]> git.proxmox.com Git - mirror_ubuntu-eoan-kernel.git/blame - fs/ubifs/tnc.c
Merge tag 'armsoc-late' of git://git.kernel.org/pub/scm/linux/kernel/git/arm/arm-soc
[mirror_ubuntu-eoan-kernel.git] / fs / ubifs / tnc.c
CommitLineData
1e51764a
AB
1/*
2 * This file is part of UBIFS.
3 *
4 * Copyright (C) 2006-2008 Nokia Corporation.
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published by
8 * the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
15 * You should have received a copy of the GNU General Public License along with
16 * this program; if not, write to the Free Software Foundation, Inc., 51
17 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18 *
19 * Authors: Adrian Hunter
20 * Artem Bityutskiy (Битюцкий Артём)
21 */
22
23/*
24 * This file implements TNC (Tree Node Cache) which caches indexing nodes of
25 * the UBIFS B-tree.
26 *
27 * At the moment the locking rules of the TNC tree are quite simple and
28 * straightforward. We just have a mutex and lock it when we traverse the
29 * tree. If a znode is not in memory, we read it from flash while still having
30 * the mutex locked.
31 */
32
33#include <linux/crc32.h>
5a0e3ad6 34#include <linux/slab.h>
1e51764a
AB
35#include "ubifs.h"
36
1cb51a15
RW
37static int try_read_node(const struct ubifs_info *c, void *buf, int type,
38 int len, int lnum, int offs);
39static int fallible_read_node(struct ubifs_info *c, const union ubifs_key *key,
40 struct ubifs_zbranch *zbr, void *node);
41
1e51764a
AB
42/*
43 * Returned codes of 'matches_name()' and 'fallible_matches_name()' functions.
44 * @NAME_LESS: name corresponding to the first argument is less than second
45 * @NAME_MATCHES: names match
46 * @NAME_GREATER: name corresponding to the second argument is greater than
47 * first
48 * @NOT_ON_MEDIA: node referred by zbranch does not exist on the media
49 *
50 * These constants were introduce to improve readability.
51 */
52enum {
53 NAME_LESS = 0,
54 NAME_MATCHES = 1,
55 NAME_GREATER = 2,
56 NOT_ON_MEDIA = 3,
57};
58
59/**
60 * insert_old_idx - record an index node obsoleted since the last commit start.
61 * @c: UBIFS file-system description object
62 * @lnum: LEB number of obsoleted index node
63 * @offs: offset of obsoleted index node
64 *
65 * Returns %0 on success, and a negative error code on failure.
66 *
67 * For recovery, there must always be a complete intact version of the index on
68 * flash at all times. That is called the "old index". It is the index as at the
69 * time of the last successful commit. Many of the index nodes in the old index
70 * may be dirty, but they must not be erased until the next successful commit
71 * (at which point that index becomes the old index).
72 *
73 * That means that the garbage collection and the in-the-gaps method of
74 * committing must be able to determine if an index node is in the old index.
75 * Most of the old index nodes can be found by looking up the TNC using the
76 * 'lookup_znode()' function. However, some of the old index nodes may have
77 * been deleted from the current index or may have been changed so much that
78 * they cannot be easily found. In those cases, an entry is added to an RB-tree.
79 * That is what this function does. The RB-tree is ordered by LEB number and
80 * offset because they uniquely identify the old index node.
81 */
82static int insert_old_idx(struct ubifs_info *c, int lnum, int offs)
83{
84 struct ubifs_old_idx *old_idx, *o;
85 struct rb_node **p, *parent = NULL;
86
87 old_idx = kmalloc(sizeof(struct ubifs_old_idx), GFP_NOFS);
88 if (unlikely(!old_idx))
89 return -ENOMEM;
90 old_idx->lnum = lnum;
91 old_idx->offs = offs;
92
93 p = &c->old_idx.rb_node;
94 while (*p) {
95 parent = *p;
96 o = rb_entry(parent, struct ubifs_old_idx, rb);
97 if (lnum < o->lnum)
98 p = &(*p)->rb_left;
99 else if (lnum > o->lnum)
100 p = &(*p)->rb_right;
101 else if (offs < o->offs)
102 p = &(*p)->rb_left;
103 else if (offs > o->offs)
104 p = &(*p)->rb_right;
105 else {
235c362b 106 ubifs_err(c, "old idx added twice!");
1e51764a
AB
107 kfree(old_idx);
108 return 0;
109 }
110 }
111 rb_link_node(&old_idx->rb, parent, p);
112 rb_insert_color(&old_idx->rb, &c->old_idx);
113 return 0;
114}
115
116/**
117 * insert_old_idx_znode - record a znode obsoleted since last commit start.
118 * @c: UBIFS file-system description object
119 * @znode: znode of obsoleted index node
120 *
121 * Returns %0 on success, and a negative error code on failure.
122 */
123int insert_old_idx_znode(struct ubifs_info *c, struct ubifs_znode *znode)
124{
125 if (znode->parent) {
126 struct ubifs_zbranch *zbr;
127
128 zbr = &znode->parent->zbranch[znode->iip];
129 if (zbr->len)
130 return insert_old_idx(c, zbr->lnum, zbr->offs);
131 } else
132 if (c->zroot.len)
133 return insert_old_idx(c, c->zroot.lnum,
134 c->zroot.offs);
135 return 0;
136}
137
138/**
139 * ins_clr_old_idx_znode - record a znode obsoleted since last commit start.
140 * @c: UBIFS file-system description object
141 * @znode: znode of obsoleted index node
142 *
143 * Returns %0 on success, and a negative error code on failure.
144 */
145static int ins_clr_old_idx_znode(struct ubifs_info *c,
146 struct ubifs_znode *znode)
147{
148 int err;
149
150 if (znode->parent) {
151 struct ubifs_zbranch *zbr;
152
153 zbr = &znode->parent->zbranch[znode->iip];
154 if (zbr->len) {
155 err = insert_old_idx(c, zbr->lnum, zbr->offs);
156 if (err)
157 return err;
158 zbr->lnum = 0;
159 zbr->offs = 0;
160 zbr->len = 0;
161 }
162 } else
163 if (c->zroot.len) {
164 err = insert_old_idx(c, c->zroot.lnum, c->zroot.offs);
165 if (err)
166 return err;
167 c->zroot.lnum = 0;
168 c->zroot.offs = 0;
169 c->zroot.len = 0;
170 }
171 return 0;
172}
173
174/**
175 * destroy_old_idx - destroy the old_idx RB-tree.
