]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - fs/ubifs/lpt_commit.c
UBIFS: introduce more I/O helpers
[mirror_ubuntu-artful-kernel.git] / fs / ubifs / lpt_commit.c
CommitLineData
7d4e9ccb 1/*
1e51764a
AB
2 * This file is part of UBIFS.
3 *
4 * Copyright (C) 2006-2008 Nokia Corporation.
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published by
8 * the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
15 * You should have received a copy of the GNU General Public License along with
16 * this program; if not, write to the Free Software Foundation, Inc., 51
17 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18 *
19 * Authors: Adrian Hunter
20 * Artem Bityutskiy (Битюцкий Артём)
21 */
22
23/*
24 * This file implements commit-related functionality of the LEB properties
25 * subsystem.
26 */
27
28#include <linux/crc16.h>
5a0e3ad6 29#include <linux/slab.h>
8d7819b4 30#include <linux/random.h>
1e51764a
AB
31#include "ubifs.h"
32
cdd8ad6e
AB
33#ifdef CONFIG_UBIFS_FS_DEBUG
34static int dbg_populate_lsave(struct ubifs_info *c);
35#else
36#define dbg_populate_lsave(c) 0
37#endif
38
1e51764a
AB
39/**
40 * first_dirty_cnode - find first dirty cnode.
41 * @c: UBIFS file-system description object
42 * @nnode: nnode at which to start
43 *
44 * This function returns the first dirty cnode or %NULL if there is not one.
45 */
46static struct ubifs_cnode *first_dirty_cnode(struct ubifs_nnode *nnode)
47{
48 ubifs_assert(nnode);
49 while (1) {
50 int i, cont = 0;
51
52 for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
53 struct ubifs_cnode *cnode;
54
55 cnode = nnode->nbranch[i].cnode;
56 if (cnode &&
57 test_bit(DIRTY_CNODE, &cnode->flags)) {
58 if (cnode->level == 0)
59 return cnode;
60 nnode = (struct ubifs_nnode *)cnode;
61 cont = 1;
62 break;
63 }
64 }
65 if (!cont)
66 return (struct ubifs_cnode *)nnode;
67 }
68}
69
70/**
71 * next_dirty_cnode - find next dirty cnode.
72 * @cnode: cnode from which to begin searching
73 *
74 * This function returns the next dirty cnode or %NULL if there is not one.
75 */
76static struct ubifs_cnode *next_dirty_cnode(struct ubifs_cnode *cnode)
77{
78 struct ubifs_nnode *nnode;
79 int i;
80
81 ubifs_assert(cnode);
82 nnode = cnode->parent;
83 if (!nnode)
84 return NULL;
85 for (i = cnode->iip + 1; i < UBIFS_LPT_FANOUT; i++) {
86 cnode = nnode->nbranch[i].cnode;
87 if (cnode && test_bit(DIRTY_CNODE, &cnode->flags)) {
88 if (cnode->level == 0)
89 return cnode; /* cnode is a pnode */
90 /* cnode is a nnode */
91 return first_dirty_cnode((struct ubifs_nnode *)cnode);
92 }
93 }
94 return (struct ubifs_cnode *)nnode;
95}
96
97/**
98 * get_cnodes_to_commit - create list of dirty cnodes to commit.
99 * @c: UBIFS file-system description object
100 *
101 * This function returns the number of cnodes to commit.
102 */
103static int get_cnodes_to_commit(struct ubifs_info *c)
104{
105 struct ubifs_cnode *cnode, *cnext;
106 int cnt = 0;
107
108 if (!c->nroot)
109 return 0;
110
111 if (!test_bit(DIRTY_CNODE, &c->nroot->flags))
112 return 0;
113
114 c->lpt_cnext = first_dirty_cnode(c->nroot);
115 cnode = c->lpt_cnext;
116 if (!cnode)
117 return 0;
118 cnt += 1;
119 while (1) {
37662447
AB
120 ubifs_assert(!test_bit(COW_CNODE, &cnode->flags));
121 __set_bit(COW_CNODE, &cnode->flags);
1e51764a
AB
122 cnext = next_dirty_cnode(cnode);
123 if (!cnext) {
124 cnode->cnext = c->lpt_cnext;
125 break;
126 }
127 cnode->cnext = cnext;
128 cnode = cnext;
129 cnt += 1;
130 }
131 dbg_cmt("committing %d cnodes", cnt);
132 dbg_lp("committing %d cnodes", cnt);
133 ubifs_assert(cnt == c->dirty_nn_cnt + c->dirty_pn_cnt);
134 return cnt;
135}
136
137/**
138 * upd_ltab - update LPT LEB properties.
139 * @c: UBIFS file-system description object
140 * @lnum: LEB number
141 * @free: amount of free space
142 * @dirty: amount of dirty space to add
143 */
144static void upd_ltab(struct ubifs_info *c, int lnum, int free, int dirty)
145{
146 dbg_lp("LEB %d free %d dirty %d to %d +%d",
147 lnum, c->ltab[lnum - c->lpt_first].free,
148 c->ltab[lnum - c->lpt_first].dirty, free, dirty);
149 ubifs_assert(lnum >= c->lpt_first && lnum <= c->lpt_last);
150 c->ltab[lnum - c->lpt_first].free = free;
151 c->ltab[lnum - c->lpt_first].dirty += dirty;
152}
153
154/**
155 * alloc_lpt_leb - allocate an LPT LEB that is empty.
156 * @c: UBIFS file-system description object
157 * @lnum: LEB number is passed and returned here
158 *
159 * This function finds the next empty LEB in the ltab starting from @lnum. If a
160 * an empty LEB is found it is returned in @lnum and the function returns %0.
161 * Otherwise the function returns -ENOSPC. Note however, that LPT is designed
162 * never to run out of space.
163 */
164static int alloc_lpt_leb(struct ubifs_info *c, int *lnum)
165{
166 int i, n;
167
168 n = *lnum - c->lpt_first + 1;
169 for (i = n; i < c->lpt_lebs; i++) {
170 if (c->ltab[i].tgc || c->ltab[i].cmt)
171 continue;
172 if (c->ltab[i].free == c->leb_size) {
173 c->ltab[i].cmt = 1;
174 *lnum = i + c->lpt_first;
175 return 0;
176 }
177 }
178
179 for (i = 0; i < n; i++) {
180 if (c->ltab[i].tgc || c->ltab[i].cmt)
181 continue;
182 if (c->ltab[i].free == c->leb_size) {
183 c->ltab[i].cmt = 1;
184 *lnum = i + c->lpt_first;
185 return 0;
186 }
187 }
1e51764a
AB
188 return -ENOSPC;
189}
190
191/**
192 * layout_cnodes - layout cnodes for commit.
193 * @c: UBIFS file-system description object
194 *
195 * This function returns %0 on success and a negative error code on failure.
196 */
197static int layout_cnodes(struct ubifs_info *c)
198{
199 int lnum, offs, len, alen, done_lsave, done_ltab, err;
200 struct ubifs_cnode *cnode;
201
73944a6d
AH
202 err = dbg_chk_lpt_sz(c, 0, 0);
203 if (err)
204 return err;
1e51764a
AB
205 cnode = c->lpt_cnext;
206 if (!cnode)
207 return 0;
208 lnum = c->nhead_lnum;
209 offs = c->nhead_offs;
210 /* Try to place lsave and ltab nicely */
211 done_lsave = !c->big_lpt;
212 done_ltab = 0;
213 if (!done_lsave && offs + c->lsave_sz <= c->leb_size) {
214 done_lsave = 1;
215 c->lsave_lnum = lnum;
216 c->lsave_offs = offs;
217 offs += c->lsave_sz;
73944a6d 218 dbg_chk_lpt_sz(c, 1, c->lsave_sz);
1e51764a
AB
219 }
220
221 if (offs + c->ltab_sz <= c->leb_size) {
222 done_ltab = 1;
223 c->ltab_lnum = lnum;
224 c->ltab_offs = offs;
225 offs += c->ltab_sz;
73944a6d 226 dbg_chk_lpt_sz(c, 1, c->ltab_sz);
1e51764a
AB
227 }
228
229 do {
230 if (cnode->level) {
231 len = c->nnode_sz;
232 c->dirty_nn_cnt -= 1;
233 } else {
234 len = c->pnode_sz;
235 c->dirty_pn_cnt -= 1;
236 }
237 while (offs + len > c->leb_size) {
238 alen = ALIGN(offs, c->min_io_size);
239 upd_ltab(c, lnum, c->leb_size - alen, alen - offs);
2bc275e9 240 dbg_chk_lpt_sz(c, 2, c->leb_size - offs);
1e51764a
AB
241 err = alloc_lpt_leb(c, &lnum);
242 if (err)
73944a6d 243 goto no_space;
1e51764a
AB
244 offs = 0;
245 ubifs_assert(lnum >= c->lpt_first &&
246 lnum <= c->lpt_last);
247 /* Try to place lsave and ltab nicely */
248 if (!done_lsave) {
249 done_lsave = 1;
250 c->lsave_lnum = lnum;
251 c->lsave_offs = offs;
252 offs += c->lsave_sz;
73944a6d 253 dbg_chk_lpt_sz(c, 1, c->lsave_sz);
1e51764a
AB
254 continue;
255 }
256 if (!done_ltab) {
257 done_ltab = 1;
258 c->ltab_lnum = lnum;
259 c->ltab_offs = offs;
260 offs += c->ltab_sz;
73944a6d 261 dbg_chk_lpt_sz(c, 1, c->ltab_sz);
1e51764a
AB
262 continue;
263 }
264 break;
265 }
266 if (cnode->parent) {
267 cnode->parent->nbranch[cnode->iip].lnum = lnum;
268 cnode->parent->nbranch[cnode->iip].offs = offs;
269 } else {
270 c->lpt_lnum = lnum;
271 c->lpt_offs = offs;
272 }
273 offs += len;
73944a6d 274 dbg_chk_lpt_sz(c, 1, len);
1e51764a
AB
275 cnode = cnode->cnext;
276 } while (cnode && cnode != c->lpt_cnext);
277
278 /* Make sure to place LPT's save table */
279 if (!done_lsave) {
280 if (offs + c->lsave_sz > c->leb_size) {
281 alen = ALIGN(offs, c->min_io_size);
282 upd_ltab(c, lnum, c->leb_size - alen, alen - offs);
2bc275e9 283 dbg_chk_lpt_sz(c, 2, c->leb_size - offs);
1e51764a
AB
284 err = alloc_lpt_leb(c, &lnum);
285 if (err)
73944a6d 286 goto no_space;
1e51764a
AB
287 offs = 0;
288 ubifs_assert(lnum >= c->lpt_first &&
289 lnum <= c->lpt_last);
290 }
291 done_lsave = 1;
292 c->lsave_lnum = lnum;
293 c->lsave_offs = offs;
294 offs += c->lsave_sz;
73944a6d 295 dbg_chk_lpt_sz(c, 1, c->lsave_sz);
1e51764a
AB
296 }
297
298 /* Make sure to place LPT's own lprops table */
299 if (!done_ltab) {
300 if (offs + c->ltab_sz > c->leb_size) {
301 alen = ALIGN(offs, c->min_io_size);
302 upd_ltab(c, lnum, c->leb_size - alen, alen - offs);
2bc275e9 303 dbg_chk_lpt_sz(c, 2, c->leb_size - offs);
1e51764a
AB
304 err = alloc_lpt_leb(c, &lnum);
305 if (err)
73944a6d 306 goto no_space;
1e51764a
AB
307 offs = 0;
308 ubifs_assert(lnum >= c->lpt_first &&
309 lnum <= c->lpt_last);
310 }
311 done_ltab = 1;
312 c->ltab_lnum = lnum;
313 c->ltab_offs = offs;
314 offs += c->ltab_sz;
73944a6d 315 dbg_chk_lpt_sz(c, 1, c->ltab_sz);
1e51764a
AB
316 }
317
318 alen = ALIGN(offs, c->min_io_size);
319 upd_ltab(c, lnum, c->leb_size - alen, alen - offs);
73944a6d
AH
320 dbg_chk_lpt_sz(c, 4, alen - offs);
321 err = dbg_chk_lpt_sz(c, 3, alen);
322 if (err)
323 return err;
1e51764a 324 return 0;
73944a6d
AH
325
326no_space:
327 ubifs_err("LPT out of space");
328 dbg_err("LPT out of space at LEB %d:%d needing %d, done_ltab %d, "
329 "done_lsave %d", lnum, offs, len, done_ltab, done_lsave);
330 dbg_dump_lpt_info(c);
2ba5f7ae 331 dbg_dump_lpt_lebs(c);
787845bd 332 dump_stack();
73944a6d 333 return err;
1e51764a
AB
334}
335
336/**
337 * realloc_lpt_leb - allocate an LPT LEB that is empty.
