]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - fs/ubifs/lpt_commit.c
UBIFS: fix bogus assertion
[mirror_ubuntu-artful-kernel.git] / fs / ubifs / lpt_commit.c
CommitLineData
1e51764a
AB
1/*
2 * This file is part of UBIFS.
3 *
4 * Copyright (C) 2006-2008 Nokia Corporation.
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published by
8 * the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
15 * You should have received a copy of the GNU General Public License along with
16 * this program; if not, write to the Free Software Foundation, Inc., 51
17 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18 *
19 * Authors: Adrian Hunter
20 * Artem Bityutskiy (Битюцкий Артём)
21 */
22
23/*
24 * This file implements commit-related functionality of the LEB properties
25 * subsystem.
26 */
27
28#include <linux/crc16.h>
29#include "ubifs.h"
30
31/**
32 * first_dirty_cnode - find first dirty cnode.
33 * @c: UBIFS file-system description object
34 * @nnode: nnode at which to start
35 *
36 * This function returns the first dirty cnode or %NULL if there is not one.
37 */
38static struct ubifs_cnode *first_dirty_cnode(struct ubifs_nnode *nnode)
39{
40 ubifs_assert(nnode);
41 while (1) {
42 int i, cont = 0;
43
44 for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
45 struct ubifs_cnode *cnode;
46
47 cnode = nnode->nbranch[i].cnode;
48 if (cnode &&
49 test_bit(DIRTY_CNODE, &cnode->flags)) {
50 if (cnode->level == 0)
51 return cnode;
52 nnode = (struct ubifs_nnode *)cnode;
53 cont = 1;
54 break;
55 }
56 }
57 if (!cont)
58 return (struct ubifs_cnode *)nnode;
59 }
60}
61
62/**
63 * next_dirty_cnode - find next dirty cnode.
64 * @cnode: cnode from which to begin searching
65 *
66 * This function returns the next dirty cnode or %NULL if there is not one.
67 */
68static struct ubifs_cnode *next_dirty_cnode(struct ubifs_cnode *cnode)
69{
70 struct ubifs_nnode *nnode;
71 int i;
72
73 ubifs_assert(cnode);
74 nnode = cnode->parent;
75 if (!nnode)
76 return NULL;
77 for (i = cnode->iip + 1; i < UBIFS_LPT_FANOUT; i++) {
78 cnode = nnode->nbranch[i].cnode;
79 if (cnode && test_bit(DIRTY_CNODE, &cnode->flags)) {
80 if (cnode->level == 0)
81 return cnode; /* cnode is a pnode */
82 /* cnode is a nnode */
83 return first_dirty_cnode((struct ubifs_nnode *)cnode);
84 }
85 }
86 return (struct ubifs_cnode *)nnode;
87}
88
89/**
90 * get_cnodes_to_commit - create list of dirty cnodes to commit.
91 * @c: UBIFS file-system description object
92 *
93 * This function returns the number of cnodes to commit.
94 */
95static int get_cnodes_to_commit(struct ubifs_info *c)
96{
97 struct ubifs_cnode *cnode, *cnext;
98 int cnt = 0;
99
100 if (!c->nroot)
101 return 0;
102
103 if (!test_bit(DIRTY_CNODE, &c->nroot->flags))
104 return 0;
105
106 c->lpt_cnext = first_dirty_cnode(c->nroot);
107 cnode = c->lpt_cnext;
108 if (!cnode)
109 return 0;
110 cnt += 1;
111 while (1) {
112 ubifs_assert(!test_bit(COW_ZNODE, &cnode->flags));
113 __set_bit(COW_ZNODE, &cnode->flags);
114 cnext = next_dirty_cnode(cnode);
115 if (!cnext) {
116 cnode->cnext = c->lpt_cnext;
117 break;
118 }
119 cnode->cnext = cnext;
120 cnode = cnext;
121 cnt += 1;
122 }
123 dbg_cmt("committing %d cnodes", cnt);
124 dbg_lp("committing %d cnodes", cnt);
125 ubifs_assert(cnt == c->dirty_nn_cnt + c->dirty_pn_cnt);
126 return cnt;
127}
128
129/**
130 * upd_ltab - update LPT LEB properties.
131 * @c: UBIFS file-system description object
132 * @lnum: LEB number
133 * @free: amount of free space
134 * @dirty: amount of dirty space to add
135 */
136static void upd_ltab(struct ubifs_info *c, int lnum, int free, int dirty)
137{
138 dbg_lp("LEB %d free %d dirty %d to %d +%d",
139 lnum, c->ltab[lnum - c->lpt_first].free,
140 c->ltab[lnum - c->lpt_first].dirty, free, dirty);
141 ubifs_assert(lnum >= c->lpt_first && lnum <= c->lpt_last);
142 c->ltab[lnum - c->lpt_first].free = free;
143 c->ltab[lnum - c->lpt_first].dirty += dirty;
144}
145
146/**
147 * alloc_lpt_leb - allocate an LPT LEB that is empty.
148 * @c: UBIFS file-system description object
149 * @lnum: LEB number is passed and returned here
150 *
151 * This function finds the next empty LEB in the ltab starting from @lnum. If a
152 * an empty LEB is found it is returned in @lnum and the function returns %0.
153 * Otherwise the function returns -ENOSPC. Note however, that LPT is designed
154 * never to run out of space.
155 */
156static int alloc_lpt_leb(struct ubifs_info *c, int *lnum)
157{
158 int i, n;
159
160 n = *lnum - c->lpt_first + 1;
161 for (i = n; i < c->lpt_lebs; i++) {
162 if (c->ltab[i].tgc || c->ltab[i].cmt)
163 continue;
164 if (c->ltab[i].free == c->leb_size) {
165 c->ltab[i].cmt = 1;
166 *lnum = i + c->lpt_first;
167 return 0;
168 }
169 }
170
171 for (i = 0; i < n; i++) {
172 if (c->ltab[i].tgc || c->ltab[i].cmt)
173 continue;
174 if (c->ltab[i].free == c->leb_size) {
175 c->ltab[i].cmt = 1;
176 *lnum = i + c->lpt_first;
177 return 0;
178 }
179 }
1e51764a
AB
180 return -ENOSPC;
181}
182
183/**
184 * layout_cnodes - layout cnodes for commit.
185 * @c: UBIFS file-system description object
186 *
187 * This function returns %0 on success and a negative error code on failure.
188 */
189static int layout_cnodes(struct ubifs_info *c)
190{
191 int lnum, offs, len, alen, done_lsave, done_ltab, err;
192 struct ubifs_cnode *cnode;
193
73944a6d
AH
194 err = dbg_chk_lpt_sz(c, 0, 0);
195 if (err)
196 return err;
1e51764a
AB
197 cnode = c->lpt_cnext;
198 if (!cnode)
199 return 0;
200 lnum = c->nhead_lnum;
201 offs = c->nhead_offs;
202 /* Try to place lsave and ltab nicely */
203 done_lsave = !c->big_lpt;
204 done_ltab = 0;
205 if (!done_lsave && offs + c->lsave_sz <= c->leb_size) {
206 done_lsave = 1;
207 c->lsave_lnum = lnum;
208 c->lsave_offs = offs;
209 offs += c->lsave_sz;
73944a6d 210 dbg_chk_lpt_sz(c, 1, c->lsave_sz);
1e51764a
AB
211 }
212
213 if (offs + c->ltab_sz <= c->leb_size) {
214 done_ltab = 1;
215 c->ltab_lnum = lnum;
216 c->ltab_offs = offs;
217 offs += c->ltab_sz;
73944a6d 218 dbg_chk_lpt_sz(c, 1, c->ltab_sz);
1e51764a
AB
219 }
220
221 do {
222 if (cnode->level) {
223 len = c->nnode_sz;
224 c->dirty_nn_cnt -= 1;
225 } else {
226 len = c->pnode_sz;
227 c->dirty_pn_cnt -= 1;
228 }
229 while (offs + len > c->leb_size) {
230 alen = ALIGN(offs, c->min_io_size);
231 upd_ltab(c, lnum, c->leb_size - alen, alen - offs);
2bc275e9 232 dbg_chk_lpt_sz(c, 2, c->leb_size - offs);
1e51764a
AB
233 err = alloc_lpt_leb(c, &lnum);
234 if (err)
73944a6d 235 goto no_space;
1e51764a
AB
236 offs = 0;
237 ubifs_assert(lnum >= c->lpt_first &&
238 lnum <= c->lpt_last);
239 /* Try to place lsave and ltab nicely */
240 if (!done_lsave) {
241 done_lsave = 1;
242 c->lsave_lnum = lnum;
243 c->lsave_offs = offs;
244 offs += c->lsave_sz;
73944a6d 245 dbg_chk_lpt_sz(c, 1, c->lsave_sz);
1e51764a
AB
246 continue;
247 }
248 if (!done_ltab) {
249 done_ltab = 1;
250 c->ltab_lnum = lnum;
251 c->ltab_offs = offs;
252 offs += c->ltab_sz;
73944a6d 253 dbg_chk_lpt_sz(c, 1, c->ltab_sz);
1e51764a
AB
254 continue;
255 }
256 break;
257 }
258 if (cnode->parent) {
259 cnode->parent->nbranch[cnode->iip].lnum = lnum;
260 cnode->parent->nbranch[cnode->iip].offs = offs;
261 } else {
262 c->lpt_lnum = lnum;
263 c->lpt_offs = offs;
264 }
265 offs += len;
73944a6d 266 dbg_chk_lpt_sz(c, 1, len);
1e51764a
AB
267 cnode = cnode->cnext;
268 } while (cnode && cnode != c->lpt_cnext);
269
270 /* Make sure to place LPT's save table */
271 if (!done_lsave) {
272 if (offs + c->lsave_sz > c->leb_size) {
273 alen = ALIGN(offs, c->min_io_size);
274 upd_ltab(c, lnum, c->leb_size - alen, alen - offs);
2bc275e9 275 dbg_chk_lpt_sz(c, 2, c->leb_size - offs);
1e51764a
AB
276 err = alloc_lpt_leb(c, &lnum);
277 if (err)
73944a6d 278 goto no_space;
1e51764a
AB
279 offs = 0;
280 ubifs_assert(lnum >= c->lpt_first &&
281 lnum <= c->lpt_last);
282 }
283 done_lsave = 1;
284 c->lsave_lnum = lnum;
285 c->lsave_offs = offs;
286 offs += c->lsave_sz;
73944a6d 287 dbg_chk_lpt_sz(c, 1, c->lsave_sz);
1e51764a
AB
288 }
289
290 /* Make sure to place LPT's own lprops table */
291 if (!done_ltab) {
292 if (offs + c->ltab_sz > c->leb_size) {
293 alen = ALIGN(offs, c->min_io_size);
294 upd_ltab(c, lnum, c->leb_size - alen, alen - offs);
2bc275e9 295 dbg_chk_lpt_sz(c, 2, c->leb_size - offs);
1e51764a
AB
296 err = alloc_lpt_leb(c, &lnum);
297 if (err)
73944a6d 298 goto no_space;
1e51764a
AB
299 offs = 0;
300 ubifs_assert(lnum >= c->lpt_first &&
301 lnum <= c->lpt_last);
302 }
303 done_ltab = 1;
304 c->ltab_lnum = lnum;
305 c->ltab_offs = offs;
306 offs += c->ltab_sz;
73944a6d 307 dbg_chk_lpt_sz(c, 1, c->ltab_sz);
1e51764a
AB
308 }
309
310 alen = ALIGN(offs, c->min_io_size);
311 upd_ltab(c, lnum, c->leb_size - alen, alen - offs);
73944a6d
AH
312 dbg_chk_lpt_sz(c, 4, alen - offs);
313 err = dbg_chk_lpt_sz(c, 3, alen);
314 if (err)
315 return err;
1e51764a 316 return 0;
73944a6d
AH
317
318no_space:
319 ubifs_err("LPT out of space");
320 dbg_err("LPT out of space at LEB %d:%d needing %d, done_ltab %d, "
321 "done_lsave %d", lnum, offs, len, done_ltab, done_lsave);
322 dbg_dump_lpt_info(c);
2ba5f7ae 323 dbg_dump_lpt_lebs(c);
787845bd 324 dump_stack();
73944a6d 325 return err;
1e51764a
AB
326}
327
328/**
329 * realloc_lpt_leb - allocate an LPT LEB that is empty.
