]>
Commit | Line | Data |
---|---|---|
1e51764a AB |
1 | /* |
2 | * This file is part of UBIFS. | |
3 | * | |
4 | * Copyright (C) 2006-2008 Nokia Corporation. | |
5 | * | |
6 | * This program is free software; you can redistribute it and/or modify it | |
7 | * under the terms of the GNU General Public License version 2 as published by | |
8 | * the Free Software Foundation. | |
9 | * | |
10 | * This program is distributed in the hope that it will be useful, but WITHOUT | |
11 | * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or | |
12 | * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for | |
13 | * more details. | |
14 | * | |
15 | * You should have received a copy of the GNU General Public License along with | |
16 | * this program; if not, write to the Free Software Foundation, Inc., 51 | |
17 | * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA | |
18 | * | |
19 | * Authors: Adrian Hunter | |
20 | * Artem Bityutskiy (Битюцкий Артём) | |
21 | */ | |
22 | ||
23 | /* | |
24 | * This file implements garbage collection. The procedure for garbage collection | |
25 | * is different depending on whether a LEB as an index LEB (contains index | |
26 | * nodes) or not. For non-index LEBs, garbage collection finds a LEB which | |
27 | * contains a lot of dirty space (obsolete nodes), and copies the non-obsolete | |
28 | * nodes to the journal, at which point the garbage-collected LEB is free to be | |
29 | * reused. For index LEBs, garbage collection marks the non-obsolete index nodes | |
30 | * dirty in the TNC, and after the next commit, the garbage-collected LEB is | |
31 | * to be reused. Garbage collection will cause the number of dirty index nodes | |
32 | * to grow, however sufficient space is reserved for the index to ensure the | |
33 | * commit will never run out of space. | |
34 | */ | |
35 | ||
36 | #include <linux/pagemap.h> | |
37 | #include "ubifs.h" | |
38 | ||
39 | /* | |
40 | * GC tries to optimize the way it fit nodes to available space, and it sorts | |
41 | * nodes a little. The below constants are watermarks which define "large", | |
42 | * "medium", and "small" nodes. | |
43 | */ | |
44 | #define MEDIUM_NODE_WM (UBIFS_BLOCK_SIZE / 4) | |
45 | #define SMALL_NODE_WM UBIFS_MAX_DENT_NODE_SZ | |
46 | ||
47 | /* | |
48 | * GC may need to move more then one LEB to make progress. The below constants | |
49 | * define "soft" and "hard" limits on the number of LEBs the garbage collector | |
50 | * may move. | |
51 | */ | |
52 | #define SOFT_LEBS_LIMIT 4 | |
53 | #define HARD_LEBS_LIMIT 32 | |
54 | ||
55 | /** | |
56 | * switch_gc_head - switch the garbage collection journal head. | |
57 | * @c: UBIFS file-system description object | |
58 | * @buf: buffer to write | |
59 | * @len: length of the buffer to write | |
60 | * @lnum: LEB number written is returned here | |
61 | * @offs: offset written is returned here | |
62 | * | |
63 | * This function switch the GC head to the next LEB which is reserved in | |
64 | * @c->gc_lnum. Returns %0 in case of success, %-EAGAIN if commit is required, | |
65 | * and other negative error code in case of failures. | |
66 | */ | |
67 | static int switch_gc_head(struct ubifs_info *c) | |
68 | { | |
69 | int err, gc_lnum = c->gc_lnum; | |
70 | struct ubifs_wbuf *wbuf = &c->jheads[GCHD].wbuf; | |
71 | ||
72 | ubifs_assert(gc_lnum != -1); | |
73 | dbg_gc("switch GC head from LEB %d:%d to LEB %d (waste %d bytes)", | |
74 | wbuf->lnum, wbuf->offs + wbuf->used, gc_lnum, | |
75 | c->leb_size - wbuf->offs - wbuf->used); | |
76 | ||