338 * @c: UBIFS file-system description object
339 * @lnum: LEB number is passed and returned here
340 *
341 * This function duplicates exactly the results of the function alloc_lpt_leb.
342 * It is used during end commit to reallocate the same LEB numbers that were
343 * allocated by alloc_lpt_leb during start commit.
344 *
345 * This function finds the next LEB that was allocated by the alloc_lpt_leb
346 * function starting from @lnum. If a LEB is found it is returned in @lnum and
347 * the function returns %0. Otherwise the function returns -ENOSPC.
348 * Note however, that LPT is designed never to run out of space.
349 */
350static int realloc_lpt_leb(struct ubifs_info *c, int *lnum)
351{
352 int i, n;
353
354 n = *lnum - c->lpt_first + 1;
355 for (i = n; i < c->lpt_lebs; i++)
356 if (c->ltab[i].cmt) {
357 c->ltab[i].cmt = 0;
358 *lnum = i + c->lpt_first;
359 return 0;
360 }
361
362 for (i = 0; i < n; i++)
363 if (c->ltab[i].cmt) {
364 c->ltab[i].cmt = 0;
365 *lnum = i + c->lpt_first;
366 return 0;
367 }
1e51764a
AB
368 return -ENOSPC;
369}
370
371/**
372 * write_cnodes - write cnodes for commit.
373 * @c: UBIFS file-system description object
374 *
375 * This function returns %0 on success and a negative error code on failure.
376 */
377static int write_cnodes(struct ubifs_info *c)
378{
379 int lnum, offs, len, from, err, wlen, alen, done_ltab, done_lsave;
380 struct ubifs_cnode *cnode;
381 void *buf = c->lpt_buf;
382
383 cnode = c->lpt_cnext;
384 if (!cnode)
385 return 0;
386 lnum = c->nhead_lnum;
387 offs = c->nhead_offs;
388 from = offs;
389 /* Ensure empty LEB is unmapped */
390 if (offs == 0) {
391 err = ubifs_leb_unmap(c, lnum);
392 if (err)
393 return err;
394 }
395 /* Try to place lsave and ltab nicely */
396 done_lsave = !c->big_lpt;
397 done_ltab = 0;
398 if (!done_lsave && offs + c->lsave_sz <= c->leb_size) {
399 done_lsave = 1;
400 ubifs_pack_lsave(c, buf + offs, c->lsave);
401 offs += c->lsave_sz;
73944a6d 402 dbg_chk_lpt_sz(c, 1, c->lsave_sz);
1e51764a
AB
403 }
404
405 if (offs + c->ltab_sz <= c->leb_size) {
406 done_ltab = 1;
407 ubifs_pack_ltab(c, buf + offs, c->ltab_cmt);
408 offs += c->ltab_sz;
73944a6d 409 dbg_chk_lpt_sz(c, 1, c->ltab_sz);
1e51764a
AB
410 }
411
412 /* Loop for each cnode */
413 do {
414 if (cnode->level)
415 len = c->nnode_sz;
416 else
417 len = c->pnode_sz;
418 while (offs + len > c->leb_size) {
419 wlen = offs - from;
420 if (wlen) {
421 alen = ALIGN(wlen, c->min_io_size);
422 memset(buf + offs, 0xff, alen - wlen);
423 err = ubifs_leb_write(c, lnum, buf + from, from,
424 alen, UBI_SHORTTERM);
425 if (err)
426 return err;
427 }
2bc275e9 428 dbg_chk_lpt_sz(c, 2, c->leb_size - offs);
1e51764a
AB
429 err = realloc_lpt_leb(c, &lnum);
430 if (err)
73944a6d 431 goto no_space;
0a6fb8d9 432 offs = from = 0;
1e51764a
AB
433 ubifs_assert(lnum >= c->lpt_first &&
434 lnum <= c->lpt_last);
435 err = ubifs_leb_unmap(c, lnum);
436 if (err)
437 return err;
438 /* Try to place lsave and ltab nicely */
439 if (!done_lsave) {
440 done_lsave = 1;
441 ubifs_pack_lsave(c, buf + offs, c->lsave);
442 offs += c->lsave_sz;
73944a6d 443 dbg_chk_lpt_sz(c, 1, c->lsave_sz);
1e51764a
AB
444 continue;
445 }
446 if (!done_ltab) {
447 done_ltab = 1;
448 ubifs_pack_ltab(c, buf + offs, c->ltab_cmt);
449 offs += c->ltab_sz;
73944a6d 450 dbg_chk_lpt_sz(c, 1, c->ltab_sz);
1e51764a
AB
451 continue;
452 }
453 break;
454 }
455 if (cnode->level)
456 ubifs_pack_nnode(c, buf + offs,
457 (struct ubifs_nnode *)cnode);
458 else
459 ubifs_pack_pnode(c, buf + offs,
460 (struct ubifs_pnode *)cnode);
461 /*
462 * The reason for the barriers is the same as in case of TNC.
463 * See comment in 'write_index()'. 'dirty_cow_nnode()' and
464 * 'dirty_cow_pnode()' are the functions for which this is
465 * important.
466 */
467 clear_bit(DIRTY_CNODE, &cnode->flags);
468 smp_mb__before_clear_bit();
37662447 469 clear_bit(COW_CNODE, &cnode->flags);
1e51764a
AB
470 smp_mb__after_clear_bit();
471 offs += len;
73944a6d 472 dbg_chk_lpt_sz(c, 1, len);
1e51764a
AB
473 cnode = cnode->cnext;
474 } while (cnode && cnode != c->lpt_cnext);
475
476 /* Make sure to place LPT's save table */
477 if (!done_lsave) {
478 if (offs + c->lsave_sz > c->leb_size) {
479 wlen = offs - from;
480 alen = ALIGN(wlen, c->min_io_size);
481 memset(buf + offs, 0xff, alen - wlen);
482 err = ubifs_leb_write(c, lnum, buf + from, from, alen,
483 UBI_SHORTTERM);
484 if (err)
485 return err;
2bc275e9 486 dbg_chk_lpt_sz(c, 2, c->leb_size - offs);
1e51764a
AB
487 err = realloc_lpt_leb(c, &lnum);
488 if (err)
73944a6d 489 goto no_space;
0a6fb8d9 490 offs = from = 0;
1e51764a
AB
491 ubifs_assert(lnum >= c->lpt_first &&
492 lnum <= c->lpt_last);
493 err = ubifs_leb_unmap(c, lnum);
494 if (err)
495 return err;
496 }
497 done_lsave = 1;
498 ubifs_pack_lsave(c, buf + offs, c->lsave);
499 offs += c->lsave_sz;
73944a6d 500 dbg_chk_lpt_sz(c, 1, c->lsave_sz);
1e51764a
AB
501 }
502
503 /* Make sure to place LPT's own lprops table */
504 if (!done_ltab) {
505 if (offs + c->ltab_sz > c->leb_size) {
506 wlen = offs - from;
507 alen = ALIGN(wlen, c->min_io_size);
508 memset(buf + offs, 0xff, alen - wlen);
509 err = ubifs_leb_write(c, lnum, buf + from, from, alen,
510 UBI_SHORTTERM);
511 if (err)
512 return err;
2bc275e9 513 dbg_chk_lpt_sz(c, 2, c->leb_size - offs);
1e51764a
AB
514 err = realloc_lpt_leb(c, &lnum);
515 if (err)
73944a6d 516 goto no_space;
0a6fb8d9 517 offs = from = 0;
1e51764a
AB
518 ubifs_assert(lnum >= c->lpt_first &&
519 lnum <= c->lpt_last);
520 err = ubifs_leb_unmap(c, lnum);
521 if (err)
522 return err;
523 }
524 done_ltab = 1;
525 ubifs_pack_ltab(c, buf + offs, c->ltab_cmt);
526 offs += c->ltab_sz;
73944a6d 527 dbg_chk_lpt_sz(c, 1, c->ltab_sz);
1e51764a
AB
528 }
529
530 /* Write remaining data in buffer */
531 wlen = offs - from;
532 alen = ALIGN(wlen, c->min_io_size);
533 memset(buf + offs, 0xff, alen - wlen);
534 err = ubifs_leb_write(c, lnum, buf + from, from, alen, UBI_SHORTTERM);
535 if (err)
536 return err;
73944a6d
AH
537
538 dbg_chk_lpt_sz(c, 4, alen - wlen);
539 err = dbg_chk_lpt_sz(c, 3, ALIGN(offs, c->min_io_size));
540 if (err)
541 return err;
542
1e51764a
AB
543 c->nhead_lnum = lnum;
544 c->nhead_offs = ALIGN(offs, c->min_io_size);
545
546 dbg_lp("LPT root is at %d:%d", c->lpt_lnum, c->lpt_offs);
547 dbg_lp("LPT head is at %d:%d", c->nhead_lnum, c->nhead_offs);
548 dbg_lp("LPT ltab is at %d:%d", c->ltab_lnum, c->ltab_offs);
549 if (c->big_lpt)
550 dbg_lp("LPT lsave is at %d:%d", c->lsave_lnum, c->lsave_offs);
73944a6d 551
1e51764a 552 return 0;
73944a6d
AH
553
554no_space:
555 ubifs_err("LPT out of space mismatch");
556 dbg_err("LPT out of space mismatch at LEB %d:%d needing %d, done_ltab "
f92b9826 557 "%d, done_lsave %d", lnum, offs, len, done_ltab, done_lsave);
73944a6d 558 dbg_dump_lpt_info(c);
2ba5f7ae 559 dbg_dump_lpt_lebs(c);
787845bd 560 dump_stack();
73944a6d 561 return err;
1e51764a
AB
562}
563
564/**
4a29d200 565 * next_pnode_to_dirty - find next pnode to dirty.