330 * @c: UBIFS file-system description object
331 * @lnum: LEB number is passed and returned here
332 *
333 * This function duplicates exactly the results of the function alloc_lpt_leb.
334 * It is used during end commit to reallocate the same LEB numbers that were
335 * allocated by alloc_lpt_leb during start commit.
336 *
337 * This function finds the next LEB that was allocated by the alloc_lpt_leb
338 * function starting from @lnum. If a LEB is found it is returned in @lnum and
339 * the function returns %0. Otherwise the function returns -ENOSPC.
340 * Note however, that LPT is designed never to run out of space.
341 */
342static int realloc_lpt_leb(struct ubifs_info *c, int *lnum)
343{
344 int i, n;
345
346 n = *lnum - c->lpt_first + 1;
347 for (i = n; i < c->lpt_lebs; i++)
348 if (c->ltab[i].cmt) {
349 c->ltab[i].cmt = 0;
350 *lnum = i + c->lpt_first;
351 return 0;
352 }
353
354 for (i = 0; i < n; i++)
355 if (c->ltab[i].cmt) {
356 c->ltab[i].cmt = 0;
357 *lnum = i + c->lpt_first;
358 return 0;
359 }
1e51764a
AB
360 return -ENOSPC;
361}
362
363/**
364 * write_cnodes - write cnodes for commit.
365 * @c: UBIFS file-system description object
366 *
367 * This function returns %0 on success and a negative error code on failure.
368 */
369static int write_cnodes(struct ubifs_info *c)
370{
371 int lnum, offs, len, from, err, wlen, alen, done_ltab, done_lsave;
372 struct ubifs_cnode *cnode;
373 void *buf = c->lpt_buf;
374
375 cnode = c->lpt_cnext;
376 if (!cnode)
377 return 0;
378 lnum = c->nhead_lnum;
379 offs = c->nhead_offs;
380 from = offs;
381 /* Ensure empty LEB is unmapped */
382 if (offs == 0) {
383 err = ubifs_leb_unmap(c, lnum);
384 if (err)
385 return err;
386 }
387 /* Try to place lsave and ltab nicely */
388 done_lsave = !c->big_lpt;
389 done_ltab = 0;
390 if (!done_lsave && offs + c->lsave_sz <= c->leb_size) {
391 done_lsave = 1;
392 ubifs_pack_lsave(c, buf + offs, c->lsave);
393 offs += c->lsave_sz;
73944a6d 394 dbg_chk_lpt_sz(c, 1, c->lsave_sz);
1e51764a
AB
395 }
396
397 if (offs + c->ltab_sz <= c->leb_size) {
398 done_ltab = 1;
399 ubifs_pack_ltab(c, buf + offs, c->ltab_cmt);
400 offs += c->ltab_sz;
73944a6d 401 dbg_chk_lpt_sz(c, 1, c->ltab_sz);
1e51764a
AB
402 }
403
404 /* Loop for each cnode */
405 do {
406 if (cnode->level)
407 len = c->nnode_sz;
408 else
409 len = c->pnode_sz;
410 while (offs + len > c->leb_size) {
411 wlen = offs - from;
412 if (wlen) {
413 alen = ALIGN(wlen, c->min_io_size);
414 memset(buf + offs, 0xff, alen - wlen);
415 err = ubifs_leb_write(c, lnum, buf + from, from,
416 alen, UBI_SHORTTERM);
417 if (err)
418 return err;
419 }
2bc275e9 420 dbg_chk_lpt_sz(c, 2, c->leb_size - offs);
1e51764a
AB
421 err = realloc_lpt_leb(c, &lnum);
422 if (err)
73944a6d 423 goto no_space;
1e51764a
AB
424 offs = 0;
425 from = 0;
426 ubifs_assert(lnum >= c->lpt_first &&
427 lnum <= c->lpt_last);
428 err = ubifs_leb_unmap(c, lnum);
429 if (err)
430 return err;
431 /* Try to place lsave and ltab nicely */
432 if (!done_lsave) {
433 done_lsave = 1;
434 ubifs_pack_lsave(c, buf + offs, c->lsave);
435 offs += c->lsave_sz;
73944a6d 436 dbg_chk_lpt_sz(c, 1, c->lsave_sz);
1e51764a
AB
437 continue;
438 }
439 if (!done_ltab) {
440 done_ltab = 1;
441 ubifs_pack_ltab(c, buf + offs, c->ltab_cmt);
442 offs += c->ltab_sz;
73944a6d 443 dbg_chk_lpt_sz(c, 1, c->ltab_sz);
1e51764a
AB
444 continue;
445 }
446 break;
447 }
448 if (cnode->level)
449 ubifs_pack_nnode(c, buf + offs,
450 (struct ubifs_nnode *)cnode);
451 else
452 ubifs_pack_pnode(c, buf + offs,
453 (struct ubifs_pnode *)cnode);
454 /*
455 * The reason for the barriers is the same as in case of TNC.
456 * See comment in 'write_index()'. 'dirty_cow_nnode()' and
457 * 'dirty_cow_pnode()' are the functions for which this is
458 * important.