77 | err = ubifs_wbuf_sync_nolock(wbuf); | |
78 | if (err) | |
79 | return err; | |
80 | ||
81 | /* | |
82 | * The GC write-buffer was synchronized, we may safely unmap | |
83 | * 'c->gc_lnum'. | |
84 | */ | |
85 | err = ubifs_leb_unmap(c, gc_lnum); | |
86 | if (err) | |
87 | return err; | |
88 | ||
89 | err = ubifs_add_bud_to_log(c, GCHD, gc_lnum, 0); | |
90 | if (err) | |
91 | return err; | |
92 | ||
93 | c->gc_lnum = -1; | |
94 | err = ubifs_wbuf_seek_nolock(wbuf, gc_lnum, 0, UBI_LONGTERM); | |
95 | return err; | |
96 | } | |
97 | ||
98 | /** | |
99 | * move_nodes - move nodes. | |
100 | * @c: UBIFS file-system description object | |
101 | * @sleb: describes nodes to move | |
102 | * | |
103 | * This function moves valid nodes from data LEB described by @sleb to the GC | |
104 | * journal head. The obsolete nodes are dropped. | |
105 | * | |
106 | * When moving nodes we have to deal with classical bin-packing problem: the | |
107 | * space in the current GC journal head LEB and in @c->gc_lnum are the "bins", | |
108 | * where the nodes in the @sleb->nodes list are the elements which should be | |
109 | * fit optimally to the bins. This function uses the "first fit decreasing" | |
110 | * strategy, although it does not really sort the nodes but just split them on | |
111 | * 3 classes - large, medium, and small, so they are roughly sorted. | |
112 | * | |
113 | * This function returns zero in case of success, %-EAGAIN if commit is | |
114 | * required, and other negative error codes in case of other failures. | |
115 | */ | |
116 | static int move_nodes(struct ubifs_info *c, struct ubifs_scan_leb *sleb) | |
117 | { | |
118 | struct ubifs_scan_node *snod, *tmp; | |
119 | struct list_head large, medium, small; | |
120 | struct ubifs_wbuf *wbuf = &c->jheads[GCHD].wbuf; | |
121 | int avail, err, min = INT_MAX; | |
122 | ||
123 | INIT_LIST_HEAD(&large); | |
124 | INIT_LIST_HEAD(&medium); | |
125 | INIT_LIST_HEAD(&small); | |
126 | ||
127 | list_for_each_entry_safe(snod, tmp, &sleb->nodes, list) { | |
128 | struct list_head *lst; | |
129 | ||
130 | ubifs_assert(snod->type != UBIFS_IDX_NODE); | |
131 | ubifs_assert(snod->type != UBIFS_REF_NODE); | |
132 | ubifs_assert(snod->type != UBIFS_CS_NODE); | |
133 | ||
134 | err = ubifs_tnc_has_node(c, &snod->key, 0, sleb->lnum, | |
135 | snod->offs, 0); | |
136 | if (err < 0) | |
137 | goto out; | |
138 | ||
139 | lst = &snod->list; | |
140 | list_del(lst); | |
141 | if (!err) { | |
142 | /* The node is obsolete, remove it from the list */ | |
143 | kfree(snod); | |
144 | continue; | |
145 | } | |
146 | ||
147 | /* | |
148 | * Sort the list of nodes so that large nodes go first, and | |
149 | * small nodes go last. | |
150 | */ | |
151 | if (snod->len > MEDIUM_NODE_WM) | |
152 | list_add(lst, &large); | |
153 | else if (snod->len > SMALL_NODE_WM) | |
154 | list_add(lst, &medium); | |
155 | else | |
156 | list_add(lst, &small); | |
157 | ||
158 | /* And find the smallest node */ | |
159 | if (snod->len < min) | |
160 | min = snod->len; | |
161 | } | |
162 | ||
163 | /* | |
164 | * Join the tree lists so that we'd have one roughly sorted list | |
165 | * ('large' will be the head of the joined list). | |
166 | */ | |
167 | list_splice(&medium, large.prev); | |
168 | list_splice(&small, large.prev); | |
169 | ||
170 | if (wbuf->lnum == -1) { | |
171 | /* | |
172 | * The GC journal head is not set, because it is the first GC | |
173 | * invocation since mount. | |
174 | */ | |
175 | err = switch_gc_head(c); | |
176 | if (err) | |
177 | goto out; | |
178 | } | |
