > inode->i_size);
545
546 dbg_gen("ino %lu, pos %llu, pg %lu, len %u, copied %d, i_size %lld",
547 inode->i_ino, pos, page->index, len, copied, inode->i_size);
548
09cbfeaf 549 if (unlikely(copied < len && len == PAGE_SIZE)) {
1e51764a
AB
550 /*
551 * VFS copied less data to the page that it intended and
552 * declared in its '->write_begin()' call via the @len
553 * argument. If the page was not up-to-date, and @len was
ea1754a0 554 * @PAGE_SIZE, the 'ubifs_write_begin()' function did
1e51764a
AB
555 * not load it from the media (for optimization reasons). This
556 * means that part of the page contains garbage. So read the
557 * page now.
558 */
559 dbg_gen("copied %d instead of %d, read page and repeat",
560 copied, len);
561 cancel_budget(c, page, ui, appending);
6ed09c34 562 ClearPageChecked(page);
1e51764a
AB
563
564 /*
565 * Return 0 to force VFS to repeat the whole operation, or the
873a64c7 566 * error code if 'do_readpage()' fails.
1e51764a
AB
567 */
568 copied = do_readpage(page);
569 goto out;
570 }
571
572 if (!PagePrivate(page)) {
573 SetPagePrivate(page);
574 atomic_long_inc(&c->dirty_pg_cnt);
575 __set_page_dirty_nobuffers(page);
576 }
577
578 if (appending) {
579 i_size_write(inode, end_pos);
580 ui->ui_size = end_pos;
581 /*
582 * Note, we do not set @I_DIRTY_PAGES (which means that the
583 * inode has dirty pages), this has been done in
584 * '__set_page_dirty_nobuffers()'.
585 */
586 __mark_inode_dirty(inode, I_DIRTY_DATASYNC);
6eb61d58 587 ubifs_assert(c, mutex_is_locked(&ui->ui_mutex));
1e51764a
AB
588 mutex_unlock(&ui->ui_mutex);
589 }
590
591out:
592 unlock_page(page);
09cbfeaf 593 put_page(page);
1e51764a
AB
594 return copied;
595}
596
4793e7c5
AH
597/**
598 * populate_page - copy data nodes into a page for bulk-read.
599 * @c: UBIFS file-system description object
600 * @page: page
601 * @bu: bulk-read information
602 * @n: next zbranch slot
603 *
604 * This function returns %0 on success and a negative error code on failure.
605 */
606static int populate_page(struct ubifs_info *c, struct page *page,
607 struct bu_info *bu, int *n)
608{
5c0013c1 609 int i = 0, nn = *n, offs = bu->zbranch[0].offs, hole = 0, read = 0;
4793e7c5
AH
610 struct inode *inode = page->mapping->host;
611 loff_t i_size = i_size_read(inode);
612 unsigned int page_block;
613 void *addr, *zaddr;
614 pgoff_t end_index;
615
616 dbg_gen("ino %lu, pg %lu, i_size %lld, flags %#lx",
617 inode->i_ino, page->index, i_size, page->flags);
618
619 addr = zaddr = kmap(page);
620
09cbfeaf 621 end_index = (i_size - 1) >> PAGE_SHIFT;
4793e7c5 622 if (!i_size || page->index > end_index) {
5c0013c1 623 hole = 1;
09cbfeaf 624 memset(addr, 0, PAGE_SIZE);
4793e7c5
AH
625 goto out_hole;
626 }
627
628 page_block = page->index << UBIFS_BLOCKS_PER_PAGE_SHIFT;
629 while (1) {
630 int err, len, out_len, dlen;
631
5c0013c1
AH
632 if (nn >= bu->cnt) {
633 hole = 1;
4793e7c5 634 memset(addr, 0, UBIFS_BLOCK_SIZE);
5c0013c1 635 } else if (key_block(c, &bu->zbranch[nn].key) == page_block) {
4793e7c5
AH
636 struct ubifs_data_node *dn;
637
638 dn = bu->buf + (bu->zbranch[nn].offs - offs);
639
6eb61d58 640 ubifs_assert(c, le64_to_cpu(dn->ch.sqnum) >
4793e7c5
AH
641 ubifs_inode(inode)->creat_sqnum);
642
643 len = le32_to_cpu(dn->size);
644 if (len <= 0 || len > UBIFS_BLOCK_SIZE)
645 goto out_err;
646
647 dlen = le32_to_cpu(dn->ch.len) - UBIFS_DATA_NODE_SZ;
648 out_len = UBIFS_BLOCK_SIZE;
7799953b
RW
649
650 if (ubifs_crypt_is_encrypted(inode)) {
651 err = ubifs_decrypt(inode, dn, &dlen, page_block);
652 if (err)
653 goto out_err;
654 }
655
235c362b 656 err = ubifs_decompress(c, &dn->data, dlen, addr, &out_len,
4793e7c5
AH
657 le16_to_cpu(dn->compr_type));
658 if (err || len != out_len)
659 goto out_err;
660
661 if (len < UBIFS_BLOCK_SIZE)
662 memset(addr + len, 0, UBIFS_BLOCK_SIZE - len);
663
664 nn += 1;
4793e7c5 665 read = (i << UBIFS_BLOCK_SHIFT) + len;
5c0013c1
AH
666 } else if (key_block(c, &bu->zbranch[nn].key) < page_block) {
667 nn += 1;
668 continue;
669 } else {
670 hole = 1;
671 memset(addr, 0, UBIFS_BLOCK_SIZE);
4793e7c5
AH
672 }
673 if (++i >= UBIFS_BLOCKS_PER_PAGE)
674 break;
675 addr += UBIFS_BLOCK_SIZE;
676 page_block += 1;
677 }
678
679 if (end_index == page->index) {
09cbfeaf 680 int len = i_size & (PAGE_SIZE - 1);
4793e7c5 681
ed382d58 682 if (len && len < read)
4793e7c5
AH
683 memset(zaddr + len, 0, read - len);
684 }
685
686out_hole:
687 if (hole) {
688 SetPageChecked(page);
689 dbg_gen("hole");
690 }
691
692 SetPageUptodate(page);
693 ClearPageError(page);
694 flush_dcache_page(page);
695 kunmap(page);
696 *n = nn;
697 return 0;
698
699out_err:
700 ClearPageUptodate(page);
701 SetPageError(page);
702 flush_dcache_page(page);
703 kunmap(page);
235c362b 704 ubifs_err(c, "bad data node (block %u, inode %lu)",
4793e7c5
AH
705 page_block, inode->i_ino);
706 return -EINVAL;
707}
708
709/**
710 * ubifs_do_bulk_read - do bulk-read.
