]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - fs/ubifs/super.c
UBIFS: fix writing uncompressed files
[mirror_ubuntu-artful-kernel.git] / fs / ubifs / super.c
CommitLineData
1e51764a
AB
1/*
2 * This file is part of UBIFS.
3 *
4 * Copyright (C) 2006-2008 Nokia Corporation.
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published by
8 * the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
15 * You should have received a copy of the GNU General Public License along with
16 * this program; if not, write to the Free Software Foundation, Inc., 51
17 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18 *
19 * Authors: Artem Bityutskiy (Битюцкий Артём)
20 * Adrian Hunter
21 */
22
23/*
24 * This file implements UBIFS initialization and VFS superblock operations. Some
25 * initialization stuff which is rather large and complex is placed at
26 * corresponding subsystems, but most of it is here.
27 */
28
29#include <linux/init.h>
30#include <linux/slab.h>
31#include <linux/module.h>
32#include <linux/ctype.h>
1e51764a
AB
33#include <linux/kthread.h>
34#include <linux/parser.h>
35#include <linux/seq_file.h>
36#include <linux/mount.h>
4d61db4f 37#include <linux/math64.h>
304d427c 38#include <linux/writeback.h>
1e51764a
AB
39#include "ubifs.h"
40
39ce81ce
AB
41/*
42 * Maximum amount of memory we may 'kmalloc()' without worrying that we are
43 * allocating too much.
44 */
45#define UBIFS_KMALLOC_OK (128*1024)
46
1e51764a
AB
47/* Slab cache for UBIFS inodes */
48struct kmem_cache *ubifs_inode_slab;
49
50/* UBIFS TNC shrinker description */
51static struct shrinker ubifs_shrinker_info = {
52 .shrink = ubifs_shrinker,
53 .seeks = DEFAULT_SEEKS,
54};
55
56/**
57 * validate_inode - validate inode.
58 * @c: UBIFS file-system description object
59 * @inode: the inode to validate
60 *
61 * This is a helper function for 'ubifs_iget()' which validates various fields
62 * of a newly built inode to make sure they contain sane values and prevent
63 * possible vulnerabilities. Returns zero if the inode is all right and
64 * a non-zero error code if not.
65 */
66static int validate_inode(struct ubifs_info *c, const struct inode *inode)
67{
68 int err;
69 const struct ubifs_inode *ui = ubifs_inode(inode);
70
71 if (inode->i_size > c->max_inode_sz) {
72 ubifs_err("inode is too large (%lld)",
73 (long long)inode->i_size);
74 return 1;
75 }
76
77 if (ui->compr_type < 0 || ui->compr_type >= UBIFS_COMPR_TYPES_CNT) {
78 ubifs_err("unknown compression type %d", ui->compr_type);
79 return 2;
80 }
81
82 if (ui->xattr_names + ui->xattr_cnt > XATTR_LIST_MAX)
83 return 3;
84
85 if (ui->data_len < 0 || ui->data_len > UBIFS_MAX_INO_DATA)
86 return 4;
87
88 if (ui->xattr && (inode->i_mode & S_IFMT) != S_IFREG)
89 return 5;
90
91 if (!ubifs_compr_present(ui->compr_type)) {
92 ubifs_warn("inode %lu uses '%s' compression, but it was not "
93 "compiled in", inode->i_ino,
94 ubifs_compr_name(ui->compr_type));
95 }
96
97 err = dbg_check_dir_size(c, inode);
98 return err;
99}
100
101struct inode *ubifs_iget(struct super_block *sb, unsigned long inum)
102{
103 int err;
104 union ubifs_key key;
105 struct ubifs_ino_node *ino;
106 struct ubifs_info *c = sb->s_fs_info;
107 struct inode *inode;
108 struct ubifs_inode *ui;
109
110 dbg_gen("inode %lu", inum);
111
112 inode = iget_locked(sb, inum);
113 if (!inode)
114 return ERR_PTR(-ENOMEM);
115 if (!(inode->i_state & I_NEW))
116 return inode;
117 ui = ubifs_inode(inode);
118
119 ino = kmalloc(UBIFS_MAX_INO_NODE_SZ, GFP_NOFS);
120 if (!ino) {
121 err = -ENOMEM;
122 goto out;
123 }
124
125 ino_key_init(c, &key, inode->i_ino);
126
127 err = ubifs_tnc_lookup(c, &key, ino);
128 if (err)
129 goto out_ino;
130
131 inode->i_flags |= (S_NOCMTIME | S_NOATIME);
132 inode->i_nlink = le32_to_cpu(ino->nlink);
133 inode->i_uid = le32_to_cpu(ino->uid);
134 inode->i_gid = le32_to_cpu(ino->gid);
135 inode->i_atime.tv_sec = (int64_t)le64_to_cpu(ino->atime_sec);
136 inode->i_atime.tv_nsec = le32_to_cpu(ino->atime_nsec);
137 inode->i_mtime.tv_sec = (int64_t)le64_to_cpu(ino->mtime_sec);
138 inode->i_mtime.tv_nsec = le32_to_cpu(ino->mtime_nsec);
139 inode->i_ctime.tv_sec = (int64_t)le64_to_cpu(ino->ctime_sec);
140 inode->i_ctime.tv_nsec = le32_to_cpu(ino->ctime_nsec);
141 inode->i_mode = le32_to_cpu(ino->mode);
142 inode->i_size = le64_to_cpu(ino->size);
143
144 ui->data_len = le32_to_cpu(ino->data_len);
145 ui->flags = le32_to_cpu(ino->flags);
146 ui->compr_type = le16_to_cpu(ino->compr_type);
147 ui->creat_sqnum = le64_to_cpu(ino->creat_sqnum);
148 ui->xattr_cnt = le32_to_cpu(ino->xattr_cnt);
149 ui->xattr_size = le32_to_cpu(ino->xattr_size);
150 ui->xattr_names = le32_to_cpu(ino->xattr_names);
151 ui->synced_i_size = ui->ui_size = inode->i_size;
152
153 ui->xattr = (ui->flags & UBIFS_XATTR_FL) ? 1 : 0;
154
155 err = validate_inode(c, inode);
156 if (err)
157 goto out_invalid;
158
0a883a05 159 /* Disable read-ahead */
1e51764a
AB
160 inode->i_mapping->backing_dev_info = &c->bdi;
161
162 switch (inode->i_mode & S_IFMT) {
163 case S_IFREG:
164 inode->i_mapping->a_ops = &ubifs_file_address_operations;
165 inode->i_op = &ubifs_file_inode_operations;
166 inode->i_fop = &ubifs_file_operations;
167 if (ui->xattr) {
168 ui->data = kmalloc(ui->data_len + 1, GFP_NOFS);
169 if (!ui->data) {
170 err = -ENOMEM;
171 goto out_ino;
172 }
173 memcpy(ui->data, ino->data, ui->data_len);
174 ((char *)ui->data)[ui->data_len] = '\0';
175 } else if (ui->data_len != 0) {
176 err = 10;
177 goto out_invalid;
178 }
179 break;
180 case S_IFDIR:
181 inode->i_op = &ubifs_dir_inode_operations;
182 inode->i_fop = &ubifs_dir_operations;
183 if (ui->data_len != 0) {
184 err = 11;
185 goto out_invalid;
186 }
187 break;
188 case S_IFLNK:
189 inode->i_op = &ubifs_symlink_inode_operations;
190 if (ui->data_len <= 0 || ui->data_len > UBIFS_MAX_INO_DATA) {
191 err = 12;
192 goto out_invalid;
193 }
194 ui->data = kmalloc(ui->data_len + 1, GFP_NOFS);
195 if (!ui->data) {
196 err = -ENOMEM;
197 goto out_ino;
198 }
199 memcpy(ui->data, ino->data, ui->data_len);
200 ((char *)ui->data)[ui->data_len] = '\0';
201 break;
202 case S_IFBLK:
203 case S_IFCHR:
204 {
205 dev_t rdev;
206 union ubifs_dev_desc *dev;
207
208 ui->data = kmalloc(sizeof(union ubifs_dev_desc), GFP_NOFS);
209 if (!ui->data) {
210 err = -ENOMEM;
211 goto out_ino;
212 }
213
214 dev = (union ubifs_dev_desc *)ino->data;
215 if (ui->data_len == sizeof(dev->new))
216 rdev = new_decode_dev(le32_to_cpu(dev->new));
217 else if (ui->data_len == sizeof(dev->huge))
218 rdev = huge_decode_dev(le64_to_cpu(dev->huge));
219 else {
220 err = 13;
221 goto out_invalid;
222 }
223 memcpy(ui->data, ino->data, ui->data_len);
224 inode->i_op = &ubifs_file_inode_operations;
225 init_special_inode(inode, inode->i_mode, rdev);
226 break;
227 }
228 case S_IFSOCK:
229 case S_IFIFO:
230 inode->i_op = &ubifs_file_inode_operations;
231 init_special_inode(inode, inode->i_mode, 0);
232 if (ui->data_len != 0) {
233 err = 14;
234 goto out_invalid;
235 }
236 break;
237 default:
238 err = 15;
239 goto out_invalid;
240 }
241
242 kfree(ino);
243 ubifs_set_inode_flags(inode);
244 unlock_new_inode(inode);
245 return inode;
246
247out_invalid:
248 ubifs_err("inode %lu validation failed, error %d", inode->i_ino, err);
249 dbg_dump_node(c, ino);
250 dbg_dump_inode(c, inode);
251 err = -EINVAL;
252out_ino:
253 kfree(ino);
254out:
255 ubifs_err("failed to read inode %lu, error %d", inode->i_ino, err);
256 iget_failed(inode);
257 return ERR_PTR(err);
258}
259
260static struct inode *ubifs_alloc_inode(struct super_block *sb)
261{
262 struct ubifs_inode *ui;
263
264 ui = kmem_cache_alloc(ubifs_inode_slab, GFP_NOFS);
265 if (!ui)
266 return NULL;
267
268 memset((void *)ui + sizeof(struct inode), 0,
269 sizeof(struct ubifs_inode) - sizeof(struct inode));
270 mutex_init(&ui->ui_mutex);
271 spin_lock_init(&ui->ui_lock);
272 return &ui->vfs_inode;
273};
274
275static void ubifs_destroy_inode(struct inode *inode)
276{
277 struct ubifs_inode *ui = ubifs_inode(inode);
278
279 kfree(ui->data);
280 kmem_cache_free(ubifs_inode_slab, inode);
281}
282
283/*
284 * Note, Linux write-back code calls this without 'i_mutex'.
285 */
286static int ubifs_write_inode(struct inode *inode, int wait)
287{
fbfa6c88 288 int err = 0;
1e51764a
AB
289 struct ubifs_info *c = inode->i_sb->s_fs_info;
290 struct ubifs_inode *ui = ubifs_inode(inode);
291
292 ubifs_assert(!ui->xattr);
293 if (is_bad_inode(inode))
294 return 0;
295
296 mutex_lock(&ui->ui_mutex);
297 /*
298 * Due to races between write-back forced by budgeting
299 * (see 'sync_some_inodes()') and pdflush write-back, the inode may
300 * have already been synchronized, do not do this again. This might
301 * also happen if it was synchronized in an VFS operation, e.g.