459 */
460 clear_bit(DIRTY_CNODE, &cnode->flags);
461 smp_mb__before_clear_bit();
462 clear_bit(COW_ZNODE, &cnode->flags);
463 smp_mb__after_clear_bit();
464 offs += len;
73944a6d 465 dbg_chk_lpt_sz(c, 1, len);
1e51764a
AB
466 cnode = cnode->cnext;
467 } while (cnode && cnode != c->lpt_cnext);
468
469 /* Make sure to place LPT's save table */
470 if (!done_lsave) {
471 if (offs + c->lsave_sz > c->leb_size) {
472 wlen = offs - from;
473 alen = ALIGN(wlen, c->min_io_size);
474 memset(buf + offs, 0xff, alen - wlen);
475 err = ubifs_leb_write(c, lnum, buf + from, from, alen,
476 UBI_SHORTTERM);
477 if (err)
478 return err;
2bc275e9 479 dbg_chk_lpt_sz(c, 2, c->leb_size - offs);
1e51764a
AB
480 err = realloc_lpt_leb(c, &lnum);
481 if (err)
73944a6d 482 goto no_space;
1e51764a
AB
483 offs = 0;
484 ubifs_assert(lnum >= c->lpt_first &&
485 lnum <= c->lpt_last);
486 err = ubifs_leb_unmap(c, lnum);
487 if (err)
488 return err;
489 }
490 done_lsave = 1;
491 ubifs_pack_lsave(c, buf + offs, c->lsave);
492 offs += c->lsave_sz;
73944a6d 493 dbg_chk_lpt_sz(c, 1, c->lsave_sz);
1e51764a
AB
494 }
495
496 /* Make sure to place LPT's own lprops table */
497 if (!done_ltab) {
498 if (offs + c->ltab_sz > c->leb_size) {
499 wlen = offs - from;
500 alen = ALIGN(wlen, c->min_io_size);
501 memset(buf + offs, 0xff, alen - wlen);
502 err = ubifs_leb_write(c, lnum, buf + from, from, alen,
503 UBI_SHORTTERM);
504 if (err)
505 return err;
2bc275e9 506 dbg_chk_lpt_sz(c, 2, c->leb_size - offs);
1e51764a
AB
507 err = realloc_lpt_leb(c, &lnum);
508 if (err)
73944a6d 509 goto no_space;
1e51764a
AB
510 offs = 0;
511 ubifs_assert(lnum >= c->lpt_first &&
512 lnum <= c->lpt_last);
513 err = ubifs_leb_unmap(c, lnum);
514 if (err)
515 return err;
516 }
517 done_ltab = 1;
518 ubifs_pack_ltab(c, buf + offs, c->ltab_cmt);
519 offs += c->ltab_sz;
73944a6d 520 dbg_chk_lpt_sz(c, 1, c->ltab_sz);
1e51764a
AB
521 }
522
523 /* Write remaining data in buffer */
524 wlen = offs - from;
525 alen = ALIGN(wlen, c->min_io_size);
526 memset(buf + offs, 0xff, alen - wlen);
527 err = ubifs_leb_write(c, lnum, buf + from, from, alen, UBI_SHORTTERM);
528 if (err)
529 return err;
73944a6d
AH
530
531 dbg_chk_lpt_sz(c, 4, alen - wlen);
532 err = dbg_chk_lpt_sz(c, 3, ALIGN(offs, c->min_io_size));
533 if (err)
534 return err;
535
1e51764a
AB
536 c->nhead_lnum = lnum;
537 c->nhead_offs = ALIGN(offs, c->min_io_size);
538
539 dbg_lp("LPT root is at %d:%d", c->lpt_lnum, c->lpt_offs);
540 dbg_lp("LPT head is at %d:%d", c->nhead_lnum, c->nhead_offs);
541 dbg_lp("LPT ltab is at %d:%d", c->ltab_lnum, c->ltab_offs);
542 if (c->big_lpt)
543 dbg_lp("LPT lsave is at %d:%d", c->lsave_lnum, c->lsave_offs);
73944a6d 544
1e51764a 545 return 0;
73944a6d
AH
546
547no_space:
548 ubifs_err("LPT out of space mismatch");
549 dbg_err("LPT out of space mismatch at LEB %d:%d needing %d, done_ltab "
f92b9826 550 "%d, done_lsave %d", lnum, offs, len, done_ltab, done_lsave);
73944a6d 551 dbg_dump_lpt_info(c);
2ba5f7ae 552 dbg_dump_lpt_lebs(c);
787845bd 553 dump_stack();
73944a6d 554 return err;
1e51764a
AB
555}
556
557/**
4a29d200 558 * next_pnode_to_dirty - find next pnode to dirty.
1e51764a
AB
559 * @c: UBIFS file-system description object
560 * @pnode: pnode
561 *
4a29d200
AH
562 * This function returns the next pnode to dirty or %NULL if there are no more
563 * pnodes. Note that pnodes that have never been written (lnum == 0) are
564 * skipped.
1e51764a 565 */
4a29d200
AH
566static struct ubifs_pnode *next_pnode_to_dirty(struct ubifs_info *c,
567 struct ubifs_pnode *pnode)
1e51764a
AB
568{
569 struct ubifs_nnode *nnode;
570 int iip;
571
572 /* Try to go right */
573 nnode = pnode->parent;
4a29d200 574 for (iip = pnode->iip + 1; iip < UBIFS_LPT_FANOUT; iip++) {
1e51764a
AB
575 if (nnode->nbranch[iip].lnum)
576 return ubifs_get_pnode(c, nnode, iip);
1e51764a
AB
577 }
578
579 /* Go up while can't go right */
580 do {
581 iip = nnode->iip + 1;
582 nnode = nnode->parent;
583 if (!nnode)
584 return NULL;
4a29d200
AH
585 for (; iip < UBIFS_LPT_FANOUT; iip++) {
586 if (nnode->nbranch[iip].lnum)
587 break;
588 }
589 } while (iip >= UBIFS_LPT_FANOUT);
1e51764a
AB
590
591 /* Go right */
592 nnode = ubifs_get_nnode(c, nnode, iip);
593 if (IS_ERR(nnode))
594 return (void *)nnode;
595
596 /* Go down to level 1 */
597 while (nnode->level > 1) {
4a29d200
AH
598 for (iip = 0; iip < UBIFS_LPT_FANOUT; iip++) {
599 if (nnode->nbranch[iip].lnum)
600 break;
601 }
602 if (iip >= UBIFS_LPT_FANOUT) {
603 /*
604 * Should not happen, but we need to keep going
605 * if it does.
606 */
607 iip = 0;
608 }
609 nnode = ubifs_get_nnode(c, nnode, iip);
1e51764a
AB
610 if (IS_ERR(nnode))
611 return (void *)nnode;
612 }
613
4a29d200
AH
614 for (iip = 0; iip < UBIFS_LPT_FANOUT; iip++)
615 if (nnode->nbranch[iip].lnum)
616 break;
617 if (iip >= UBIFS_LPT_FANOUT)
618 /* Should not happen, but we need to keep going if it does */
619 iip = 0;
620 return ubifs_get_pnode(c, nnode, iip);
1e51764a
AB
621}
622
623/**
624 * pnode_lookup - lookup a pnode in the LPT.
625 * @c: UBIFS file-system description object
626 * @i: pnode number (0 to main_lebs - 1)
627 *
628 * This function returns a pointer to the pnode on success or a negative
629 * error code on failure.
630 */
631static struct ubifs_pnode *pnode_lookup(struct ubifs_info *c, int i)
632{
633 int err, h, iip, shft;
634 struct ubifs_nnode *nnode;
635
636 if (!c->nroot) {
637 err = ubifs_read_nnode(c, NULL, 0);
638 if (err)
639 return ERR_PTR(err);
640 }
641 i <<= UBIFS_LPT_FANOUT_SHIFT;
642 nnode = c->nroot;
643 shft = c->lpt_hght * UBIFS_LPT_FANOUT_SHIFT;
644 for (h = 1; h < c->lpt_hght; h++) {
645 iip = ((i >> shft) & (UBIFS_LPT_FANOUT - 1));
646 shft -= UBIFS_LPT_FANOUT_SHIFT;
647 nnode = ubifs_get_nnode(c, nnode, iip);
648 if (IS_ERR(nnode))
649 return ERR_PTR(PTR_ERR(nnode));
650 }
651 iip = ((i >> shft) & (UBIFS_LPT_FANOUT - 1));
652 return ubifs_get_pnode(c, nnode, iip);
653}
654
655/**
656 * add_pnode_dirt - add dirty space to LPT LEB properties.
657 * @c: UBIFS file-system description object
658 * @pnode: pnode for which to add dirt
659 */
660static void add_pnode_dirt(struct ubifs_info *c, struct ubifs_pnode *pnode)
661{
662 ubifs_add_lpt_dirt(c, pnode->parent->nbranch[pnode->iip].lnum,
663 c->pnode_sz);
664}
665
666/**
667 * do_make_pnode_dirty - mark a pnode dirty.
668 * @c: UBIFS file-system description object
669 * @pnode: pnode to mark dirty
670 */
671static void do_make_pnode_dirty(struct ubifs_info *c, struct ubifs_pnode *pnode)
672{
673 /* Assumes cnext list is empty i.e. not called during commit */
674 if (!test_and_set_bit(DIRTY_CNODE, &pnode->flags)) {
675 struct ubifs_nnode *nnode;
676
677 c->dirty_pn_cnt += 1;
678 add_pnode_dirt(c, pnode);
679 /* Mark parent and ancestors dirty too */
680 nnode = pnode->parent;
681 while (nnode) {
682 if (!test_and_set_bit(DIRTY_CNODE, &nnode->flags)) {
683 c->dirty_nn_cnt += 1;
684 ubifs_add_nnode_dirt(c, nnode);
685 nnode = nnode->parent;
686 } else
687 break;
688 }
689 }
690}
691
692/**
693 * make_tree_dirty - mark the entire LEB properties tree dirty.
694 * @c: UBIFS file-system description object
695 *
696 * This function is used by the "small" LPT model to cause the entire LEB
697 * properties tree to be written. The "small" LPT model does not use LPT
698 * garbage collection because it is more efficient to write the entire tree
699 * (because it is small).
700 *
701 * This function returns %0 on success and a negative error code on failure.
702 */
703static int make_tree_dirty(struct ubifs_info *c)
704{
705 struct ubifs_pnode *pnode;
706
707 pnode = pnode_lookup(c, 0);
708 while (pnode) {
709 do_make_pnode_dirty(c, pnode);
4a29d200 710 pnode = next_pnode_to_dirty(c, pnode);
1e51764a
AB
711 if (IS_ERR(pnode))
712 return PTR_ERR(pnode);
713 }
714 return 0;
715}
716
717/**
718 * need_write_all - determine if the LPT area is running out of free space.
719 * @c: UBIFS file-system description object
720 *
721 * This function returns %1 if the LPT area is running out of free space and %0
722 * if it is not.
723 */
724static int need_write_all(struct ubifs_info *c)
725{
726 long long free = 0;
727 int i;
728
729 for (i = 0; i < c->lpt_lebs; i++) {
730 if (i + c->lpt_first == c->nhead_lnum)
731 free += c->leb_size - c->nhead_offs;
732 else if (c->ltab[i].free == c->leb_size)
733 free += c->leb_size;
734 else if (c->ltab[i].free + c->ltab[i].dirty == c->leb_size)
735 free += c->leb_size;
736 }
737 /* Less than twice the size left */
738 if (free <= c->lpt_sz * 2)
739 return 1;
740 return 0;
741}
742
743/**
744 * lpt_tgc_start - start trivial garbage collection of LPT LEBs.