711 * @c: UBIFS file-system description object
6c0c42cd
AB
712 * @bu: bulk-read information
713 * @page1: first page to read
4793e7c5
AH
714 *
715 * This function returns %1 if the bulk-read is done, otherwise %0 is returned.
716 */
6c0c42cd
AB
717static int ubifs_do_bulk_read(struct ubifs_info *c, struct bu_info *bu,
718 struct page *page1)
4793e7c5
AH
719{
720 pgoff_t offset = page1->index, end_index;
721 struct address_space *mapping = page1->mapping;
722 struct inode *inode = mapping->host;
723 struct ubifs_inode *ui = ubifs_inode(inode);
4793e7c5 724 int err, page_idx, page_cnt, ret = 0, n = 0;
6c0c42cd 725 int allocate = bu->buf ? 0 : 1;
4793e7c5 726 loff_t isize;
480a1a6a 727 gfp_t ra_gfp_mask = readahead_gfp_mask(mapping) & ~__GFP_FS;
4793e7c5 728
4793e7c5
AH
729 err = ubifs_tnc_get_bu_keys(c, bu);
730 if (err)
731 goto out_warn;
732
733 if (bu->eof) {
734 /* Turn off bulk-read at the end of the file */
735 ui->read_in_a_row = 1;
736 ui->bulk_read = 0;
737 }
738
739 page_cnt = bu->blk_cnt >> UBIFS_BLOCKS_PER_PAGE_SHIFT;
740 if (!page_cnt) {
741 /*
742 * This happens when there are multiple blocks per page and the
743 * blocks for the first page we are looking for, are not
744 * together. If all the pages were like this, bulk-read would
745 * reduce performance, so we turn it off for a while.
746 */
6c0c42cd 747 goto out_bu_off;
4793e7c5
AH
748 }
749
750 if (bu->cnt) {
6c0c42cd
AB
751 if (allocate) {
752 /*
753 * Allocate bulk-read buffer depending on how many data
754 * nodes we are going to read.
755 */
756 bu->buf_len = bu->zbranch[bu->cnt - 1].offs +
757 bu->zbranch[bu->cnt - 1].len -
758 bu->zbranch[0].offs;
6eb61d58
RW
759 ubifs_assert(c, bu->buf_len > 0);
760 ubifs_assert(c, bu->buf_len <= c->leb_size);
6c0c42cd
AB
761 bu->buf = kmalloc(bu->buf_len, GFP_NOFS | __GFP_NOWARN);
762 if (!bu->buf)
763 goto out_bu_off;
764 }
765
4793e7c5
AH
766 err = ubifs_tnc_bulk_read(c, bu);
767 if (err)
768 goto out_warn;
769 }
770
771 err = populate_page(c, page1, bu, &n);
772 if (err)
773 goto out_warn;
774
775 unlock_page(page1);
776 ret = 1;
777
778 isize = i_size_read(inode);
779 if (isize == 0)
780 goto out_free;
09cbfeaf 781 end_index = ((isize - 1) >> PAGE_SHIFT);
4793e7c5
AH
782
783 for (page_idx = 1; page_idx < page_cnt; page_idx++) {
784 pgoff_t page_offset = offset + page_idx;
785 struct page *page;
786
787 if (page_offset > end_index)
788 break;
480a1a6a 789 page = find_or_create_page(mapping, page_offset, ra_gfp_mask);
4793e7c5
AH
790 if (!page)
791 break;
792 if (!PageUptodate(page))
793 err = populate_page(c, page, bu, &n);
794 unlock_page(page);
09cbfeaf 795 put_page(page);
4793e7c5
AH
796 if (err)
797 break;
798 }
799
800 ui->last_page_read = offset + page_idx - 1;
801
802out_free:
6c0c42cd
AB
803 if (allocate)
804 kfree(bu->buf);
4793e7c5
AH
805 return ret;
806
807out_warn:
235c362b 808 ubifs_warn(c, "ignoring error %d and skipping bulk-read", err);
4793e7c5 809 goto out_free;
6c0c42cd
AB
810
811out_bu_off:
812 ui->read_in_a_row = ui->bulk_read = 0;
813 goto out_free;
4793e7c5
AH
814}
815
816/**
817 * ubifs_bulk_read - determine whether to bulk-read and, if so, do it.
818 * @page: page from which to start bulk-read.
819 *
820 * Some flash media are capable of reading sequentially at faster rates. UBIFS
821 * bulk-read facility is designed to take advantage of that, by reading in one
822 * go consecutive data nodes that are also located consecutively in the same
823 * LEB. This function returns %1 if a bulk-read is done and %0 otherwise.
824 */
825static int ubifs_bulk_read(struct page *page)
826{
827 struct inode *inode = page->mapping->host;
828 struct ubifs_info *c = inode->i_sb->s_fs_info;
829 struct ubifs_inode *ui = ubifs_inode(inode);
830 pgoff_t index = page->index, last_page_read = ui->last_page_read;
6c0c42cd 831 struct bu_info *bu;
3477d204 832 int err = 0, allocated = 0;
4793e7c5
AH
833
834 ui->last_page_read = index;
4793e7c5
AH
835 if (!c->bulk_read)
836 return 0;
6c0c42cd 837
4793e7c5 838 /*
3477d204
AB
839 * Bulk-read is protected by @ui->ui_mutex, but it is an optimization,
840 * so don't bother if we cannot lock the mutex.