176 * @c: UBIFS file-system description object
177 *
178 * During start commit, the old_idx RB-tree is used to avoid overwriting index
179 * nodes that were in the index last commit but have since been deleted. This
180 * is necessary for recovery i.e. the old index must be kept intact until the
181 * new index is successfully written. The old-idx RB-tree is used for the
182 * in-the-gaps method of writing index nodes and is destroyed every commit.
183 */
184void destroy_old_idx(struct ubifs_info *c)
185{
bb25e49f
CS
186 struct ubifs_old_idx *old_idx, *n;
187
188 rbtree_postorder_for_each_entry_safe(old_idx, n, &c->old_idx, rb)
1e51764a 189 kfree(old_idx);
bb25e49f 190
1e51764a
AB
191 c->old_idx = RB_ROOT;
192}
193
194/**
195 * copy_znode - copy a dirty znode.
196 * @c: UBIFS file-system description object
197 * @znode: znode to copy
198 *
199 * A dirty znode being committed may not be changed, so it is copied.
200 */
201static struct ubifs_znode *copy_znode(struct ubifs_info *c,
202 struct ubifs_znode *znode)
203{
204 struct ubifs_znode *zn;
205
bbc8a004 206 zn = kmemdup(znode, c->max_znode_sz, GFP_NOFS);
1e51764a
AB
207 if (unlikely(!zn))
208 return ERR_PTR(-ENOMEM);
209
1e51764a
AB
210 zn->cnext = NULL;
211 __set_bit(DIRTY_ZNODE, &zn->flags);
212 __clear_bit(COW_ZNODE, &zn->flags);
213
6eb61d58 214 ubifs_assert(c, !ubifs_zn_obsolete(znode));
1e51764a
AB
215 __set_bit(OBSOLETE_ZNODE, &znode->flags);
216
217 if (znode->level != 0) {
218 int i;
219 const int n = zn->child_cnt;
220
221 /* The children now have new parent */
222 for (i = 0; i < n; i++) {
223 struct ubifs_zbranch *zbr = &zn->zbranch[i];
224
225 if (zbr->znode)
226 zbr->znode->parent = zn;
227 }
228 }
229
230 atomic_long_inc(&c->dirty_zn_cnt);
231 return zn;
232}
233
234/**
235 * add_idx_dirt - add dirt due to a dirty znode.
236 * @c: UBIFS file-system description object
237 * @lnum: LEB number of index node
238 * @dirt: size of index node
239 *
240 * This function updates lprops dirty space and the new size of the index.
241 */
242static int add_idx_dirt(struct ubifs_info *c, int lnum, int dirt)
243{
244 c->calc_idx_sz -= ALIGN(dirt, 8);
245 return ubifs_add_dirt(c, lnum, dirt);
246}
247
248/**
249 * dirty_cow_znode - ensure a znode is not being committed.
250 * @c: UBIFS file-system description object
251 * @zbr: branch of znode to check
252 *
253 * Returns dirtied znode on success or negative error code on failure.
254 */
255static struct ubifs_znode *dirty_cow_znode(struct ubifs_info *c,
256 struct ubifs_zbranch *zbr)
257{
258 struct ubifs_znode *znode = zbr->znode;
259 struct ubifs_znode *zn;
260 int err;
261
f42eed7c 262 if (!ubifs_zn_cow(znode)) {
1e51764a
AB
263 /* znode is not being committed */
264 if (!test_and_set_bit(DIRTY_ZNODE, &znode->flags)) {
265 atomic_long_inc(&c->dirty_zn_cnt);
266 atomic_long_dec(&c->clean_zn_cnt);
267 atomic_long_dec(&ubifs_clean_zn_cnt);
268 err = add_idx_dirt(c, zbr->lnum, zbr->len);
269 if (unlikely(err))
270 return ERR_PTR(err);
271 }
272 return znode;
273 }
274
275 zn = copy_znode(c, znode);
8d47aef4 276 if (IS_ERR(zn))
1e51764a
AB
277 return zn;
278
279 if (zbr->len) {
280 err = insert_old_idx(c, zbr->lnum, zbr->offs);
281 if (unlikely(err))
282 return ERR_PTR(err);
283 err = add_idx_dirt(c, zbr->lnum, zbr->len);
284 } else
285 err = 0;
286
287 zbr->znode = zn;
288 zbr->lnum = 0;
289 zbr->offs = 0;
290 zbr->len = 0;
291
292 if (unlikely(err))
293 return ERR_PTR(err);
294 return zn;
295}
296
297/**
298 * lnc_add - add a leaf node to the leaf node cache.
299 * @c: UBIFS file-system description object
300 * @zbr: zbranch of leaf node
301 * @node: leaf node
302 *
303 * Leaf nodes are non-index nodes directory entry nodes or data nodes. The
304 * purpose of the leaf node cache is to save re-reading the same leaf node over
305 * and over again. Most things are cached by VFS, however the file system must
306 * cache directory entries for readdir and for resolving hash collisions. The
307 * present implementation of the leaf node cache is extremely simple, and
308 * allows for error returns that are not used but that may be needed if a more
309 * complex implementation is created.
310 *
311 * Note, this function does not add the @node object to LNC directly, but
312 * allocates a copy of the object and adds the copy to LNC. The reason for this
313 * is that @node has been allocated outside of the TNC subsystem and will be
314 * used with @c->tnc_mutex unlock upon return from the TNC subsystem. But LNC
315 * may be changed at any time, e.g. freed by the shrinker.
316 */
317static int lnc_add(struct ubifs_info *c, struct ubifs_zbranch *zbr,
318 const void *node)
319{
320 int err;
321 void *lnc_node;
322 const struct ubifs_dent_node *dent = node;
323
6eb61d58
RW
324 ubifs_assert(c, !zbr->leaf);
325 ubifs_assert(c, zbr->len != 0);
326 ubifs_assert(c, is_hash_key(c, &zbr->key));
1e51764a
AB
327
328 err = ubifs_validate_entry(c, dent);
329 if (err) {
7c46d0ae 330 dump_stack();
edf6be24 331 ubifs_dump_node(c, dent);
1e51764a
AB
332 return err;
333 }
334
eaecf43a 335 lnc_node = kmemdup(node, zbr->len, GFP_NOFS);
1e51764a
AB
336 if (!lnc_node)
337 /* We don't have to have the cache, so no error */
338 return 0;
339
1e51764a
AB
340 zbr->leaf = lnc_node;
341 return 0;
342}
343
344 /**
345 * lnc_add_directly - add a leaf node to the leaf-node-cache.
346 * @c: UBIFS file-system description object
347 * @zbr: zbranch of leaf node
348 * @node: leaf node
349 *
350 * This function is similar to 'lnc_add()', but it does not create a copy of
351 * @node but inserts @node to TNC directly.