745 * @c: UBIFS file-system description object
746 *
747 * LPT trivial garbage collection is where a LPT LEB contains only dirty and
748 * free space and so may be reused as soon as the next commit is completed.
749 * This function is called during start commit to mark LPT LEBs for trivial GC.
750 */
751static void lpt_tgc_start(struct ubifs_info *c)
752{
753 int i;
754
755 for (i = 0; i < c->lpt_lebs; i++) {
756 if (i + c->lpt_first == c->nhead_lnum)
757 continue;
758 if (c->ltab[i].dirty > 0 &&
759 c->ltab[i].free + c->ltab[i].dirty == c->leb_size) {
760 c->ltab[i].tgc = 1;
761 c->ltab[i].free = c->leb_size;
762 c->ltab[i].dirty = 0;
763 dbg_lp("LEB %d", i + c->lpt_first);
764 }
765 }
766}
767
768/**
769 * lpt_tgc_end - end trivial garbage collection of LPT LEBs.
770 * @c: UBIFS file-system description object
771 *
772 * LPT trivial garbage collection is where a LPT LEB contains only dirty and
773 * free space and so may be reused as soon as the next commit is completed.
774 * This function is called after the commit is completed (master node has been
80736d41 775 * written) and un-maps LPT LEBs that were marked for trivial GC.
1e51764a
AB
776 */
777static int lpt_tgc_end(struct ubifs_info *c)
778{
779 int i, err;
780
781 for (i = 0; i < c->lpt_lebs; i++)
782 if (c->ltab[i].tgc) {
783 err = ubifs_leb_unmap(c, i + c->lpt_first);
784 if (err)
785 return err;
786 c->ltab[i].tgc = 0;
787 dbg_lp("LEB %d", i + c->lpt_first);
788 }
789 return 0;
790}
791
792/**
793 * populate_lsave - fill the lsave array with important LEB numbers.
794 * @c: the UBIFS file-system description object
795 *
796 * This function is only called for the "big" model. It records a small number
797 * of LEB numbers of important LEBs. Important LEBs are ones that are (from
798 * most important to least important): empty, freeable, freeable index, dirty
799 * index, dirty or free. Upon mount, we read this list of LEB numbers and bring
800 * their pnodes into memory. That will stop us from having to scan the LPT
801 * straight away. For the "small" model we assume that scanning the LPT is no
802 * big deal.
803 */
804static void populate_lsave(struct ubifs_info *c)
805{
806 struct ubifs_lprops *lprops;
807 struct ubifs_lpt_heap *heap;
808 int i, cnt = 0;
809
810 ubifs_assert(c->big_lpt);
811 if (!(c->lpt_drty_flgs & LSAVE_DIRTY)) {
812 c->lpt_drty_flgs |= LSAVE_DIRTY;
813 ubifs_add_lpt_dirt(c, c->lsave_lnum, c->lsave_sz);
814 }
815 list_for_each_entry(lprops, &c->empty_list, list) {
816 c->lsave[cnt++] = lprops->lnum;
817 if (cnt >= c->lsave_cnt)
818 return;
819 }
820 list_for_each_entry(lprops, &c->freeable_list, list) {
821 c->lsave[cnt++] = lprops->lnum;
822 if (cnt >= c->lsave_cnt)
823 return;
824 }
825 list_for_each_entry(lprops, &c->frdi_idx_list, list) {
826 c->lsave[cnt++] = lprops->lnum;
827 if (cnt >= c->lsave_cnt)
828 return;
829 }
830 heap = &c->lpt_heap[LPROPS_DIRTY_IDX - 1];
831 for (i = 0; i < heap->cnt; i++) {
832 c->lsave[cnt++] = heap->arr[i]->lnum;
833 if (cnt >= c->lsave_cnt)
834 return;
835 }
836 heap = &c->lpt_heap[LPROPS_DIRTY - 1];
837 for (i = 0; i < heap->cnt; i++) {
838 c->lsave[cnt++] = heap->arr[i]->lnum;
839 if (cnt >= c->lsave_cnt)
840 return;
841 }
842 heap = &c->lpt_heap[LPROPS_FREE - 1];
843 for (i = 0; i < heap->cnt; i++) {
844 c->lsave[cnt++] = heap->arr[i]->lnum;
845 if (cnt >= c->lsave_cnt)
846 return;
847 }
848 /* Fill it up completely */
849 while (cnt < c->lsave_cnt)
850 c->lsave[cnt++] = c->main_first;
851}
852
853/**
854 * nnode_lookup - lookup a nnode in the LPT.
855 * @c: UBIFS file-system description object
856 * @i: nnode number
857 *
858 * This function returns a pointer to the nnode on success or a negative
859 * error code on failure.
860 */
861static struct ubifs_nnode *nnode_lookup(struct ubifs_info *c, int i)
862{
863 int err, iip;
864 struct ubifs_nnode *nnode;
865
866 if (!c->nroot) {
867 err = ubifs_read_nnode(c, NULL, 0);
868 if (err)
869 return ERR_PTR(err);
870 }
871 nnode = c->nroot;
872 while (1) {
873 iip = i & (UBIFS_LPT_FANOUT - 1);
874 i >>= UBIFS_LPT_FANOUT_SHIFT;
875 if (!i)
876 break;
877 nnode = ubifs_get_nnode(c, nnode, iip);
878 if (IS_ERR(nnode))
879 return nnode;
880 }
881 return nnode;
882}
883
884/**
885 * make_nnode_dirty - find a nnode and, if found, make it dirty.
886 * @c: UBIFS file-system description object
887 * @node_num: nnode number of nnode to make dirty
888 * @lnum: LEB number where nnode was written
889 * @offs: offset where nnode was written
890 *
891 * This function is used by LPT garbage collection. LPT garbage collection is
892 * used only for the "big" LPT model (c->big_lpt == 1). Garbage collection
893 * simply involves marking all the nodes in the LEB being garbage-collected as
894 * dirty. The dirty nodes are written next commit, after which the LEB is free
895 * to be reused.
896 *
897 * This function returns %0 on success and a negative error code on failure.
898 */
899static int make_nnode_dirty(struct ubifs_info *c, int node_num, int lnum,
900 int offs)
901{
902 struct ubifs_nnode *nnode;
903
904 nnode = nnode_lookup(c, node_num);
905 if (IS_ERR(nnode))
906 return PTR_ERR(nnode);
907 if (nnode->parent) {
908 struct ubifs_nbranch *branch;
909
910 branch = &nnode->parent->nbranch[nnode->iip];
911 if (branch->lnum != lnum || branch->offs != offs)
912 return 0; /* nnode is obsolete */
913 } else if (c->lpt_lnum != lnum || c->lpt_offs != offs)
914 return 0; /* nnode is obsolete */
915 /* Assumes cnext list is empty i.e. not called during commit */
916 if (!test_and_set_bit(DIRTY_CNODE, &nnode->flags)) {
917 c->dirty_nn_cnt += 1;
918 ubifs_add_nnode_dirt(c, nnode);
919 /* Mark parent and ancestors dirty too */
920 nnode = nnode->parent;
921 while (nnode) {
922 if (!test_and_set_bit(DIRTY_CNODE, &nnode->flags)) {
923 c->dirty_nn_cnt += 1;
924 ubifs_add_nnode_dirt(c, nnode);
925 nnode = nnode->parent;
926 } else
927 break;
928 }
929 }
930 return 0;
931}
932
933/**
934 * make_pnode_dirty - find a pnode and, if found, make it dirty.
935 * @c: UBIFS file-system description object
936 * @node_num: pnode number of pnode to make dirty
937 * @lnum: LEB number where pnode was written
938 * @offs: offset where pnode was written
939 *
940 * This function is used by LPT garbage collection. LPT garbage collection is
941 * used only for the "big" LPT model (c->big_lpt == 1). Garbage collection
942 * simply involves marking all the nodes in the LEB being garbage-collected as
943 * dirty. The dirty nodes are written next commit, after which the LEB is free
944 * to be reused.
945 *
946 * This function returns %0 on success and a negative error code on failure.
947 */
948static int make_pnode_dirty(struct ubifs_info *c, int node_num, int lnum,
949 int offs)
950{
951 struct ubifs_pnode *pnode;
952 struct ubifs_nbranch *branch;
953
954 pnode = pnode_lookup(c, node_num);
955 if (IS_ERR(pnode))
956 return PTR_ERR(pnode);
957 branch = &pnode->parent->nbranch[pnode->iip];
958 if (branch->lnum != lnum || branch->offs != offs)
959 return 0;
960 do_make_pnode_dirty(c, pnode);
961 return 0;
962}
963
964/**
965 * make_ltab_dirty - make ltab node dirty.
966 * @c: UBIFS file-system description object
967 * @lnum: LEB number where ltab was written
968 * @offs: offset where ltab was written
969 *
970 * This function is used by LPT garbage collection. LPT garbage collection is
971 * used only for the "big" LPT model (c->big_lpt == 1). Garbage collection
972 * simply involves marking all the nodes in the LEB being garbage-collected as
973 * dirty. The dirty nodes are written next commit, after which the LEB is free
974 * to be reused.
975 *
976 * This function returns %0 on success and a negative error code on failure.
977 */
978static int make_ltab_dirty(struct ubifs_info *c, int lnum, int offs)
979{
980 if (lnum != c->ltab_lnum || offs != c->ltab_offs)
981 return 0; /* This ltab node is obsolete */
982 if (!(c->lpt_drty_flgs & LTAB_DIRTY)) {
983 c->lpt_drty_flgs |= LTAB_DIRTY;
984 ubifs_add_lpt_dirt(c, c->ltab_lnum, c->ltab_sz);
985 }
986 return 0;
987}
988
989/**
990 * make_lsave_dirty - make lsave node dirty.