1e51764a
AB
566 * @c: UBIFS file-system description object
567 * @pnode: pnode
568 *
4a29d200
AH
569 * This function returns the next pnode to dirty or %NULL if there are no more
570 * pnodes. Note that pnodes that have never been written (lnum == 0) are
571 * skipped.
1e51764a 572 */
4a29d200
AH
573static struct ubifs_pnode *next_pnode_to_dirty(struct ubifs_info *c,
574 struct ubifs_pnode *pnode)
1e51764a
AB
575{
576 struct ubifs_nnode *nnode;
577 int iip;
578
579 /* Try to go right */
580 nnode = pnode->parent;
4a29d200 581 for (iip = pnode->iip + 1; iip < UBIFS_LPT_FANOUT; iip++) {
1e51764a
AB
582 if (nnode->nbranch[iip].lnum)
583 return ubifs_get_pnode(c, nnode, iip);
1e51764a
AB
584 }
585
586 /* Go up while can't go right */
587 do {
588 iip = nnode->iip + 1;
589 nnode = nnode->parent;
590 if (!nnode)
591 return NULL;
4a29d200
AH
592 for (; iip < UBIFS_LPT_FANOUT; iip++) {
593 if (nnode->nbranch[iip].lnum)
594 break;
595 }
c4361570 596 } while (iip >= UBIFS_LPT_FANOUT);
1e51764a
AB
597
598 /* Go right */
599 nnode = ubifs_get_nnode(c, nnode, iip);
600 if (IS_ERR(nnode))
601 return (void *)nnode;
602
603 /* Go down to level 1 */
604 while (nnode->level > 1) {
4a29d200
AH
605 for (iip = 0; iip < UBIFS_LPT_FANOUT; iip++) {
606 if (nnode->nbranch[iip].lnum)
607 break;
608 }
609 if (iip >= UBIFS_LPT_FANOUT) {
610 /*
611 * Should not happen, but we need to keep going
612 * if it does.
613 */
614 iip = 0;
615 }
616 nnode = ubifs_get_nnode(c, nnode, iip);
1e51764a
AB
617 if (IS_ERR(nnode))
618 return (void *)nnode;
619 }
620
4a29d200
AH
621 for (iip = 0; iip < UBIFS_LPT_FANOUT; iip++)
622 if (nnode->nbranch[iip].lnum)
623 break;
624 if (iip >= UBIFS_LPT_FANOUT)
625 /* Should not happen, but we need to keep going if it does */
626 iip = 0;
627 return ubifs_get_pnode(c, nnode, iip);
1e51764a
AB
628}
629
630/**
631 * pnode_lookup - lookup a pnode in the LPT.
632 * @c: UBIFS file-system description object
633 * @i: pnode number (0 to main_lebs - 1)
634 *
635 * This function returns a pointer to the pnode on success or a negative
636 * error code on failure.
637 */
638static struct ubifs_pnode *pnode_lookup(struct ubifs_info *c, int i)
639{
640 int err, h, iip, shft;
641 struct ubifs_nnode *nnode;
642
643 if (!c->nroot) {
644 err = ubifs_read_nnode(c, NULL, 0);
645 if (err)
646 return ERR_PTR(err);
647 }
648 i <<= UBIFS_LPT_FANOUT_SHIFT;
649 nnode = c->nroot;
650 shft = c->lpt_hght * UBIFS_LPT_FANOUT_SHIFT;
651 for (h = 1; h < c->lpt_hght; h++) {
652 iip = ((i >> shft) & (UBIFS_LPT_FANOUT - 1));
653 shft -= UBIFS_LPT_FANOUT_SHIFT;
654 nnode = ubifs_get_nnode(c, nnode, iip);
655 if (IS_ERR(nnode))
6da5156f 656 return ERR_CAST(nnode);
1e51764a
AB
657 }
658 iip = ((i >> shft) & (UBIFS_LPT_FANOUT - 1));
659 return ubifs_get_pnode(c, nnode, iip);
660}
661
662/**
663 * add_pnode_dirt - add dirty space to LPT LEB properties.
664 * @c: UBIFS file-system description object
665 * @pnode: pnode for which to add dirt
666 */
667static void add_pnode_dirt(struct ubifs_info *c, struct ubifs_pnode *pnode)
668{
669 ubifs_add_lpt_dirt(c, pnode->parent->nbranch[pnode->iip].lnum,
670 c->pnode_sz);
671}
672
673/**
674 * do_make_pnode_dirty - mark a pnode dirty.
675 * @c: UBIFS file-system description object
676 * @pnode: pnode to mark dirty
677 */
678static void do_make_pnode_dirty(struct ubifs_info *c, struct ubifs_pnode *pnode)
679{
680 /* Assumes cnext list is empty i.e. not called during commit */
681 if (!test_and_set_bit(DIRTY_CNODE, &pnode->flags)) {
682 struct ubifs_nnode *nnode;
683
684 c->dirty_pn_cnt += 1;
685 add_pnode_dirt(c, pnode);
686 /* Mark parent and ancestors dirty too */
687 nnode = pnode->parent;
688 while (nnode) {
689 if (!test_and_set_bit(DIRTY_CNODE, &nnode->flags)) {
690 c->dirty_nn_cnt += 1;
691 ubifs_add_nnode_dirt(c, nnode);
692 nnode = nnode->parent;
693 } else
694 break;
695 }
696 }
697}
698
699/**
700 * make_tree_dirty - mark the entire LEB properties tree dirty.
701 * @c: UBIFS file-system description object
702 *
703 * This function is used by the "small" LPT model to cause the entire LEB
704 * properties tree to be written. The "small" LPT model does not use LPT
705 * garbage collection because it is more efficient to write the entire tree
706 * (because it is small).
707 *
708 * This function returns %0 on success and a negative error code on failure.
709 */
710static int make_tree_dirty(struct ubifs_info *c)
711{
712 struct ubifs_pnode *pnode;
713
714 pnode = pnode_lookup(c, 0);
8c893a55
VK
715 if (IS_ERR(pnode))
716 return PTR_ERR(pnode);
717
1e51764a
AB
718 while (pnode) {
719 do_make_pnode_dirty(c, pnode);
4a29d200 720 pnode = next_pnode_to_dirty(c, pnode);
1e51764a
AB
721 if (IS_ERR(pnode))
722 return PTR_ERR(pnode);
723 }
724 return 0;
725}
726
727/**
728 * need_write_all - determine if the LPT area is running out of free space.
729 * @c: UBIFS file-system description object
730 *
731 * This function returns %1 if the LPT area is running out of free space and %0
732 * if it is not.
733 */
734static int need_write_all(struct ubifs_info *c)
735{
736 long long free = 0;
737 int i;
738
739 for (i = 0; i < c->lpt_lebs; i++) {
740 if (i + c->lpt_first == c->nhead_lnum)
741 free += c->leb_size - c->nhead_offs;
742 else if (c->ltab[i].free == c->leb_size)
743 free += c->leb_size;
744 else if (c->ltab[i].free + c->ltab[i].dirty == c->leb_size)
745 free += c->leb_size;
746 }
747 /* Less than twice the size left */
748 if (free <= c->lpt_sz * 2)
749 return 1;
750 return 0;
751}
752
753/**
754 * lpt_tgc_start - start trivial garbage collection of LPT LEBs.
755 * @c: UBIFS file-system description object
756 *
757 * LPT trivial garbage collection is where a LPT LEB contains only dirty and
758 * free space and so may be reused as soon as the next commit is completed.
759 * This function is called during start commit to mark LPT LEBs for trivial GC.
760 */
761static void lpt_tgc_start(struct ubifs_info *c)
762{
763 int i;
764
765 for (i = 0; i < c->lpt_lebs; i++) {
766 if (i + c->lpt_first == c->nhead_lnum)
767 continue;
768 if (c->ltab[i].dirty > 0 &&
769 c->ltab[i].free + c->ltab[i].dirty == c->leb_size) {
770 c->ltab[i].tgc = 1;
771 c->ltab[i].free = c->leb_size;
772 c->ltab[i].dirty = 0;
773 dbg_lp("LEB %d", i + c->lpt_first);
774 }
775 }
776}
777
778/**
779 * lpt_tgc_end - end trivial garbage collection of LPT LEBs.