352 */
353static int lnc_add_directly(struct ubifs_info *c, struct ubifs_zbranch *zbr,
354 void *node)
355{
356 int err;
357
6eb61d58
RW
358 ubifs_assert(c, !zbr->leaf);
359 ubifs_assert(c, zbr->len != 0);
1e51764a
AB
360
361 err = ubifs_validate_entry(c, node);
362 if (err) {
7c46d0ae 363 dump_stack();
edf6be24 364 ubifs_dump_node(c, node);
1e51764a
AB
365 return err;
366 }
367
368 zbr->leaf = node;
369 return 0;
370}
371
372/**
373 * lnc_free - remove a leaf node from the leaf node cache.
374 * @zbr: zbranch of leaf node
375 * @node: leaf node
376 */
377static void lnc_free(struct ubifs_zbranch *zbr)
378{
379 if (!zbr->leaf)
380 return;
381 kfree(zbr->leaf);
382 zbr->leaf = NULL;
383}
384
385/**
b91dc981 386 * tnc_read_hashed_node - read a "hashed" leaf node.
1e51764a
AB
387 * @c: UBIFS file-system description object
388 * @zbr: key and position of the node
389 * @node: node is returned here
390 *
391 * This function reads a "hashed" node defined by @zbr from the leaf node cache
392 * (in it is there) or from the hash media, in which case the node is also
393 * added to LNC. Returns zero in case of success or a negative negative error
394 * code in case of failure.
395 */
b91dc981
RW
396static int tnc_read_hashed_node(struct ubifs_info *c, struct ubifs_zbranch *zbr,
397 void *node)
1e51764a
AB
398{
399 int err;
400
6eb61d58 401 ubifs_assert(c, is_hash_key(c, &zbr->key));
1e51764a
AB
402
403 if (zbr->leaf) {
404 /* Read from the leaf node cache */
6eb61d58 405 ubifs_assert(c, zbr->len != 0);
1e51764a
AB
406 memcpy(node, zbr->leaf, zbr->len);
407 return 0;
408 }
409
1cb51a15
RW
410 if (c->replaying) {
411 err = fallible_read_node(c, &zbr->key, zbr, node);
412 /*
413 * When the node was not found, return -ENOENT, 0 otherwise.
414 * Negative return codes stay as-is.
415 */
416 if (err == 0)
417 err = -ENOENT;
418 else if (err == 1)
419 err = 0;
420 } else {
421 err = ubifs_tnc_read_node(c, zbr, node);
422 }
1e51764a
AB
423 if (err)
424 return err;
425
426 /* Add the node to the leaf node cache */
427 err = lnc_add(c, zbr, node);
428 return err;
429}
430
431/**
432 * try_read_node - read a node if it is a node.
433 * @c: UBIFS file-system description object
434 * @buf: buffer to read to
435 * @type: node type
436 * @len: node length (not aligned)
437 * @lnum: LEB number of node to read
438 * @offs: offset of node to read
439 *
440 * This function tries to read a node of known type and length, checks it and
441 * stores it in @buf. This function returns %1 if a node is present and %0 if
442 * a node is not present. A negative error code is returned for I/O errors.
443 * This function performs that same function as ubifs_read_node except that
444 * it does not require that there is actually a node present and instead
445 * the return code indicates if a node was read.
6f7ab6d4
AB
446 *
447 * Note, this function does not check CRC of data nodes if @c->no_chk_data_crc
448 * is true (it is controlled by corresponding mount option). However, if
18d1d7fb
AB
449 * @c->mounting or @c->remounting_rw is true (we are mounting or re-mounting to
450 * R/W mode), @c->no_chk_data_crc is ignored and CRC is checked. This is
451 * because during mounting or re-mounting from R/O mode to R/W mode we may read
452 * journal nodes (when replying the journal or doing the recovery) and the
453 * journal nodes may potentially be corrupted, so checking is required.
1e51764a
AB
454 */
455static int try_read_node(const struct ubifs_info *c, void *buf, int type,
456 int len, int lnum, int offs)
457{
458 int err, node_len;
459 struct ubifs_ch *ch = buf;
460 uint32_t crc, node_crc;
461
462 dbg_io("LEB %d:%d, %s, length %d", lnum, offs, dbg_ntype(type), len);
463
d304820a 464 err = ubifs_leb_read(c, lnum, buf, offs, len, 1);
1e51764a 465 if (err) {
235c362b 466 ubifs_err(c, "cannot read node type %d from LEB %d:%d, error %d",
1e51764a
AB
467 type, lnum, offs, err);
468 return err;
469 }
470
471 if (le32_to_cpu(ch->magic) != UBIFS_NODE_MAGIC)
472 return 0;
473
474 if (ch->node_type != type)
475 return 0;
476
477 node_len = le32_to_cpu(ch->len);
478 if (node_len != len)
479 return 0;
480
18d1d7fb
AB
481 if (type == UBIFS_DATA_NODE && c->no_chk_data_crc && !c->mounting &&
482 !c->remounting_rw)
6f7ab6d4 483 return 1;
2953e73f 484
1e51764a
AB
485 crc = crc32(UBIFS_CRC32_INIT, buf + 8, node_len - 8);
486 node_crc = le32_to_cpu(ch->crc);
487 if (crc != node_crc)
488 return 0;
489
490 return 1;
491}
492
493/**
494 * fallible_read_node - try to read a leaf node.
495 * @c: UBIFS file-system description object
496 * @key: key of node to read
497 * @zbr: position of node
498 * @node: node returned
499 *
500 * This function tries to read a node and returns %1 if the node is read, %0
501 * if the node is not present, and a negative error code in the case of error.
502 */
503static int fallible_read_node(struct ubifs_info *c, const union ubifs_key *key,
504 struct ubifs_zbranch *zbr, void *node)
505{
506 int ret;
507
515315a1 508 dbg_tnck(key, "LEB %d:%d, key ", zbr->lnum, zbr->offs);
1e51764a
AB
509
510 ret = try_read_node(c, node, key_type(c, key), zbr->len, zbr->lnum,
511 zbr->offs);
512 if (ret == 1) {
513 union ubifs_key node_key;
514 struct ubifs_dent_node *dent = node;
515
516 /* All nodes have key in the same place */
517 key_read(c, &dent->key, &node_key);
518 if (keys_cmp(c, key, &node_key) != 0)
519 ret = 0;
520 }
601c0bc4 521 if (ret == 0 && c->replaying)
515315a1
AB
522 dbg_mntk(key, "dangling branch LEB %d:%d len %d, key ",
523 zbr->lnum, zbr->offs, zbr->len);
1e51764a
AB
524 return ret;
525}
526
527/**
528 * matches_name - determine if a direntry or xattr entry matches a given name.