991 * @c: UBIFS file-system description object
992 * @lnum: LEB number where lsave was written
993 * @offs: offset where lsave was written
994 *
995 * This function is used by LPT garbage collection. LPT garbage collection is
996 * used only for the "big" LPT model (c->big_lpt == 1). Garbage collection
997 * simply involves marking all the nodes in the LEB being garbage-collected as
998 * dirty. The dirty nodes are written next commit, after which the LEB is free
999 * to be reused.
1000 *
1001 * This function returns %0 on success and a negative error code on failure.
1002 */
1003static int make_lsave_dirty(struct ubifs_info *c, int lnum, int offs)
1004{
1005 if (lnum != c->lsave_lnum || offs != c->lsave_offs)
1006 return 0; /* This lsave node is obsolete */
1007 if (!(c->lpt_drty_flgs & LSAVE_DIRTY)) {
1008 c->lpt_drty_flgs |= LSAVE_DIRTY;
1009 ubifs_add_lpt_dirt(c, c->lsave_lnum, c->lsave_sz);
1010 }
1011 return 0;
1012}
1013
1014/**
1015 * make_node_dirty - make node dirty.
1016 * @c: UBIFS file-system description object
1017 * @node_type: LPT node type
1018 * @node_num: node number
1019 * @lnum: LEB number where node was written
1020 * @offs: offset where node was written
1021 *
1022 * This function is used by LPT garbage collection. LPT garbage collection is
1023 * used only for the "big" LPT model (c->big_lpt == 1). Garbage collection
1024 * simply involves marking all the nodes in the LEB being garbage-collected as
1025 * dirty. The dirty nodes are written next commit, after which the LEB is free
1026 * to be reused.
1027 *
1028 * This function returns %0 on success and a negative error code on failure.
1029 */
1030static int make_node_dirty(struct ubifs_info *c, int node_type, int node_num,
1031 int lnum, int offs)
1032{
1033 switch (node_type) {
1034 case UBIFS_LPT_NNODE:
1035 return make_nnode_dirty(c, node_num, lnum, offs);
1036 case UBIFS_LPT_PNODE:
1037 return make_pnode_dirty(c, node_num, lnum, offs);
1038 case UBIFS_LPT_LTAB:
1039 return make_ltab_dirty(c, lnum, offs);
1040 case UBIFS_LPT_LSAVE:
1041 return make_lsave_dirty(c, lnum, offs);
1042 }
1043 return -EINVAL;
1044}
1045
1046/**
1047 * get_lpt_node_len - return the length of a node based on its type.
1048 * @c: UBIFS file-system description object
1049 * @node_type: LPT node type
1050 */
2ba5f7ae 1051static int get_lpt_node_len(const struct ubifs_info *c, int node_type)
1e51764a
AB
1052{
1053 switch (node_type) {
1054 case UBIFS_LPT_NNODE:
1055 return c->nnode_sz;
1056 case UBIFS_LPT_PNODE:
1057 return c->pnode_sz;
1058 case UBIFS_LPT_LTAB:
1059 return c->ltab_sz;
1060 case UBIFS_LPT_LSAVE:
1061 return c->lsave_sz;
1062 }
1063 return 0;
1064}
1065
1066/**
1067 * get_pad_len - return the length of padding in a buffer.
1068 * @c: UBIFS file-system description object
1069 * @buf: buffer
1070 * @len: length of buffer
1071 */
2ba5f7ae 1072static int get_pad_len(const struct ubifs_info *c, uint8_t *buf, int len)
1e51764a
AB
1073{
1074 int offs, pad_len;
1075
1076 if (c->min_io_size == 1)
1077 return 0;
1078 offs = c->leb_size - len;
1079 pad_len = ALIGN(offs, c->min_io_size) - offs;
1080 return pad_len;
1081}
1082
1083/**
1084 * get_lpt_node_type - return type (and node number) of a node in a buffer.
1085 * @c: UBIFS file-system description object
1086 * @buf: buffer
1087 * @node_num: node number is returned here
1088 */
2ba5f7ae
AB
1089static int get_lpt_node_type(const struct ubifs_info *c, uint8_t *buf,
1090 int *node_num)
1e51764a
AB
1091{
1092 uint8_t *addr = buf + UBIFS_LPT_CRC_BYTES;
1093 int pos = 0, node_type;
1094
1095 node_type = ubifs_unpack_bits(&addr, &pos, UBIFS_LPT_TYPE_BITS);
1096 *node_num = ubifs_unpack_bits(&addr, &pos, c->pcnt_bits);
1097 return node_type;
1098}
1099
1100/**
1101 * is_a_node - determine if a buffer contains a node.
1102 * @c: UBIFS file-system description object
1103 * @buf: buffer
1104 * @len: length of buffer
1105 *
1106 * This function returns %1 if the buffer contains a node or %0 if it does not.
1107 */
2ba5f7ae 1108static int is_a_node(const struct ubifs_info *c, uint8_t *buf, int len)
1e51764a
AB
1109{
1110 uint8_t *addr = buf + UBIFS_LPT_CRC_BYTES;
1111 int pos = 0, node_type, node_len;
1112 uint16_t crc, calc_crc;
1113
be2f6bd6
AH
1114 if (len < UBIFS_LPT_CRC_BYTES + (UBIFS_LPT_TYPE_BITS + 7) / 8)
1115 return 0;
1e51764a
AB
1116 node_type = ubifs_unpack_bits(&addr, &pos, UBIFS_LPT_TYPE_BITS);
1117 if (node_type == UBIFS_LPT_NOT_A_NODE)
1118 return 0;
1119 node_len = get_lpt_node_len(c, node_type);
1120 if (!node_len || node_len > len)
1121 return 0;
1122 pos = 0;
1123 addr = buf;
1124 crc = ubifs_unpack_bits(&addr, &pos, UBIFS_LPT_CRC_BITS);
1125 calc_crc = crc16(-1, buf + UBIFS_LPT_CRC_BYTES,
1126 node_len - UBIFS_LPT_CRC_BYTES);
1127 if (crc != calc_crc)
1128 return 0;
1129 return 1;
1130}
1131
1e51764a
AB
1132/**
1133 * lpt_gc_lnum - garbage collect a LPT LEB.
1134 * @c: UBIFS file-system description object
1135 * @lnum: LEB number to garbage collect
1136 *
1137 * LPT garbage collection is used only for the "big" LPT model
1138 * (c->big_lpt == 1). Garbage collection simply involves marking all the nodes
1139 * in the LEB being garbage-collected as dirty. The dirty nodes are written
1140 * next commit, after which the LEB is free to be reused.
1141 *
1142 * This function returns %0 on success and a negative error code on failure.
1143 */
1144static int lpt_gc_lnum(struct ubifs_info *c, int lnum)
1145{
1146 int err, len = c->leb_size, node_type, node_num, node_len, offs;
1147 void *buf = c->lpt_buf;
1148
1149 dbg_lp("LEB %d", lnum);
1150 err = ubi_read(c->ubi, lnum, buf, 0, c->leb_size);
1151 if (err) {
1152 ubifs_err("cannot read LEB %d, error %d", lnum, err);
1153 return err;
1154 }
1155 while (1) {
1156 if (!is_a_node(c, buf, len)) {
1157 int pad_len;
1158
1159 pad_len = get_pad_len(c, buf, len);
1160 if (pad_len) {
1161 buf += pad_len;
1162 len -= pad_len;
1163 continue;
1164 }
1165 return 0;
1166 }
1167 node_type = get_lpt_node_type(c, buf, &node_num);
1168 node_len = get_lpt_node_len(c, node_type);
1169 offs = c->leb_size - len;
1170 ubifs_assert(node_len != 0);
1171 mutex_lock(&c->lp_mutex);
1172 err = make_node_dirty(c, node_type, node_num, lnum, offs);
1173 mutex_unlock(&c->lp_mutex);
1174 if (err)
1175 return err;
1176 buf += node_len;
1177 len -= node_len;
1178 }
1179 return 0;
1180}
1181
1182/**
1183 * lpt_gc - LPT garbage collection.
1184 * @c: UBIFS file-system description object
1185 *
1186 * Select a LPT LEB for LPT garbage collection and call 'lpt_gc_lnum()'.
1187 * Returns %0 on success and a negative error code on failure.
1188 */
1189static int lpt_gc(struct ubifs_info *c)
1190{
1191 int i, lnum = -1, dirty = 0;
1192
1193 mutex_lock(&c->lp_mutex);
1194 for (i = 0; i < c->lpt_lebs; i++) {
1195 ubifs_assert(!c->ltab[i].tgc);
1196 if (i + c->lpt_first == c->nhead_lnum ||
1197 c->ltab[i].free + c->ltab[i].dirty == c->leb_size)
1198 continue;
1199 if (c->ltab[i].dirty > dirty) {
1200 dirty = c->ltab[i].dirty;
1201 lnum = i + c->lpt_first;
1202 }
1203 }
1204 mutex_unlock(&c->lp_mutex);
1205 if (lnum == -1)
1206 return -ENOSPC;
1207 return lpt_gc_lnum(c, lnum);
1208}
1209
1210/**
1211 * ubifs_lpt_start_commit - UBIFS commit starts.
1212 * @c: the UBIFS file-system description object
1213 *
1214 * This function has to be called when UBIFS starts the commit operation.
1215 * This function "freezes" all currently dirty LEB properties and does not
1216 * change them anymore. Further changes are saved and tracked separately
1217 * because they are not part of this commit. This function returns zero in case
1218 * of success and a negative error code in case of failure.