4793e7c5
AH
841 */
842 if (!mutex_trylock(&ui->ui_mutex))
843 return 0;
6c0c42cd 844
4793e7c5
AH
845 if (index != last_page_read + 1) {
846 /* Turn off bulk-read if we stop reading sequentially */
847 ui->read_in_a_row = 1;
848 if (ui->bulk_read)
849 ui->bulk_read = 0;
850 goto out_unlock;
851 }
6c0c42cd 852
4793e7c5
AH
853 if (!ui->bulk_read) {
854 ui->read_in_a_row += 1;
855 if (ui->read_in_a_row < 3)
856 goto out_unlock;
857 /* Three reads in a row, so switch on bulk-read */
858 ui->bulk_read = 1;
859 }
6c0c42cd 860
3477d204
AB
861 /*
862 * If possible, try to use pre-allocated bulk-read information, which
863 * is protected by @c->bu_mutex.
864 */
865 if (mutex_trylock(&c->bu_mutex))
866 bu = &c->bu;
867 else {
868 bu = kmalloc(sizeof(struct bu_info), GFP_NOFS | __GFP_NOWARN);
869 if (!bu)
870 goto out_unlock;
871
872 bu->buf = NULL;
873 allocated = 1;
874 }
6c0c42cd 875
6c0c42cd
AB
876 bu->buf_len = c->max_bu_buf_len;
877 data_key_init(c, &bu->key, inode->i_ino,
878 page->index << UBIFS_BLOCKS_PER_PAGE_SHIFT);
6c0c42cd 879 err = ubifs_do_bulk_read(c, bu, page);
3477d204
AB
880
881 if (!allocated)
882 mutex_unlock(&c->bu_mutex);
883 else
884 kfree(bu);
6c0c42cd 885
4793e7c5
AH
886out_unlock:
887 mutex_unlock(&ui->ui_mutex);
6c0c42cd 888 return err;
4793e7c5
AH
889}
890
1e51764a
AB
891static int ubifs_readpage(struct file *file, struct page *page)
892{
4793e7c5
AH
893 if (ubifs_bulk_read(page))
894 return 0;
1e51764a
AB
895 do_readpage(page);
896 unlock_page(page);
897 return 0;
898}
899
900static int do_writepage(struct page *page, int len)
901{
902 int err = 0, i, blen;
903 unsigned int block;
904 void *addr;
905 union ubifs_key key;
906 struct inode *inode = page->mapping->host;
907 struct ubifs_info *c = inode->i_sb->s_fs_info;
908
909#ifdef UBIFS_DEBUG
a0fd5951 910 struct ubifs_inode *ui = ubifs_inode(inode);
1e51764a 911 spin_lock(&ui->ui_lock);
6eb61d58 912 ubifs_assert(c, page->index <= ui->synced_i_size >> PAGE_SHIFT);
1e51764a
AB
913 spin_unlock(&ui->ui_lock);
914#endif
915
916 /* Update radix tree tags */
917 set_page_writeback(page);
918
919 addr = kmap(page);
920 block = page->index << UBIFS_BLOCKS_PER_PAGE_SHIFT;
921 i = 0;
922 while (len) {
923 blen = min_t(int, len, UBIFS_BLOCK_SIZE);
924 data_key_init(c, &key, inode->i_ino, block);
925 err = ubifs_jnl_write_data(c, inode, &key, addr, blen);
926 if (err)
927 break;
928 if (++i >= UBIFS_BLOCKS_PER_PAGE)
929 break;
930 block += 1;
931 addr += blen;
932 len -= blen;
933 }
934 if (err) {
935 SetPageError(page);
235c362b 936 ubifs_err(c, "cannot write page %lu of inode %lu, error %d",
1e51764a
AB
937 page->index, inode->i_ino, err);
938 ubifs_ro_mode(c, err);
939 }
940
6eb61d58 941 ubifs_assert(c, PagePrivate(page));
1e51764a
AB
942 if (PageChecked(page))
943 release_new_page_budget(c);
944 else
945 release_existing_page_budget(c);
946
947 atomic_long_dec(&c->dirty_pg_cnt);
948 ClearPagePrivate(page);
949 ClearPageChecked(page);
950
951 kunmap(page);
952 unlock_page(page);
953 end_page_writeback(page);
954 return err;
955}
956
957/*
958 * When writing-back dirty inodes, VFS first writes-back pages belonging to the
959 * inode, then the inode itself. For UBIFS this may cause a problem. Consider a
960 * situation when a we have an inode with size 0, then a megabyte of data is
961 * appended to the inode, then write-back starts and flushes some amount of the
962 * dirty pages, the journal becomes full, commit happens and finishes, and then
963 * an unclean reboot happens. When the file system is mounted next time, the
964 * inode size would still be 0, but there would be many pages which are beyond
965 * the inode size, they would be indexed and consume flash space. Because the
966 * journal has been committed, the replay would not be able to detect this
967 * situation and correct the inode size. This means UBIFS would have to scan
968 * whole index and correct all inode sizes, which is long an unacceptable.
969 *
970 * To prevent situations like this, UBIFS writes pages back only if they are
7d4e9ccb 971 * within the last synchronized inode size, i.e. the size which has been
1e51764a
AB
972 * written to the flash media last time. Otherwise, UBIFS forces inode
973 * write-back, thus making sure the on-flash inode contains current inode size,
974 * and then keeps writing pages back.
975 *
976 * Some locking issues explanation. 'ubifs_writepage()' first is called with
977 * the page locked, and it locks @ui_mutex. However, write-back does take inode
978 * @i_mutex, which means other VFS operations may be run on this inode at the
979 * same time. And the problematic one is truncation to smaller size, from where
c4361570
AB
980 * we have to call 'truncate_setsize()', which first changes @inode->i_size,
981 * then drops the truncated pages. And while dropping the pages, it takes the
982 * page lock. This means that 'do_truncation()' cannot call 'truncate_setsize()'
983 * with @ui_mutex locked, because it would deadlock with 'ubifs_writepage()'.
984 * This means that @inode->i_size is changed while @ui_mutex is unlocked.
1e51764a 985 *
2c27c65e
CH
986 * XXX(truncate): with the new truncate sequence this is not true anymore,
987 * and the calls to truncate_setsize can be move around freely. They should
988 * be moved to the very end of the truncate sequence.