179 | ||
180 | /* Write nodes to their new location. Use the first-fit strategy */ | |
181 | while (1) { | |
182 | avail = c->leb_size - wbuf->offs - wbuf->used; | |
183 | list_for_each_entry_safe(snod, tmp, &large, list) { | |
184 | int new_lnum, new_offs; | |
185 | ||
186 | if (avail < min) | |
187 | break; | |
188 | ||
189 | if (snod->len > avail) | |
190 | /* This node does not fit */ | |
191 | continue; | |
192 | ||
193 | cond_resched(); | |
194 | ||
195 | new_lnum = wbuf->lnum; | |
196 | new_offs = wbuf->offs + wbuf->used; | |
197 | err = ubifs_wbuf_write_nolock(wbuf, snod->node, | |
198 | snod->len); | |
199 | if (err) | |
200 | goto out; | |
201 | err = ubifs_tnc_replace(c, &snod->key, sleb->lnum, | |
202 | snod->offs, new_lnum, new_offs, | |
203 | snod->len); | |
204 | if (err) | |
205 | goto out; | |
206 | ||
207 | avail = c->leb_size - wbuf->offs - wbuf->used; | |
208 | list_del(&snod->list); | |
209 | kfree(snod); | |
210 | } | |
211 | ||
212 | if (list_empty(&large)) | |
213 | break; | |
214 | ||
215 | /* | |
216 | * Waste the rest of the space in the LEB and switch to the | |
217 | * next LEB. | |
218 | */ | |
219 | err = switch_gc_head(c); | |
220 | if (err) | |
221 | goto out; | |
222 | } | |
223 | ||
224 | return 0; | |
225 | ||
226 | out: | |
227 | list_for_each_entry_safe(snod, tmp, &large, list) { | |
228 | list_del(&snod->list); | |
229 | kfree(snod); | |
230 | } | |
231 | return err; | |
232 | } | |
233 | ||
234 | /** | |
235 | * gc_sync_wbufs - sync write-buffers for GC. | |
236 | * @c: UBIFS file-system description object | |
237 | * | |
238 | * We must guarantee that obsoleting nodes are on flash. Unfortunately they may | |
239 | * be in a write-buffer instead. That is, a node could be written to a | |
240 | * write-buffer, obsoleting another node in a LEB that is GC'd. If that LEB is | |
241 | * erased before the write-buffer is sync'd and then there is an unclean | |
242 | * unmount, then an existing node is lost. To avoid this, we sync all | |
243 | * write-buffers. | |
244 | * | |
245 | * This function returns %0 on success or a negative error code on failure. | |
246 | */ | |
247 | static int gc_sync_wbufs(struct ubifs_info *c) | |
248 | { | |
249 | int err, i; | |
250 | ||
251 | for (i = 0; i < c->jhead_cnt; i++) { | |
252 | if (i == GCHD) | |
253 | continue; | |
254 | err = ubifs_wbuf_sync(&c->jheads[i].wbuf); | |
255 | if (err) | |
256 | return err; | |
257 | } | |
258 | return 0; | |
259 | } | |
260 | ||
261 | /** | |
262 | * ubifs_garbage_collect_leb - garbage-collect a logical eraseblock. | |
263 | * @c: UBIFS file-system description object | |
264 | * @lp: describes the LEB to garbage collect | |
265 | * | |
266 | * This function garbage-collects an LEB and returns one of the @LEB_FREED, | |
267 | * @LEB_RETAINED, etc positive codes in case of success, %-EAGAIN if commit is | |
268 | * required, and other negative error codes in case of failures. | |
269 | */ | |
270 | int ubifs_garbage_collect_leb(struct ubifs_info *c, struct ubifs_lprops *lp) | |
271 | { | |
272 | struct ubifs_scan_leb *sleb; | |
273 | struct ubifs_scan_node *snod; | |
274 | struct ubifs_wbuf *wbuf = &c->jheads[GCHD].wbuf; | |
275 | int err = 0, lnum = lp->lnum; | |
276 | ||
277 | ubifs_assert(c->gc_lnum != -1 || wbuf->offs + wbuf->used == 0 || | |
278 | c->need_recovery); | |
279 | ubifs_assert(c->gc_lnum != lnum); | |
280 | ubifs_assert(wbuf->lnum != lnum); | |
281 | ||
282 | /* | |
283 | * We scan the entire LEB even though we only really need to scan up to | |