302 * 'ubifs_link()'.
303 */
304 if (!ui->dirty) {
305 mutex_unlock(&ui->ui_mutex);
306 return 0;
307 }
308
fbfa6c88
AB
309 /*
310 * As an optimization, do not write orphan inodes to the media just
311 * because this is not needed.
312 */
313 dbg_gen("inode %lu, mode %#x, nlink %u",
314 inode->i_ino, (int)inode->i_mode, inode->i_nlink);
315 if (inode->i_nlink) {
1f28681a 316 err = ubifs_jnl_write_inode(c, inode);
fbfa6c88
AB
317 if (err)
318 ubifs_err("can't write inode %lu, error %d",
319 inode->i_ino, err);
320 }
1e51764a
AB
321
322 ui->dirty = 0;
323 mutex_unlock(&ui->ui_mutex);
324 ubifs_release_dirty_inode_budget(c, ui);
325 return err;
326}
327
328static void ubifs_delete_inode(struct inode *inode)
329{
330 int err;
331 struct ubifs_info *c = inode->i_sb->s_fs_info;
1e0f358e 332 struct ubifs_inode *ui = ubifs_inode(inode);
1e51764a 333
1e0f358e 334 if (ui->xattr)
1e51764a
AB
335 /*
336 * Extended attribute inode deletions are fully handled in
337 * 'ubifs_removexattr()'. These inodes are special and have
338 * limited usage, so there is nothing to do here.
339 */
340 goto out;
341
7d32c2bb 342 dbg_gen("inode %lu, mode %#x", inode->i_ino, (int)inode->i_mode);
1e51764a
AB
343 ubifs_assert(!atomic_read(&inode->i_count));
344 ubifs_assert(inode->i_nlink == 0);
345
346 truncate_inode_pages(&inode->i_data, 0);
347 if (is_bad_inode(inode))
348 goto out;
349
1e0f358e 350 ui->ui_size = inode->i_size = 0;
de94eb55 351 err = ubifs_jnl_delete_inode(c, inode);
1e51764a
AB
352 if (err)
353 /*
354 * Worst case we have a lost orphan inode wasting space, so a
0a883a05 355 * simple error message is OK here.
1e51764a 356 */
de94eb55
AB
357 ubifs_err("can't delete inode %lu, error %d",
358 inode->i_ino, err);
359
1e51764a 360out:
1e0f358e
AB
361 if (ui->dirty)
362 ubifs_release_dirty_inode_budget(c, ui);
1e51764a
AB
363 clear_inode(inode);
364}
365
366static void ubifs_dirty_inode(struct inode *inode)
367{
368 struct ubifs_inode *ui = ubifs_inode(inode);
369
370 ubifs_assert(mutex_is_locked(&ui->ui_mutex));
371 if (!ui->dirty) {
372 ui->dirty = 1;
373 dbg_gen("inode %lu", inode->i_ino);
374 }
375}
376
377static int ubifs_statfs(struct dentry *dentry, struct kstatfs *buf)
378{
379 struct ubifs_info *c = dentry->d_sb->s_fs_info;
380 unsigned long long free;
7c7cbadf 381 __le32 *uuid = (__le32 *)c->uuid;
1e51764a 382
7dad181b 383 free = ubifs_get_free_space(c);
1e51764a
AB
384 dbg_gen("free space %lld bytes (%lld blocks)",
385 free, free >> UBIFS_BLOCK_SHIFT);
386
387 buf->f_type = UBIFS_SUPER_MAGIC;
388 buf->f_bsize = UBIFS_BLOCK_SIZE;
389 buf->f_blocks = c->block_cnt;
390 buf->f_bfree = free >> UBIFS_BLOCK_SHIFT;
391 if (free > c->report_rp_size)
392 buf->f_bavail = (free - c->report_rp_size) >> UBIFS_BLOCK_SHIFT;
393 else
394 buf->f_bavail = 0;
395 buf->f_files = 0;
396 buf->f_ffree = 0;
397 buf->f_namelen = UBIFS_MAX_NLEN;
7c7cbadf
AB
398 buf->f_fsid.val[0] = le32_to_cpu(uuid[0]) ^ le32_to_cpu(uuid[2]);
399 buf->f_fsid.val[1] = le32_to_cpu(uuid[1]) ^ le32_to_cpu(uuid[3]);
1e51764a
AB
400 return 0;
401}
402
403static int ubifs_show_options(struct seq_file *s, struct vfsmount *mnt)
404{
405 struct ubifs_info *c = mnt->mnt_sb->s_fs_info;
406
407 if (c->mount_opts.unmount_mode == 2)
408 seq_printf(s, ",fast_unmount");
409 else if (c->mount_opts.unmount_mode == 1)
410 seq_printf(s, ",norm_unmount");
411
4793e7c5
AH
412 if (c->mount_opts.bulk_read == 2)
413 seq_printf(s, ",bulk_read");
414 else if (c->mount_opts.bulk_read == 1)
415 seq_printf(s, ",no_bulk_read");
416
2953e73f
AH
417 if (c->mount_opts.chk_data_crc == 2)
418 seq_printf(s, ",chk_data_crc");
419 else if (c->mount_opts.chk_data_crc == 1)
420 seq_printf(s, ",no_chk_data_crc");
421
553dea4d
AB
422 if (c->mount_opts.override_compr) {
423 seq_printf(s, ",compr=");
424 seq_printf(s, ubifs_compr_name(c->mount_opts.compr_type));
425 }
426
1e51764a
AB
427 return 0;
428}
429
430static int ubifs_sync_fs(struct super_block *sb, int wait)
431{
f1038300 432 int i, err;
1e51764a 433 struct ubifs_info *c = sb->s_fs_info;
304d427c
AB
434 struct writeback_control wbc = {
435 .sync_mode = wait ? WB_SYNC_ALL : WB_SYNC_HOLD,
436 .range_start = 0,
437 .range_end = LLONG_MAX,
438 .nr_to_write = LONG_MAX,
439 };
440
f1038300
AB
441 if (sb->s_flags & MS_RDONLY)
442 return 0;
443
444 /*
445 * Synchronize write buffers, because 'ubifs_run_commit()' does not
446 * do this if it waits for an already running commit.
447 */
448 for (i = 0; i < c->jhead_cnt; i++) {
449 err = ubifs_wbuf_sync(&c->jheads[i].wbuf);
450 if (err)
451 return err;
452 }
453
304d427c
AB
454 /*
455 * VFS calls '->sync_fs()' before synchronizing all dirty inodes and
456 * pages, so synchronize them first, then commit the journal. Strictly
457 * speaking, it is not necessary to commit the journal here,
458 * synchronizing write-buffers would be enough. But committing makes
459 * UBIFS free space predictions much more accurate, so we want to let
460 * the user be able to get more accurate results of 'statfs()' after
461 * they synchronize the file system.
462 */
463 generic_sync_sb_inodes(sb, &wbc);
1e51764a 464
f1038300
AB
465 err = ubifs_run_commit(c);
466 if (err)
467 return err;
403e12ab 468
cb5c6a2b 469 return ubi_sync(c->vi.ubi_num);
1e51764a
AB
470}
471
472/**
473 * init_constants_early - initialize UBIFS constants.
474 * @c: UBIFS file-system description object
475 *
476 * This function initialize UBIFS constants which do not need the superblock to
477 * be read. It also checks that the UBI volume satisfies basic UBIFS
478 * requirements. Returns zero in case of success and a negative error code in
479 * case of failure.
480 */
481static int init_constants_early(struct ubifs_info *c)
482{
483 if (c->vi.corrupted) {
484 ubifs_warn("UBI volume is corrupted - read-only mode");
485 c->ro_media = 1;
486 }
487
488 if (c->di.ro_mode) {
489 ubifs_msg("read-only UBI device");
490 c->ro_media = 1;
491 }
492
493 if (c->vi.vol_type == UBI_STATIC_VOLUME) {
494 ubifs_msg("static UBI volume - read-only mode");
495 c->ro_media = 1;
496 }
497
498 c->leb_cnt = c->vi.size;
499 c->leb_size = c->vi.usable_leb_size;
500 c->half_leb_size = c->leb_size / 2;
501 c->min_io_size = c->di.min_io_size;
502 c->min_io_shift = fls(c->min_io_size) - 1;
503
504 if (c->leb_size < UBIFS_MIN_LEB_SZ) {
505 ubifs_err("too small LEBs (%d bytes), min. is %d bytes",
506 c->leb_size, UBIFS_MIN_LEB_SZ);
507 return -EINVAL;
508 }
509
510 if (c->leb_cnt < UBIFS_MIN_LEB_CNT) {
511 ubifs_err("too few LEBs (%d), min. is %d",
512 c->leb_cnt, UBIFS_MIN_LEB_CNT);
513 return -EINVAL;
514 }
515
516 if (!is_power_of_2(c->min_io_size)) {
517 ubifs_err("bad min. I/O size %d", c->min_io_size);
518 return -EINVAL;
519 }
520
521 /*
522 * UBIFS aligns all node to 8-byte boundary, so to make function in
523 * io.c simpler, assume minimum I/O unit size to be 8 bytes if it is
524 * less than 8.
525 */
526 if (c->min_io_size < 8) {
527 c->min_io_size = 8;
528 c->min_io_shift = 3;
529 }
530
531 c->ref_node_alsz = ALIGN(UBIFS_REF_NODE_SZ, c->min_io_size);
532 c->mst_node_alsz = ALIGN(UBIFS_MST_NODE_SZ, c->min_io_size);
533
534 /*
535 * Initialize node length ranges which are mostly needed for node
536 * length validation.
537 */
538 c->ranges[UBIFS_PAD_NODE].len = UBIFS_PAD_NODE_SZ;
539 c->ranges[UBIFS_SB_NODE].len = UBIFS_SB_NODE_SZ;
540 c->ranges[UBIFS_MST_NODE].len = UBIFS_MST_NODE_SZ;
541 c->ranges[UBIFS_REF_NODE].len = UBIFS_REF_NODE_SZ;
542 c->ranges[UBIFS_TRUN_NODE].len = UBIFS_TRUN_NODE_SZ;
543 c->ranges[UBIFS_CS_NODE].len = UBIFS_CS_NODE_SZ;
544
545 c->ranges[UBIFS_INO_NODE].min_len = UBIFS_INO_NODE_SZ;
546 c->ranges[UBIFS_INO_NODE].max_len = UBIFS_MAX_INO_NODE_SZ;
547 c->ranges[UBIFS_ORPH_NODE].min_len =
548 UBIFS_ORPH_NODE_SZ + sizeof(__le64);
549 c->ranges[UBIFS_ORPH_NODE].max_len = c->leb_size;
550 c->ranges[UBIFS_DENT_NODE].min_len = UBIFS_DENT_NODE_SZ;
551 c->ranges[UBIFS_DENT_NODE].max_len = UBIFS_MAX_DENT_NODE_SZ;
552 c->ranges[UBIFS_XENT_NODE].min_len = UBIFS_XENT_NODE_SZ;
553 c->ranges[UBIFS_XENT_NODE].max_len = UBIFS_MAX_XENT_NODE_SZ;
554 c->ranges[UBIFS_DATA_NODE].min_len = UBIFS_DATA_NODE_SZ;
555 c->ranges[UBIFS_DATA_NODE].max_len = UBIFS_MAX_DATA_NODE_SZ;
556 /*
557 * Minimum indexing node size is amended later when superblock is
558 * read and the key length is known.