15c6fd97 989 *
1e51764a
AB
990 * But in 'ubifs_writepage()' we have to guarantee that we do not write beyond
991 * inode size. How do we do this if @inode->i_size may became smaller while we
992 * are in the middle of 'ubifs_writepage()'? The UBIFS solution is the
993 * @ui->ui_isize "shadow" field which UBIFS uses instead of @inode->i_size
994 * internally and updates it under @ui_mutex.
995 *
996 * Q: why we do not worry that if we race with truncation, we may end up with a
997 * situation when the inode is truncated while we are in the middle of
998 * 'do_writepage()', so we do write beyond inode size?
999 * A: If we are in the middle of 'do_writepage()', truncation would be locked
1000 * on the page lock and it would not write the truncated inode node to the
1001 * journal before we have finished.
1002 */
1003static int ubifs_writepage(struct page *page, struct writeback_control *wbc)
1004{
1005 struct inode *inode = page->mapping->host;
6eb61d58 1006 struct ubifs_info *c = inode->i_sb->s_fs_info;
1e51764a
AB
1007 struct ubifs_inode *ui = ubifs_inode(inode);
1008 loff_t i_size = i_size_read(inode), synced_i_size;
09cbfeaf
KS
1009 pgoff_t end_index = i_size >> PAGE_SHIFT;
1010 int err, len = i_size & (PAGE_SIZE - 1);
1e51764a
AB
1011 void *kaddr;
1012
1013 dbg_gen("ino %lu, pg %lu, pg flags %#lx",
1014 inode->i_ino, page->index, page->flags);
6eb61d58 1015 ubifs_assert(c, PagePrivate(page));
1e51764a
AB
1016
1017 /* Is the page fully outside @i_size? (truncate in progress) */
1018 if (page->index > end_index || (page->index == end_index && !len)) {
1019 err = 0;
1020 goto out_unlock;
1021 }
1022
1023 spin_lock(&ui->ui_lock);
1024 synced_i_size = ui->synced_i_size;
1025 spin_unlock(&ui->ui_lock);
1026
1027 /* Is the page fully inside @i_size? */
1028 if (page->index < end_index) {
09cbfeaf 1029 if (page->index >= synced_i_size >> PAGE_SHIFT) {
a9185b41 1030 err = inode->i_sb->s_op->write_inode(inode, NULL);
1e51764a
AB
1031 if (err)
1032 goto out_unlock;
1033 /*
1034 * The inode has been written, but the write-buffer has
1035 * not been synchronized, so in case of an unclean
1036 * reboot we may end up with some pages beyond inode
1037 * size, but they would be in the journal (because
1038 * commit flushes write buffers) and recovery would deal
1039 * with this.
1040 */
1041 }
09cbfeaf 1042 return do_writepage(page, PAGE_SIZE);
1e51764a
AB
1043 }
1044
1045 /*
1046 * The page straddles @i_size. It must be zeroed out on each and every
1047 * writepage invocation because it may be mmapped. "A file is mapped
1048 * in multiples of the page size. For a file that is not a multiple of
1049 * the page size, the remaining memory is zeroed when mapped, and
1050 * writes to that region are not written out to the file."
1051 */
a1c7c137 1052 kaddr = kmap_atomic(page);
09cbfeaf 1053 memset(kaddr + len, 0, PAGE_SIZE - len);
1e51764a 1054 flush_dcache_page(page);
a1c7c137 1055 kunmap_atomic(kaddr);
1e51764a
AB
1056
1057 if (i_size > synced_i_size) {
a9185b41 1058 err = inode->i_sb->s_op->write_inode(inode, NULL);
1e51764a
AB
1059 if (err)
1060 goto out_unlock;
1061 }
1062
1063 return do_writepage(page, len);
1064
1065out_unlock:
1066 unlock_page(page);
1067 return err;
1068}
1069
1070/**
1071 * do_attr_changes - change inode attributes.
1072 * @inode: inode to change attributes for
1073 * @attr: describes attributes to change
1074 */
1075static void do_attr_changes(struct inode *inode, const struct iattr *attr)
1076{
1077 if (attr->ia_valid & ATTR_UID)
1078 inode->i_uid = attr->ia_uid;
1079 if (attr->ia_valid & ATTR_GID)
1080 inode->i_gid = attr->ia_gid;
1081 if (attr->ia_valid & ATTR_ATIME)
95582b00
DD
1082 inode->i_atime = timespec64_trunc(attr->ia_atime,
1083 inode->i_sb->s_time_gran);
1e51764a 1084 if (attr->ia_valid & ATTR_MTIME)
95582b00
DD
1085 inode->i_mtime = timespec64_trunc(attr->ia_mtime,
1086 inode->i_sb->s_time_gran);
1e51764a 1087 if (attr->ia_valid & ATTR_CTIME)
95582b00
DD
1088 inode->i_ctime = timespec64_trunc(attr->ia_ctime,
1089 inode->i_sb->s_time_gran);
1e51764a
AB
1090 if (attr->ia_valid & ATTR_MODE) {
1091 umode_t mode = attr->ia_mode;
1092
1093 if (!in_group_p(inode->i_gid) && !capable(CAP_FSETID))
1094 mode &= ~S_ISGID;
1095 inode->i_mode = mode;
1096 }
1097}
1098
1099/**
1100 * do_truncation - truncate an inode.
1101 * @c: UBIFS file-system description object
1102 * @inode: inode to truncate
1103 * @attr: inode attribute changes description
1104 *
1105 * This function implements VFS '->setattr()' call when the inode is truncated
1106 * to a smaller size. Returns zero in case of success and a negative error code
1107 * in case of failure.
1108 */
1109static int do_truncation(struct ubifs_info *c, struct inode *inode,
1110 const struct iattr *attr)
1111{
1112 int err;
1113 struct ubifs_budget_req req;
1114 loff_t old_size = inode->i_size, new_size = attr->ia_size;
04da11bf 1115 int offset = new_size & (UBIFS_BLOCK_SIZE - 1), budgeted = 1;
1e51764a
AB
1116 struct ubifs_inode *ui = ubifs_inode(inode);
1117
1118 dbg_gen("ino %lu, size %lld -> %lld", inode->i_ino, old_size, new_size);
1119 memset(&req, 0, sizeof(struct ubifs_budget_req));
1120
1121 /*
1122 * If this is truncation to a smaller size, and we do not truncate on a
1123 * block boundary, budget for changing one data block, because the last
1124 * block will be re-written.