284 | * (c->leb_size - lp->free). | |
285 | */ | |
286 | sleb = ubifs_scan(c, lnum, 0, c->sbuf); | |
287 | if (IS_ERR(sleb)) | |
288 | return PTR_ERR(sleb); | |
289 | ||
290 | ubifs_assert(!list_empty(&sleb->nodes)); | |
291 | snod = list_entry(sleb->nodes.next, struct ubifs_scan_node, list); | |
292 | ||
293 | if (snod->type == UBIFS_IDX_NODE) { | |
294 | struct ubifs_gced_idx_leb *idx_gc; | |
295 | ||
296 | dbg_gc("indexing LEB %d (free %d, dirty %d)", | |
297 | lnum, lp->free, lp->dirty); | |
298 | list_for_each_entry(snod, &sleb->nodes, list) { | |
299 | struct ubifs_idx_node *idx = snod->node; | |
300 | int level = le16_to_cpu(idx->level); | |
301 | ||
302 | ubifs_assert(snod->type == UBIFS_IDX_NODE); | |
303 | key_read(c, ubifs_idx_key(c, idx), &snod->key); | |
304 | err = ubifs_dirty_idx_node(c, &snod->key, level, lnum, | |
305 | snod->offs); | |
306 | if (err) | |
307 | goto out; | |
308 | } | |
309 | ||
310 | idx_gc = kmalloc(sizeof(struct ubifs_gced_idx_leb), GFP_NOFS); | |
311 | if (!idx_gc) { | |
312 | err = -ENOMEM; | |
313 | goto out; | |
314 | } | |
315 | ||
316 | idx_gc->lnum = lnum; | |
317 | idx_gc->unmap = 0; | |
318 | list_add(&idx_gc->list, &c->idx_gc); | |
319 | ||
320 | /* | |
321 | * Don't release the LEB until after the next commit, because | |
322 | * it may contain date which is needed for recovery. So | |
323 | * although we freed this LEB, it will become usable only after | |
324 | * the commit. | |
325 | */ | |
326 | err = ubifs_change_one_lp(c, lnum, c->leb_size, 0, 0, | |
327 | LPROPS_INDEX, 1); | |
328 | if (err) | |
329 | goto out; | |
330 | err = LEB_FREED_IDX; | |
331 | } else { | |
332 | dbg_gc("data LEB %d (free %d, dirty %d)", | |
333 | lnum, lp->free, lp->dirty); | |
334 | ||
335 | err = move_nodes(c, sleb); | |
336 | if (err) | |
6dcfac4f | 337 | goto out_inc_seq; |
1e51764a AB |
338 | |
339 | err = gc_sync_wbufs(c); | |
340 | if (err) | |
6dcfac4f | 341 | goto out_inc_seq; |
1e51764a AB |
342 | |
343 | err = ubifs_change_one_lp(c, lnum, c->leb_size, 0, 0, 0, 0); | |
344 | if (err) | |
6dcfac4f | 345 | goto out_inc_seq; |
1e51764a | 346 | |
601c0bc4 AH |
347 | /* Allow for races with TNC */ |
348 | c->gced_lnum = lnum; | |
349 | smp_wmb(); | |
350 | c->gc_seq += 1; | |
351 | smp_wmb(); | |
352 | ||
1e51764a AB |
353 | if (c->gc_lnum == -1) { |
354 | c->gc_lnum = lnum; | |
355 | err = LEB_RETAINED; | |
356 | } else { | |
357 | err = ubifs_wbuf_sync_nolock(wbuf); | |
358 | if (err) | |
359 | goto out; | |
360 | ||
361 | err = ubifs_leb_unmap(c, lnum); | |
362 | if (err) | |
363 | goto out; | |
364 | ||
365 | err = LEB_FREED; | |
366 | } | |
367 | } | |
368 | ||
369 | out: | |
370 | ubifs_scan_destroy(sleb); | |
371 | return err; | |
6dcfac4f AH |
372 | |
373 | out_inc_seq: | |
374 | /* We may have moved at least some nodes so allow for races with TNC */ | |
375 | c->gced_lnum = lnum; | |
376 | smp_wmb(); | |
377 | c->gc_seq += 1; | |
378 | smp_wmb(); | |
379 | goto out; | |
1e51764a AB |
380 | } |
381 | ||
382 | /** | |
383 | * ubifs_garbage_collect - UBIFS garbage collector. | |
384 | * @c: UBIFS file-system description object | |
385 | * @anyway: do GC even if there are free LEBs | |
386 | * | |
387 | * This function does out-of-place garbage collection. The return codes are: | |
388 | * o positive LEB number if the LEB has been freed and may be used; | |
389 | * o %-EAGAIN if the caller has to run commit; | |
390 | * o %-ENOSPC if GC failed to make any progress; | |
391 | * o other negative error codes in case of other errors. | |
392 | * | |