529 * @c: UBIFS file-system description object
530 * @zbr: zbranch of dent
531 * @nm: name to match
532 *
533 * This function checks if xentry/direntry referred by zbranch @zbr matches name
534 * @nm. Returns %NAME_MATCHES if it does, %NAME_LESS if the name referred by
535 * @zbr is less than @nm, and %NAME_GREATER if it is greater than @nm. In case
536 * of failure, a negative error code is returned.
537 */
538static int matches_name(struct ubifs_info *c, struct ubifs_zbranch *zbr,
f4f61d2c 539 const struct fscrypt_name *nm)
1e51764a
AB
540{
541 struct ubifs_dent_node *dent;
542 int nlen, err;
543
544 /* If possible, match against the dent in the leaf node cache */
545 if (!zbr->leaf) {
546 dent = kmalloc(zbr->len, GFP_NOFS);
547 if (!dent)
548 return -ENOMEM;
549
550 err = ubifs_tnc_read_node(c, zbr, dent);
551 if (err)
552 goto out_free;
553
554 /* Add the node to the leaf node cache */
555 err = lnc_add_directly(c, zbr, dent);
556 if (err)
557 goto out_free;
558 } else
559 dent = zbr->leaf;
560
561 nlen = le16_to_cpu(dent->nlen);
f4f61d2c 562 err = memcmp(dent->name, fname_name(nm), min_t(int, nlen, fname_len(nm)));
1e51764a 563 if (err == 0) {
f4f61d2c 564 if (nlen == fname_len(nm))
1e51764a 565 return NAME_MATCHES;
f4f61d2c 566 else if (nlen < fname_len(nm))
1e51764a
AB
567 return NAME_LESS;
568 else
569 return NAME_GREATER;
570 } else if (err < 0)
571 return NAME_LESS;
572 else
573 return NAME_GREATER;
574
575out_free:
576 kfree(dent);
577 return err;
578}
579
580/**
581 * get_znode - get a TNC znode that may not be loaded yet.
582 * @c: UBIFS file-system description object
583 * @znode: parent znode
584 * @n: znode branch slot number
585 *
586 * This function returns the znode or a negative error code.
587 */
588static struct ubifs_znode *get_znode(struct ubifs_info *c,
589 struct ubifs_znode *znode, int n)
590{
591 struct ubifs_zbranch *zbr;
592
593 zbr = &znode->zbranch[n];
594 if (zbr->znode)
595 znode = zbr->znode;
596 else
597 znode = ubifs_load_znode(c, zbr, znode, n);
598 return znode;
599}
600
601/**
602 * tnc_next - find next TNC entry.
603 * @c: UBIFS file-system description object
604 * @zn: znode is passed and returned here
605 * @n: znode branch slot number is passed and returned here
606 *
607 * This function returns %0 if the next TNC entry is found, %-ENOENT if there is
608 * no next entry, or a negative error code otherwise.
609 */
610static int tnc_next(struct ubifs_info *c, struct ubifs_znode **zn, int *n)
611{
612 struct ubifs_znode *znode = *zn;
613 int nn = *n;
614
615 nn += 1;
616 if (nn < znode->child_cnt) {
617 *n = nn;
618 return 0;
619 }
620 while (1) {
621 struct ubifs_znode *zp;
622
623 zp = znode->parent;
624 if (!zp)
625 return -ENOENT;
626 nn = znode->iip + 1;
627 znode = zp;
628 if (nn < znode->child_cnt) {
629 znode = get_znode(c, znode, nn);
630 if (IS_ERR(znode))
631 return PTR_ERR(znode);
632 while (znode->level != 0) {
633 znode = get_znode(c, znode, 0);
634 if (IS_ERR(znode))
635 return PTR_ERR(znode);
636 }
637 nn = 0;
638 break;
639 }
640 }
641 *zn = znode;
642 *n = nn;
643 return 0;
644}
645
646/**
647 * tnc_prev - find previous TNC entry.
648 * @c: UBIFS file-system description object
649 * @zn: znode is returned here
650 * @n: znode branch slot number is passed and returned here
651 *
652 * This function returns %0 if the previous TNC entry is found, %-ENOENT if
653 * there is no next entry, or a negative error code otherwise.
654 */
655static int tnc_prev(struct ubifs_info *c, struct ubifs_znode **zn, int *n)
656{
657 struct ubifs_znode *znode = *zn;
658 int nn = *n;
659
660 if (nn > 0) {
661 *n = nn - 1;
662 return 0;
663 }
664 while (1) {
665 struct ubifs_znode *zp;
666
667 zp = znode->parent;
668 if (!zp)
669 return -ENOENT;
670 nn = znode->iip - 1;
671 znode = zp;
672 if (nn >= 0) {
673 znode = get_znode(c, znode, nn);
674 if (IS_ERR(znode))
675 return PTR_ERR(znode);
676 while (znode->level != 0) {
677 nn = znode->child_cnt - 1;
678 znode = get_znode(c, znode, nn);
679 if (IS_ERR(znode))
680 return PTR_ERR(znode);
681 }
682 nn = znode->child_cnt - 1;
683 break;
684 }
685 }
686 *zn = znode;
687 *n = nn;
688 return 0;
689}
690
691/**
692 * resolve_collision - resolve a collision.
693 * @c: UBIFS file-system description object
694 * @key: key of a directory or extended attribute entry
695 * @zn: znode is returned here
696 * @n: zbranch number is passed and returned here
697 * @nm: name of the entry
698 *
699 * This function is called for "hashed" keys to make sure that the found key
700 * really corresponds to the looked up node (directory or extended attribute
701 * entry). It returns %1 and sets @zn and @n if the collision is resolved.
702 * %0 is returned if @nm is not found and @zn and @n are set to the previous
703 * entry, i.e. to the entry after which @nm could follow if it were in TNC.
704 * This means that @n may be set to %-1 if the leftmost key in @zn is the
705 * previous one. A negative error code is returned on failures.
706 */
707static int resolve_collision(struct ubifs_info *c, const union ubifs_key *key,
708 struct ubifs_znode **zn, int *n,
f4f61d2c 709 const struct fscrypt_name *nm)
1e51764a
AB
710{
711 int err;
712
713 err = matches_name(c, &(*zn)->zbranch[*n], nm);
714 if (unlikely(err < 0))
715 return err;
716 if (err == NAME_MATCHES)
717 return 1;
718
719 if (err == NAME_GREATER) {
720 /* Look left */
721 while (1) {
722 err = tnc_prev(c, zn, n);
723 if (err == -ENOENT) {
6eb61d58 724 ubifs_assert(c, *n == 0);
1e51764a
AB
725 *n = -1;
726 return 0;
727 }
728 if (err < 0)
729 return err;
730 if (keys_cmp(c, &(*zn)->zbranch[*n].key, key)) {
731 /*
732 * We have found the branch after which we would
733 * like to insert, but inserting in this znode
734 * may still be wrong. Consider the following 3
735 * znodes, in the case where we are resolving a
736 * collision with Key2.