1125 */
1126 if (new_size & (UBIFS_BLOCK_SIZE - 1))
1127 req.dirtied_page = 1;
1128
1129 req.dirtied_ino = 1;
1130 /* A funny way to budget for truncation node */
1131 req.dirtied_ino_d = UBIFS_TRUN_NODE_SZ;
1132 err = ubifs_budget_space(c, &req);
04da11bf
AB
1133 if (err) {
1134 /*
1135 * Treat truncations to zero as deletion and always allow them,
1136 * just like we do for '->unlink()'.
1137 */
1138 if (new_size || err != -ENOSPC)
1139 return err;
1140 budgeted = 0;
1141 }
1e51764a 1142
2c27c65e 1143 truncate_setsize(inode, new_size);
1e51764a
AB
1144
1145 if (offset) {
09cbfeaf 1146 pgoff_t index = new_size >> PAGE_SHIFT;
1e51764a
AB
1147 struct page *page;
1148
1149 page = find_lock_page(inode->i_mapping, index);
1150 if (page) {
1151 if (PageDirty(page)) {
1152 /*
1153 * 'ubifs_jnl_truncate()' will try to truncate
1154 * the last data node, but it contains
1155 * out-of-date data because the page is dirty.
1156 * Write the page now, so that
1157 * 'ubifs_jnl_truncate()' will see an already
1158 * truncated (and up to date) data node.
1159 */
6eb61d58 1160 ubifs_assert(c, PagePrivate(page));
1e51764a
AB
1161
1162 clear_page_dirty_for_io(page);
1163 if (UBIFS_BLOCKS_PER_PAGE_SHIFT)
1164 offset = new_size &
09cbfeaf 1165 (PAGE_SIZE - 1);
1e51764a 1166 err = do_writepage(page, offset);
09cbfeaf 1167 put_page(page);
1e51764a
AB
1168 if (err)
1169 goto out_budg;
1170 /*
1171 * We could now tell 'ubifs_jnl_truncate()' not
1172 * to read the last block.
1173 */
1174 } else {
1175 /*
1176 * We could 'kmap()' the page and pass the data
1177 * to 'ubifs_jnl_truncate()' to save it from
1178 * having to read it.
1179 */
1180 unlock_page(page);
09cbfeaf 1181 put_page(page);
1e51764a
AB
1182 }
1183 }
1184 }
1185
1186 mutex_lock(&ui->ui_mutex);
1187 ui->ui_size = inode->i_size;
1188 /* Truncation changes inode [mc]time */
607a11ad 1189 inode->i_mtime = inode->i_ctime = current_time(inode);
873a64c7 1190 /* Other attributes may be changed at the same time as well */
1e51764a 1191 do_attr_changes(inode, attr);
1e51764a
AB
1192 err = ubifs_jnl_truncate(c, inode, old_size, new_size);
1193 mutex_unlock(&ui->ui_mutex);
873a64c7 1194
1e51764a 1195out_budg:
04da11bf
AB
1196 if (budgeted)
1197 ubifs_release_budget(c, &req);
1198 else {
b137545c 1199 c->bi.nospace = c->bi.nospace_rp = 0;
04da11bf
AB
1200 smp_wmb();
1201 }
1e51764a
AB
1202 return err;
1203}
1204
1205/**
1206 * do_setattr - change inode attributes.
1207 * @c: UBIFS file-system description object
1208 * @inode: inode to change attributes for
1209 * @attr: inode attribute changes description
1210 *
1211 * This function implements VFS '->setattr()' call for all cases except
1212 * truncations to smaller size. Returns zero in case of success and a negative
1213 * error code in case of failure.
1214 */
1215static int do_setattr(struct ubifs_info *c, struct inode *inode,
1216 const struct iattr *attr)
1217{
1218 int err, release;
1219 loff_t new_size = attr->ia_size;
1220 struct ubifs_inode *ui = ubifs_inode(inode);
1221 struct ubifs_budget_req req = { .dirtied_ino = 1,
dab4b4d2 1222 .dirtied_ino_d = ALIGN(ui->data_len, 8) };
1e51764a
AB
1223
1224 err = ubifs_budget_space(c, &req);
1225 if (err)
1226 return err;
1227
1228 if (attr->ia_valid & ATTR_SIZE) {
1229 dbg_gen("size %lld -> %lld", inode->i_size, new_size);
2c27c65e 1230 truncate_setsize(inode, new_size);
1e51764a
AB
1231 }
1232
1233 mutex_lock(&ui->ui_mutex);
1234 if (attr->ia_valid & ATTR_SIZE) {
1235 /* Truncation changes inode [mc]time */
607a11ad 1236 inode->i_mtime = inode->i_ctime = current_time(inode);
2c27c65e 1237 /* 'truncate_setsize()' changed @i_size, update @ui_size */
1e51764a
AB
1238 ui->ui_size = inode->i_size;
1239 }
1240
1241 do_attr_changes(inode, attr);
1242
1243 release = ui->dirty;
1244 if (attr->ia_valid & ATTR_SIZE)
1245 /*
1246 * Inode length changed, so we have to make sure
1247 * @I_DIRTY_DATASYNC is set.