780 * @c: UBIFS file-system description object
781 *
782 * LPT trivial garbage collection is where a LPT LEB contains only dirty and
783 * free space and so may be reused as soon as the next commit is completed.
784 * This function is called after the commit is completed (master node has been
80736d41 785 * written) and un-maps LPT LEBs that were marked for trivial GC.
1e51764a
AB
786 */
787static int lpt_tgc_end(struct ubifs_info *c)
788{
789 int i, err;
790
791 for (i = 0; i < c->lpt_lebs; i++)
792 if (c->ltab[i].tgc) {
793 err = ubifs_leb_unmap(c, i + c->lpt_first);
794 if (err)
795 return err;
796 c->ltab[i].tgc = 0;
797 dbg_lp("LEB %d", i + c->lpt_first);
798 }
799 return 0;
800}
801
802/**
803 * populate_lsave - fill the lsave array with important LEB numbers.
804 * @c: the UBIFS file-system description object
805 *
806 * This function is only called for the "big" model. It records a small number
807 * of LEB numbers of important LEBs. Important LEBs are ones that are (from
808 * most important to least important): empty, freeable, freeable index, dirty
809 * index, dirty or free. Upon mount, we read this list of LEB numbers and bring
810 * their pnodes into memory. That will stop us from having to scan the LPT
811 * straight away. For the "small" model we assume that scanning the LPT is no
812 * big deal.
813 */
814static void populate_lsave(struct ubifs_info *c)
815{
816 struct ubifs_lprops *lprops;
817 struct ubifs_lpt_heap *heap;
818 int i, cnt = 0;
819
820 ubifs_assert(c->big_lpt);
821 if (!(c->lpt_drty_flgs & LSAVE_DIRTY)) {
822 c->lpt_drty_flgs |= LSAVE_DIRTY;
823 ubifs_add_lpt_dirt(c, c->lsave_lnum, c->lsave_sz);
824 }
cdd8ad6e
AB
825
826 if (dbg_populate_lsave(c))
827 return;
828
1e51764a
AB
829 list_for_each_entry(lprops, &c->empty_list, list) {
830 c->lsave[cnt++] = lprops->lnum;
831 if (cnt >= c->lsave_cnt)
832 return;
833 }
834 list_for_each_entry(lprops, &c->freeable_list, list) {
835 c->lsave[cnt++] = lprops->lnum;
836 if (cnt >= c->lsave_cnt)
837 return;
838 }
839 list_for_each_entry(lprops, &c->frdi_idx_list, list) {
840 c->lsave[cnt++] = lprops->lnum;
841 if (cnt >= c->lsave_cnt)
842 return;
843 }
844 heap = &c->lpt_heap[LPROPS_DIRTY_IDX - 1];
845 for (i = 0; i < heap->cnt; i++) {
846 c->lsave[cnt++] = heap->arr[i]->lnum;
847 if (cnt >= c->lsave_cnt)
848 return;
849 }
850 heap = &c->lpt_heap[LPROPS_DIRTY - 1];
851 for (i = 0; i < heap->cnt; i++) {
852 c->lsave[cnt++] = heap->arr[i]->lnum;
853 if (cnt >= c->lsave_cnt)
854 return;
855 }
856 heap = &c->lpt_heap[LPROPS_FREE - 1];
857 for (i = 0; i < heap->cnt; i++) {
858 c->lsave[cnt++] = heap->arr[i]->lnum;
859 if (cnt >= c->lsave_cnt)
860 return;
861 }
862 /* Fill it up completely */
863 while (cnt < c->lsave_cnt)
864 c->lsave[cnt++] = c->main_first;
865}
866
867/**
868 * nnode_lookup - lookup a nnode in the LPT.
869 * @c: UBIFS file-system description object
870 * @i: nnode number
871 *
872 * This function returns a pointer to the nnode on success or a negative
873 * error code on failure.
874 */
875static struct ubifs_nnode *nnode_lookup(struct ubifs_info *c, int i)
876{
877 int err, iip;
878 struct ubifs_nnode *nnode;
879
880 if (!c->nroot) {
881 err = ubifs_read_nnode(c, NULL, 0);
882 if (err)
883 return ERR_PTR(err);
884 }
885 nnode = c->nroot;
886 while (1) {
887 iip = i & (UBIFS_LPT_FANOUT - 1);
888 i >>= UBIFS_LPT_FANOUT_SHIFT;
889 if (!i)
890 break;
891 nnode = ubifs_get_nnode(c, nnode, iip);
892 if (IS_ERR(nnode))
893 return nnode;
894 }
895 return nnode;
896}
897
898/**
899 * make_nnode_dirty - find a nnode and, if found, make it dirty.
900 * @c: UBIFS file-system description object
901 * @node_num: nnode number of nnode to make dirty
902 * @lnum: LEB number where nnode was written
903 * @offs: offset where nnode was written
904 *
905 * This function is used by LPT garbage collection. LPT garbage collection is
906 * used only for the "big" LPT model (c->big_lpt == 1). Garbage collection
907 * simply involves marking all the nodes in the LEB being garbage-collected as
908 * dirty. The dirty nodes are written next commit, after which the LEB is free
909 * to be reused.
910 *
911 * This function returns %0 on success and a negative error code on failure.
912 */
913static int make_nnode_dirty(struct ubifs_info *c, int node_num, int lnum,
914 int offs)
915{
916 struct ubifs_nnode *nnode;
917
918 nnode = nnode_lookup(c, node_num);
919 if (IS_ERR(nnode))
920 return PTR_ERR(nnode);
921 if (nnode->parent) {
922 struct ubifs_nbranch *branch;
923
924 branch = &nnode->parent->nbranch[nnode->iip];
925 if (branch->lnum != lnum || branch->offs != offs)
926 return 0; /* nnode is obsolete */
927 } else if (c->lpt_lnum != lnum || c->lpt_offs != offs)
928 return 0; /* nnode is obsolete */
929 /* Assumes cnext list is empty i.e. not called during commit */
930 if (!test_and_set_bit(DIRTY_CNODE, &nnode->flags)) {
931 c->dirty_nn_cnt += 1;
932 ubifs_add_nnode_dirt(c, nnode);
933 /* Mark parent and ancestors dirty too */
934 nnode = nnode->parent;
935 while (nnode) {
936 if (!test_and_set_bit(DIRTY_CNODE, &nnode->flags)) {
937 c->dirty_nn_cnt += 1;
938 ubifs_add_nnode_dirt(c, nnode);
939 nnode = nnode->parent;
940 } else
941 break;
942 }
943 }
944 return 0;
945}
946
947/**
948 * make_pnode_dirty - find a pnode and, if found, make it dirty.
949 * @c: UBIFS file-system description object
950 * @node_num: pnode number of pnode to make dirty
951 * @lnum: LEB number where pnode was written
952 * @offs: offset where pnode was written
953 *
954 * This function is used by LPT garbage collection. LPT garbage collection is
955 * used only for the "big" LPT model (c->big_lpt == 1). Garbage collection
956 * simply involves marking all the nodes in the LEB being garbage-collected as
957 * dirty. The dirty nodes are written next commit, after which the LEB is free
958 * to be reused.
959 *
960 * This function returns %0 on success and a negative error code on failure.
961 */
962static int make_pnode_dirty(struct ubifs_info *c, int node_num, int lnum,
963 int offs)
964{
965 struct ubifs_pnode *pnode;
966 struct ubifs_nbranch *branch;
967
968 pnode = pnode_lookup(c, node_num);
969 if (IS_ERR(pnode))
970 return PTR_ERR(pnode);
971 branch = &pnode->parent->nbranch[pnode->iip];
972 if (branch->lnum != lnum || branch->offs != offs)
973 return 0;
974 do_make_pnode_dirty(c, pnode);
975 return 0;
976}
977
978/**
979 * make_ltab_dirty - make ltab node dirty.
980 * @c: UBIFS file-system description object
981 * @lnum: LEB number where ltab was written
982 * @offs: offset where ltab was written
983 *
984 * This function is used by LPT garbage collection. LPT garbage collection is
985 * used only for the "big" LPT model (c->big_lpt == 1). Garbage collection
986 * simply involves marking all the nodes in the LEB being garbage-collected as
987 * dirty. The dirty nodes are written next commit, after which the LEB is free
988 * to be reused.
989 *
990 * This function returns %0 on success and a negative error code on failure.
991 */
992static int make_ltab_dirty(struct ubifs_info *c, int lnum, int offs)
993{
994 if (lnum != c->ltab_lnum || offs != c->ltab_offs)
995 return 0; /* This ltab node is obsolete */
996 if (!(c->lpt_drty_flgs & LTAB_DIRTY)) {
997 c->lpt_drty_flgs |= LTAB_DIRTY;
998 ubifs_add_lpt_dirt(c, c->ltab_lnum, c->ltab_sz);
999 }
1000 return 0;
1001}
1002
1003/**
1004 * make_lsave_dirty - make lsave node dirty.
1005 * @c: UBIFS file-system description object
1006 * @lnum: LEB number where lsave was written
1007 * @offs: offset where lsave was written
1008 *
1009 * This function is used by LPT garbage collection. LPT garbage collection is
1010 * used only for the "big" LPT model (c->big_lpt == 1). Garbage collection
1011 * simply involves marking all the nodes in the LEB being garbage-collected as
1012 * dirty. The dirty nodes are written next commit, after which the LEB is free
1013 * to be reused.
1014 *
1015 * This function returns %0 on success and a negative error code on failure.
1016 */
1017static int make_lsave_dirty(struct ubifs_info *c, int lnum, int offs)
1018{
1019 if (lnum != c->lsave_lnum || offs != c->lsave_offs)
1020 return 0; /* This lsave node is obsolete */
1021 if (!(c->lpt_drty_flgs & LSAVE_DIRTY)) {
1022 c->lpt_drty_flgs |= LSAVE_DIRTY;
1023 ubifs_add_lpt_dirt(c, c->lsave_lnum, c->lsave_sz);
1024 }
1025 return 0;
1026}
1027
1028/**
1029 * make_node_dirty - make node dirty.