559 */
560 c->ranges[UBIFS_IDX_NODE].min_len = UBIFS_IDX_NODE_SZ + UBIFS_BRANCH_SZ;
561 /*
562 * Maximum indexing node size is amended later when superblock is
563 * read and the fanout is known.
564 */
565 c->ranges[UBIFS_IDX_NODE].max_len = INT_MAX;
566
567 /*
568 * Initialize dead and dark LEB space watermarks.
569 *
570 * Dead space is the space which cannot be used. Its watermark is
571 * equivalent to min. I/O unit or minimum node size if it is greater
572 * then min. I/O unit.
573 *
574 * Dark space is the space which might be used, or might not, depending
575 * on which node should be written to the LEB. Its watermark is
576 * equivalent to maximum UBIFS node size.
577 */
578 c->dead_wm = ALIGN(MIN_WRITE_SZ, c->min_io_size);
579 c->dark_wm = ALIGN(UBIFS_MAX_NODE_SZ, c->min_io_size);
580
9bbb5726
AB
581 /*
582 * Calculate how many bytes would be wasted at the end of LEB if it was
583 * fully filled with data nodes of maximum size. This is used in
584 * calculations when reporting free space.
585 */
586 c->leb_overhead = c->leb_size % UBIFS_MAX_DATA_NODE_SZ;
39ce81ce 587
4793e7c5 588 /* Buffer size for bulk-reads */
6c0c42cd
AB
589 c->max_bu_buf_len = UBIFS_MAX_BULK_READ * UBIFS_MAX_DATA_NODE_SZ;
590 if (c->max_bu_buf_len > c->leb_size)
591 c->max_bu_buf_len = c->leb_size;
1e51764a
AB
592 return 0;
593}
594
595/**
596 * bud_wbuf_callback - bud LEB write-buffer synchronization call-back.
597 * @c: UBIFS file-system description object
598 * @lnum: LEB the write-buffer was synchronized to
599 * @free: how many free bytes left in this LEB
600 * @pad: how many bytes were padded
601 *
602 * This is a callback function which is called by the I/O unit when the
603 * write-buffer is synchronized. We need this to correctly maintain space
604 * accounting in bud logical eraseblocks. This function returns zero in case of
605 * success and a negative error code in case of failure.
606 *
607 * This function actually belongs to the journal, but we keep it here because
608 * we want to keep it static.
609 */
610static int bud_wbuf_callback(struct ubifs_info *c, int lnum, int free, int pad)
611{
612 return ubifs_update_one_lp(c, lnum, free, pad, 0, 0);
613}
614
615/*
79807d07 616 * init_constants_sb - initialize UBIFS constants.
1e51764a
AB
617 * @c: UBIFS file-system description object
618 *
619 * This is a helper function which initializes various UBIFS constants after
620 * the superblock has been read. It also checks various UBIFS parameters and
621 * makes sure they are all right. Returns zero in case of success and a
622 * negative error code in case of failure.
623 */
79807d07 624static int init_constants_sb(struct ubifs_info *c)
1e51764a
AB
625{
626 int tmp, err;
4d61db4f 627 long long tmp64;
1e51764a
AB
628
629 c->main_bytes = (long long)c->main_lebs * c->leb_size;
630 c->max_znode_sz = sizeof(struct ubifs_znode) +
631 c->fanout * sizeof(struct ubifs_zbranch);
632
633 tmp = ubifs_idx_node_sz(c, 1);
634 c->ranges[UBIFS_IDX_NODE].min_len = tmp;
635 c->min_idx_node_sz = ALIGN(tmp, 8);
636
637 tmp = ubifs_idx_node_sz(c, c->fanout);
638 c->ranges[UBIFS_IDX_NODE].max_len = tmp;
639 c->max_idx_node_sz = ALIGN(tmp, 8);
640
641 /* Make sure LEB size is large enough to fit full commit */
642 tmp = UBIFS_CS_NODE_SZ + UBIFS_REF_NODE_SZ * c->jhead_cnt;
643 tmp = ALIGN(tmp, c->min_io_size);
644 if (tmp > c->leb_size) {
645 dbg_err("too small LEB size %d, at least %d needed",
646 c->leb_size, tmp);
647 return -EINVAL;
648 }
649
650 /*
651 * Make sure that the log is large enough to fit reference nodes for
652 * all buds plus one reserved LEB.
653 */
4d61db4f
AB
654 tmp64 = c->max_bud_bytes + c->leb_size - 1;
655 c->max_bud_cnt = div_u64(tmp64, c->leb_size);
1e51764a
AB
656 tmp = (c->ref_node_alsz * c->max_bud_cnt + c->leb_size - 1);
657 tmp /= c->leb_size;
658 tmp += 1;
659 if (c->log_lebs < tmp) {
660 dbg_err("too small log %d LEBs, required min. %d LEBs",
661 c->log_lebs, tmp);
662 return -EINVAL;
663 }
664
665 /*
666 * When budgeting we assume worst-case scenarios when the pages are not
667 * be compressed and direntries are of the maximum size.
668 *
669 * Note, data, which may be stored in inodes is budgeted separately, so
670 * it is not included into 'c->inode_budget'.
671 */
672 c->page_budget = UBIFS_MAX_DATA_NODE_SZ * UBIFS_BLOCKS_PER_PAGE;
673 c->inode_budget = UBIFS_INO_NODE_SZ;
674 c->dent_budget = UBIFS_MAX_DENT_NODE_SZ;
675
676 /*
677 * When the amount of flash space used by buds becomes
678 * 'c->max_bud_bytes', UBIFS just blocks all writers and starts commit.
679 * The writers are unblocked when the commit is finished. To avoid
680 * writers to be blocked UBIFS initiates background commit in advance,
681 * when number of bud bytes becomes above the limit defined below.
682 */
683 c->bg_bud_bytes = (c->max_bud_bytes * 13) >> 4;
684
685 /*
686 * Ensure minimum journal size. All the bytes in the journal heads are
687 * considered to be used, when calculating the current journal usage.
688 * Consequently, if the journal is too small, UBIFS will treat it as
689 * always full.
690 */
4d61db4f 691 tmp64 = (long long)(c->jhead_cnt + 1) * c->leb_size + 1;
1e51764a
AB
692 if (c->bg_bud_bytes < tmp64)
693 c->bg_bud_bytes = tmp64;
694 if (c->max_bud_bytes < tmp64 + c->leb_size)
695 c->max_bud_bytes = tmp64 + c->leb_size;
696
697 err = ubifs_calc_lpt_geom(c);
698 if (err)
699 return err;
700
79807d07
AB
701 return 0;
702}
703
704/*
705 * init_constants_master - initialize UBIFS constants.
706 * @c: UBIFS file-system description object
707 *
708 * This is a helper function which initializes various UBIFS constants after
709 * the master node has been read. It also checks various UBIFS parameters and
710 * makes sure they are all right.
711 */
712static void init_constants_master(struct ubifs_info *c)
713{
714 long long tmp64;
715
1e51764a
AB
716 c->min_idx_lebs = ubifs_calc_min_idx_lebs(c);
717
718 /*
719 * Calculate total amount of FS blocks. This number is not used
720 * internally because it does not make much sense for UBIFS, but it is
721 * necessary to report something for the 'statfs()' call.
722 *
7dad181b 723 * Subtract the LEB reserved for GC, the LEB which is reserved for
af14a1ad
AB
724 * deletions, minimum LEBs for the index, and assume only one journal
725 * head is available.
1e51764a 726 */
af14a1ad 727 tmp64 = c->main_lebs - 1 - 1 - MIN_INDEX_LEBS - c->jhead_cnt + 1;
4d61db4f 728 tmp64 *= (long long)c->leb_size - c->leb_overhead;
1e51764a
AB
729 tmp64 = ubifs_reported_space(c, tmp64);
730 c->block_cnt = tmp64 >> UBIFS_BLOCK_SHIFT;
1e51764a
AB
731}
732
733/**
734 * take_gc_lnum - reserve GC LEB.
735 * @c: UBIFS file-system description object
736 *
737 * This function ensures that the LEB reserved for garbage collection is
738 * unmapped and is marked as "taken" in lprops. We also have to set free space
739 * to LEB size and dirty space to zero, because lprops may contain out-of-date
740 * information if the file-system was un-mounted before it has been committed.
741 * This function returns zero in case of success and a negative error code in
742 * case of failure.
743 */
744static int take_gc_lnum(struct ubifs_info *c)
745{
746 int err;
747
748 if (c->gc_lnum == -1) {
749 ubifs_err("no LEB for GC");
750 return -EINVAL;
751 }
752
753 err = ubifs_leb_unmap(c, c->gc_lnum);
754 if (err)
755 return err;
756
757 /* And we have to tell lprops that this LEB is taken */
758 err = ubifs_change_one_lp(c, c->gc_lnum, c->leb_size, 0,
759 LPROPS_TAKEN, 0, 0);
760 return err;
761}
762
763/**
764 * alloc_wbufs - allocate write-buffers.
765 * @c: UBIFS file-system description object
766 *
767 * This helper function allocates and initializes UBIFS write-buffers. Returns
768 * zero in case of success and %-ENOMEM in case of failure.
769 */
770static int alloc_wbufs(struct ubifs_info *c)
771{
772 int i, err;
773
774 c->jheads = kzalloc(c->jhead_cnt * sizeof(struct ubifs_jhead),
775 GFP_KERNEL);
776 if (!c->jheads)
777 return -ENOMEM;
778
779 /* Initialize journal heads */
780 for (i = 0; i < c->jhead_cnt; i++) {
781 INIT_LIST_HEAD(&c->jheads[i].buds_list);
782 err = ubifs_wbuf_init(c, &c->jheads[i].wbuf);
783 if (err)
784 return err;
785
786 c->jheads[i].wbuf.sync_callback = &bud_wbuf_callback;
787 c->jheads[i].wbuf.jhead = i;
788 }
789
790 c->jheads[BASEHD].wbuf.dtype = UBI_SHORTTERM;
791 /*
792 * Garbage Collector head likely contains long-term data and
793 * does not need to be synchronized by timer.