737 *
738 * znode zp
739 * ----------------------
740 * level 1 | Key0 | Key1 |
741 * -----------------------
742 * | |
743 * znode za | | znode zb
744 * ------------ ------------
745 * level 0 | Key0 | | Key2 |
746 * ------------ ------------
747 *
748 * The lookup finds Key2 in znode zb. Lets say
749 * there is no match and the name is greater so
750 * we look left. When we find Key0, we end up
751 * here. If we return now, we will insert into
752 * znode za at slot n = 1. But that is invalid
753 * according to the parent's keys. Key2 must
754 * be inserted into znode zb.
755 *
756 * Note, this problem is not relevant for the
757 * case when we go right, because
758 * 'tnc_insert()' would correct the parent key.
759 */
760 if (*n == (*zn)->child_cnt - 1) {
761 err = tnc_next(c, zn, n);
762 if (err) {
763 /* Should be impossible */
6eb61d58 764 ubifs_assert(c, 0);
1e51764a
AB
765 if (err == -ENOENT)
766 err = -EINVAL;
767 return err;
768 }
6eb61d58 769 ubifs_assert(c, *n == 0);
1e51764a
AB
770 *n = -1;
771 }
772 return 0;
773 }
774 err = matches_name(c, &(*zn)->zbranch[*n], nm);
775 if (err < 0)
776 return err;
777 if (err == NAME_LESS)
778 return 0;
779 if (err == NAME_MATCHES)
780 return 1;
6eb61d58 781 ubifs_assert(c, err == NAME_GREATER);
1e51764a
AB
782 }
783 } else {
784 int nn = *n;
785 struct ubifs_znode *znode = *zn;
786
787 /* Look right */
788 while (1) {
789 err = tnc_next(c, &znode, &nn);
790 if (err == -ENOENT)
791 return 0;
792 if (err < 0)
793 return err;
794 if (keys_cmp(c, &znode->zbranch[nn].key, key))
795 return 0;
796 err = matches_name(c, &znode->zbranch[nn], nm);
797 if (err < 0)
798 return err;
799 if (err == NAME_GREATER)
800 return 0;
801 *zn = znode;
802 *n = nn;
803 if (err == NAME_MATCHES)
804 return 1;
6eb61d58 805 ubifs_assert(c, err == NAME_LESS);
1e51764a
AB
806 }
807 }
808}
809
810/**
811 * fallible_matches_name - determine if a dent matches a given name.
812 * @c: UBIFS file-system description object
813 * @zbr: zbranch of dent
814 * @nm: name to match
815 *
816 * This is a "fallible" version of 'matches_name()' function which does not
817 * panic if the direntry/xentry referred by @zbr does not exist on the media.
818 *
819 * This function checks if xentry/direntry referred by zbranch @zbr matches name
820 * @nm. Returns %NAME_MATCHES it does, %NAME_LESS if the name referred by @zbr
821 * is less than @nm, %NAME_GREATER if it is greater than @nm, and @NOT_ON_MEDIA
822 * if xentry/direntry referred by @zbr does not exist on the media. A negative
823 * error code is returned in case of failure.
824 */
825static int fallible_matches_name(struct ubifs_info *c,
826 struct ubifs_zbranch *zbr,
f4f61d2c 827 const struct fscrypt_name *nm)
1e51764a
AB
828{
829 struct ubifs_dent_node *dent;
830 int nlen, err;
831
832 /* If possible, match against the dent in the leaf node cache */
833 if (!zbr->leaf) {
834 dent = kmalloc(zbr->len, GFP_NOFS);
835 if (!dent)
836 return -ENOMEM;
837
838 err = fallible_read_node(c, &zbr->key, zbr, dent);
839 if (err < 0)
840 goto out_free;
841 if (err == 0) {
842 /* The node was not present */
843 err = NOT_ON_MEDIA;
844 goto out_free;
845 }
6eb61d58 846 ubifs_assert(c, err == 1);
1e51764a
AB
847
848 err = lnc_add_directly(c, zbr, dent);
849 if (err)
850 goto out_free;
851 } else
852 dent = zbr->leaf;
853
854 nlen = le16_to_cpu(dent->nlen);
f4f61d2c 855 err = memcmp(dent->name, fname_name(nm), min_t(int, nlen, fname_len(nm)));
1e51764a 856 if (err == 0) {
f4f61d2c 857 if (nlen == fname_len(nm))
1e51764a 858 return NAME_MATCHES;
f4f61d2c 859 else if (nlen < fname_len(nm))
1e51764a
AB
860 return NAME_LESS;
861 else
862 return NAME_GREATER;
863 } else if (err < 0)
864 return NAME_LESS;
865 else
866 return NAME_GREATER;
867
868out_free:
869 kfree(dent);
870 return err;
871}
872
873/**
874 * fallible_resolve_collision - resolve a collision even if nodes are missing.
875 * @c: UBIFS file-system description object
876 * @key: key
877 * @zn: znode is returned here
878 * @n: branch number is passed and returned here
879 * @nm: name of directory entry
880 * @adding: indicates caller is adding a key to the TNC
881 *
882 * This is a "fallible" version of the 'resolve_collision()' function which
883 * does not panic if one of the nodes referred to by TNC does not exist on the
884 * media. This may happen when replaying the journal if a deleted node was
885 * Garbage-collected and the commit was not done. A branch that refers to a node
886 * that is not present is called a dangling branch. The following are the return
887 * codes for this function:
888 * o if @nm was found, %1 is returned and @zn and @n are set to the found
889 * branch;
890 * o if we are @adding and @nm was not found, %0 is returned;
891 * o if we are not @adding and @nm was not found, but a dangling branch was
892 * found, then %1 is returned and @zn and @n are set to the dangling branch;
893 * o a negative error code is returned in case of failure.
894 */
895static int fallible_resolve_collision(struct ubifs_info *c,
896 const union ubifs_key *key,
897 struct ubifs_znode **zn, int *n,
f4f61d2c
RW
898 const struct fscrypt_name *nm,
899 int adding)
1e51764a
AB
900{
901 struct ubifs_znode *o_znode = NULL, *znode = *zn;
902 int uninitialized_var(o_n), err, cmp, unsure = 0, nn = *n;
903
904 cmp = fallible_matches_name(c, &znode->zbranch[nn], nm);
905 if (unlikely(cmp < 0))
906 return cmp;
907 if (cmp == NAME_MATCHES)
908 return 1;
909 if (cmp == NOT_ON_MEDIA) {
910 o_znode = znode;
911 o_n = nn;
912 /*
913 * We are unlucky and hit a dangling branch straight away.