1248 */
f3556254 1249 __mark_inode_dirty(inode, I_DIRTY_DATASYNC);
1e51764a
AB
1250 else
1251 mark_inode_dirty_sync(inode);
1252 mutex_unlock(&ui->ui_mutex);
1253
1254 if (release)
1255 ubifs_release_budget(c, &req);
1256 if (IS_SYNC(inode))
a9185b41 1257 err = inode->i_sb->s_op->write_inode(inode, NULL);
1e51764a 1258 return err;
1e51764a
AB
1259}
1260
1261int ubifs_setattr(struct dentry *dentry, struct iattr *attr)
1262{
1263 int err;
2b0143b5 1264 struct inode *inode = d_inode(dentry);
1e51764a
AB
1265 struct ubifs_info *c = inode->i_sb->s_fs_info;
1266
7d32c2bb
AB
1267 dbg_gen("ino %lu, mode %#x, ia_valid %#x",
1268 inode->i_ino, inode->i_mode, attr->ia_valid);
31051c85 1269 err = setattr_prepare(dentry, attr);
1e51764a
AB
1270 if (err)
1271 return err;
1272
d808efb4 1273 err = dbg_check_synced_i_size(c, inode);
1e51764a
AB
1274 if (err)
1275 return err;
1276
252153ba
EB
1277 err = fscrypt_prepare_setattr(dentry, attr);
1278 if (err)
1279 return err;
4afb9996 1280
1e51764a
AB
1281 if ((attr->ia_valid & ATTR_SIZE) && attr->ia_size < inode->i_size)
1282 /* Truncation to a smaller size */
1283 err = do_truncation(c, inode, attr);
1284 else
1285 err = do_setattr(c, inode, attr);
1286
1287 return err;
1288}
1289
d47992f8
LC
1290static void ubifs_invalidatepage(struct page *page, unsigned int offset,
1291 unsigned int length)
1e51764a
AB
1292{
1293 struct inode *inode = page->mapping->host;
1294 struct ubifs_info *c = inode->i_sb->s_fs_info;
1295
6eb61d58 1296 ubifs_assert(c, PagePrivate(page));
09cbfeaf 1297 if (offset || length < PAGE_SIZE)
1e51764a
AB
1298 /* Partial page remains dirty */
1299 return;
1300
1301 if (PageChecked(page))
1302 release_new_page_budget(c);
1303 else
1304 release_existing_page_budget(c);
1305
1306 atomic_long_dec(&c->dirty_pg_cnt);
1307 ClearPagePrivate(page);
1308 ClearPageChecked(page);
1309}
1310
02c24a82 1311int ubifs_fsync(struct file *file, loff_t start, loff_t end, int datasync)
1e51764a 1312{
7ea80859 1313 struct inode *inode = file->f_mapping->host;
1e51764a
AB
1314 struct ubifs_info *c = inode->i_sb->s_fs_info;
1315 int err;
1316
1317 dbg_gen("syncing inode %lu", inode->i_ino);
1318
3b2f9a01
AB
1319 if (c->ro_mount)
1320 /*
1321 * For some really strange reasons VFS does not filter out
1322 * 'fsync()' for R/O mounted file-systems as per 2.6.39.
1323 */
78530bf7
AB
1324 return 0;
1325
3b49c9a1 1326 err = file_write_and_wait_range(file, start, end);
02c24a82
JB
1327 if (err)
1328 return err;
5955102c 1329 inode_lock(inode);
02c24a82
JB
1330
1331 /* Synchronize the inode unless this is a 'datasync()' call. */
1e51764a 1332 if (!datasync || (inode->i_state & I_DIRTY_DATASYNC)) {
a9185b41 1333 err = inode->i_sb->s_op->write_inode(inode, NULL);
1e51764a 1334 if (err)
02c24a82 1335 goto out;
1e51764a
AB
1336 }
1337
1338 /*
1339 * Nodes related to this inode may still sit in a write-buffer. Flush
1340 * them.
1341 */
1342 err = ubifs_sync_wbufs_by_inode(c, inode);
02c24a82 1343out:
5955102c 1344 inode_unlock(inode);
02c24a82 1345 return err;
1e51764a
AB
1346}
1347
1348/**
1349 * mctime_update_needed - check if mtime or ctime update is needed.
1350 * @inode: the inode to do the check for
1351 * @now: current time
1352 *
1353 * This helper function checks if the inode mtime/ctime should be updated or
1354 * not. If current values of the time-stamps are within the UBIFS inode time
1355 * granularity, they are not updated. This is an optimization.
1356 */
1357static inline int mctime_update_needed(const struct inode *inode,
0eca0b80 1358 const struct timespec64 *now)
1e51764a 1359{
0eca0b80
AB
1360 if (!timespec64_equal(&inode->i_mtime, now) ||
1361 !timespec64_equal(&inode->i_ctime, now))
1e51764a
AB
1362 return 1;
1363 return 0;
1364}
1365
8c1c5f26
DY
1366/**
1367 * ubifs_update_time - update time of inode.
1368 * @inode: inode to update
1369 *
1370 * This function updates time of the inode.
1371 */
95582b00 1372int ubifs_update_time(struct inode *inode, struct timespec64 *time,
8c1c5f26
DY
1373 int flags)
1374{
1375 struct ubifs_inode *ui = ubifs_inode(inode);
1376 struct ubifs_info *c = inode->i_sb->s_fs_info;
1377 struct ubifs_budget_req req = { .dirtied_ino = 1,
1378 .dirtied_ino_d = ALIGN(ui->data_len, 8) };
1379 int iflags = I_DIRTY_TIME;
1380 int err, release;
1381
e3d73dea
SH
1382 if (!IS_ENABLED(CONFIG_UBIFS_ATIME_SUPPORT))
1383 return generic_update_time(inode, time, flags);
1384
8c1c5f26
DY
1385 err = ubifs_budget_space(c, &req);
1386 if (err)
1387 return err;
1388
1389 mutex_lock(&ui->ui_mutex);
1390 if (flags & S_ATIME)
1391 inode->i_atime = *time;
1392 if (flags & S_CTIME)
1393 inode->i_ctime = *time;
1394 if (flags & S_MTIME)
1395 inode->i_mtime = *time;
1396
1751e8a6 1397 if (!(inode->i_sb->s_flags & SB_LAZYTIME))
8c1c5f26
DY
1398 iflags |= I_DIRTY_SYNC;
1399
1400 release = ui->dirty;
1401 __mark_inode_dirty(inode, iflags);
1402 mutex_unlock(&ui->ui_mutex);
1403 if (release)
1404 ubifs_release_budget(c, &req);
1405 return 0;
1406}
8c1c5f26 1407
1e51764a 1408/**
ec037dfc 1409 * update_mctime - update mtime and ctime of an inode.