794 */
795 c->jheads[GCHD].wbuf.dtype = UBI_LONGTERM;
796 c->jheads[GCHD].wbuf.timeout = 0;
797
798 return 0;
799}
800
801/**
802 * free_wbufs - free write-buffers.
803 * @c: UBIFS file-system description object
804 */
805static void free_wbufs(struct ubifs_info *c)
806{
807 int i;
808
809 if (c->jheads) {
810 for (i = 0; i < c->jhead_cnt; i++) {
811 kfree(c->jheads[i].wbuf.buf);
812 kfree(c->jheads[i].wbuf.inodes);
813 }
814 kfree(c->jheads);
815 c->jheads = NULL;
816 }
817}
818
819/**
820 * free_orphans - free orphans.
821 * @c: UBIFS file-system description object
822 */
823static void free_orphans(struct ubifs_info *c)
824{
825 struct ubifs_orphan *orph;
826
827 while (c->orph_dnext) {
828 orph = c->orph_dnext;
829 c->orph_dnext = orph->dnext;
830 list_del(&orph->list);
831 kfree(orph);
832 }
833
834 while (!list_empty(&c->orph_list)) {
835 orph = list_entry(c->orph_list.next, struct ubifs_orphan, list);
836 list_del(&orph->list);
837 kfree(orph);
838 dbg_err("orphan list not empty at unmount");
839 }
840
841 vfree(c->orph_buf);
842 c->orph_buf = NULL;
843}
844
845/**
846 * free_buds - free per-bud objects.
847 * @c: UBIFS file-system description object
848 */
849static void free_buds(struct ubifs_info *c)
850{
851 struct rb_node *this = c->buds.rb_node;
852 struct ubifs_bud *bud;
853
854 while (this) {
855 if (this->rb_left)
856 this = this->rb_left;
857 else if (this->rb_right)
858 this = this->rb_right;
859 else {
860 bud = rb_entry(this, struct ubifs_bud, rb);
861 this = rb_parent(this);
862 if (this) {
863 if (this->rb_left == &bud->rb)
864 this->rb_left = NULL;
865 else
866 this->rb_right = NULL;
867 }
868 kfree(bud);
869 }
870 }
871}
872
873/**
874 * check_volume_empty - check if the UBI volume is empty.
875 * @c: UBIFS file-system description object
876 *
877 * This function checks if the UBIFS volume is empty by looking if its LEBs are
878 * mapped or not. The result of checking is stored in the @c->empty variable.
879 * Returns zero in case of success and a negative error code in case of
880 * failure.
881 */
882static int check_volume_empty(struct ubifs_info *c)
883{
884 int lnum, err;
885
886 c->empty = 1;
887 for (lnum = 0; lnum < c->leb_cnt; lnum++) {
888 err = ubi_is_mapped(c->ubi, lnum);
889 if (unlikely(err < 0))
890 return err;
891 if (err == 1) {
892 c->empty = 0;
893 break;
894 }
895
896 cond_resched();
897 }
898
899 return 0;
900}
901
902/*
903 * UBIFS mount options.
904 *
905 * Opt_fast_unmount: do not run a journal commit before un-mounting
906 * Opt_norm_unmount: run a journal commit before un-mounting
4793e7c5
AH
907 * Opt_bulk_read: enable bulk-reads
908 * Opt_no_bulk_read: disable bulk-reads
2953e73f
AH
909 * Opt_chk_data_crc: check CRCs when reading data nodes
910 * Opt_no_chk_data_crc: do not check CRCs when reading data nodes
553dea4d 911 * Opt_override_compr: override default compressor
1e51764a
AB
912 * Opt_err: just end of array marker
913 */
914enum {
915 Opt_fast_unmount,
916 Opt_norm_unmount,
4793e7c5
AH
917 Opt_bulk_read,
918 Opt_no_bulk_read,
2953e73f
AH
919 Opt_chk_data_crc,
920 Opt_no_chk_data_crc,
553dea4d 921 Opt_override_compr,
1e51764a
AB
922 Opt_err,
923};
924
a447c093 925static const match_table_t tokens = {
1e51764a
AB
926 {Opt_fast_unmount, "fast_unmount"},
927 {Opt_norm_unmount, "norm_unmount"},
4793e7c5
AH
928 {Opt_bulk_read, "bulk_read"},
929 {Opt_no_bulk_read, "no_bulk_read"},
2953e73f
AH
930 {Opt_chk_data_crc, "chk_data_crc"},
931 {Opt_no_chk_data_crc, "no_chk_data_crc"},
553dea4d 932 {Opt_override_compr, "compr=%s"},
1e51764a
AB
933 {Opt_err, NULL},
934};
935
936/**
937 * ubifs_parse_options - parse mount parameters.
938 * @c: UBIFS file-system description object
939 * @options: parameters to parse
940 * @is_remount: non-zero if this is FS re-mount
941 *
942 * This function parses UBIFS mount options and returns zero in case success
943 * and a negative error code in case of failure.
944 */
945static int ubifs_parse_options(struct ubifs_info *c, char *options,
946 int is_remount)
947{
948 char *p;
949 substring_t args[MAX_OPT_ARGS];
950
951 if (!options)
952 return 0;
953
954 while ((p = strsep(&options, ","))) {
955 int token;
956
957 if (!*p)
958 continue;
959
960 token = match_token(p, tokens, args);
961 switch (token) {
962 case Opt_fast_unmount:
963 c->mount_opts.unmount_mode = 2;
964 c->fast_unmount = 1;
965 break;
966 case Opt_norm_unmount:
967 c->mount_opts.unmount_mode = 1;
968 c->fast_unmount = 0;
969 break;
4793e7c5
AH
970 case Opt_bulk_read:
971 c->mount_opts.bulk_read = 2;
972 c->bulk_read = 1;
973 break;
974 case Opt_no_bulk_read:
975 c->mount_opts.bulk_read = 1;
976 c->bulk_read = 0;
977 break;
2953e73f
AH
978 case Opt_chk_data_crc:
979 c->mount_opts.chk_data_crc = 2;
980 c->no_chk_data_crc = 0;
981 break;
982 case Opt_no_chk_data_crc:
983 c->mount_opts.chk_data_crc = 1;
984 c->no_chk_data_crc = 1;
985 break;
553dea4d
AB
986 case Opt_override_compr:
987 {
988 char *name = match_strdup(&args[0]);
989
990 if (!name)
991 return -ENOMEM;
992 if (!strcmp(name, "none"))
993 c->mount_opts.compr_type = UBIFS_COMPR_NONE;
994 else if (!strcmp(name, "lzo"))
995 c->mount_opts.compr_type = UBIFS_COMPR_LZO;
996 else if (!strcmp(name, "zlib"))
997 c->mount_opts.compr_type = UBIFS_COMPR_ZLIB;
998 else {
999 ubifs_err("unknown compressor \"%s\"", name);
1000 kfree(name);
1001 return -EINVAL;
1002 }
1003 kfree(name);
1004 c->mount_opts.override_compr = 1;
1005 c->default_compr = c->mount_opts.compr_type;
1006 break;
1007 }
1e51764a
AB
1008 default:
1009 ubifs_err("unrecognized mount option \"%s\" "
1010 "or missing value", p);
1011 return -EINVAL;
1012 }
1013 }
1014
1015 return 0;
1016}
1017
1018/**
1019 * destroy_journal - destroy journal data structures.
1020 * @c: UBIFS file-system description object
1021 *
1022 * This function destroys journal data structures including those that may have
1023 * been created by recovery functions.
1024 */
1025static void destroy_journal(struct ubifs_info *c)
1026{
1027 while (!list_empty(&c->unclean_leb_list)) {
1028 struct ubifs_unclean_leb *ucleb;
1029
1030 ucleb = list_entry(c->unclean_leb_list.next,
1031 struct ubifs_unclean_leb, list);
1032 list_del(&ucleb->list);
1033 kfree(ucleb);
1034 }
1035 while (!list_empty(&c->old_buds)) {
1036 struct ubifs_bud *bud;
1037
1038 bud = list_entry(c->old_buds.next, struct ubifs_bud, list);
1039 list_del(&bud->list);
1040 kfree(bud);
1041 }
1042 ubifs_destroy_idx_gc(c);
1043 ubifs_destroy_size_tree(c);
1044 ubifs_tnc_close(c);
1045 free_buds(c);
1046}
1047
3477d204
AB
1048/**
1049 * bu_init - initialize bulk-read information.
1050 * @c: UBIFS file-system description object
1051 */
1052static void bu_init(struct ubifs_info *c)
1053{
1054 ubifs_assert(c->bulk_read == 1);
1055
1056 if (c->bu.buf)
1057 return; /* Already initialized */
1058
1059again:
1060 c->bu.buf = kmalloc(c->max_bu_buf_len, GFP_KERNEL | __GFP_NOWARN);
1061 if (!c->bu.buf) {
1062 if (c->max_bu_buf_len > UBIFS_KMALLOC_OK) {
1063 c->max_bu_buf_len = UBIFS_KMALLOC_OK;
1064 goto again;
1065 }
1066
1067 /* Just disable bulk-read */
1068 ubifs_warn("Cannot allocate %d bytes of memory for bulk-read, "
1069 "disabling it", c->max_bu_buf_len);
1070 c->mount_opts.bulk_read = 1;
1071 c->bulk_read = 0;
1072 return;
1073 }
1074}
1075
1e51764a
AB
1076/**
1077 * mount_ubifs - mount UBIFS file-system.
1078 * @c: UBIFS file-system description object
1079 *
1080 * This function mounts UBIFS file system. Returns zero in case of success and
1081 * a negative error code in case of failure.
1082 *
1083 * Note, the function does not de-allocate resources it it fails half way
1084 * through, and the caller has to do this instead.
1085 */
1086static int mount_ubifs(struct ubifs_info *c)
1087{
1088 struct super_block *sb = c->vfs_sb;
1089 int err, mounted_read_only = (sb->s_flags & MS_RDONLY);
1090 long long x;
1091 size_t sz;
1092
1093 err = init_constants_early(c);
1094 if (err)
1095 return err;
1096
17c2f9f8
AB
1097 err = ubifs_debugging_init(c);
1098 if (err)
1099 return err;
1e51764a
AB
1100
1101 err = check_volume_empty(c);
1102 if (err)
1103 goto out_free;
1104
1105 if (c->empty && (mounted_read_only || c->ro_media)) {
1106 /*
1107 * This UBI volume is empty, and read-only, or the file system
1108 * is mounted read-only - we cannot format it.
1109 */
1110 ubifs_err("can't format empty UBI volume: read-only %s",
1111 c->ro_media ? "UBI volume" : "mount");
1112 err = -EROFS;
1113 goto out_free;
1114 }
1115
1116 if (c->ro_media && !mounted_read_only) {
1117 ubifs_err("cannot mount read-write - read-only media");
1118 err = -EROFS;
1119 goto out_free;
1120 }
1121
1122 /*
1123 * The requirement for the buffer is that it should fit indexing B-tree
1124 * height amount of integers. We assume the height if the TNC tree will
1125 * never exceed 64.