1030 * @c: UBIFS file-system description object
1031 * @node_type: LPT node type
1032 * @node_num: node number
1033 * @lnum: LEB number where node was written
1034 * @offs: offset where node was written
1035 *
1036 * This function is used by LPT garbage collection. LPT garbage collection is
1037 * used only for the "big" LPT model (c->big_lpt == 1). Garbage collection
1038 * simply involves marking all the nodes in the LEB being garbage-collected as
1039 * dirty. The dirty nodes are written next commit, after which the LEB is free
1040 * to be reused.
1041 *
1042 * This function returns %0 on success and a negative error code on failure.
1043 */
1044static int make_node_dirty(struct ubifs_info *c, int node_type, int node_num,
1045 int lnum, int offs)
1046{
1047 switch (node_type) {
1048 case UBIFS_LPT_NNODE:
1049 return make_nnode_dirty(c, node_num, lnum, offs);
1050 case UBIFS_LPT_PNODE:
1051 return make_pnode_dirty(c, node_num, lnum, offs);
1052 case UBIFS_LPT_LTAB:
1053 return make_ltab_dirty(c, lnum, offs);
1054 case UBIFS_LPT_LSAVE:
1055 return make_lsave_dirty(c, lnum, offs);
1056 }
1057 return -EINVAL;
1058}
1059
1060/**
1061 * get_lpt_node_len - return the length of a node based on its type.
1062 * @c: UBIFS file-system description object
1063 * @node_type: LPT node type
1064 */
2ba5f7ae 1065static int get_lpt_node_len(const struct ubifs_info *c, int node_type)
1e51764a
AB
1066{
1067 switch (node_type) {
1068 case UBIFS_LPT_NNODE:
1069 return c->nnode_sz;
1070 case UBIFS_LPT_PNODE:
1071 return c->pnode_sz;
1072 case UBIFS_LPT_LTAB:
1073 return c->ltab_sz;
1074 case UBIFS_LPT_LSAVE:
1075 return c->lsave_sz;
1076 }
1077 return 0;
1078}
1079
1080/**
1081 * get_pad_len - return the length of padding in a buffer.
1082 * @c: UBIFS file-system description object
1083 * @buf: buffer
1084 * @len: length of buffer
1085 */
2ba5f7ae 1086static int get_pad_len(const struct ubifs_info *c, uint8_t *buf, int len)
1e51764a
AB
1087{
1088 int offs, pad_len;
1089
1090 if (c->min_io_size == 1)
1091 return 0;
1092 offs = c->leb_size - len;
1093 pad_len = ALIGN(offs, c->min_io_size) - offs;
1094 return pad_len;
1095}
1096
1097/**
1098 * get_lpt_node_type - return type (and node number) of a node in a buffer.
1099 * @c: UBIFS file-system description object
1100 * @buf: buffer
1101 * @node_num: node number is returned here
1102 */
2ba5f7ae
AB
1103static int get_lpt_node_type(const struct ubifs_info *c, uint8_t *buf,
1104 int *node_num)
1e51764a
AB
1105{
1106 uint8_t *addr = buf + UBIFS_LPT_CRC_BYTES;
1107 int pos = 0, node_type;
1108
1109 node_type = ubifs_unpack_bits(&addr, &pos, UBIFS_LPT_TYPE_BITS);
1110 *node_num = ubifs_unpack_bits(&addr, &pos, c->pcnt_bits);
1111 return node_type;
1112}
1113
1114/**
1115 * is_a_node - determine if a buffer contains a node.
1116 * @c: UBIFS file-system description object
1117 * @buf: buffer
1118 * @len: length of buffer
1119 *
1120 * This function returns %1 if the buffer contains a node or %0 if it does not.
1121 */
2ba5f7ae 1122static int is_a_node(const struct ubifs_info *c, uint8_t *buf, int len)
1e51764a
AB
1123{
1124 uint8_t *addr = buf + UBIFS_LPT_CRC_BYTES;
1125 int pos = 0, node_type, node_len;
1126 uint16_t crc, calc_crc;
1127
be2f6bd6
AH
1128 if (len < UBIFS_LPT_CRC_BYTES + (UBIFS_LPT_TYPE_BITS + 7) / 8)
1129 return 0;
1e51764a
AB
1130 node_type = ubifs_unpack_bits(&addr, &pos, UBIFS_LPT_TYPE_BITS);
1131 if (node_type == UBIFS_LPT_NOT_A_NODE)
1132 return 0;
1133 node_len = get_lpt_node_len(c, node_type);
1134 if (!node_len || node_len > len)
1135 return 0;
1136 pos = 0;
1137 addr = buf;
1138 crc = ubifs_unpack_bits(&addr, &pos, UBIFS_LPT_CRC_BITS);
1139 calc_crc = crc16(-1, buf + UBIFS_LPT_CRC_BYTES,
1140 node_len - UBIFS_LPT_CRC_BYTES);
1141 if (crc != calc_crc)
1142 return 0;
1143 return 1;
1144}
1145
1e51764a
AB
1146/**
1147 * lpt_gc_lnum - garbage collect a LPT LEB.
1148 * @c: UBIFS file-system description object
1149 * @lnum: LEB number to garbage collect
1150 *
1151 * LPT garbage collection is used only for the "big" LPT model
1152 * (c->big_lpt == 1). Garbage collection simply involves marking all the nodes
1153 * in the LEB being garbage-collected as dirty. The dirty nodes are written
1154 * next commit, after which the LEB is free to be reused.
1155 *
1156 * This function returns %0 on success and a negative error code on failure.
1157 */
1158static int lpt_gc_lnum(struct ubifs_info *c, int lnum)
1159{
1160 int err, len = c->leb_size, node_type, node_num, node_len, offs;
1161 void *buf = c->lpt_buf;
1162
1163 dbg_lp("LEB %d", lnum);
1164 err = ubi_read(c->ubi, lnum, buf, 0, c->leb_size);
1165 if (err) {
1166 ubifs_err("cannot read LEB %d, error %d", lnum, err);
1167 return err;
1168 }
1169 while (1) {
1170 if (!is_a_node(c, buf, len)) {
1171 int pad_len;
1172
1173 pad_len = get_pad_len(c, buf, len);
1174 if (pad_len) {
1175 buf += pad_len;
1176 len -= pad_len;
1177 continue;
1178 }
1179 return 0;
1180 }
1181 node_type = get_lpt_node_type(c, buf, &node_num);
1182 node_len = get_lpt_node_len(c, node_type);
1183 offs = c->leb_size - len;
1184 ubifs_assert(node_len != 0);
1185 mutex_lock(&c->lp_mutex);
1186 err = make_node_dirty(c, node_type, node_num, lnum, offs);
1187 mutex_unlock(&c->lp_mutex);
1188 if (err)
1189 return err;
1190 buf += node_len;
1191 len -= node_len;
1192 }
1193 return 0;
1194}
1195
1196/**
1197 * lpt_gc - LPT garbage collection.
1198 * @c: UBIFS file-system description object
1199 *
1200 * Select a LPT LEB for LPT garbage collection and call 'lpt_gc_lnum()'.
1201 * Returns %0 on success and a negative error code on failure.
1202 */
1203static int lpt_gc(struct ubifs_info *c)
1204{
1205 int i, lnum = -1, dirty = 0;
1206
1207 mutex_lock(&c->lp_mutex);
1208 for (i = 0; i < c->lpt_lebs; i++) {
1209 ubifs_assert(!c->ltab[i].tgc);
1210 if (i + c->lpt_first == c->nhead_lnum ||
1211 c->ltab[i].free + c->ltab[i].dirty == c->leb_size)
1212 continue;
1213 if (c->ltab[i].dirty > dirty) {
1214 dirty = c->ltab[i].dirty;
1215 lnum = i + c->lpt_first;
1216 }
1217 }
1218 mutex_unlock(&c->lp_mutex);
1219 if (lnum == -1)
1220 return -ENOSPC;
1221 return lpt_gc_lnum(c, lnum);
1222}
1223
1224/**
1225 * ubifs_lpt_start_commit - UBIFS commit starts.
1226 * @c: the UBIFS file-system description object
1227 *
1228 * This function has to be called when UBIFS starts the commit operation.
1229 * This function "freezes" all currently dirty LEB properties and does not
1230 * change them anymore. Further changes are saved and tracked separately
1231 * because they are not part of this commit. This function returns zero in case
1232 * of success and a negative error code in case of failure.
1233 */
1234int ubifs_lpt_start_commit(struct ubifs_info *c)
1235{
1236 int err, cnt;
1237
1238 dbg_lp("");
1239
1240 mutex_lock(&c->lp_mutex);
73944a6d
AH
1241 err = dbg_chk_lpt_free_spc(c);
1242 if (err)
1243 goto out;
1e51764a
AB
1244 err = dbg_check_ltab(c);
1245 if (err)
1246 goto out;
1247
1248 if (c->check_lpt_free) {
1249 /*
1250 * We ensure there is enough free space in
1251 * ubifs_lpt_post_commit() by marking nodes dirty. That
1252 * information is lost when we unmount, so we also need
1253 * to check free space once after mounting also.
1254 */
1255 c->check_lpt_free = 0;
1256 while (need_write_all(c)) {
1257 mutex_unlock(&c->lp_mutex);
1258 err = lpt_gc(c);
1259 if (err)
1260 return err;
1261 mutex_lock(&c->lp_mutex);
1262 }
1263 }
1264
1265 lpt_tgc_start(c);
1266
1267 if (!c->dirty_pn_cnt) {
1268 dbg_cmt("no cnodes to commit");
1269 err = 0;
1270 goto out;
1271 }
1272
1273 if (!c->big_lpt && need_write_all(c)) {
1274 /* If needed, write everything */
1275 err = make_tree_dirty(c);
1276 if (err)
1277 goto out;
1278 lpt_tgc_start(c);
1279 }
1280
1281 if (c->big_lpt)
1282 populate_lsave(c);
1283
1284 cnt = get_cnodes_to_commit(c);
1285 ubifs_assert(cnt != 0);
1286
1287 err = layout_cnodes(c);
1288 if (err)
1289 goto out;
1290
1291 /* Copy the LPT's own lprops for end commit to write */
1292 memcpy(c->ltab_cmt, c->ltab,
1293 sizeof(struct ubifs_lpt_lprops) * c->lpt_lebs);
1294 c->lpt_drty_flgs &= ~(LTAB_DIRTY | LSAVE_DIRTY);
1295
1296out:
1297 mutex_unlock(&c->lp_mutex);
1298 return err;
1299}
1300
1301/**
1302 * free_obsolete_cnodes - free obsolete cnodes for commit end.