1e51764a
AB
1410 * @inode: inode to update
1411 *
1412 * This function updates mtime and ctime of the inode if it is not equivalent to
1413 * current time. Returns zero in case of success and a negative error code in
1414 * case of failure.
1415 */
f5674c31 1416static int update_mctime(struct inode *inode)
1e51764a 1417{
0eca0b80 1418 struct timespec64 now = current_time(inode);
1e51764a 1419 struct ubifs_inode *ui = ubifs_inode(inode);
f5674c31 1420 struct ubifs_info *c = inode->i_sb->s_fs_info;
1e51764a
AB
1421
1422 if (mctime_update_needed(inode, &now)) {
1423 int err, release;
1424 struct ubifs_budget_req req = { .dirtied_ino = 1,
dab4b4d2 1425 .dirtied_ino_d = ALIGN(ui->data_len, 8) };
1e51764a
AB
1426
1427 err = ubifs_budget_space(c, &req);
1428 if (err)
1429 return err;
1430
1431 mutex_lock(&ui->ui_mutex);
607a11ad 1432 inode->i_mtime = inode->i_ctime = current_time(inode);
1e51764a
AB
1433 release = ui->dirty;
1434 mark_inode_dirty_sync(inode);
1435 mutex_unlock(&ui->ui_mutex);
1436 if (release)
1437 ubifs_release_budget(c, &req);
1438 }
1439
1440 return 0;
1441}
1442
f5674c31 1443static ssize_t ubifs_write_iter(struct kiocb *iocb, struct iov_iter *from)
1e51764a 1444{
f5674c31 1445 int err = update_mctime(file_inode(iocb->ki_filp));
1e51764a
AB
1446 if (err)
1447 return err;
1448
f5674c31 1449 return generic_file_write_iter(iocb, from);
1e51764a
AB
1450}
1451
1452static int ubifs_set_page_dirty(struct page *page)
1453{
1454 int ret;
6eb61d58
RW
1455 struct inode *inode = page->mapping->host;
1456 struct ubifs_info *c = inode->i_sb->s_fs_info;
1e51764a
AB
1457
1458 ret = __set_page_dirty_nobuffers(page);
1459 /*
1460 * An attempt to dirty a page without budgeting for it - should not
1461 * happen.
1462 */
6eb61d58 1463 ubifs_assert(c, ret == 0);
1e51764a
AB
1464 return ret;
1465}
1466
4ac1c17b
KS
1467#ifdef CONFIG_MIGRATION
1468static int ubifs_migrate_page(struct address_space *mapping,
1469 struct page *newpage, struct page *page, enum migrate_mode mode)
1470{
1471 int rc;
1472
37109694 1473 rc = migrate_page_move_mapping(mapping, newpage, page, 0);
4ac1c17b
KS
1474 if (rc != MIGRATEPAGE_SUCCESS)
1475 return rc;
1476
1477 if (PagePrivate(page)) {
1478 ClearPagePrivate(page);
1479 SetPagePrivate(newpage);
1480 }
1481
2916ecc0
JG
1482 if (mode != MIGRATE_SYNC_NO_COPY)
1483 migrate_page_copy(newpage, page);
1484 else
1485 migrate_page_states(newpage, page);
4ac1c17b
KS
1486 return MIGRATEPAGE_SUCCESS;
1487}
1488#endif
1489
1e51764a
AB
1490static int ubifs_releasepage(struct page *page, gfp_t unused_gfp_flags)
1491{
6eb61d58
RW
1492 struct inode *inode = page->mapping->host;
1493 struct ubifs_info *c = inode->i_sb->s_fs_info;
1494
1e51764a
AB
1495 /*
1496 * An attempt to release a dirty page without budgeting for it - should
1497 * not happen.
1498 */
1499 if (PageWriteback(page))
1500 return 0;
6eb61d58
RW
1501 ubifs_assert(c, PagePrivate(page));
1502 ubifs_assert(c, 0);
1e51764a
AB
1503 ClearPagePrivate(page);
1504 ClearPageChecked(page);
1505 return 1;
1506}
1507
1508/*
c4361570
AB
1509 * mmap()d file has taken write protection fault and is being made writable.
1510 * UBIFS must ensure page is budgeted for.
1e51764a 1511 */
31c49eac 1512static vm_fault_t ubifs_vm_page_mkwrite(struct vm_fault *vmf)
1e51764a 1513{
c2ec175c 1514 struct page *page = vmf->page;
11bac800 1515 struct inode *inode = file_inode(vmf->vma->vm_file);
1e51764a 1516 struct ubifs_info *c = inode->i_sb->s_fs_info;
0eca0b80 1517 struct timespec64 now = current_time(inode);
1e51764a
AB
1518 struct ubifs_budget_req req = { .new_page = 1 };
1519 int err, update_time;
1520
1521 dbg_gen("ino %lu, pg %lu, i_size %lld", inode->i_ino, page->index,
1522 i_size_read(inode));
6eb61d58 1523 ubifs_assert(c, !c->ro_media && !c->ro_mount);
1e51764a 1524
2680d722 1525 if (unlikely(c->ro_error))
c2ec175c 1526 return VM_FAULT_SIGBUS; /* -EROFS */
1e51764a
AB
1527
1528 /*
1529 * We have not locked @page so far so we may budget for changing the
1530 * page. Note, we cannot do this after we locked the page, because
1531 * budgeting may cause write-back which would cause deadlock.
1532 *
1533 * At the moment we do not know whether the page is dirty or not, so we
1534 * assume that it is not and budget for a new page. We could look at
1535 * the @PG_private flag and figure this out, but we may race with write
1536 * back and the page state may change by the time we lock it, so this
1537 * would need additional care. We do not bother with this at the
1538 * moment, although it might be good idea to do. Instead, we allocate
1539 * budget for a new page and amend it later on if the page was in fact
1540 * dirty.
1541 *
1542 * The budgeting-related logic of this function is similar to what we
1543 * do in 'ubifs_write_begin()' and 'ubifs_write_end()'. Glance there
1544 * for more comments.