914 * Now we do not really know where to go to find the needed
915 * branch - to the left or to the right. Well, let's try left.
916 */
917 unsure = 1;
918 } else if (!adding)
919 unsure = 1; /* Remove a dangling branch wherever it is */
920
921 if (cmp == NAME_GREATER || unsure) {
922 /* Look left */
923 while (1) {
924 err = tnc_prev(c, zn, n);
925 if (err == -ENOENT) {
6eb61d58 926 ubifs_assert(c, *n == 0);
1e51764a
AB
927 *n = -1;
928 break;
929 }
930 if (err < 0)
931 return err;
932 if (keys_cmp(c, &(*zn)->zbranch[*n].key, key)) {
933 /* See comments in 'resolve_collision()' */
934 if (*n == (*zn)->child_cnt - 1) {
935 err = tnc_next(c, zn, n);
936 if (err) {
937 /* Should be impossible */
6eb61d58 938 ubifs_assert(c, 0);
1e51764a
AB
939 if (err == -ENOENT)
940 err = -EINVAL;
941 return err;
942 }
6eb61d58 943 ubifs_assert(c, *n == 0);
1e51764a
AB
944 *n = -1;
945 }
946 break;
947 }
948 err = fallible_matches_name(c, &(*zn)->zbranch[*n], nm);
949 if (err < 0)
950 return err;
951 if (err == NAME_MATCHES)
952 return 1;
953 if (err == NOT_ON_MEDIA) {
954 o_znode = *zn;
955 o_n = *n;
956 continue;
957 }
958 if (!adding)
959 continue;
960 if (err == NAME_LESS)
961 break;
962 else
963 unsure = 0;
964 }
965 }
966
967 if (cmp == NAME_LESS || unsure) {
968 /* Look right */
969 *zn = znode;
970 *n = nn;
971 while (1) {
972 err = tnc_next(c, &znode, &nn);
973 if (err == -ENOENT)
974 break;
975 if (err < 0)
976 return err;
977 if (keys_cmp(c, &znode->zbranch[nn].key, key))
978 break;
979 err = fallible_matches_name(c, &znode->zbranch[nn], nm);
980 if (err < 0)
981 return err;
982 if (err == NAME_GREATER)
983 break;
984 *zn = znode;
985 *n = nn;
986 if (err == NAME_MATCHES)
987 return 1;
988 if (err == NOT_ON_MEDIA) {
989 o_znode = znode;
990 o_n = nn;
991 }
992 }
993 }
994
995 /* Never match a dangling branch when adding */
996 if (adding || !o_znode)
997 return 0;
998
515315a1 999 dbg_mntk(key, "dangling match LEB %d:%d len %d key ",
1e51764a 1000 o_znode->zbranch[o_n].lnum, o_znode->zbranch[o_n].offs,
515315a1 1001 o_znode->zbranch[o_n].len);
1e51764a
AB
1002 *zn = o_znode;
1003 *n = o_n;
1004 return 1;
1005}
1006
1007/**
1008 * matches_position - determine if a zbranch matches a given position.
1009 * @zbr: zbranch of dent
1010 * @lnum: LEB number of dent to match
1011 * @offs: offset of dent to match
1012 *
1013 * This function returns %1 if @lnum:@offs matches, and %0 otherwise.
1014 */
1015static int matches_position(struct ubifs_zbranch *zbr, int lnum, int offs)
1016{
1017 if (zbr->lnum == lnum && zbr->offs == offs)
1018 return 1;
1019 else
1020 return 0;
1021}
1022
1023/**
1024 * resolve_collision_directly - resolve a collision directly.
1025 * @c: UBIFS file-system description object
1026 * @key: key of directory entry
1027 * @zn: znode is passed and returned here
1028 * @n: zbranch number is passed and returned here
1029 * @lnum: LEB number of dent node to match
1030 * @offs: offset of dent node to match
1031 *
1032 * This function is used for "hashed" keys to make sure the found directory or
1033 * extended attribute entry node is what was looked for. It is used when the
1034 * flash address of the right node is known (@lnum:@offs) which makes it much
1035 * easier to resolve collisions (no need to read entries and match full
1036 * names). This function returns %1 and sets @zn and @n if the collision is
1037 * resolved, %0 if @lnum:@offs is not found and @zn and @n are set to the
1038 * previous directory entry. Otherwise a negative error code is returned.
1039 */
1040static int resolve_collision_directly(struct ubifs_info *c,
1041 const union ubifs_key *key,
1042 struct ubifs_znode **zn, int *n,
1043 int lnum, int offs)
1044{
1045 struct ubifs_znode *znode;
1046 int nn, err;
1047
1048 znode = *zn;
1049 nn = *n;
1050 if (matches_position(&znode->zbranch[nn], lnum, offs))
1051 return 1;
1052
1053 /* Look left */
1054 while (1) {
1055 err = tnc_prev(c, &znode, &nn);
1056 if (err == -ENOENT)
1057 break;
1058 if (err < 0)
1059 return err;
1060 if (keys_cmp(c, &znode->zbranch[nn].key, key))
1061 break;
1062 if (matches_position(&znode->zbranch[nn], lnum, offs)) {
1063 *zn = znode;
1064 *n = nn;
1065 return 1;
1066 }
1067 }
1068
1069 /* Look right */
1070 znode = *zn;
1071 nn = *n;
1072 while (1) {
1073 err = tnc_next(c, &znode, &nn);
1074 if (err == -ENOENT)
1075 return 0;
1076 if (err < 0)
1077 return err;
1078 if (keys_cmp(c, &znode->zbranch[nn].key, key))
1079 return 0;
1080 *zn = znode;
1081 *n = nn;
1082 if (matches_position(&znode->zbranch[nn], lnum, offs))
1083 return 1;
1084 }
1085}
1086
1087/**
1088 * dirty_cow_bottom_up - dirty a znode and its ancestors.
1089 * @c: UBIFS file-system description object
1090 * @znode: znode to dirty
1091 *
1092 * If we do not have a unique key that resides in a znode, then we cannot
1093 * dirty that znode from the top down (i.e. by using lookup_level0_dirty)
1094 * This function records the path back to the last dirty ancestor, and then
1095 * dirties the znodes on that path.