1126 */
1127 err = -ENOMEM;
1128 c->bottom_up_buf = kmalloc(BOTTOM_UP_HEIGHT * sizeof(int), GFP_KERNEL);
1129 if (!c->bottom_up_buf)
1130 goto out_free;
1131
1132 c->sbuf = vmalloc(c->leb_size);
1133 if (!c->sbuf)
1134 goto out_free;
1135
1136 if (!mounted_read_only) {
1137 c->ileb_buf = vmalloc(c->leb_size);
1138 if (!c->ileb_buf)
1139 goto out_free;
1140 }
1141
3477d204
AB
1142 if (c->bulk_read == 1)
1143 bu_init(c);
1144
1145 /*
1146 * We have to check all CRCs, even for data nodes, when we mount the FS
1147 * (specifically, when we are replaying).
1148 */
2953e73f
AH
1149 c->always_chk_crc = 1;
1150
1e51764a
AB
1151 err = ubifs_read_superblock(c);
1152 if (err)
1153 goto out_free;
1154
1155 /*
553dea4d
AB
1156 * Make sure the compressor which is set as default in the superblock
1157 * or overriden by mount options is actually compiled in.
1e51764a
AB
1158 */
1159 if (!ubifs_compr_present(c->default_compr)) {
553dea4d
AB
1160 ubifs_err("'compressor \"%s\" is not compiled in",
1161 ubifs_compr_name(c->default_compr));
1162 goto out_free;
1e51764a
AB
1163 }
1164
79807d07 1165 err = init_constants_sb(c);
1e51764a 1166 if (err)
17c2f9f8 1167 goto out_free;
1e51764a
AB
1168
1169 sz = ALIGN(c->max_idx_node_sz, c->min_io_size);
1170 sz = ALIGN(sz + c->max_idx_node_sz, c->min_io_size);
1171 c->cbuf = kmalloc(sz, GFP_NOFS);
1172 if (!c->cbuf) {
1173 err = -ENOMEM;
17c2f9f8 1174 goto out_free;
1e51764a
AB
1175 }
1176
0855f310 1177 sprintf(c->bgt_name, BGT_NAME_PATTERN, c->vi.ubi_num, c->vi.vol_id);
1e51764a
AB
1178 if (!mounted_read_only) {
1179 err = alloc_wbufs(c);
1180 if (err)
1181 goto out_cbuf;
1182
1183 /* Create background thread */
1e51764a 1184 c->bgt = kthread_create(ubifs_bg_thread, c, c->bgt_name);
1e51764a
AB
1185 if (IS_ERR(c->bgt)) {
1186 err = PTR_ERR(c->bgt);
1187 c->bgt = NULL;
1188 ubifs_err("cannot spawn \"%s\", error %d",
1189 c->bgt_name, err);
1190 goto out_wbufs;
1191 }
1192 wake_up_process(c->bgt);
1193 }
1194
1195 err = ubifs_read_master(c);
1196 if (err)
1197 goto out_master;
1198
79807d07
AB
1199 init_constants_master(c);
1200
1e51764a
AB
1201 if ((c->mst_node->flags & cpu_to_le32(UBIFS_MST_DIRTY)) != 0) {
1202 ubifs_msg("recovery needed");
1203 c->need_recovery = 1;
1204 if (!mounted_read_only) {
1205 err = ubifs_recover_inl_heads(c, c->sbuf);
1206 if (err)
1207 goto out_master;
1208 }
1209 } else if (!mounted_read_only) {
1210 /*
1211 * Set the "dirty" flag so that if we reboot uncleanly we
1212 * will notice this immediately on the next mount.
1213 */
1214 c->mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY);
1215 err = ubifs_write_master(c);
1216 if (err)
1217 goto out_master;
1218 }
1219
1220 err = ubifs_lpt_init(c, 1, !mounted_read_only);
1221 if (err)
1222 goto out_lpt;
1223
1224 err = dbg_check_idx_size(c, c->old_idx_sz);
1225 if (err)
1226 goto out_lpt;
1227
1228 err = ubifs_replay_journal(c);
1229 if (err)
1230 goto out_journal;
1231
1232 err = ubifs_mount_orphans(c, c->need_recovery, mounted_read_only);
1233 if (err)
1234 goto out_orphans;
1235
1236 if (!mounted_read_only) {
1237 int lnum;
1238
1239 /* Check for enough free space */
1240 if (ubifs_calc_available(c, c->min_idx_lebs) <= 0) {
1241 ubifs_err("insufficient available space");
1242 err = -EINVAL;
1243 goto out_orphans;
1244 }
1245
1246 /* Check for enough log space */
1247 lnum = c->lhead_lnum + 1;
1248 if (lnum >= UBIFS_LOG_LNUM + c->log_lebs)
1249 lnum = UBIFS_LOG_LNUM;
1250 if (lnum == c->ltail_lnum) {
1251 err = ubifs_consolidate_log(c);
1252 if (err)
1253 goto out_orphans;
1254 }
1255
1256 if (c->need_recovery) {
1257 err = ubifs_recover_size(c);
1258 if (err)
1259 goto out_orphans;
1260 err = ubifs_rcvry_gc_commit(c);
1261 } else
1262 err = take_gc_lnum(c);
1263 if (err)
1264 goto out_orphans;
1265
1266 err = dbg_check_lprops(c);
1267 if (err)
1268 goto out_orphans;
1269 } else if (c->need_recovery) {
1270 err = ubifs_recover_size(c);
1271 if (err)
1272 goto out_orphans;
1273 }
1274
1275 spin_lock(&ubifs_infos_lock);
1276 list_add_tail(&c->infos_list, &ubifs_infos);
1277 spin_unlock(&ubifs_infos_lock);
1278
1279 if (c->need_recovery) {
1280 if (mounted_read_only)
1281 ubifs_msg("recovery deferred");
1282 else {
1283 c->need_recovery = 0;
1284 ubifs_msg("recovery completed");
1285 }
1286 }
1287
552ff317
AB
1288 err = dbg_debugfs_init_fs(c);
1289 if (err)
1290 goto out_infos;
1291
1e51764a
AB
1292 err = dbg_check_filesystem(c);
1293 if (err)
1294 goto out_infos;
1295
2953e73f
AH
1296 c->always_chk_crc = 0;
1297
ce769caa
AB
1298 ubifs_msg("mounted UBI device %d, volume %d, name \"%s\"",
1299 c->vi.ubi_num, c->vi.vol_id, c->vi.name);
1e51764a
AB
1300 if (mounted_read_only)
1301 ubifs_msg("mounted read-only");
1302 x = (long long)c->main_lebs * c->leb_size;
948cfb21
AB
1303 ubifs_msg("file system size: %lld bytes (%lld KiB, %lld MiB, %d "
1304 "LEBs)", x, x >> 10, x >> 20, c->main_lebs);
1e51764a 1305 x = (long long)c->log_lebs * c->leb_size + c->max_bud_bytes;
948cfb21
AB
1306 ubifs_msg("journal size: %lld bytes (%lld KiB, %lld MiB, %d "
1307 "LEBs)", x, x >> 10, x >> 20, c->log_lebs + c->max_bud_cnt);
1308 ubifs_msg("media format: %d (latest is %d)",
1e51764a 1309 c->fmt_version, UBIFS_FORMAT_VERSION);
948cfb21 1310 ubifs_msg("default compressor: %s", ubifs_compr_name(c->default_compr));
fae7fb29 1311 ubifs_msg("reserved for root: %llu bytes (%llu KiB)",
948cfb21 1312 c->report_rp_size, c->report_rp_size >> 10);
1e51764a
AB
1313
1314 dbg_msg("compiled on: " __DATE__ " at " __TIME__);
1315 dbg_msg("min. I/O unit size: %d bytes", c->min_io_size);
1316 dbg_msg("LEB size: %d bytes (%d KiB)",
948cfb21 1317 c->leb_size, c->leb_size >> 10);
1e51764a
AB
1318 dbg_msg("data journal heads: %d",
1319 c->jhead_cnt - NONDATA_JHEADS_CNT);
1320 dbg_msg("UUID: %02X%02X%02X%02X-%02X%02X"
1321 "-%02X%02X-%02X%02X-%02X%02X%02X%02X%02X%02X",
1322 c->uuid[0], c->uuid[1], c->uuid[2], c->uuid[3],
1323 c->uuid[4], c->uuid[5], c->uuid[6], c->uuid[7],
1324 c->uuid[8], c->uuid[9], c->uuid[10], c->uuid[11],
1325 c->uuid[12], c->uuid[13], c->uuid[14], c->uuid[15]);
1326 dbg_msg("fast unmount: %d", c->fast_unmount);
1327 dbg_msg("big_lpt %d", c->big_lpt);
1328 dbg_msg("log LEBs: %d (%d - %d)",
1329 c->log_lebs, UBIFS_LOG_LNUM, c->log_last);
1330 dbg_msg("LPT area LEBs: %d (%d - %d)",
1331 c->lpt_lebs, c->lpt_first, c->lpt_last);
1332 dbg_msg("orphan area LEBs: %d (%d - %d)",
1333 c->orph_lebs, c->orph_first, c->orph_last);
1334 dbg_msg("main area LEBs: %d (%d - %d)",
1335 c->main_lebs, c->main_first, c->leb_cnt - 1);
1336 dbg_msg("index LEBs: %d", c->lst.idx_lebs);
1337 dbg_msg("total index bytes: %lld (%lld KiB, %lld MiB)",
1338 c->old_idx_sz, c->old_idx_sz >> 10, c->old_idx_sz >> 20);
1339 dbg_msg("key hash type: %d", c->key_hash_type);
1340 dbg_msg("tree fanout: %d", c->fanout);
1341 dbg_msg("reserved GC LEB: %d", c->gc_lnum);
1342 dbg_msg("first main LEB: %d", c->main_first);
1343 dbg_msg("dead watermark: %d", c->dead_wm);
1344 dbg_msg("dark watermark: %d", c->dark_wm);
1345 x = (long long)c->main_lebs * c->dark_wm;
1346 dbg_msg("max. dark space: %lld (%lld KiB, %lld MiB)",
1347 x, x >> 10, x >> 20);
1348 dbg_msg("maximum bud bytes: %lld (%lld KiB, %lld MiB)",
1349 c->max_bud_bytes, c->max_bud_bytes >> 10,
1350 c->max_bud_bytes >> 20);
1351 dbg_msg("BG commit bud bytes: %lld (%lld KiB, %lld MiB)",
1352 c->bg_bud_bytes, c->bg_bud_bytes >> 10,
1353 c->bg_bud_bytes >> 20);
1354 dbg_msg("current bud bytes %lld (%lld KiB, %lld MiB)",
1355 c->bud_bytes, c->bud_bytes >> 10, c->bud_bytes >> 20);
1356 dbg_msg("max. seq. number: %llu", c->max_sqnum);
1357 dbg_msg("commit number: %llu", c->cmt_no);
1358
1359 return 0;
1360
1361out_infos:
1362 spin_lock(&ubifs_infos_lock);
1363 list_del(&c->infos_list);
1364 spin_unlock(&ubifs_infos_lock);
1365out_orphans:
1366 free_orphans(c);
1367out_journal:
1368 destroy_journal(c);
1369out_lpt:
1370 ubifs_lpt_free(c, 0);
1371out_master:
1372 kfree(c->mst_node);
1373 kfree(c->rcvrd_mst_node);
1374 if (c->bgt)
1375 kthread_stop(c->bgt);
1376out_wbufs:
1377 free_wbufs(c);
1378out_cbuf:
1379 kfree(c->cbuf);
1e51764a 1380out_free:
3477d204 1381 kfree(c->bu.buf);
1e51764a
AB
1382 vfree(c->ileb_buf);
1383 vfree(c->sbuf);
1384 kfree(c->bottom_up_buf);
17c2f9f8 1385 ubifs_debugging_exit(c);
1e51764a
AB
1386 return err;
1387}
1388
1389/**
1390 * ubifs_umount - un-mount UBIFS file-system.