1545 */
1546 update_time = mctime_update_needed(inode, &now);
1547 if (update_time)
1548 /*
1549 * We have to change inode time stamp which requires extra
1550 * budgeting.
1551 */
1552 req.dirtied_ino = 1;
1553
1554 err = ubifs_budget_space(c, &req);
1555 if (unlikely(err)) {
1556 if (err == -ENOSPC)
235c362b 1557 ubifs_warn(c, "out of space for mmapped file (inode number %lu)",
79fda517 1558 inode->i_ino);
c2ec175c 1559 return VM_FAULT_SIGBUS;
1e51764a
AB
1560 }
1561
1562 lock_page(page);
1563 if (unlikely(page->mapping != inode->i_mapping ||
1564 page_offset(page) > i_size_read(inode))) {
1565 /* Page got truncated out from underneath us */
31c49eac 1566 goto sigbus;
1e51764a
AB
1567 }
1568
1569 if (PagePrivate(page))
1570 release_new_page_budget(c);
1571 else {
1572 if (!PageChecked(page))
1573 ubifs_convert_page_budget(c);
1574 SetPagePrivate(page);
1575 atomic_long_inc(&c->dirty_pg_cnt);
1576 __set_page_dirty_nobuffers(page);
1577 }
1578
1579 if (update_time) {
1580 int release;
1581 struct ubifs_inode *ui = ubifs_inode(inode);
1582
1583 mutex_lock(&ui->ui_mutex);
607a11ad 1584 inode->i_mtime = inode->i_ctime = current_time(inode);
1e51764a
AB
1585 release = ui->dirty;
1586 mark_inode_dirty_sync(inode);
1587 mutex_unlock(&ui->ui_mutex);
1588 if (release)
1589 ubifs_release_dirty_inode_budget(c, ui);
1590 }
1591
182dcfd6 1592 wait_for_stable_page(page);
691a7c6f 1593 return VM_FAULT_LOCKED;
1e51764a 1594
31c49eac 1595sigbus:
1e51764a
AB
1596 unlock_page(page);
1597 ubifs_release_budget(c, &req);
31c49eac 1598 return VM_FAULT_SIGBUS;
1e51764a
AB
1599}
1600
f0f37e2f 1601static const struct vm_operations_struct ubifs_file_vm_ops = {
1e51764a 1602 .fault = filemap_fault,
f1820361 1603 .map_pages = filemap_map_pages,
1e51764a
AB
1604 .page_mkwrite = ubifs_vm_page_mkwrite,
1605};
1606
1607static int ubifs_file_mmap(struct file *file, struct vm_area_struct *vma)
1608{
1609 int err;
1610
1e51764a
AB
1611 err = generic_file_mmap(file, vma);
1612 if (err)
1613 return err;
1614 vma->vm_ops = &ubifs_file_vm_ops;
e3d73dea
SH
1615
1616 if (IS_ENABLED(CONFIG_UBIFS_ATIME_SUPPORT))
1617 file_accessed(file);
1618
1e51764a
AB
1619 return 0;
1620}
1621
ca7f85be
RW
1622static const char *ubifs_get_link(struct dentry *dentry,
1623 struct inode *inode,
1624 struct delayed_call *done)
1625{
ca7f85be 1626 struct ubifs_inode *ui = ubifs_inode(inode);
ca7f85be 1627
81dd76b2 1628 if (!IS_ENCRYPTED(inode))
ca7f85be
RW
1629 return ui->data;
1630
1631 if (!dentry)
1632 return ERR_PTR(-ECHILD);
1633
81dd76b2 1634 return fscrypt_get_symlink(inode, ui->data, ui->data_len, done);
ca7f85be
RW
1635}
1636
e8b81566 1637const struct address_space_operations ubifs_file_address_operations = {
1e51764a
AB
1638 .readpage = ubifs_readpage,
1639 .writepage = ubifs_writepage,
1640 .write_begin = ubifs_write_begin,
1641 .write_end = ubifs_write_end,
1642 .invalidatepage = ubifs_invalidatepage,
1643 .set_page_dirty = ubifs_set_page_dirty,
4ac1c17b
KS
1644#ifdef CONFIG_MIGRATION
1645 .migratepage = ubifs_migrate_page,
1646#endif
1e51764a
AB
1647 .releasepage = ubifs_releasepage,
1648};
1649
e8b81566 1650const struct inode_operations ubifs_file_inode_operations = {
1e51764a
AB
1651 .setattr = ubifs_setattr,
1652 .getattr = ubifs_getattr,
7e5471ce 1653#ifdef CONFIG_UBIFS_FS_XATTR
1e51764a 1654 .listxattr = ubifs_listxattr,
7e5471ce 1655#endif
8c1c5f26 1656 .update_time = ubifs_update_time,
1e51764a
AB
1657};
1658
e8b81566 1659const struct inode_operations ubifs_symlink_inode_operations = {
ca7f85be 1660 .get_link = ubifs_get_link,
1e51764a
AB
1661 .setattr = ubifs_setattr,
1662 .getattr = ubifs_getattr,
7e5471ce 1663#ifdef CONFIG_UBIFS_FS_XATTR
895d9db2 1664 .listxattr = ubifs_listxattr,
7e5471ce 1665#endif
8c1c5f26 1666 .update_time = ubifs_update_time,
1e51764a
AB
1667};
1668
e8b81566 1669const struct file_operations ubifs_file_operations = {
1e51764a 1670 .llseek = generic_file_llseek,
aad4f8bb 1671 .read_iter = generic_file_read_iter,
f5674c31 1672 .write_iter = ubifs_write_iter,
1e51764a
AB
1673 .mmap = ubifs_file_mmap,
1674 .fsync = ubifs_fsync,
1675 .unlocked_ioctl = ubifs_ioctl,
1676 .splice_read = generic_file_splice_read,
8d020765 1677 .splice_write = iter_file_splice_write,
7e35c4da 1678 .open = fscrypt_file_open,
1e51764a
AB
1679#ifdef CONFIG_COMPAT
1680 .compat_ioctl = ubifs_compat_ioctl,
1681#endif
1682};