1303 * @c: UBIFS file-system description object
1304 */
1305static void free_obsolete_cnodes(struct ubifs_info *c)
1306{
1307 struct ubifs_cnode *cnode, *cnext;
1308
1309 cnext = c->lpt_cnext;
1310 if (!cnext)
1311 return;
1312 do {
1313 cnode = cnext;
1314 cnext = cnode->cnext;
1315 if (test_bit(OBSOLETE_CNODE, &cnode->flags))
1316 kfree(cnode);
1317 else
1318 cnode->cnext = NULL;
1319 } while (cnext != c->lpt_cnext);
1320 c->lpt_cnext = NULL;
1321}
1322
1323/**
1324 * ubifs_lpt_end_commit - finish the commit operation.
1325 * @c: the UBIFS file-system description object
1326 *
1327 * This function has to be called when the commit operation finishes. It
1328 * flushes the changes which were "frozen" by 'ubifs_lprops_start_commit()' to
1329 * the media. Returns zero in case of success and a negative error code in case
1330 * of failure.
1331 */
1332int ubifs_lpt_end_commit(struct ubifs_info *c)
1333{
1334 int err;
1335
1336 dbg_lp("");
1337
1338 if (!c->lpt_cnext)
1339 return 0;
1340
1341 err = write_cnodes(c);
1342 if (err)
1343 return err;
1344
1345 mutex_lock(&c->lp_mutex);
1346 free_obsolete_cnodes(c);
1347 mutex_unlock(&c->lp_mutex);
1348
1349 return 0;
1350}
1351
1352/**
1353 * ubifs_lpt_post_commit - post commit LPT trivial GC and LPT GC.
1354 * @c: UBIFS file-system description object
1355 *
1356 * LPT trivial GC is completed after a commit. Also LPT GC is done after a
1357 * commit for the "big" LPT model.
1358 */
1359int ubifs_lpt_post_commit(struct ubifs_info *c)
1360{
1361 int err;
1362
1363 mutex_lock(&c->lp_mutex);
1364 err = lpt_tgc_end(c);
1365 if (err)
1366 goto out;
1367 if (c->big_lpt)
1368 while (need_write_all(c)) {
1369 mutex_unlock(&c->lp_mutex);
1370 err = lpt_gc(c);
1371 if (err)
1372 return err;
1373 mutex_lock(&c->lp_mutex);
1374 }
1375out:
1376 mutex_unlock(&c->lp_mutex);
1377 return err;
1378}
1379
1380/**
1381 * first_nnode - find the first nnode in memory.
1382 * @c: UBIFS file-system description object
1383 * @hght: height of tree where nnode found is returned here
1384 *
1385 * This function returns a pointer to the nnode found or %NULL if no nnode is
1386 * found. This function is a helper to 'ubifs_lpt_free()'.
1387 */
1388static struct ubifs_nnode *first_nnode(struct ubifs_info *c, int *hght)
1389{
1390 struct ubifs_nnode *nnode;
1391 int h, i, found;
1392
1393 nnode = c->nroot;
1394 *hght = 0;
1395 if (!nnode)
1396 return NULL;
1397 for (h = 1; h < c->lpt_hght; h++) {
1398 found = 0;
1399 for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
1400 if (nnode->nbranch[i].nnode) {
1401 found = 1;
1402 nnode = nnode->nbranch[i].nnode;
1403 *hght = h;
1404 break;
1405 }
1406 }
1407 if (!found)
1408 break;
1409 }
1410 return nnode;
1411}
1412
1413/**
1414 * next_nnode - find the next nnode in memory.
1415 * @c: UBIFS file-system description object
1416 * @nnode: nnode from which to start.
1417 * @hght: height of tree where nnode is, is passed and returned here
1418 *
1419 * This function returns a pointer to the nnode found or %NULL if no nnode is
1420 * found. This function is a helper to 'ubifs_lpt_free()'.
1421 */
1422static struct ubifs_nnode *next_nnode(struct ubifs_info *c,
1423 struct ubifs_nnode *nnode, int *hght)
1424{
1425 struct ubifs_nnode *parent;
1426 int iip, h, i, found;
1427
1428 parent = nnode->parent;
1429 if (!parent)
1430 return NULL;
1431 if (nnode->iip == UBIFS_LPT_FANOUT - 1) {
1432 *hght -= 1;
1433 return parent;
1434 }
1435 for (iip = nnode->iip + 1; iip < UBIFS_LPT_FANOUT; iip++) {
1436 nnode = parent->nbranch[iip].nnode;
1437 if (nnode)
1438 break;
1439 }
1440 if (!nnode) {
1441 *hght -= 1;
1442 return parent;
1443 }
1444 for (h = *hght + 1; h < c->lpt_hght; h++) {
1445 found = 0;
1446 for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
1447 if (nnode->nbranch[i].nnode) {
1448 found = 1;
1449 nnode = nnode->nbranch[i].nnode;
1450 *hght = h;
1451 break;
1452 }
1453 }
1454 if (!found)
1455 break;
1456 }
1457 return nnode;
1458}
1459
1460/**
1461 * ubifs_lpt_free - free resources owned by the LPT.
1462 * @c: UBIFS file-system description object
1463 * @wr_only: free only resources used for writing
1464 */
1465void ubifs_lpt_free(struct ubifs_info *c, int wr_only)
1466{
1467 struct ubifs_nnode *nnode;
1468 int i, hght;
1469
1470 /* Free write-only things first */
1471
1472 free_obsolete_cnodes(c); /* Leftover from a failed commit */
1473
1474 vfree(c->ltab_cmt);
1475 c->ltab_cmt = NULL;
1476 vfree(c->lpt_buf);
1477 c->lpt_buf = NULL;
1478 kfree(c->lsave);
1479 c->lsave = NULL;
1480
1481 if (wr_only)
1482 return;
1483
1484 /* Now free the rest */
1485
1486 nnode = first_nnode(c, &hght);
1487 while (nnode) {
1488 for (i = 0; i < UBIFS_LPT_FANOUT; i++)
1489 kfree(nnode->nbranch[i].nnode);
1490 nnode = next_nnode(c, nnode, &hght);
1491 }
1492 for (i = 0; i < LPROPS_HEAP_CNT; i++)
1493 kfree(c->lpt_heap[i].arr);
1494 kfree(c->dirty_idx.arr);
1495 kfree(c->nroot);
1496 vfree(c->ltab);
1497 kfree(c->lpt_nod_buf);
1498}
1499
1500#ifdef CONFIG_UBIFS_FS_DEBUG
1501
1502/**
80736d41 1503 * dbg_is_all_ff - determine if a buffer contains only 0xFF bytes.
1e51764a
AB
1504 * @buf: buffer
1505 * @len: buffer length
1506 */
1507static int dbg_is_all_ff(uint8_t *buf, int len)
1508{
1509 int i;
1510
1511 for (i = 0; i < len; i++)
1512 if (buf[i] != 0xff)
1513 return 0;
1514 return 1;
1515}
1516
1517/**
1518 * dbg_is_nnode_dirty - determine if a nnode is dirty.
1519 * @c: the UBIFS file-system description object
1520 * @lnum: LEB number where nnode was written
1521 * @offs: offset where nnode was written
1522 */
1523static int dbg_is_nnode_dirty(struct ubifs_info *c, int lnum, int offs)
1524{
1525 struct ubifs_nnode *nnode;
1526 int hght;
1527
80736d41 1528 /* Entire tree is in memory so first_nnode / next_nnode are OK */
1e51764a
AB
1529 nnode = first_nnode(c, &hght);
1530 for (; nnode; nnode = next_nnode(c, nnode, &hght)) {
1531 struct ubifs_nbranch *branch;
1532
1533 cond_resched();
1534 if (nnode->parent) {
1535 branch = &nnode->parent->nbranch[nnode->iip];
1536 if (branch->lnum != lnum || branch->offs != offs)
1537 continue;
1538 if (test_bit(DIRTY_CNODE, &nnode->flags))
1539 return 1;
1540 return 0;
1541 } else {
1542 if (c->lpt_lnum != lnum || c->lpt_offs != offs)
1543 continue;
1544 if (test_bit(DIRTY_CNODE, &nnode->flags))
1545 return 1;
1546 return 0;
1547 }
1548 }
1549 return 1;
1550}
1551
1552/**
1553 * dbg_is_pnode_dirty - determine if a pnode is dirty.
1554 * @c: the UBIFS file-system description object
1555 * @lnum: LEB number where pnode was written
1556 * @offs: offset where pnode was written
1557 */
1558static int dbg_is_pnode_dirty(struct ubifs_info *c, int lnum, int offs)
1559{
1560 int i, cnt;
1561
1562 cnt = DIV_ROUND_UP(c->main_lebs, UBIFS_LPT_FANOUT);
1563 for (i = 0; i < cnt; i++) {
1564 struct ubifs_pnode *pnode;
1565 struct ubifs_nbranch *branch;
1566
1567 cond_resched();
1568 pnode = pnode_lookup(c, i);
1569 if (IS_ERR(pnode))
1570 return PTR_ERR(pnode);
1571 branch = &pnode->parent->nbranch[pnode->iip];
1572 if (branch->lnum != lnum || branch->offs != offs)
1573 continue;
1574 if (test_bit(DIRTY_CNODE, &pnode->flags))
1575 return 1;
1576 return 0;
1577 }
1578 return 1;
1579}
1580
1581/**
1582 * dbg_is_ltab_dirty - determine if a ltab node is dirty.
1583 * @c: the UBIFS file-system description object
1584 * @lnum: LEB number where ltab node was written
1585 * @offs: offset where ltab node was written
1586 */
1587static int dbg_is_ltab_dirty(struct ubifs_info *c, int lnum, int offs)
1588{
1589 if (lnum != c->ltab_lnum || offs != c->ltab_offs)
1590 return 1;
1591 return (c->lpt_drty_flgs & LTAB_DIRTY) != 0;
1592}
1593
1594/**
1595 * dbg_is_lsave_dirty - determine if a lsave node is dirty.