1096 */
1097static struct ubifs_znode *dirty_cow_bottom_up(struct ubifs_info *c,
1098 struct ubifs_znode *znode)
1099{
1100 struct ubifs_znode *zp;
1101 int *path = c->bottom_up_buf, p = 0;
1102
6eb61d58
RW
1103 ubifs_assert(c, c->zroot.znode);
1104 ubifs_assert(c, znode);
1e51764a
AB
1105 if (c->zroot.znode->level > BOTTOM_UP_HEIGHT) {
1106 kfree(c->bottom_up_buf);
6da2ec56
KC
1107 c->bottom_up_buf = kmalloc_array(c->zroot.znode->level,
1108 sizeof(int),
1109 GFP_NOFS);
1e51764a
AB
1110 if (!c->bottom_up_buf)
1111 return ERR_PTR(-ENOMEM);
1112 path = c->bottom_up_buf;
1113 }
1114 if (c->zroot.znode->level) {
1115 /* Go up until parent is dirty */
1116 while (1) {
1117 int n;
1118
1119 zp = znode->parent;
1120 if (!zp)
1121 break;
1122 n = znode->iip;
6eb61d58 1123 ubifs_assert(c, p < c->zroot.znode->level);
1e51764a
AB
1124 path[p++] = n;
1125 if (!zp->cnext && ubifs_zn_dirty(znode))
1126 break;
1127 znode = zp;
1128 }
1129 }
1130
1131 /* Come back down, dirtying as we go */
1132 while (1) {
1133 struct ubifs_zbranch *zbr;
1134
1135 zp = znode->parent;
1136 if (zp) {
6eb61d58
RW
1137 ubifs_assert(c, path[p - 1] >= 0);
1138 ubifs_assert(c, path[p - 1] < zp->child_cnt);
1e51764a
AB
1139 zbr = &zp->zbranch[path[--p]];
1140 znode = dirty_cow_znode(c, zbr);
1141 } else {
6eb61d58 1142 ubifs_assert(c, znode == c->zroot.znode);
1e51764a
AB
1143 znode = dirty_cow_znode(c, &c->zroot);
1144 }
8d47aef4 1145 if (IS_ERR(znode) || !p)
1e51764a 1146 break;
6eb61d58
RW
1147 ubifs_assert(c, path[p - 1] >= 0);
1148 ubifs_assert(c, path[p - 1] < znode->child_cnt);
1e51764a
AB
1149 znode = znode->zbranch[path[p - 1]].znode;
1150 }
1151
1152 return znode;
1153}
1154
1155/**
1156 * ubifs_lookup_level0 - search for zero-level znode.
1157 * @c: UBIFS file-system description object
1158 * @key: key to lookup
1159 * @zn: znode is returned here
1160 * @n: znode branch slot number is returned here
1161 *
1162 * This function looks up the TNC tree and search for zero-level znode which
1163 * refers key @key. The found zero-level znode is returned in @zn. There are 3
1164 * cases:
1165 * o exact match, i.e. the found zero-level znode contains key @key, then %1
1166 * is returned and slot number of the matched branch is stored in @n;
1167 * o not exact match, which means that zero-level znode does not contain
e3c3efc2
AB
1168 * @key, then %0 is returned and slot number of the closest branch is stored
1169 * in @n;
1e51764a
AB
1170 * o @key is so small that it is even less than the lowest key of the
1171 * leftmost zero-level node, then %0 is returned and %0 is stored in @n.
1172 *
1173 * Note, when the TNC tree is traversed, some znodes may be absent, then this
1174 * function reads corresponding indexing nodes and inserts them to TNC. In
1175 * case of failure, a negative error code is returned.
1176 */
1177int ubifs_lookup_level0(struct ubifs_info *c, const union ubifs_key *key,
1178 struct ubifs_znode **zn, int *n)
1179{
1180 int err, exact;
1181 struct ubifs_znode *znode;
6cff5732 1182 time64_t time = ktime_get_seconds();
1e51764a 1183
515315a1 1184 dbg_tnck(key, "search key ");
6eb61d58 1185 ubifs_assert(c, key_type(c, key) < UBIFS_INVALID_KEY);
1e51764a
AB
1186
1187 znode = c->zroot.znode;
1188 if (unlikely(!znode)) {
1189 znode = ubifs_load_znode(c, &c->zroot, NULL, 0);
1190 if (IS_ERR(znode))
1191 return PTR_ERR(znode);
1192 }
1193
1194 znode->time = time;
1195
1196 while (1) {
1197 struct ubifs_zbranch *zbr;
1198
1199 exact = ubifs_search_zbranch(c, znode, key, n);
1200
1201 if (znode->level == 0)
1202 break;
1203
1204 if (*n < 0)
1205 *n = 0;
1206 zbr = &znode->zbranch[*n];
1207
1208 if (zbr->znode) {
1209 znode->time = time;
1210 znode = zbr->znode;
1211 continue;
1212 }
1213
1214 /* znode is not in TNC cache, load it from the media */
1215 znode = ubifs_load_znode(c, zbr, znode, *n);
1216 if (IS_ERR(znode))
1217 return PTR_ERR(znode);
1218 }
1219
1220 *zn = znode;
1221 if (exact || !is_hash_key(c, key) || *n != -1) {
1222 dbg_tnc("found %d, lvl %d, n %d", exact, znode->level, *n);
1223 return exact;
1224 }
1225
1226 /*
1227 * Here is a tricky place. We have not found the key and this is a
1228 * "hashed" key, which may collide. The rest of the code deals with
1229 * situations like this:
1230 *
1231 * | 3 | 5 |
1232 * / \
1233 * | 3 | 5 | | 6 | 7 | (x)
1234 *
1235 * Or more a complex example:
1236 *
1237 * | 1 | 5 |
1238 * / \
1239 * | 1 | 3 | | 5 | 8 |
1240 * \ /
1241 * | 5 | 5 | | 6 | 7 | (x)
1242 *
1243 * In the examples, if we are looking for key "5", we may reach nodes
1244 * marked with "(x)". In this case what we have do is to look at the
1245 * left and see if there is "5" key there. If there is, we have to
1246 * return it.
1247 *
1248 * Note, this whole situation is possible because we allow to have
1249 * elements which are equivalent to the next key in the parent in the
1250 * children of current znode. For example, this happens if we split a
1251 * znode like this: | 3 | 5 | 5 | 6 | 7 |, which results in something
1252 * like this:
1253 * | 3 | 5 |
1254 * / \
1255 * | 3 | 5 | | 5 | 6 | 7 |
1256 * ^
1257 * And this becomes what is at the first "picture" after key "5" marked
1258 * with "^" is removed. What could be done is we could prohibit
1259 * splitting in the middle of the colliding sequence. Also, when
1260 * removing the leftmost key, we would have to correct the key of the
1261 * parent node, which would introduce additional complications. Namely,
7d4e9ccb 1262 * if we changed the leftmost key of the parent znode, the garbage
1e51764a
AB
1263 * collector would be unable to find it (GC is doing this when GC'ing
1264 * indexing LEBs). Although we already have an additional RB-tree where
1265 * we save such changed znodes (see 'ins_clr_old_idx_znode()') until
1266 * after the commit. But anyway, this does not look easy to implement
1267 * so we did not try this.