1219 */
1220int ubifs_lpt_start_commit(struct ubifs_info *c)
1221{
1222 int err, cnt;
1223
1224 dbg_lp("");
1225
1226 mutex_lock(&c->lp_mutex);
73944a6d
AH
1227 err = dbg_chk_lpt_free_spc(c);
1228 if (err)
1229 goto out;
1e51764a
AB
1230 err = dbg_check_ltab(c);
1231 if (err)
1232 goto out;
1233
1234 if (c->check_lpt_free) {
1235 /*
1236 * We ensure there is enough free space in
1237 * ubifs_lpt_post_commit() by marking nodes dirty. That
1238 * information is lost when we unmount, so we also need
1239 * to check free space once after mounting also.
1240 */
1241 c->check_lpt_free = 0;
1242 while (need_write_all(c)) {
1243 mutex_unlock(&c->lp_mutex);
1244 err = lpt_gc(c);
1245 if (err)
1246 return err;
1247 mutex_lock(&c->lp_mutex);
1248 }
1249 }
1250
1251 lpt_tgc_start(c);
1252
1253 if (!c->dirty_pn_cnt) {
1254 dbg_cmt("no cnodes to commit");
1255 err = 0;
1256 goto out;
1257 }
1258
1259 if (!c->big_lpt && need_write_all(c)) {
1260 /* If needed, write everything */
1261 err = make_tree_dirty(c);
1262 if (err)
1263 goto out;
1264 lpt_tgc_start(c);
1265 }
1266
1267 if (c->big_lpt)
1268 populate_lsave(c);
1269
1270 cnt = get_cnodes_to_commit(c);
1271 ubifs_assert(cnt != 0);
1272
1273 err = layout_cnodes(c);
1274 if (err)
1275 goto out;
1276
1277 /* Copy the LPT's own lprops for end commit to write */
1278 memcpy(c->ltab_cmt, c->ltab,
1279 sizeof(struct ubifs_lpt_lprops) * c->lpt_lebs);
1280 c->lpt_drty_flgs &= ~(LTAB_DIRTY | LSAVE_DIRTY);
1281
1282out:
1283 mutex_unlock(&c->lp_mutex);
1284 return err;
1285}
1286
1287/**
1288 * free_obsolete_cnodes - free obsolete cnodes for commit end.
1289 * @c: UBIFS file-system description object
1290 */
1291static void free_obsolete_cnodes(struct ubifs_info *c)
1292{
1293 struct ubifs_cnode *cnode, *cnext;
1294
1295 cnext = c->lpt_cnext;
1296 if (!cnext)
1297 return;
1298 do {
1299 cnode = cnext;
1300 cnext = cnode->cnext;
1301 if (test_bit(OBSOLETE_CNODE, &cnode->flags))
1302 kfree(cnode);
1303 else
1304 cnode->cnext = NULL;
1305 } while (cnext != c->lpt_cnext);
1306 c->lpt_cnext = NULL;
1307}
1308
1309/**
1310 * ubifs_lpt_end_commit - finish the commit operation.
1311 * @c: the UBIFS file-system description object
1312 *
1313 * This function has to be called when the commit operation finishes. It
1314 * flushes the changes which were "frozen" by 'ubifs_lprops_start_commit()' to
1315 * the media. Returns zero in case of success and a negative error code in case
1316 * of failure.
1317 */
1318int ubifs_lpt_end_commit(struct ubifs_info *c)
1319{
1320 int err;
1321
1322 dbg_lp("");
1323
1324 if (!c->lpt_cnext)
1325 return 0;
1326
1327 err = write_cnodes(c);
1328 if (err)
1329 return err;
1330
1331 mutex_lock(&c->lp_mutex);
1332 free_obsolete_cnodes(c);
1333 mutex_unlock(&c->lp_mutex);
1334
1335 return 0;
1336}
1337
1338/**
1339 * ubifs_lpt_post_commit - post commit LPT trivial GC and LPT GC.
1340 * @c: UBIFS file-system description object
1341 *
1342 * LPT trivial GC is completed after a commit. Also LPT GC is done after a
1343 * commit for the "big" LPT model.
1344 */
1345int ubifs_lpt_post_commit(struct ubifs_info *c)
1346{
1347 int err;
1348
1349 mutex_lock(&c->lp_mutex);
1350 err = lpt_tgc_end(c);
1351 if (err)
1352 goto out;
1353 if (c->big_lpt)
1354 while (need_write_all(c)) {
1355 mutex_unlock(&c->lp_mutex);
1356 err = lpt_gc(c);
1357 if (err)
1358 return err;
1359 mutex_lock(&c->lp_mutex);
1360 }
1361out:
1362 mutex_unlock(&c->lp_mutex);
1363 return err;
1364}
1365
1366/**
1367 * first_nnode - find the first nnode in memory.
1368 * @c: UBIFS file-system description object
1369 * @hght: height of tree where nnode found is returned here
1370 *
1371 * This function returns a pointer to the nnode found or %NULL if no nnode is
1372 * found. This function is a helper to 'ubifs_lpt_free()'.
1373 */
1374static struct ubifs_nnode *first_nnode(struct ubifs_info *c, int *hght)
1375{
1376 struct ubifs_nnode *nnode;
1377 int h, i, found;
1378
1379 nnode = c->nroot;
1380 *hght = 0;
1381 if (!nnode)
1382 return NULL;
1383 for (h = 1; h < c->lpt_hght; h++) {
1384 found = 0;
1385 for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
1386 if (nnode->nbranch[i].nnode) {
1387 found = 1;
1388 nnode = nnode->nbranch[i].nnode;
1389 *hght = h;
1390 break;
1391 }
1392 }
1393 if (!found)
1394 break;
1395 }
1396 return nnode;
1397}
1398
1399/**
1400 * next_nnode - find the next nnode in memory.
1401 * @c: UBIFS file-system description object
1402 * @nnode: nnode from which to start.
1403 * @hght: height of tree where nnode is, is passed and returned here
1404 *
1405 * This function returns a pointer to the nnode found or %NULL if no nnode is
1406 * found. This function is a helper to 'ubifs_lpt_free()'.
1407 */
1408static struct ubifs_nnode *next_nnode(struct ubifs_info *c,
1409 struct ubifs_nnode *nnode, int *hght)
1410{
1411 struct ubifs_nnode *parent;
1412 int iip, h, i, found;
1413
1414 parent = nnode->parent;
1415 if (!parent)
1416 return NULL;
1417 if (nnode->iip == UBIFS_LPT_FANOUT - 1) {
1418 *hght -= 1;
1419 return parent;
1420 }
1421 for (iip = nnode->iip + 1; iip < UBIFS_LPT_FANOUT; iip++) {
1422 nnode = parent->nbranch[iip].nnode;
1423 if (nnode)
1424 break;
1425 }
1426 if (!nnode) {
1427 *hght -= 1;
1428 return parent;
1429 }
1430 for (h = *hght + 1; h < c->lpt_hght; h++) {
1431 found = 0;
1432 for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
1433 if (nnode->nbranch[i].nnode) {
1434 found = 1;
1435 nnode = nnode->nbranch[i].nnode;
1436 *hght = h;
1437 break;
1438 }
1439 }
1440 if (!found)
1441 break;
1442 }
1443 return nnode;
1444}
1445
1446/**
1447 * ubifs_lpt_free - free resources owned by the LPT.
1448 * @c: UBIFS file-system description object
1449 * @wr_only: free only resources used for writing
1450 */
1451void ubifs_lpt_free(struct ubifs_info *c, int wr_only)
1452{
1453 struct ubifs_nnode *nnode;
1454 int i, hght;
1455
1456 /* Free write-only things first */
1457
1458 free_obsolete_cnodes(c); /* Leftover from a failed commit */
1459
1460 vfree(c->ltab_cmt);
1461 c->ltab_cmt = NULL;
1462 vfree(c->lpt_buf);
1463 c->lpt_buf = NULL;
1464 kfree(c->lsave);
1465 c->lsave = NULL;
1466
1467 if (wr_only)
1468 return;
1469
1470 /* Now free the rest */
1471
1472 nnode = first_nnode(c, &hght);
1473 while (nnode) {
1474 for (i = 0; i < UBIFS_LPT_FANOUT; i++)
1475 kfree(nnode->nbranch[i].nnode);
1476 nnode = next_nnode(c, nnode, &hght);
1477 }
1478 for (i = 0; i < LPROPS_HEAP_CNT; i++)
1479 kfree(c->lpt_heap[i].arr);
1480 kfree(c->dirty_idx.arr);
1481 kfree(c->nroot);
1482 vfree(c->ltab);
1483 kfree(c->lpt_nod_buf);
1484}
1485
1486#ifdef CONFIG_UBIFS_FS_DEBUG
1487
1488/**
80736d41 1489 * dbg_is_all_ff - determine if a buffer contains only 0xFF bytes.
1e51764a
AB
1490 * @buf: buffer
1491 * @len: buffer length
1492 */
1493static int dbg_is_all_ff(uint8_t *buf, int len)
1494{
1495 int i;
1496
1497 for (i = 0; i < len; i++)
1498 if (buf[i] != 0xff)
1499 return 0;
1500 return 1;
1501}
1502
1503/**
1504 * dbg_is_nnode_dirty - determine if a nnode is dirty.