1391 * @c: UBIFS file-system description object
1392 *
1393 * Note, this function is called to free allocated resourced when un-mounting,
1394 * as well as free resources when an error occurred while we were half way
1395 * through mounting (error path cleanup function). So it has to make sure the
1396 * resource was actually allocated before freeing it.
1397 */
1398static void ubifs_umount(struct ubifs_info *c)
1399{
1400 dbg_gen("un-mounting UBI device %d, volume %d", c->vi.ubi_num,
1401 c->vi.vol_id);
1402
552ff317 1403 dbg_debugfs_exit_fs(c);
1e51764a
AB
1404 spin_lock(&ubifs_infos_lock);
1405 list_del(&c->infos_list);
1406 spin_unlock(&ubifs_infos_lock);
1407
1408 if (c->bgt)
1409 kthread_stop(c->bgt);
1410
1411 destroy_journal(c);
1412 free_wbufs(c);
1413 free_orphans(c);
1414 ubifs_lpt_free(c, 0);
1415
1416 kfree(c->cbuf);
1417 kfree(c->rcvrd_mst_node);
1418 kfree(c->mst_node);
3477d204
AB
1419 kfree(c->bu.buf);
1420 vfree(c->ileb_buf);
1e51764a
AB
1421 vfree(c->sbuf);
1422 kfree(c->bottom_up_buf);
17c2f9f8 1423 ubifs_debugging_exit(c);
1e51764a
AB
1424}
1425
1426/**
1427 * ubifs_remount_rw - re-mount in read-write mode.
1428 * @c: UBIFS file-system description object
1429 *
1430 * UBIFS avoids allocating many unnecessary resources when mounted in read-only
1431 * mode. This function allocates the needed resources and re-mounts UBIFS in
1432 * read-write mode.
1433 */
1434static int ubifs_remount_rw(struct ubifs_info *c)
1435{
1436 int err, lnum;
1437
1438 if (c->ro_media)
1439 return -EINVAL;
1440
1441 mutex_lock(&c->umount_mutex);
1442 c->remounting_rw = 1;
2953e73f 1443 c->always_chk_crc = 1;
1e51764a
AB
1444
1445 /* Check for enough free space */
1446 if (ubifs_calc_available(c, c->min_idx_lebs) <= 0) {
1447 ubifs_err("insufficient available space");
1448 err = -EINVAL;
1449 goto out;
1450 }
1451
1452 if (c->old_leb_cnt != c->leb_cnt) {
1453 struct ubifs_sb_node *sup;
1454
1455 sup = ubifs_read_sb_node(c);
1456 if (IS_ERR(sup)) {
1457 err = PTR_ERR(sup);
1458 goto out;
1459 }
1460 sup->leb_cnt = cpu_to_le32(c->leb_cnt);
1461 err = ubifs_write_sb_node(c, sup);
1462 if (err)
1463 goto out;
1464 }
1465
1466 if (c->need_recovery) {
1467 ubifs_msg("completing deferred recovery");
1468 err = ubifs_write_rcvrd_mst_node(c);
1469 if (err)
1470 goto out;
1471 err = ubifs_recover_size(c);
1472 if (err)
1473 goto out;
1474 err = ubifs_clean_lebs(c, c->sbuf);
1475 if (err)
1476 goto out;
1477 err = ubifs_recover_inl_heads(c, c->sbuf);
1478 if (err)
1479 goto out;
1480 }
1481
1482 if (!(c->mst_node->flags & cpu_to_le32(UBIFS_MST_DIRTY))) {
1483 c->mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY);
1484 err = ubifs_write_master(c);
1485 if (err)
1486 goto out;
1487 }
1488
1489 c->ileb_buf = vmalloc(c->leb_size);
1490 if (!c->ileb_buf) {
1491 err = -ENOMEM;
1492 goto out;
1493 }
1494
1495 err = ubifs_lpt_init(c, 0, 1);
1496 if (err)
1497 goto out;
1498
1499 err = alloc_wbufs(c);
1500 if (err)
1501 goto out;
1502
1503 ubifs_create_buds_lists(c);
1504
1505 /* Create background thread */
1506 c->bgt = kthread_create(ubifs_bg_thread, c, c->bgt_name);
1e51764a
AB
1507 if (IS_ERR(c->bgt)) {
1508 err = PTR_ERR(c->bgt);
1509 c->bgt = NULL;
1510 ubifs_err("cannot spawn \"%s\", error %d",
1511 c->bgt_name, err);
2953e73f 1512 goto out;
1e51764a
AB
1513 }
1514 wake_up_process(c->bgt);
1515
1516 c->orph_buf = vmalloc(c->leb_size);
2953e73f
AH
1517 if (!c->orph_buf) {
1518 err = -ENOMEM;
1519 goto out;
1520 }
1e51764a
AB
1521
1522 /* Check for enough log space */
1523 lnum = c->lhead_lnum + 1;
1524 if (lnum >= UBIFS_LOG_LNUM + c->log_lebs)
1525 lnum = UBIFS_LOG_LNUM;
1526 if (lnum == c->ltail_lnum) {
1527 err = ubifs_consolidate_log(c);
1528 if (err)
1529 goto out;
1530 }
1531
1532 if (c->need_recovery)
1533 err = ubifs_rcvry_gc_commit(c);
1534 else
1535 err = take_gc_lnum(c);
1536 if (err)
1537 goto out;
1538
1539 if (c->need_recovery) {
1540 c->need_recovery = 0;
1541 ubifs_msg("deferred recovery completed");
1542 }
1543
1544 dbg_gen("re-mounted read-write");
1545 c->vfs_sb->s_flags &= ~MS_RDONLY;
1546 c->remounting_rw = 0;
2953e73f 1547 c->always_chk_crc = 0;
1e51764a
AB
1548 mutex_unlock(&c->umount_mutex);
1549 return 0;
1550
1551out:
1552 vfree(c->orph_buf);
1553 c->orph_buf = NULL;
1554 if (c->bgt) {
1555 kthread_stop(c->bgt);
1556 c->bgt = NULL;
1557 }
1558 free_wbufs(c);
1559 vfree(c->ileb_buf);
1560 c->ileb_buf = NULL;
1561 ubifs_lpt_free(c, 1);
1562 c->remounting_rw = 0;
2953e73f 1563 c->always_chk_crc = 0;
1e51764a
AB
1564 mutex_unlock(&c->umount_mutex);
1565 return err;
1566}
1567
1568/**
1569 * commit_on_unmount - commit the journal when un-mounting.
1570 * @c: UBIFS file-system description object
1571 *
af2eb563 1572 * This function is called during un-mounting and re-mounting, and it commits
26d05777 1573 * the journal unless the "fast unmount" mode is enabled.
1e51764a
AB
1574 */
1575static void commit_on_unmount(struct ubifs_info *c)
1576{
26d05777
AB
1577 struct super_block *sb = c->vfs_sb;
1578 long long bud_bytes;
1579
1580 /*
1581 * This function is called before the background thread is stopped, so
1582 * we may race with ongoing commit, which means we have to take
1583 * @c->bud_lock to access @c->bud_bytes.
1584 */
1585 spin_lock(&c->buds_lock);
1586 bud_bytes = c->bud_bytes;
1587 spin_unlock(&c->buds_lock);
1588
1589 if (!c->fast_unmount && !(sb->s_flags & MS_RDONLY) && bud_bytes)
1590 ubifs_run_commit(c);
1e51764a
AB
1591}
1592
1593/**
1594 * ubifs_remount_ro - re-mount in read-only mode.
1595 * @c: UBIFS file-system description object
1596 *
1597 * We rely on VFS to have stopped writing. Possibly the background thread could
1598 * be running a commit, however kthread_stop will wait in that case.
1599 */
1600static void ubifs_remount_ro(struct ubifs_info *c)
1601{
1602 int i, err;
1603
1604 ubifs_assert(!c->need_recovery);
1605 commit_on_unmount(c);
1606
1607 mutex_lock(&c->umount_mutex);
1608 if (c->bgt) {
1609 kthread_stop(c->bgt);
1610 c->bgt = NULL;
1611 }
1612
1613 for (i = 0; i < c->jhead_cnt; i++) {
1614 ubifs_wbuf_sync(&c->jheads[i].wbuf);
1615 del_timer_sync(&c->jheads[i].wbuf.timer);
1616 }
1617
1618 if (!c->ro_media) {
1619 c->mst_node->flags &= ~cpu_to_le32(UBIFS_MST_DIRTY);
1620 c->mst_node->flags |= cpu_to_le32(UBIFS_MST_NO_ORPHS);
1621 c->mst_node->gc_lnum = cpu_to_le32(c->gc_lnum);
1622 err = ubifs_write_master(c);
1623 if (err)
1624 ubifs_ro_mode(c, err);
1625 }
1626
1627 ubifs_destroy_idx_gc(c);
1628 free_wbufs(c);
1629 vfree(c->orph_buf);
1630 c->orph_buf = NULL;
1631 vfree(c->ileb_buf);
1632 c->ileb_buf = NULL;
1633 ubifs_lpt_free(c, 1);
1634 mutex_unlock(&c->umount_mutex);
1635}
1636
1637static void ubifs_put_super(struct super_block *sb)
1638{
1639 int i;
1640 struct ubifs_info *c = sb->s_fs_info;
1641
1642 ubifs_msg("un-mount UBI device %d, volume %d", c->vi.ubi_num,
1643 c->vi.vol_id);
1644 /*
1645 * The following asserts are only valid if there has not been a failure
1646 * of the media. For example, there will be dirty inodes if we failed
1647 * to write them back because of I/O errors.