393 | * Garbage collector writes data to the journal when GC'ing data LEBs, and just | |
394 | * marking indexing nodes dirty when GC'ing indexing LEBs. Thus, at some point | |
395 | * commit may be required. But commit cannot be run from inside GC, because the | |
396 | * caller might be holding the commit lock, so %-EAGAIN is returned instead; | |
397 | * And this error code means that the caller has to run commit, and re-run GC | |
398 | * if there is still no free space. | |
399 | * | |
400 | * There are many reasons why this function may return %-EAGAIN: | |
401 | * o the log is full and there is no space to write an LEB reference for | |
402 | * @c->gc_lnum; | |
403 | * o the journal is too large and exceeds size limitations; | |
404 | * o GC moved indexing LEBs, but they can be used only after the commit; | |
405 | * o the shrinker fails to find clean znodes to free and requests the commit; | |
406 | * o etc. | |
407 | * | |
408 | * Note, if the file-system is close to be full, this function may return | |
409 | * %-EAGAIN infinitely, so the caller has to limit amount of re-invocations of | |
410 | * the function. E.g., this happens if the limits on the journal size are too | |
411 | * tough and GC writes too much to the journal before an LEB is freed. This | |
412 | * might also mean that the journal is too large, and the TNC becomes to big, | |
413 | * so that the shrinker is constantly called, finds not clean znodes to free, | |
414 | * and requests commit. Well, this may also happen if the journal is all right, | |
415 | * but another kernel process consumes too much memory. Anyway, infinite | |
416 | * %-EAGAIN may happen, but in some extreme/misconfiguration cases. | |
417 | */ | |
418 | int ubifs_garbage_collect(struct ubifs_info *c, int anyway) | |
419 | { | |
420 | int i, err, ret, min_space = c->dead_wm; | |
421 | struct ubifs_lprops lp; | |
422 | struct ubifs_wbuf *wbuf = &c->jheads[GCHD].wbuf; | |
423 | ||
424 | ubifs_assert_cmt_locked(c); | |
425 | ||
426 | if (ubifs_gc_should_commit(c)) | |
427 | return -EAGAIN; | |
428 | ||
429 | mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead); | |
430 | ||
431 | if (c->ro_media) { | |
432 | ret = -EROFS; | |
433 | goto out_unlock; | |
434 | } | |
435 | ||
436 | /* We expect the write-buffer to be empty on entry */ | |
437 | ubifs_assert(!wbuf->used); | |
438 | ||
439 | for (i = 0; ; i++) { | |
440 | int space_before = c->leb_size - wbuf->offs - wbuf->used; | |
441 | int space_after; | |
442 | ||
443 | cond_resched(); | |
444 | ||
445 | /* Give the commit an opportunity to run */ | |
446 | if (ubifs_gc_should_commit(c)) { | |
447 | ret = -EAGAIN; | |
448 | break; | |
449 | } | |
450 | ||
451 | if (i > SOFT_LEBS_LIMIT && !list_empty(&c->idx_gc)) { | |
452 | /* | |
453 | * We've done enough iterations. Indexing LEBs were | |
454 | * moved and will be available after the commit. | |
455 | */ | |
456 | dbg_gc("soft limit, some index LEBs GC'ed, -EAGAIN"); | |
457 | ubifs_commit_required(c); | |
458 | ret = -EAGAIN; | |
459 | break; | |
460 | } | |
461 | ||
462 | if (i > HARD_LEBS_LIMIT) { | |
463 | /* | |
464 | * We've moved too many LEBs and have not made | |
465 | * progress, give up. | |
466 | */ | |
467 | dbg_gc("hard limit, -ENOSPC"); | |
468 | ret = -ENOSPC; | |
469 | break; | |
470 | } | |
471 | ||
472 | /* | |
473 | * Empty and freeable LEBs can turn up while we waited for | |
474 | * the wbuf lock, or while we have been running GC. In that | |
475 | * case, we should just return one of those instead of | |