1505 * @c: the UBIFS file-system description object
1506 * @lnum: LEB number where nnode was written
1507 * @offs: offset where nnode was written
1508 */
1509static int dbg_is_nnode_dirty(struct ubifs_info *c, int lnum, int offs)
1510{
1511 struct ubifs_nnode *nnode;
1512 int hght;
1513
80736d41 1514 /* Entire tree is in memory so first_nnode / next_nnode are OK */
1e51764a
AB
1515 nnode = first_nnode(c, &hght);
1516 for (; nnode; nnode = next_nnode(c, nnode, &hght)) {
1517 struct ubifs_nbranch *branch;
1518
1519 cond_resched();
1520 if (nnode->parent) {
1521 branch = &nnode->parent->nbranch[nnode->iip];
1522 if (branch->lnum != lnum || branch->offs != offs)
1523 continue;
1524 if (test_bit(DIRTY_CNODE, &nnode->flags))
1525 return 1;
1526 return 0;
1527 } else {
1528 if (c->lpt_lnum != lnum || c->lpt_offs != offs)
1529 continue;
1530 if (test_bit(DIRTY_CNODE, &nnode->flags))
1531 return 1;
1532 return 0;
1533 }
1534 }
1535 return 1;
1536}
1537
1538/**
1539 * dbg_is_pnode_dirty - determine if a pnode is dirty.
1540 * @c: the UBIFS file-system description object
1541 * @lnum: LEB number where pnode was written
1542 * @offs: offset where pnode was written
1543 */
1544static int dbg_is_pnode_dirty(struct ubifs_info *c, int lnum, int offs)
1545{
1546 int i, cnt;
1547
1548 cnt = DIV_ROUND_UP(c->main_lebs, UBIFS_LPT_FANOUT);
1549 for (i = 0; i < cnt; i++) {
1550 struct ubifs_pnode *pnode;
1551 struct ubifs_nbranch *branch;
1552
1553 cond_resched();
1554 pnode = pnode_lookup(c, i);
1555 if (IS_ERR(pnode))
1556 return PTR_ERR(pnode);
1557 branch = &pnode->parent->nbranch[pnode->iip];
1558 if (branch->lnum != lnum || branch->offs != offs)
1559 continue;
1560 if (test_bit(DIRTY_CNODE, &pnode->flags))
1561 return 1;
1562 return 0;
1563 }
1564 return 1;
1565}
1566
1567/**
1568 * dbg_is_ltab_dirty - determine if a ltab node is dirty.
1569 * @c: the UBIFS file-system description object
1570 * @lnum: LEB number where ltab node was written
1571 * @offs: offset where ltab node was written
1572 */
1573static int dbg_is_ltab_dirty(struct ubifs_info *c, int lnum, int offs)
1574{
1575 if (lnum != c->ltab_lnum || offs != c->ltab_offs)
1576 return 1;
1577 return (c->lpt_drty_flgs & LTAB_DIRTY) != 0;
1578}
1579
1580/**
1581 * dbg_is_lsave_dirty - determine if a lsave node is dirty.
1582 * @c: the UBIFS file-system description object
1583 * @lnum: LEB number where lsave node was written
1584 * @offs: offset where lsave node was written
1585 */
1586static int dbg_is_lsave_dirty(struct ubifs_info *c, int lnum, int offs)
1587{
1588 if (lnum != c->lsave_lnum || offs != c->lsave_offs)
1589 return 1;
1590 return (c->lpt_drty_flgs & LSAVE_DIRTY) != 0;
1591}
1592
1593/**
1594 * dbg_is_node_dirty - determine if a node is dirty.
1595 * @c: the UBIFS file-system description object
1596 * @node_type: node type
1597 * @lnum: LEB number where node was written
1598 * @offs: offset where node was written
1599 */
1600static int dbg_is_node_dirty(struct ubifs_info *c, int node_type, int lnum,
1601 int offs)
1602{
1603 switch (node_type) {
1604 case UBIFS_LPT_NNODE:
1605 return dbg_is_nnode_dirty(c, lnum, offs);
1606 case UBIFS_LPT_PNODE:
1607 return dbg_is_pnode_dirty(c, lnum, offs);
1608 case UBIFS_LPT_LTAB:
1609 return dbg_is_ltab_dirty(c, lnum, offs);
1610 case UBIFS_LPT_LSAVE:
1611 return dbg_is_lsave_dirty(c, lnum, offs);
1612 }
1613 return 1;
1614}
1615
1616/**
1617 * dbg_check_ltab_lnum - check the ltab for a LPT LEB number.
1618 * @c: the UBIFS file-system description object
1619 * @lnum: LEB number where node was written
1620 * @offs: offset where node was written
1621 *
1622 * This function returns %0 on success and a negative error code on failure.
1623 */
1624static int dbg_check_ltab_lnum(struct ubifs_info *c, int lnum)
1625{
1626 int err, len = c->leb_size, dirty = 0, node_type, node_num, node_len;
1627 int ret;
17c2f9f8 1628 void *buf = c->dbg->buf;
1e51764a 1629
45e12d90
AB
1630 if (!(ubifs_chk_flags & UBIFS_CHK_LPROPS))
1631 return 0;
1632
1e51764a
AB
1633 dbg_lp("LEB %d", lnum);
1634 err = ubi_read(c->ubi, lnum, buf, 0, c->leb_size);
1635 if (err) {
1636 dbg_msg("ubi_read failed, LEB %d, error %d", lnum, err);
1637 return err;
1638 }
1639 while (1) {
1640 if (!is_a_node(c, buf, len)) {
1641 int i, pad_len;
1642
1643 pad_len = get_pad_len(c, buf, len);
1644 if (pad_len) {
1645 buf += pad_len;
1646 len -= pad_len;
1647 dirty += pad_len;
1648 continue;
1649 }
1650 if (!dbg_is_all_ff(buf, len)) {
1651 dbg_msg("invalid empty space in LEB %d at %d",
1652 lnum, c->leb_size - len);
1653 err = -EINVAL;
1654 }
1655 i = lnum - c->lpt_first;
1656 if (len != c->ltab[i].free) {
1657 dbg_msg("invalid free space in LEB %d "
1658 "(free %d, expected %d)",
1659 lnum, len, c->ltab[i].free);
1660 err = -EINVAL;
1661 }
1662 if (dirty != c->ltab[i].dirty) {
1663 dbg_msg("invalid dirty space in LEB %d "
1664 "(dirty %d, expected %d)",
1665 lnum, dirty, c->ltab[i].dirty);
1666 err = -EINVAL;
1667 }
1668 return err;
1669 }
1670 node_type = get_lpt_node_type(c, buf, &node_num);
1671 node_len = get_lpt_node_len(c, node_type);
1672 ret = dbg_is_node_dirty(c, node_type, lnum, c->leb_size - len);
1673 if (ret == 1)
1674 dirty += node_len;
1675 buf += node_len;
1676 len -= node_len;
1677 }
1678}
1679
1680/**
1681 * dbg_check_ltab - check the free and dirty space in the ltab.
1682 * @c: the UBIFS file-system description object
1683 *
1684 * This function returns %0 on success and a negative error code on failure.
1685 */
1686int dbg_check_ltab(struct ubifs_info *c)
1687{
1688 int lnum, err, i, cnt;
1689
1690 if (!(ubifs_chk_flags & UBIFS_CHK_LPROPS))
1691 return 0;
1692
1693 /* Bring the entire tree into memory */
1694 cnt = DIV_ROUND_UP(c->main_lebs, UBIFS_LPT_FANOUT);
1695 for (i = 0; i < cnt; i++) {
1696 struct ubifs_pnode *pnode;
1697
1698 pnode = pnode_lookup(c, i);
1699 if (IS_ERR(pnode))
1700 return PTR_ERR(pnode);
1701 cond_resched();
1702 }
1703
1704 /* Check nodes */
1705 err = dbg_check_lpt_nodes(c, (struct ubifs_cnode *)c->nroot, 0, 0);
1706 if (err)
1707 return err;
1708
1709 /* Check each LEB */
1710 for (lnum = c->lpt_first; lnum <= c->lpt_last; lnum++) {
1711 err = dbg_check_ltab_lnum(c, lnum);
1712 if (err) {
1713 dbg_err("failed at LEB %d", lnum);
1714 return err;
1715 }
1716 }
1717
1718 dbg_lp("succeeded");
1719 return 0;
1720}
1721
73944a6d
AH
1722/**
1723 * dbg_chk_lpt_free_spc - check LPT free space is enough to write entire LPT.
1724 * @c: the UBIFS file-system description object
1725 *
1726 * This function returns %0 on success and a negative error code on failure.
1727 */
1728int dbg_chk_lpt_free_spc(struct ubifs_info *c)
1729{
1730 long long free = 0;
1731 int i;
1732
45e12d90
AB
1733 if (!(ubifs_chk_flags & UBIFS_CHK_LPROPS))
1734 return 0;
1735
73944a6d
AH
1736 for (i = 0; i < c->lpt_lebs; i++) {
1737 if (c->ltab[i].tgc || c->ltab[i].cmt)
1738 continue;
1739 if (i + c->lpt_first == c->nhead_lnum)
1740 free += c->leb_size - c->nhead_offs;
1741 else if (c->ltab[i].free == c->leb_size)
1742 free += c->leb_size;
1743 }
1744 if (free < c->lpt_sz) {
1745 dbg_err("LPT space error: free %lld lpt_sz %lld",
1746 free, c->lpt_sz);
1747 dbg_dump_lpt_info(c);
2ba5f7ae 1748 dbg_dump_lpt_lebs(c);
787845bd 1749 dump_stack();
73944a6d
AH
1750 return -EINVAL;
1751 }
1752 return 0;
1753}
1754
1755/**
1756 * dbg_chk_lpt_sz - check LPT does not write more than LPT size.
1757 * @c: the UBIFS file-system description object
2bc275e9 1758 * @action: what to do
73944a6d
AH
1759 * @len: length written
1760 *
1761 * This function returns %0 on success and a negative error code on failure.