1596 * @c: the UBIFS file-system description object
1597 * @lnum: LEB number where lsave node was written
1598 * @offs: offset where lsave node was written
1599 */
1600static int dbg_is_lsave_dirty(struct ubifs_info *c, int lnum, int offs)
1601{
1602 if (lnum != c->lsave_lnum || offs != c->lsave_offs)
1603 return 1;
1604 return (c->lpt_drty_flgs & LSAVE_DIRTY) != 0;
1605}
1606
1607/**
1608 * dbg_is_node_dirty - determine if a node is dirty.
1609 * @c: the UBIFS file-system description object
1610 * @node_type: node type
1611 * @lnum: LEB number where node was written
1612 * @offs: offset where node was written
1613 */
1614static int dbg_is_node_dirty(struct ubifs_info *c, int node_type, int lnum,
1615 int offs)
1616{
1617 switch (node_type) {
1618 case UBIFS_LPT_NNODE:
1619 return dbg_is_nnode_dirty(c, lnum, offs);
1620 case UBIFS_LPT_PNODE:
1621 return dbg_is_pnode_dirty(c, lnum, offs);
1622 case UBIFS_LPT_LTAB:
1623 return dbg_is_ltab_dirty(c, lnum, offs);
1624 case UBIFS_LPT_LSAVE:
1625 return dbg_is_lsave_dirty(c, lnum, offs);
1626 }
1627 return 1;
1628}
1629
1630/**
1631 * dbg_check_ltab_lnum - check the ltab for a LPT LEB number.
1632 * @c: the UBIFS file-system description object
1633 * @lnum: LEB number where node was written
1634 * @offs: offset where node was written
1635 *
1636 * This function returns %0 on success and a negative error code on failure.
1637 */
1638static int dbg_check_ltab_lnum(struct ubifs_info *c, int lnum)
1639{
1640 int err, len = c->leb_size, dirty = 0, node_type, node_num, node_len;
1641 int ret;
6fb324a4 1642 void *buf, *p;
1e51764a 1643
2b1844a8 1644 if (!dbg_is_chk_lprops(c))
45e12d90
AB
1645 return 0;
1646
fc5e58c0 1647 buf = p = __vmalloc(c->leb_size, GFP_NOFS, PAGE_KERNEL);
6fb324a4
AB
1648 if (!buf) {
1649 ubifs_err("cannot allocate memory for ltab checking");
1650 return 0;
1651 }
1652
1e51764a
AB
1653 dbg_lp("LEB %d", lnum);
1654 err = ubi_read(c->ubi, lnum, buf, 0, c->leb_size);
1655 if (err) {
1656 dbg_msg("ubi_read failed, LEB %d, error %d", lnum, err);
6fb324a4 1657 goto out;
1e51764a
AB
1658 }
1659 while (1) {
6fb324a4 1660 if (!is_a_node(c, p, len)) {
1e51764a
AB
1661 int i, pad_len;
1662
6fb324a4 1663 pad_len = get_pad_len(c, p, len);
1e51764a 1664 if (pad_len) {
6fb324a4 1665 p += pad_len;
1e51764a
AB
1666 len -= pad_len;
1667 dirty += pad_len;
1668 continue;
1669 }
6fb324a4 1670 if (!dbg_is_all_ff(p, len)) {
1e51764a
AB
1671 dbg_msg("invalid empty space in LEB %d at %d",
1672 lnum, c->leb_size - len);
1673 err = -EINVAL;
1674 }
1675 i = lnum - c->lpt_first;
1676 if (len != c->ltab[i].free) {
1677 dbg_msg("invalid free space in LEB %d "
1678 "(free %d, expected %d)",
1679 lnum, len, c->ltab[i].free);
1680 err = -EINVAL;
1681 }
1682 if (dirty != c->ltab[i].dirty) {
1683 dbg_msg("invalid dirty space in LEB %d "
1684 "(dirty %d, expected %d)",
1685 lnum, dirty, c->ltab[i].dirty);
1686 err = -EINVAL;
1687 }
6fb324a4 1688 goto out;
1e51764a 1689 }
6fb324a4 1690 node_type = get_lpt_node_type(c, p, &node_num);
1e51764a
AB
1691 node_len = get_lpt_node_len(c, node_type);
1692 ret = dbg_is_node_dirty(c, node_type, lnum, c->leb_size - len);
1693 if (ret == 1)
1694 dirty += node_len;
6fb324a4 1695 p += node_len;
1e51764a
AB
1696 len -= node_len;
1697 }
6fb324a4
AB
1698
1699 err = 0;
1700out:
1701 vfree(buf);
1702 return err;
1e51764a
AB
1703}
1704
1705/**
1706 * dbg_check_ltab - check the free and dirty space in the ltab.
1707 * @c: the UBIFS file-system description object
1708 *
1709 * This function returns %0 on success and a negative error code on failure.
1710 */
1711int dbg_check_ltab(struct ubifs_info *c)
1712{
1713 int lnum, err, i, cnt;
1714
2b1844a8 1715 if (!dbg_is_chk_lprops(c))
1e51764a
AB
1716 return 0;
1717
1718 /* Bring the entire tree into memory */
1719 cnt = DIV_ROUND_UP(c->main_lebs, UBIFS_LPT_FANOUT);
1720 for (i = 0; i < cnt; i++) {
1721 struct ubifs_pnode *pnode;
1722
1723 pnode = pnode_lookup(c, i);
1724 if (IS_ERR(pnode))
1725 return PTR_ERR(pnode);
1726 cond_resched();
1727 }
1728
1729 /* Check nodes */
1730 err = dbg_check_lpt_nodes(c, (struct ubifs_cnode *)c->nroot, 0, 0);
1731 if (err)
1732 return err;
1733
1734 /* Check each LEB */
1735 for (lnum = c->lpt_first; lnum <= c->lpt_last; lnum++) {
1736 err = dbg_check_ltab_lnum(c, lnum);
1737 if (err) {
1738 dbg_err("failed at LEB %d", lnum);
1739 return err;
1740 }
1741 }
1742
1743 dbg_lp("succeeded");
1744 return 0;
1745}
1746
73944a6d
AH
1747/**
1748 * dbg_chk_lpt_free_spc - check LPT free space is enough to write entire LPT.
1749 * @c: the UBIFS file-system description object
1750 *
1751 * This function returns %0 on success and a negative error code on failure.
1752 */
1753int dbg_chk_lpt_free_spc(struct ubifs_info *c)
1754{
1755 long long free = 0;
1756 int i;
1757
2b1844a8 1758 if (!dbg_is_chk_lprops(c))
45e12d90
AB
1759 return 0;
1760
73944a6d
AH
1761 for (i = 0; i < c->lpt_lebs; i++) {
1762 if (c->ltab[i].tgc || c->ltab[i].cmt)
1763 continue;
1764 if (i + c->lpt_first == c->nhead_lnum)
1765 free += c->leb_size - c->nhead_offs;
1766 else if (c->ltab[i].free == c->leb_size)
1767 free += c->leb_size;
1768 }
1769 if (free < c->lpt_sz) {
1770 dbg_err("LPT space error: free %lld lpt_sz %lld",
1771 free, c->lpt_sz);
1772 dbg_dump_lpt_info(c);
2ba5f7ae 1773 dbg_dump_lpt_lebs(c);
787845bd 1774 dump_stack();
73944a6d
AH
1775 return -EINVAL;
1776 }
1777 return 0;
1778}
1779
1780/**
1781 * dbg_chk_lpt_sz - check LPT does not write more than LPT size.
1782 * @c: the UBIFS file-system description object
2bc275e9 1783 * @action: what to do
73944a6d
AH
1784 * @len: length written
1785 *
1786 * This function returns %0 on success and a negative error code on failure.
2bc275e9
AH
1787 * The @action argument may be one of:
1788 * o %0 - LPT debugging checking starts, initialize debugging variables;
1789 * o %1 - wrote an LPT node, increase LPT size by @len bytes;
1790 * o %2 - switched to a different LEB and wasted @len bytes;
1791 * o %3 - check that we've written the right number of bytes.