476 | * continuing to GC dirty LEBs. Hence we request | |
477 | * 'ubifs_find_dirty_leb()' to return an empty LEB if it can. | |
478 | */ | |
479 | ret = ubifs_find_dirty_leb(c, &lp, min_space, anyway ? 0 : 1); | |
480 | if (ret) { | |
481 | if (ret == -ENOSPC) | |
482 | dbg_gc("no more dirty LEBs"); | |
483 | break; | |
484 | } | |
485 | ||
486 | dbg_gc("found LEB %d: free %d, dirty %d, sum %d " | |
487 | "(min. space %d)", lp.lnum, lp.free, lp.dirty, | |
488 | lp.free + lp.dirty, min_space); | |
489 | ||
490 | if (lp.free + lp.dirty == c->leb_size) { | |
491 | /* An empty LEB was returned */ | |
492 | dbg_gc("LEB %d is free, return it", lp.lnum); | |
493 | /* | |
494 | * ubifs_find_dirty_leb() doesn't return freeable index | |
495 | * LEBs. | |
496 | */ | |
497 | ubifs_assert(!(lp.flags & LPROPS_INDEX)); | |
498 | if (lp.free != c->leb_size) { | |
499 | /* | |
500 | * Write buffers must be sync'd before | |
501 | * unmapping freeable LEBs, because one of them | |
502 | * may contain data which obsoletes something | |
503 | * in 'lp.pnum'. | |
504 | */ | |
505 | ret = gc_sync_wbufs(c); | |
506 | if (ret) | |
507 | goto out; | |
508 | ret = ubifs_change_one_lp(c, lp.lnum, | |
509 | c->leb_size, 0, 0, 0, | |
510 | 0); | |
511 | if (ret) | |
512 | goto out; | |
513 | } | |
514 | ret = ubifs_leb_unmap(c, lp.lnum); | |
515 | if (ret) | |
516 | goto out; | |
517 | ret = lp.lnum; | |
518 | break; | |
519 | } | |
520 | ||
521 | space_before = c->leb_size - wbuf->offs - wbuf->used; | |
522 | if (wbuf->lnum == -1) | |
523 | space_before = 0; | |
524 | ||
525 | ret = ubifs_garbage_collect_leb(c, &lp); | |
526 | if (ret < 0) { | |
527 | if (ret == -EAGAIN || ret == -ENOSPC) { | |
528 | /* | |
529 | * These codes are not errors, so we have to | |
530 | * return the LEB to lprops. But if the | |
531 | * 'ubifs_return_leb()' function fails, its | |
532 | * failure code is propagated to the caller | |
533 | * instead of the original '-EAGAIN' or | |
534 | * '-ENOSPC'. | |
535 | */ | |
536 | err = ubifs_return_leb(c, lp.lnum); | |
537 | if (err) | |
538 | ret = err; | |
539 | break; | |
540 | } | |
541 | goto out; | |
542 | } | |
543 | ||
544 | if (ret == LEB_FREED) { | |
545 | /* An LEB has been freed and is ready for use */ | |
546 | dbg_gc("LEB %d freed, return", lp.lnum); | |
547 | ret = lp.lnum; | |
548 | break; | |
549 | } | |
550 | ||
551 | if (ret == LEB_FREED_IDX) { | |
552 | /* | |
553 | * This was an indexing LEB and it cannot be | |
554 | * immediately used. And instead of requesting the | |
555 | * commit straight away, we try to garbage collect some | |
556 | * more. | |
557 | */ | |
558 | dbg_gc("indexing LEB %d freed, continue", lp.lnum); | |
559 | continue; | |
560 | } | |
561 | ||
562 | ubifs_assert(ret == LEB_RETAINED); | |
563 | space_after = c->leb_size - wbuf->offs - wbuf->used; | |
564 | dbg_gc("LEB %d retained, freed %d bytes", lp.lnum, | |
565 | space_after - space_before); | |
566 | ||
567 | if (space_after > space_before) { | |
568 | /* GC makes progress, keep working */ | |
569 | min_space >>= 1; | |
570 | if (min_space < c->dead_wm) | |
571 | min_space = c->dead_wm; | |
572 | continue; | |
573 | } | |
574 | ||
575 | dbg_gc("did not make progress"); | |
576 | ||
577 | /* | |
578 | * GC moved an LEB bud have not done any progress. This means | |
579 | * that the previous GC head LEB contained too few free space | |
580 | * and the LEB which was GC'ed contained only large nodes which | |
581 | * did not fit that space. | |
582 | * | |
583 | * We can do 2 things: | |