2bc275e9
AH
1762 * The @action argument may be one of:
1763 * o %0 - LPT debugging checking starts, initialize debugging variables;
1764 * o %1 - wrote an LPT node, increase LPT size by @len bytes;
1765 * o %2 - switched to a different LEB and wasted @len bytes;
1766 * o %3 - check that we've written the right number of bytes.
1767 * o %4 - wasted @len bytes;
73944a6d
AH
1768 */
1769int dbg_chk_lpt_sz(struct ubifs_info *c, int action, int len)
1770{
17c2f9f8 1771 struct ubifs_debug_info *d = c->dbg;
73944a6d
AH
1772 long long chk_lpt_sz, lpt_sz;
1773 int err = 0;
1774
45e12d90
AB
1775 if (!(ubifs_chk_flags & UBIFS_CHK_LPROPS))
1776 return 0;
1777
73944a6d
AH
1778 switch (action) {
1779 case 0:
17c2f9f8
AB
1780 d->chk_lpt_sz = 0;
1781 d->chk_lpt_sz2 = 0;
1782 d->chk_lpt_lebs = 0;
1783 d->chk_lpt_wastage = 0;
73944a6d
AH
1784 if (c->dirty_pn_cnt > c->pnode_cnt) {
1785 dbg_err("dirty pnodes %d exceed max %d",
1786 c->dirty_pn_cnt, c->pnode_cnt);
1787 err = -EINVAL;
1788 }
1789 if (c->dirty_nn_cnt > c->nnode_cnt) {
1790 dbg_err("dirty nnodes %d exceed max %d",
1791 c->dirty_nn_cnt, c->nnode_cnt);
1792 err = -EINVAL;
1793 }
1794 return err;
1795 case 1:
17c2f9f8 1796 d->chk_lpt_sz += len;
73944a6d
AH
1797 return 0;
1798 case 2:
17c2f9f8
AB
1799 d->chk_lpt_sz += len;
1800 d->chk_lpt_wastage += len;
1801 d->chk_lpt_lebs += 1;
73944a6d
AH
1802 return 0;
1803 case 3:
1804 chk_lpt_sz = c->leb_size;
17c2f9f8 1805 chk_lpt_sz *= d->chk_lpt_lebs;
73944a6d 1806 chk_lpt_sz += len - c->nhead_offs;
17c2f9f8 1807 if (d->chk_lpt_sz != chk_lpt_sz) {
73944a6d 1808 dbg_err("LPT wrote %lld but space used was %lld",
17c2f9f8 1809 d->chk_lpt_sz, chk_lpt_sz);
73944a6d
AH
1810 err = -EINVAL;
1811 }
17c2f9f8 1812 if (d->chk_lpt_sz > c->lpt_sz) {
73944a6d 1813 dbg_err("LPT wrote %lld but lpt_sz is %lld",
17c2f9f8 1814 d->chk_lpt_sz, c->lpt_sz);
73944a6d
AH
1815 err = -EINVAL;
1816 }
17c2f9f8 1817 if (d->chk_lpt_sz2 && d->chk_lpt_sz != d->chk_lpt_sz2) {
73944a6d 1818 dbg_err("LPT layout size %lld but wrote %lld",
17c2f9f8 1819 d->chk_lpt_sz, d->chk_lpt_sz2);
73944a6d
AH
1820 err = -EINVAL;
1821 }
17c2f9f8 1822 if (d->chk_lpt_sz2 && d->new_nhead_offs != len) {
73944a6d 1823 dbg_err("LPT new nhead offs: expected %d was %d",
17c2f9f8 1824 d->new_nhead_offs, len);
73944a6d
AH
1825 err = -EINVAL;
1826 }
1827 lpt_sz = (long long)c->pnode_cnt * c->pnode_sz;
1828 lpt_sz += (long long)c->nnode_cnt * c->nnode_sz;
1829 lpt_sz += c->ltab_sz;
1830 if (c->big_lpt)
1831 lpt_sz += c->lsave_sz;
17c2f9f8 1832 if (d->chk_lpt_sz - d->chk_lpt_wastage > lpt_sz) {
73944a6d 1833 dbg_err("LPT chk_lpt_sz %lld + waste %lld exceeds %lld",
17c2f9f8 1834 d->chk_lpt_sz, d->chk_lpt_wastage, lpt_sz);
73944a6d
AH
1835 err = -EINVAL;
1836 }
787845bd 1837 if (err) {
73944a6d 1838 dbg_dump_lpt_info(c);
2ba5f7ae 1839 dbg_dump_lpt_lebs(c);
787845bd
AB
1840 dump_stack();
1841 }
17c2f9f8
AB
1842 d->chk_lpt_sz2 = d->chk_lpt_sz;
1843 d->chk_lpt_sz = 0;
1844 d->chk_lpt_wastage = 0;
1845 d->chk_lpt_lebs = 0;
1846 d->new_nhead_offs = len;
73944a6d
AH
1847 return err;
1848 case 4:
17c2f9f8
AB
1849 d->chk_lpt_sz += len;
1850 d->chk_lpt_wastage += len;
73944a6d
AH
1851 return 0;
1852 default:
1853 return -EINVAL;
1854 }
1855}
1856
2ba5f7ae
AB
1857/**
1858 * dbg_dump_lpt_leb - dump an LPT LEB.
1859 * @c: UBIFS file-system description object
1860 * @lnum: LEB number to dump
1861 *
1862 * This function dumps an LEB from LPT area. Nodes in this area are very
1863 * different to nodes in the main area (e.g., they do not have common headers,
1864 * they do not have 8-byte alignments, etc), so we have a separate function to
80736d41 1865 * dump LPT area LEBs. Note, LPT has to be locked by the caller.
2ba5f7ae
AB
1866 */
1867static void dump_lpt_leb(const struct ubifs_info *c, int lnum)
1868{
1869 int err, len = c->leb_size, node_type, node_num, node_len, offs;
1870 void *buf = c->dbg->buf;
1871
1872 printk(KERN_DEBUG "(pid %d) start dumping LEB %d\n",
1873 current->pid, lnum);
1874 err = ubi_read(c->ubi, lnum, buf, 0, c->leb_size);
1875 if (err) {
1876 ubifs_err("cannot read LEB %d, error %d", lnum, err);
1877 return;
1878 }
1879 while (1) {
1880 offs = c->leb_size - len;
1881 if (!is_a_node(c, buf, len)) {
1882 int pad_len;
1883
1884 pad_len = get_pad_len(c, buf, len);
1885 if (pad_len) {
1886 printk(KERN_DEBUG "LEB %d:%d, pad %d bytes\n",
1887 lnum, offs, pad_len);
1888 buf += pad_len;
1889 len -= pad_len;
1890 continue;
1891 }
1892 if (len)
1893 printk(KERN_DEBUG "LEB %d:%d, free %d bytes\n",
1894 lnum, offs, len);
1895 break;
1896 }
1897
1898 node_type = get_lpt_node_type(c, buf, &node_num);
1899 switch (node_type) {
1900 case UBIFS_LPT_PNODE:
1901 {
1902 node_len = c->pnode_sz;
1903 if (c->big_lpt)
1904 printk(KERN_DEBUG "LEB %d:%d, pnode num %d\n",
1905 lnum, offs, node_num);
1906 else
1907 printk(KERN_DEBUG "LEB %d:%d, pnode\n",
1908 lnum, offs);
1909 break;
1910 }
1911 case UBIFS_LPT_NNODE:
1912 {
1913 int i;
1914 struct ubifs_nnode nnode;
1915
1916 node_len = c->nnode_sz;
1917 if (c->big_lpt)
1918 printk(KERN_DEBUG "LEB %d:%d, nnode num %d, ",
1919 lnum, offs, node_num);
1920 else
1921 printk(KERN_DEBUG "LEB %d:%d, nnode, ",
1922 lnum, offs);
1923 err = ubifs_unpack_nnode(c, buf, &nnode);
1924 for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
1925 printk("%d:%d", nnode.nbranch[i].lnum,
1926 nnode.nbranch[i].offs);
1927 if (i != UBIFS_LPT_FANOUT - 1)
1928 printk(", ");
1929 }
1930 printk("\n");
1931 break;
1932 }
1933 case UBIFS_LPT_LTAB:
1934 node_len = c->ltab_sz;
1935 printk(KERN_DEBUG "LEB %d:%d, ltab\n",
1936 lnum, offs);
1937 break;
1938 case UBIFS_LPT_LSAVE:
1939 node_len = c->lsave_sz;
1940 printk(KERN_DEBUG "LEB %d:%d, lsave len\n", lnum, offs);
1941 break;
1942 default:
1943 ubifs_err("LPT node type %d not recognized", node_type);
1944 return;
1945 }
1946
1947 buf += node_len;
1948 len -= node_len;
1949 }
1950
1951 printk(KERN_DEBUG "(pid %d) finish dumping LEB %d\n",
1952 current->pid, lnum);
1953}
1954
1955/**
1956 * dbg_dump_lpt_lebs - dump LPT lebs.
1957 * @c: UBIFS file-system description object
1958 *
1959 * This function dumps all LPT LEBs. The caller has to make sure the LPT is
1960 * locked.
1961 */
1962void dbg_dump_lpt_lebs(const struct ubifs_info *c)
1963{
1964 int i;
1965
1966 printk(KERN_DEBUG "(pid %d) start dumping all LPT LEBs\n",
1967 current->pid);
1968 for (i = 0; i < c->lpt_lebs; i++)
1969 dump_lpt_leb(c, i + c->lpt_first);
1970 printk(KERN_DEBUG "(pid %d) finish dumping all LPT LEBs\n",
1971 current->pid);
1972}
1973
1e51764a 1974#endif /* CONFIG_UBIFS_FS_DEBUG */