1648 */
1649 ubifs_assert(atomic_long_read(&c->dirty_pg_cnt) == 0);
1650 ubifs_assert(c->budg_idx_growth == 0);
7d32c2bb 1651 ubifs_assert(c->budg_dd_growth == 0);
1e51764a
AB
1652 ubifs_assert(c->budg_data_growth == 0);
1653
1654 /*
1655 * The 'c->umount_lock' prevents races between UBIFS memory shrinker
1656 * and file system un-mount. Namely, it prevents the shrinker from
1657 * picking this superblock for shrinking - it will be just skipped if
1658 * the mutex is locked.
1659 */
1660 mutex_lock(&c->umount_mutex);
1661 if (!(c->vfs_sb->s_flags & MS_RDONLY)) {
1662 /*
1663 * First of all kill the background thread to make sure it does
1664 * not interfere with un-mounting and freeing resources.
1665 */
1666 if (c->bgt) {
1667 kthread_stop(c->bgt);
1668 c->bgt = NULL;
1669 }
1670
1671 /* Synchronize write-buffers */
1672 if (c->jheads)
1673 for (i = 0; i < c->jhead_cnt; i++) {
1674 ubifs_wbuf_sync(&c->jheads[i].wbuf);
1675 del_timer_sync(&c->jheads[i].wbuf.timer);
1676 }
1677
1678 /*
1679 * On fatal errors c->ro_media is set to 1, in which case we do
1680 * not write the master node.
1681 */
1682 if (!c->ro_media) {
1683 /*
1684 * We are being cleanly unmounted which means the
1685 * orphans were killed - indicate this in the master
1686 * node. Also save the reserved GC LEB number.
1687 */
1688 int err;
1689
1690 c->mst_node->flags &= ~cpu_to_le32(UBIFS_MST_DIRTY);
1691 c->mst_node->flags |= cpu_to_le32(UBIFS_MST_NO_ORPHS);
1692 c->mst_node->gc_lnum = cpu_to_le32(c->gc_lnum);
1693 err = ubifs_write_master(c);
1694 if (err)
1695 /*
1696 * Recovery will attempt to fix the master area
1697 * next mount, so we just print a message and
1698 * continue to unmount normally.
1699 */
1700 ubifs_err("failed to write master node, "
1701 "error %d", err);
1702 }
1703 }
1704
1705 ubifs_umount(c);
1706 bdi_destroy(&c->bdi);
1707 ubi_close_volume(c->ubi);
1708 mutex_unlock(&c->umount_mutex);
1709 kfree(c);
1710}
1711
1712static int ubifs_remount_fs(struct super_block *sb, int *flags, char *data)
1713{
1714 int err;
1715 struct ubifs_info *c = sb->s_fs_info;
1716
1717 dbg_gen("old flags %#lx, new flags %#x", sb->s_flags, *flags);
1718
1719 err = ubifs_parse_options(c, data, 1);
1720 if (err) {
1721 ubifs_err("invalid or unknown remount parameter");
1722 return err;
1723 }
3477d204 1724
1e51764a
AB
1725 if ((sb->s_flags & MS_RDONLY) && !(*flags & MS_RDONLY)) {
1726 err = ubifs_remount_rw(c);
1727 if (err)
1728 return err;
1729 } else if (!(sb->s_flags & MS_RDONLY) && (*flags & MS_RDONLY))
1730 ubifs_remount_ro(c);
1731
3477d204
AB
1732 if (c->bulk_read == 1)
1733 bu_init(c);
1734 else {
1735 dbg_gen("disable bulk-read");
1736 kfree(c->bu.buf);
1737 c->bu.buf = NULL;
1738 }
1739
1e51764a
AB
1740 return 0;
1741}
1742
1743struct super_operations ubifs_super_operations = {
1744 .alloc_inode = ubifs_alloc_inode,
1745 .destroy_inode = ubifs_destroy_inode,
1746 .put_super = ubifs_put_super,
1747 .write_inode = ubifs_write_inode,
1748 .delete_inode = ubifs_delete_inode,
1749 .statfs = ubifs_statfs,
1750 .dirty_inode = ubifs_dirty_inode,
1751 .remount_fs = ubifs_remount_fs,
1752 .show_options = ubifs_show_options,
1753 .sync_fs = ubifs_sync_fs,
1754};
1755
1756/**
1757 * open_ubi - parse UBI device name string and open the UBI device.
1758 * @name: UBI volume name
1759 * @mode: UBI volume open mode
1760 *
1761 * There are several ways to specify UBI volumes when mounting UBIFS:
1762 * o ubiX_Y - UBI device number X, volume Y;
1763 * o ubiY - UBI device number 0, volume Y;
1764 * o ubiX:NAME - mount UBI device X, volume with name NAME;
1765 * o ubi:NAME - mount UBI device 0, volume with name NAME.
1766 *
1767 * Alternative '!' separator may be used instead of ':' (because some shells
1768 * like busybox may interpret ':' as an NFS host name separator). This function
1769 * returns ubi volume object in case of success and a negative error code in
1770 * case of failure.
1771 */
1772static struct ubi_volume_desc *open_ubi(const char *name, int mode)
1773{
1774 int dev, vol;
1775 char *endptr;
1776
1777 if (name[0] != 'u' || name[1] != 'b' || name[2] != 'i')
1778 return ERR_PTR(-EINVAL);
1779
1780 /* ubi:NAME method */
1781 if ((name[3] == ':' || name[3] == '!') && name[4] != '\0')
1782 return ubi_open_volume_nm(0, name + 4, mode);
1783
1784 if (!isdigit(name[3]))
1785 return ERR_PTR(-EINVAL);
1786
1787 dev = simple_strtoul(name + 3, &endptr, 0);
1788
1789 /* ubiY method */
1790 if (*endptr == '\0')
1791 return ubi_open_volume(0, dev, mode);
1792
1793 /* ubiX_Y method */
1794 if (*endptr == '_' && isdigit(endptr[1])) {
1795 vol = simple_strtoul(endptr + 1, &endptr, 0);
1796 if (*endptr != '\0')
1797 return ERR_PTR(-EINVAL);
1798 return ubi_open_volume(dev, vol, mode);
1799 }
1800
1801 /* ubiX:NAME method */
1802 if ((*endptr == ':' || *endptr == '!') && endptr[1] != '\0')
1803 return ubi_open_volume_nm(dev, ++endptr, mode);
1804
1805 return ERR_PTR(-EINVAL);
1806}
1807
1808static int ubifs_fill_super(struct super_block *sb, void *data, int silent)
1809{
1810 struct ubi_volume_desc *ubi = sb->s_fs_info;
1811 struct ubifs_info *c;
1812 struct inode *root;
1813 int err;
1814
1815 c = kzalloc(sizeof(struct ubifs_info), GFP_KERNEL);
1816 if (!c)
1817 return -ENOMEM;
1818
1819 spin_lock_init(&c->cnt_lock);
1820 spin_lock_init(&c->cs_lock);
1821 spin_lock_init(&c->buds_lock);
1822 spin_lock_init(&c->space_lock);
1823 spin_lock_init(&c->orphan_lock);
1824 init_rwsem(&c->commit_sem);
1825 mutex_init(&c->lp_mutex);
1826 mutex_init(&c->tnc_mutex);
1827 mutex_init(&c->log_mutex);
1828 mutex_init(&c->mst_mutex);
1829 mutex_init(&c->umount_mutex);
3477d204 1830 mutex_init(&c->bu_mutex);
1e51764a
AB
1831 init_waitqueue_head(&c->cmt_wq);
1832 c->buds = RB_ROOT;
1833 c->old_idx = RB_ROOT;
1834 c->size_tree = RB_ROOT;
1835 c->orph_tree = RB_ROOT;
1836 INIT_LIST_HEAD(&c->infos_list);
1837 INIT_LIST_HEAD(&c->idx_gc);
1838 INIT_LIST_HEAD(&c->replay_list);
1839 INIT_LIST_HEAD(&c->replay_buds);
1840 INIT_LIST_HEAD(&c->uncat_list);
1841 INIT_LIST_HEAD(&c->empty_list);
1842 INIT_LIST_HEAD(&c->freeable_list);
1843 INIT_LIST_HEAD(&c->frdi_idx_list);
1844 INIT_LIST_HEAD(&c->unclean_leb_list);
1845 INIT_LIST_HEAD(&c->old_buds);
1846 INIT_LIST_HEAD(&c->orph_list);
1847 INIT_LIST_HEAD(&c->orph_new);
1848
1849 c->highest_inum = UBIFS_FIRST_INO;
1e51764a
AB
1850 c->lhead_lnum = c->ltail_lnum = UBIFS_LOG_LNUM;
1851
1852 ubi_get_volume_info(ubi, &c->vi);
1853 ubi_get_device_info(c->vi.ubi_num, &c->di);
1854
1855 /* Re-open the UBI device in read-write mode */
1856 c->ubi = ubi_open_volume(c->vi.ubi_num, c->vi.vol_id, UBI_READWRITE);
1857 if (IS_ERR(c->ubi)) {
1858 err = PTR_ERR(c->ubi);
1859 goto out_free;
1860 }
1861
1862 /*
0a883a05 1863 * UBIFS provides 'backing_dev_info' in order to disable read-ahead. For
1e51764a
AB
1864 * UBIFS, I/O is not deferred, it is done immediately in readpage,
1865 * which means the user would have to wait not just for their own I/O
0a883a05 1866 * but the read-ahead I/O as well i.e. completely pointless.
1e51764a
AB
1867 *
1868 * Read-ahead will be disabled because @c->bdi.ra_pages is 0.