584 | * 1. pick another LEB in a hope it'll contain a small node | |
585 | * which will fit the space we have at the end of current GC | |
586 | * head LEB, but there is no guarantee, so we try this out | |
587 | * unless we have already been working for too long; | |
588 | * 2. request an LEB with more dirty space, which will force | |
589 | * 'ubifs_find_dirty_leb()' to start scanning the lprops | |
590 | * table, instead of just picking one from the heap | |
591 | * (previously it already picked the dirtiest LEB). | |
592 | */ | |
593 | if (i < SOFT_LEBS_LIMIT) { | |
594 | dbg_gc("try again"); | |
595 | continue; | |
596 | } | |
597 | ||
598 | min_space <<= 1; | |
599 | if (min_space > c->dark_wm) | |
600 | min_space = c->dark_wm; | |
601 | dbg_gc("set min. space to %d", min_space); | |
602 | } | |
603 | ||
604 | if (ret == -ENOSPC && !list_empty(&c->idx_gc)) { | |
605 | dbg_gc("no space, some index LEBs GC'ed, -EAGAIN"); | |
606 | ubifs_commit_required(c); | |
607 | ret = -EAGAIN; | |
608 | } | |
609 | ||
610 | err = ubifs_wbuf_sync_nolock(wbuf); | |
611 | if (!err) | |
612 | err = ubifs_leb_unmap(c, c->gc_lnum); | |
613 | if (err) { | |
614 | ret = err; | |
615 | goto out; | |
616 | } | |
617 | out_unlock: | |
618 | mutex_unlock(&wbuf->io_mutex); | |
619 | return ret; | |
620 | ||
621 | out: | |
622 | ubifs_assert(ret < 0); | |
623 | ubifs_assert(ret != -ENOSPC && ret != -EAGAIN); | |
624 | ubifs_ro_mode(c, ret); | |
625 | ubifs_wbuf_sync_nolock(wbuf); | |
626 | mutex_unlock(&wbuf->io_mutex); | |
627 | ubifs_return_leb(c, lp.lnum); | |
628 | return ret; | |
629 | } | |
630 | ||
631 | /** | |
632 | * ubifs_gc_start_commit - garbage collection at start of commit. | |
633 | * @c: UBIFS file-system description object | |
634 | * | |
635 | * If a LEB has only dirty and free space, then we may safely unmap it and make | |
636 | * it free. Note, we cannot do this with indexing LEBs because dirty space may | |
637 | * correspond index nodes that are required for recovery. In that case, the | |
638 | * LEB cannot be unmapped until after the next commit. | |
639 | * | |
640 | * This function returns %0 upon success and a negative error code upon failure. | |
641 | */ | |
642 | int ubifs_gc_start_commit(struct ubifs_info *c) | |
643 | { | |
644 | struct ubifs_gced_idx_leb *idx_gc; | |
645 | const struct ubifs_lprops *lp; | |
646 | int err = 0, flags; | |
647 | ||
648 | ubifs_get_lprops(c); | |
649 | ||
650 | /* | |
651 | * Unmap (non-index) freeable LEBs. Note that recovery requires that all | |
652 | * wbufs are sync'd before this, which is done in 'do_commit()'. | |
653 | */ | |
654 | while (1) { | |
655 | lp = ubifs_fast_find_freeable(c); | |
656 | if (unlikely(IS_ERR(lp))) { | |
657 | err = PTR_ERR(lp); | |
658 | goto out; | |
659 | } | |
660 | if (!lp) | |
661 | break; | |
662 | ubifs_assert(!(lp->flags & LPROPS_TAKEN)); | |
663 | ubifs_assert(!(lp->flags & LPROPS_INDEX)); | |
664 | err = ubifs_leb_unmap(c, lp->lnum); | |
665 | if (err) | |
666 | goto out; | |
667 | lp = ubifs_change_lp(c, lp, c->leb_size, 0, lp->flags, 0); | |
668 | if (unlikely(IS_ERR(lp))) { | |
669 | err = PTR_ERR(lp); | |
670 | goto out; | |
671 | } | |
672 | ubifs_assert(!(lp->flags & LPROPS_TAKEN)); | |
673 | ubifs_assert(!(lp->flags & LPROPS_INDEX)); | |
674 | } | |
675 | ||
676 | /* Mark GC'd index LEBs OK to unmap after this commit finishes */ | |
677 | list_for_each_entry(idx_gc, &c->idx_gc, list) | |
678 | idx_gc->unmap = 1; | |
679 | ||
680 | /* Record index freeable LEBs for unmapping after commit */ | |
681 | while (1) { | |