1792 * o %4 - wasted @len bytes;
73944a6d
AH
1793 */
1794int dbg_chk_lpt_sz(struct ubifs_info *c, int action, int len)
1795{
17c2f9f8 1796 struct ubifs_debug_info *d = c->dbg;
73944a6d
AH
1797 long long chk_lpt_sz, lpt_sz;
1798 int err = 0;
1799
2b1844a8 1800 if (!dbg_is_chk_lprops(c))
45e12d90
AB
1801 return 0;
1802
73944a6d
AH
1803 switch (action) {
1804 case 0:
17c2f9f8
AB
1805 d->chk_lpt_sz = 0;
1806 d->chk_lpt_sz2 = 0;
1807 d->chk_lpt_lebs = 0;
1808 d->chk_lpt_wastage = 0;
73944a6d
AH
1809 if (c->dirty_pn_cnt > c->pnode_cnt) {
1810 dbg_err("dirty pnodes %d exceed max %d",
1811 c->dirty_pn_cnt, c->pnode_cnt);
1812 err = -EINVAL;
1813 }
1814 if (c->dirty_nn_cnt > c->nnode_cnt) {
1815 dbg_err("dirty nnodes %d exceed max %d",
1816 c->dirty_nn_cnt, c->nnode_cnt);
1817 err = -EINVAL;
1818 }
1819 return err;
1820 case 1:
17c2f9f8 1821 d->chk_lpt_sz += len;
73944a6d
AH
1822 return 0;
1823 case 2:
17c2f9f8
AB
1824 d->chk_lpt_sz += len;
1825 d->chk_lpt_wastage += len;
1826 d->chk_lpt_lebs += 1;
73944a6d
AH
1827 return 0;
1828 case 3:
1829 chk_lpt_sz = c->leb_size;
17c2f9f8 1830 chk_lpt_sz *= d->chk_lpt_lebs;
73944a6d 1831 chk_lpt_sz += len - c->nhead_offs;
17c2f9f8 1832 if (d->chk_lpt_sz != chk_lpt_sz) {
73944a6d 1833 dbg_err("LPT wrote %lld but space used was %lld",
17c2f9f8 1834 d->chk_lpt_sz, chk_lpt_sz);
73944a6d
AH
1835 err = -EINVAL;
1836 }
17c2f9f8 1837 if (d->chk_lpt_sz > c->lpt_sz) {
73944a6d 1838 dbg_err("LPT wrote %lld but lpt_sz is %lld",
17c2f9f8 1839 d->chk_lpt_sz, c->lpt_sz);
73944a6d
AH
1840 err = -EINVAL;
1841 }
17c2f9f8 1842 if (d->chk_lpt_sz2 && d->chk_lpt_sz != d->chk_lpt_sz2) {
73944a6d 1843 dbg_err("LPT layout size %lld but wrote %lld",
17c2f9f8 1844 d->chk_lpt_sz, d->chk_lpt_sz2);
73944a6d
AH
1845 err = -EINVAL;
1846 }
17c2f9f8 1847 if (d->chk_lpt_sz2 && d->new_nhead_offs != len) {
73944a6d 1848 dbg_err("LPT new nhead offs: expected %d was %d",
17c2f9f8 1849 d->new_nhead_offs, len);
73944a6d
AH
1850 err = -EINVAL;
1851 }
1852 lpt_sz = (long long)c->pnode_cnt * c->pnode_sz;
1853 lpt_sz += (long long)c->nnode_cnt * c->nnode_sz;
1854 lpt_sz += c->ltab_sz;
1855 if (c->big_lpt)
1856 lpt_sz += c->lsave_sz;
17c2f9f8 1857 if (d->chk_lpt_sz - d->chk_lpt_wastage > lpt_sz) {
73944a6d 1858 dbg_err("LPT chk_lpt_sz %lld + waste %lld exceeds %lld",
17c2f9f8 1859 d->chk_lpt_sz, d->chk_lpt_wastage, lpt_sz);
73944a6d
AH
1860 err = -EINVAL;
1861 }
787845bd 1862 if (err) {
73944a6d 1863 dbg_dump_lpt_info(c);
2ba5f7ae 1864 dbg_dump_lpt_lebs(c);
787845bd
AB
1865 dump_stack();
1866 }
17c2f9f8
AB
1867 d->chk_lpt_sz2 = d->chk_lpt_sz;
1868 d->chk_lpt_sz = 0;
1869 d->chk_lpt_wastage = 0;
1870 d->chk_lpt_lebs = 0;
1871 d->new_nhead_offs = len;
73944a6d
AH
1872 return err;
1873 case 4:
17c2f9f8
AB
1874 d->chk_lpt_sz += len;
1875 d->chk_lpt_wastage += len;
73944a6d
AH
1876 return 0;
1877 default:
1878 return -EINVAL;
1879 }
1880}
1881
2ba5f7ae
AB
1882/**
1883 * dbg_dump_lpt_leb - dump an LPT LEB.
1884 * @c: UBIFS file-system description object
1885 * @lnum: LEB number to dump
1886 *
1887 * This function dumps an LEB from LPT area. Nodes in this area are very
1888 * different to nodes in the main area (e.g., they do not have common headers,
1889 * they do not have 8-byte alignments, etc), so we have a separate function to
80736d41 1890 * dump LPT area LEBs. Note, LPT has to be locked by the caller.
2ba5f7ae
AB
1891 */
1892static void dump_lpt_leb(const struct ubifs_info *c, int lnum)
1893{
1894 int err, len = c->leb_size, node_type, node_num, node_len, offs;
cab95d44 1895 void *buf, *p;
2ba5f7ae
AB
1896
1897 printk(KERN_DEBUG "(pid %d) start dumping LEB %d\n",
1898 current->pid, lnum);
fc5e58c0 1899 buf = p = __vmalloc(c->leb_size, GFP_NOFS, PAGE_KERNEL);
cab95d44
AB
1900 if (!buf) {
1901 ubifs_err("cannot allocate memory to dump LPT");
1902 return;
1903 }
1904
2ba5f7ae
AB
1905 err = ubi_read(c->ubi, lnum, buf, 0, c->leb_size);
1906 if (err) {
1907 ubifs_err("cannot read LEB %d, error %d", lnum, err);
cab95d44 1908 goto out;
2ba5f7ae
AB
1909 }
1910 while (1) {
1911 offs = c->leb_size - len;
cab95d44 1912 if (!is_a_node(c, p, len)) {
2ba5f7ae
AB
1913 int pad_len;
1914
cab95d44 1915 pad_len = get_pad_len(c, p, len);
2ba5f7ae
AB
1916 if (pad_len) {
1917 printk(KERN_DEBUG "LEB %d:%d, pad %d bytes\n",
1918 lnum, offs, pad_len);
cab95d44 1919 p += pad_len;
2ba5f7ae
AB
1920 len -= pad_len;
1921 continue;
1922 }
1923 if (len)
1924 printk(KERN_DEBUG "LEB %d:%d, free %d bytes\n",
1925 lnum, offs, len);
1926 break;
1927 }
1928
cab95d44 1929 node_type = get_lpt_node_type(c, p, &node_num);
2ba5f7ae
AB
1930 switch (node_type) {
1931 case UBIFS_LPT_PNODE:
1932 {
1933 node_len = c->pnode_sz;
1934 if (c->big_lpt)
1935 printk(KERN_DEBUG "LEB %d:%d, pnode num %d\n",
1936 lnum, offs, node_num);
1937 else
1938 printk(KERN_DEBUG "LEB %d:%d, pnode\n",
1939 lnum, offs);
1940 break;
1941 }
1942 case UBIFS_LPT_NNODE:
1943 {
1944 int i;
1945 struct ubifs_nnode nnode;
1946
1947 node_len = c->nnode_sz;
1948 if (c->big_lpt)
1949 printk(KERN_DEBUG "LEB %d:%d, nnode num %d, ",
1950 lnum, offs, node_num);
1951 else
1952 printk(KERN_DEBUG "LEB %d:%d, nnode, ",
1953 lnum, offs);
cab95d44 1954 err = ubifs_unpack_nnode(c, p, &nnode);
2ba5f7ae 1955 for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
c9927c3e 1956 printk(KERN_CONT "%d:%d", nnode.nbranch[i].lnum,
2ba5f7ae
AB
1957 nnode.nbranch[i].offs);
1958 if (i != UBIFS_LPT_FANOUT - 1)
c9927c3e 1959 printk(KERN_CONT ", ");
2ba5f7ae 1960 }
c9927c3e 1961 printk(KERN_CONT "\n");
2ba5f7ae
AB
1962 break;
1963 }
1964 case UBIFS_LPT_LTAB:
1965 node_len = c->ltab_sz;
1966 printk(KERN_DEBUG "LEB %d:%d, ltab\n",
1967 lnum, offs);
1968 break;
1969 case UBIFS_LPT_LSAVE:
1970 node_len = c->lsave_sz;
1971 printk(KERN_DEBUG "LEB %d:%d, lsave len\n", lnum, offs);
1972 break;
1973 default:
1974 ubifs_err("LPT node type %d not recognized", node_type);
cab95d44 1975 goto out;
2ba5f7ae
AB
1976 }
1977
cab95d44 1978 p += node_len;
2ba5f7ae
AB
1979 len -= node_len;
1980 }
1981
1982 printk(KERN_DEBUG "(pid %d) finish dumping LEB %d\n",
1983 current->pid, lnum);
cab95d44
AB
1984out:
1985 vfree(buf);
1986 return;
2ba5f7ae
AB
1987}
1988
1989/**
1990 * dbg_dump_lpt_lebs - dump LPT lebs.
1991 * @c: UBIFS file-system description object
1992 *
1993 * This function dumps all LPT LEBs. The caller has to make sure the LPT is
1994 * locked.
1995 */
1996void dbg_dump_lpt_lebs(const struct ubifs_info *c)
1997{
1998 int i;
1999
2000 printk(KERN_DEBUG "(pid %d) start dumping all LPT LEBs\n",
2001 current->pid);
2002 for (i = 0; i < c->lpt_lebs; i++)
2003 dump_lpt_leb(c, i + c->lpt_first);
2004 printk(KERN_DEBUG "(pid %d) finish dumping all LPT LEBs\n",
2005 current->pid);
2006}
2007
cdd8ad6e
AB
2008/**
2009 * dbg_populate_lsave - debugging version of 'populate_lsave()'
2010 * @c: UBIFS file-system description object
2011 *
2012 * This is a debugging version for 'populate_lsave()' which populates lsave
2013 * with random LEBs instead of useful LEBs, which is good for test coverage.
2014 * Returns zero if lsave has not been populated (this debugging feature is
2015 * disabled) an non-zero if lsave has been populated.
2016 */
2017static int dbg_populate_lsave(struct ubifs_info *c)
2018{
2019 struct ubifs_lprops *lprops;
2020 struct ubifs_lpt_heap *heap;
2021 int i;
2022
2b1844a8 2023 if (!dbg_is_chk_gen(c))
cdd8ad6e
AB
2024 return 0;
2025 if (random32() & 3)
2026 return 0;
2027
2028 for (i = 0; i < c->lsave_cnt; i++)
2029 c->lsave[i] = c->main_first;
2030
2031 list_for_each_entry(lprops, &c->empty_list, list)
2032 c->lsave[random32() % c->lsave_cnt] = lprops->lnum;
2033 list_for_each_entry(lprops, &c->freeable_list, list)
2034 c->lsave[random32() % c->lsave_cnt] = lprops->lnum;
2035 list_for_each_entry(lprops, &c->frdi_idx_list, list)
2036 c->lsave[random32() % c->lsave_cnt] = lprops->lnum;
2037
2038 heap = &c->lpt_heap[LPROPS_DIRTY_IDX - 1];
2039 for (i = 0; i < heap->cnt; i++)
2040 c->lsave[random32() % c->lsave_cnt] = heap->arr[i]->lnum;
2041 heap = &c->lpt_heap[LPROPS_DIRTY - 1];
2042 for (i = 0; i < heap->cnt; i++)
2043 c->lsave[random32() % c->lsave_cnt] = heap->arr[i]->lnum;
2044 heap = &c->lpt_heap[LPROPS_FREE - 1];
2045 for (i = 0; i < heap->cnt; i++)
2046 c->lsave[random32() % c->lsave_cnt] = heap->arr[i]->lnum;
2047
2048 return 1;
2049}
2050
1e51764a 2051#endif /* CONFIG_UBIFS_FS_DEBUG */