1869 */
1870 c->bdi.capabilities = BDI_CAP_MAP_COPY;
1871 c->bdi.unplug_io_fn = default_unplug_io_fn;
1872 err = bdi_init(&c->bdi);
1873 if (err)
1874 goto out_close;
1875
1876 err = ubifs_parse_options(c, data, 0);
1877 if (err)
1878 goto out_bdi;
1879
1880 c->vfs_sb = sb;
1881
1882 sb->s_fs_info = c;
1883 sb->s_magic = UBIFS_SUPER_MAGIC;
1884 sb->s_blocksize = UBIFS_BLOCK_SIZE;
1885 sb->s_blocksize_bits = UBIFS_BLOCK_SHIFT;
1886 sb->s_dev = c->vi.cdev;
1887 sb->s_maxbytes = c->max_inode_sz = key_max_inode_size(c);
1888 if (c->max_inode_sz > MAX_LFS_FILESIZE)
1889 sb->s_maxbytes = c->max_inode_sz = MAX_LFS_FILESIZE;
1890 sb->s_op = &ubifs_super_operations;
1891
1892 mutex_lock(&c->umount_mutex);
1893 err = mount_ubifs(c);
1894 if (err) {
1895 ubifs_assert(err < 0);
1896 goto out_unlock;
1897 }
1898
1899 /* Read the root inode */
1900 root = ubifs_iget(sb, UBIFS_ROOT_INO);
1901 if (IS_ERR(root)) {
1902 err = PTR_ERR(root);
1903 goto out_umount;
1904 }
1905
1906 sb->s_root = d_alloc_root(root);
1907 if (!sb->s_root)
1908 goto out_iput;
1909
1910 mutex_unlock(&c->umount_mutex);
1e51764a
AB
1911 return 0;
1912
1913out_iput:
1914 iput(root);
1915out_umount:
1916 ubifs_umount(c);
1917out_unlock:
1918 mutex_unlock(&c->umount_mutex);
1919out_bdi:
1920 bdi_destroy(&c->bdi);
1921out_close:
1922 ubi_close_volume(c->ubi);
1923out_free:
1924 kfree(c);
1925 return err;
1926}
1927
1928static int sb_test(struct super_block *sb, void *data)
1929{
1930 dev_t *dev = data;
1931
1932 return sb->s_dev == *dev;
1933}
1934
1935static int sb_set(struct super_block *sb, void *data)
1936{
1937 dev_t *dev = data;
1938
1939 sb->s_dev = *dev;
1940 return 0;
1941}
1942
1943static int ubifs_get_sb(struct file_system_type *fs_type, int flags,
1944 const char *name, void *data, struct vfsmount *mnt)
1945{
1946 struct ubi_volume_desc *ubi;
1947 struct ubi_volume_info vi;
1948 struct super_block *sb;
1949 int err;
1950
1951 dbg_gen("name %s, flags %#x", name, flags);
1952
1953 /*
1954 * Get UBI device number and volume ID. Mount it read-only so far
1955 * because this might be a new mount point, and UBI allows only one
1956 * read-write user at a time.
1957 */
1958 ubi = open_ubi(name, UBI_READONLY);
1959 if (IS_ERR(ubi)) {
1960 ubifs_err("cannot open \"%s\", error %d",
1961 name, (int)PTR_ERR(ubi));
1962 return PTR_ERR(ubi);
1963 }
1964 ubi_get_volume_info(ubi, &vi);
1965
1966 dbg_gen("opened ubi%d_%d", vi.ubi_num, vi.vol_id);
1967
1968 sb = sget(fs_type, &sb_test, &sb_set, &vi.cdev);
1969 if (IS_ERR(sb)) {
1970 err = PTR_ERR(sb);
1971 goto out_close;
1972 }
1973
1974 if (sb->s_root) {
1975 /* A new mount point for already mounted UBIFS */
1976 dbg_gen("this ubi volume is already mounted");
1977 if ((flags ^ sb->s_flags) & MS_RDONLY) {
1978 err = -EBUSY;
1979 goto out_deact;
1980 }
1981 } else {
1982 sb->s_flags = flags;
1983 /*
1984 * Pass 'ubi' to 'fill_super()' in sb->s_fs_info where it is
1985 * replaced by 'c'.
1986 */
1987 sb->s_fs_info = ubi;
1988 err = ubifs_fill_super(sb, data, flags & MS_SILENT ? 1 : 0);
1989 if (err)
1990 goto out_deact;
1991 /* We do not support atime */
1992 sb->s_flags |= MS_ACTIVE | MS_NOATIME;
1993 }
1994
1995 /* 'fill_super()' opens ubi again so we must close it here */
1996 ubi_close_volume(ubi);
1997
1998 return simple_set_mnt(mnt, sb);
1999
2000out_deact:
2001 up_write(&sb->s_umount);
2002 deactivate_super(sb);
2003out_close:
2004 ubi_close_volume(ubi);
2005 return err;
2006}
2007
2008static void ubifs_kill_sb(struct super_block *sb)
2009{
2010 struct ubifs_info *c = sb->s_fs_info;
2011
2012 /*
2013 * We do 'commit_on_unmount()' here instead of 'ubifs_put_super()'
2014 * in order to be outside BKL.
2015 */
26d05777 2016 if (sb->s_root)
1e51764a
AB
2017 commit_on_unmount(c);
2018 /* The un-mount routine is actually done in put_super() */
2019 generic_shutdown_super(sb);
2020}
2021
2022static struct file_system_type ubifs_fs_type = {
2023 .name = "ubifs",
2024 .owner = THIS_MODULE,
2025 .get_sb = ubifs_get_sb,
2026 .kill_sb = ubifs_kill_sb
2027};
2028
2029/*
2030 * Inode slab cache constructor.
2031 */
51cc5068 2032static void inode_slab_ctor(void *obj)
1e51764a
AB
2033{
2034 struct ubifs_inode *ui = obj;
2035 inode_init_once(&ui->vfs_inode);
2036}
2037
2038static int __init ubifs_init(void)
2039{
2040 int err;
2041
2042 BUILD_BUG_ON(sizeof(struct ubifs_ch) != 24);
2043
2044 /* Make sure node sizes are 8-byte aligned */
2045 BUILD_BUG_ON(UBIFS_CH_SZ & 7);
2046 BUILD_BUG_ON(UBIFS_INO_NODE_SZ & 7);
2047 BUILD_BUG_ON(UBIFS_DENT_NODE_SZ & 7);
2048 BUILD_BUG_ON(UBIFS_XENT_NODE_SZ & 7);
2049 BUILD_BUG_ON(UBIFS_DATA_NODE_SZ & 7);
2050 BUILD_BUG_ON(UBIFS_TRUN_NODE_SZ & 7);
2051 BUILD_BUG_ON(UBIFS_SB_NODE_SZ & 7);
2052 BUILD_BUG_ON(UBIFS_MST_NODE_SZ & 7);
2053 BUILD_BUG_ON(UBIFS_REF_NODE_SZ & 7);
2054 BUILD_BUG_ON(UBIFS_CS_NODE_SZ & 7);
2055 BUILD_BUG_ON(UBIFS_ORPH_NODE_SZ & 7);
2056
2057 BUILD_BUG_ON(UBIFS_MAX_DENT_NODE_SZ & 7);
2058 BUILD_BUG_ON(UBIFS_MAX_XENT_NODE_SZ & 7);
2059 BUILD_BUG_ON(UBIFS_MAX_DATA_NODE_SZ & 7);
2060 BUILD_BUG_ON(UBIFS_MAX_INO_NODE_SZ & 7);
2061 BUILD_BUG_ON(UBIFS_MAX_NODE_SZ & 7);
2062 BUILD_BUG_ON(MIN_WRITE_SZ & 7);
2063
2064 /* Check min. node size */
2065 BUILD_BUG_ON(UBIFS_INO_NODE_SZ < MIN_WRITE_SZ);
2066 BUILD_BUG_ON(UBIFS_DENT_NODE_SZ < MIN_WRITE_SZ);
2067 BUILD_BUG_ON(UBIFS_XENT_NODE_SZ < MIN_WRITE_SZ);
2068 BUILD_BUG_ON(UBIFS_TRUN_NODE_SZ < MIN_WRITE_SZ);
2069
2070 BUILD_BUG_ON(UBIFS_MAX_DENT_NODE_SZ > UBIFS_MAX_NODE_SZ);
2071 BUILD_BUG_ON(UBIFS_MAX_XENT_NODE_SZ > UBIFS_MAX_NODE_SZ);
2072 BUILD_BUG_ON(UBIFS_MAX_DATA_NODE_SZ > UBIFS_MAX_NODE_SZ);
2073 BUILD_BUG_ON(UBIFS_MAX_INO_NODE_SZ > UBIFS_MAX_NODE_SZ);
2074
2075 /* Defined node sizes */
2076 BUILD_BUG_ON(UBIFS_SB_NODE_SZ != 4096);
2077 BUILD_BUG_ON(UBIFS_MST_NODE_SZ != 512);
2078 BUILD_BUG_ON(UBIFS_INO_NODE_SZ != 160);
2079 BUILD_BUG_ON(UBIFS_REF_NODE_SZ != 64);
2080
a1dc080c
AB
2081 /*
2082 * We use 2 bit wide bit-fields to store compression type, which should
2083 * be amended if more compressors are added. The bit-fields are:
553dea4d
AB
2084 * @compr_type in 'struct ubifs_inode', @default_compr in
2085 * 'struct ubifs_info' and @compr_type in 'struct ubifs_mount_opts'.
a1dc080c
AB
2086 */
2087 BUILD_BUG_ON(UBIFS_COMPR_TYPES_CNT > 4);
2088
1e51764a
AB
2089 /*
2090 * We require that PAGE_CACHE_SIZE is greater-than-or-equal-to
2091 * UBIFS_BLOCK_SIZE. It is assumed that both are powers of 2.
2092 */
2093 if (PAGE_CACHE_SIZE < UBIFS_BLOCK_SIZE) {
2094 ubifs_err("VFS page cache size is %u bytes, but UBIFS requires"
2095 " at least 4096 bytes",
2096 (unsigned int)PAGE_CACHE_SIZE);
2097 return -EINVAL;
2098 }
2099
2100 err = register_filesystem(&ubifs_fs_type);
2101 if (err) {
2102 ubifs_err("cannot register file system, error %d", err);
2103 return err;
2104 }
2105
2106 err = -ENOMEM;
2107 ubifs_inode_slab = kmem_cache_create("ubifs_inode_slab",
2108 sizeof(struct ubifs_inode), 0,
2109 SLAB_MEM_SPREAD | SLAB_RECLAIM_ACCOUNT,
2110 &inode_slab_ctor);
2111 if (!ubifs_inode_slab)
2112 goto out_reg;
2113
2114 register_shrinker(&ubifs_shrinker_info);
2115
2116 err = ubifs_compressors_init();
552ff317
AB
2117 if (err)
2118 goto out_shrinker;
2119
2120 err = dbg_debugfs_init();
1e51764a
AB
2121 if (err)
2122 goto out_compr;
2123
2124 return 0;
2125
2126out_compr:
552ff317
AB
2127 ubifs_compressors_exit();
2128out_shrinker:
1e51764a
AB
2129 unregister_shrinker(&ubifs_shrinker_info);
2130 kmem_cache_destroy(ubifs_inode_slab);
2131out_reg:
2132 unregister_filesystem(&ubifs_fs_type);
2133 return err;
2134}
2135/* late_initcall to let compressors initialize first */
2136late_initcall(ubifs_init);
2137
2138static void __exit ubifs_exit(void)
2139{
2140 ubifs_assert(list_empty(&ubifs_infos));
2141 ubifs_assert(atomic_long_read(&ubifs_clean_zn_cnt) == 0);
2142
552ff317 2143 dbg_debugfs_exit();
1e51764a
AB
2144 ubifs_compressors_exit();
2145 unregister_shrinker(&ubifs_shrinker_info);
2146 kmem_cache_destroy(ubifs_inode_slab);
2147 unregister_filesystem(&ubifs_fs_type);
2148}
2149module_exit(ubifs_exit);
2150
2151MODULE_LICENSE("GPL");
2152MODULE_VERSION(__stringify(UBIFS_VERSION));
2153MODULE_AUTHOR("Artem Bityutskiy, Adrian Hunter");
2154MODULE_DESCRIPTION("UBIFS - UBI File System");