682 | lp = ubifs_fast_find_frdi_idx(c); | |
683 | if (unlikely(IS_ERR(lp))) { | |
684 | err = PTR_ERR(lp); | |
685 | goto out; | |
686 | } | |
687 | if (!lp) | |
688 | break; | |
689 | idx_gc = kmalloc(sizeof(struct ubifs_gced_idx_leb), GFP_NOFS); | |
690 | if (!idx_gc) { | |
691 | err = -ENOMEM; | |
692 | goto out; | |
693 | } | |
694 | ubifs_assert(!(lp->flags & LPROPS_TAKEN)); | |
695 | ubifs_assert(lp->flags & LPROPS_INDEX); | |
696 | /* Don't release the LEB until after the next commit */ | |
697 | flags = (lp->flags | LPROPS_TAKEN) ^ LPROPS_INDEX; | |
698 | lp = ubifs_change_lp(c, lp, c->leb_size, 0, flags, 1); | |
699 | if (unlikely(IS_ERR(lp))) { | |
700 | err = PTR_ERR(lp); | |
701 | kfree(idx_gc); | |
702 | goto out; | |
703 | } | |
704 | ubifs_assert(lp->flags & LPROPS_TAKEN); | |
705 | ubifs_assert(!(lp->flags & LPROPS_INDEX)); | |
706 | idx_gc->lnum = lp->lnum; | |
707 | idx_gc->unmap = 1; | |
708 | list_add(&idx_gc->list, &c->idx_gc); | |
709 | } | |
710 | out: | |
711 | ubifs_release_lprops(c); | |
712 | return err; | |
713 | } | |
714 | ||
715 | /** | |
716 | * ubifs_gc_end_commit - garbage collection at end of commit. | |
717 | * @c: UBIFS file-system description object | |
718 | * | |
719 | * This function completes out-of-place garbage collection of index LEBs. | |
720 | */ | |
721 | int ubifs_gc_end_commit(struct ubifs_info *c) | |
722 | { | |
723 | struct ubifs_gced_idx_leb *idx_gc, *tmp; | |
724 | struct ubifs_wbuf *wbuf; | |
725 | int err = 0; | |
726 | ||
727 | wbuf = &c->jheads[GCHD].wbuf; | |
728 | mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead); | |
729 | list_for_each_entry_safe(idx_gc, tmp, &c->idx_gc, list) | |
730 | if (idx_gc->unmap) { | |
731 | dbg_gc("LEB %d", idx_gc->lnum); | |
732 | err = ubifs_leb_unmap(c, idx_gc->lnum); | |
733 | if (err) | |
734 | goto out; | |
735 | err = ubifs_change_one_lp(c, idx_gc->lnum, LPROPS_NC, | |
736 | LPROPS_NC, 0, LPROPS_TAKEN, -1); | |
737 | if (err) | |
738 | goto out; | |
739 | list_del(&idx_gc->list); | |
740 | kfree(idx_gc); | |
741 | } | |
742 | out: | |
743 | mutex_unlock(&wbuf->io_mutex); | |
744 | return err; | |
745 | } | |
746 | ||
747 | /** | |
748 | * ubifs_destroy_idx_gc - destroy idx_gc list. | |
749 | * @c: UBIFS file-system description object | |
750 | * | |
751 | * This function destroys the idx_gc list. It is called when unmounting or | |
752 | * remounting read-only so locks are not needed. | |
753 | */ | |
754 | void ubifs_destroy_idx_gc(struct ubifs_info *c) | |
755 | { | |
756 | while (!list_empty(&c->idx_gc)) { | |
757 | struct ubifs_gced_idx_leb *idx_gc; | |
758 | ||
759 | idx_gc = list_entry(c->idx_gc.next, struct ubifs_gced_idx_leb, | |
760 | list); | |
761 | c->idx_gc_cnt -= 1; | |
762 | list_del(&idx_gc->list); | |
763 | kfree(idx_gc); | |
764 | } | |
765 | ||
766 | } | |
767 | ||
768 | /** | |
769 | * ubifs_get_idx_gc_leb - get a LEB from GC'd index LEB list. | |
770 | * @c: UBIFS file-system description object | |
771 | * | |
772 | * Called during start commit so locks are not needed. | |
773 | */ | |
774 | int ubifs_get_idx_gc_leb(struct ubifs_info *c) | |
775 | { | |
776 | struct ubifs_gced_idx_leb *idx_gc; | |
777 | int lnum; | |
778 | ||
779 | if (list_empty(&c->idx_gc)) | |
780 | return -ENOSPC; | |
781 | idx_gc = list_entry(c->idx_gc.next, struct ubifs_gced_idx_leb, list); | |
782 | lnum = idx_gc->lnum; | |
783 | /* c->idx_gc_cnt is updated by the caller when lprops are updated */ | |
784 | list_del(&idx_gc->list); | |
785 | kfree(idx_gc); | |
786 | return lnum; | |
787 | } |