1268 */
1269 err = tnc_prev(c, &znode, n);
1270 if (err == -ENOENT) {
1271 dbg_tnc("found 0, lvl %d, n -1", znode->level);
1272 *n = -1;
1273 return 0;
1274 }
1275 if (unlikely(err < 0))
1276 return err;
1277 if (keys_cmp(c, key, &znode->zbranch[*n].key)) {
1278 dbg_tnc("found 0, lvl %d, n -1", znode->level);
1279 *n = -1;
1280 return 0;
1281 }
1282
1283 dbg_tnc("found 1, lvl %d, n %d", znode->level, *n);
1284 *zn = znode;
1285 return 1;
1286}
1287
1288/**
1289 * lookup_level0_dirty - search for zero-level znode dirtying.
1290 * @c: UBIFS file-system description object
1291 * @key: key to lookup
1292 * @zn: znode is returned here
1293 * @n: znode branch slot number is returned here
1294 *
1295 * This function looks up the TNC tree and search for zero-level znode which
1296 * refers key @key. The found zero-level znode is returned in @zn. There are 3
1297 * cases:
1298 * o exact match, i.e. the found zero-level znode contains key @key, then %1
1299 * is returned and slot number of the matched branch is stored in @n;
1300 * o not exact match, which means that zero-level znode does not contain @key
1301 * then %0 is returned and slot number of the closed branch is stored in
1302 * @n;
1303 * o @key is so small that it is even less than the lowest key of the
1304 * leftmost zero-level node, then %0 is returned and %-1 is stored in @n.
1305 *
1306 * Additionally all znodes in the path from the root to the located zero-level
1307 * znode are marked as dirty.
1308 *
1309 * Note, when the TNC tree is traversed, some znodes may be absent, then this
1310 * function reads corresponding indexing nodes and inserts them to TNC. In
1311 * case of failure, a negative error code is returned.
1312 */
1313static int lookup_level0_dirty(struct ubifs_info *c, const union ubifs_key *key,
1314 struct ubifs_znode **zn, int *n)
1315{
1316 int err, exact;
1317 struct ubifs_znode *znode;
6cff5732 1318 time64_t time = ktime_get_seconds();
1e51764a 1319
515315a1 1320 dbg_tnck(key, "search and dirty key ");
1e51764a
AB
1321
1322 znode = c->zroot.znode;
1323 if (unlikely(!znode)) {
1324 znode = ubifs_load_znode(c, &c->zroot, NULL, 0);
1325 if (IS_ERR(znode))
1326 return PTR_ERR(znode);
1327 }
1328
1329 znode = dirty_cow_znode(c, &c->zroot);
1330 if (IS_ERR(znode))
1331 return PTR_ERR(znode);
1332
1333 znode->time = time;
1334
1335 while (1) {
1336 struct ubifs_zbranch *zbr;
1337
1338 exact = ubifs_search_zbranch(c, znode, key, n);
1339
1340 if (znode->level == 0)
1341 break;
1342
1343 if (*n < 0)
1344 *n = 0;
1345 zbr = &znode->zbranch[*n];
1346
1347 if (zbr->znode) {
1348 znode->time = time;
1349 znode = dirty_cow_znode(c, zbr);
1350 if (IS_ERR(znode))
1351 return PTR_ERR(znode);
1352 continue;
1353 }
1354
1355 /* znode is not in TNC cache, load it from the media */
1356 znode = ubifs_load_znode(c, zbr, znode, *n);
1357 if (IS_ERR(znode))
1358 return PTR_ERR(znode);
1359 znode = dirty_cow_znode(c, zbr);
1360 if (IS_ERR(znode))
1361 return PTR_ERR(znode);
1362 }
1363
1364 *zn = znode;
1365 if (exact || !is_hash_key(c, key) || *n != -1) {
1366 dbg_tnc("found %d, lvl %d, n %d", exact, znode->level, *n);
1367 return exact;
1368 }
1369
1370 /*
1371 * See huge comment at 'lookup_level0_dirty()' what is the rest of the
1372 * code.
1373 */
1374 err = tnc_prev(c, &znode, n);
1375 if (err == -ENOENT) {
1376 *n = -1;
1377 dbg_tnc("found 0, lvl %d, n -1", znode->level);
1378 return 0;
1379 }
1380 if (unlikely(err < 0))
1381 return err;
1382 if (keys_cmp(c, key, &znode->zbranch[*n].key)) {
1383 *n = -1;
1384 dbg_tnc("found 0, lvl %d, n -1", znode->level);
1385 return 0;
1386 }
1387
1388 if (znode->cnext || !ubifs_zn_dirty(znode)) {
1389 znode = dirty_cow_bottom_up(c, znode);
1390 if (IS_ERR(znode))
1391 return PTR_ERR(znode);
1392 }
1393
1394 dbg_tnc("found 1, lvl %d, n %d", znode->level, *n);
1395 *zn = znode;
1396 return 1;
1397}
1398
1399/**
601c0bc4 1400 * maybe_leb_gced - determine if a LEB may have been garbage collected.
1e51764a 1401 * @c: UBIFS file-system description object
601c0bc4
AH
1402 * @lnum: LEB number
1403 * @gc_seq1: garbage collection sequence number
1e51764a 1404 *
601c0bc4
AH
1405 * This function determines if @lnum may have been garbage collected since
1406 * sequence number @gc_seq1. If it may have been then %1 is returned, otherwise
1407 * %0 is returned.
1e51764a 1408 */
601c0bc4 1409static int maybe_leb_gced(struct ubifs_info *c, int lnum, int gc_seq1)
1e51764a 1410{
601c0bc4 1411 int gc_seq2, gced_lnum;
1e51764a 1412
601c0bc4
AH
1413 gced_lnum = c->gced_lnum;
1414 smp_rmb();
1415 gc_seq2 = c->gc_seq;
1416 /* Same seq means no GC */
1417 if (gc_seq1 == gc_seq2)
1418 return 0;
1419 /* Different by more than 1 means we don't know */
1420 if (gc_seq1 + 1 != gc_seq2)
1421 return 1;
1422 /*
1423 * We have seen the sequence number has increased by 1. Now we need to
1424 * be sure we read the right LEB number, so read it again.
1425 */
1426 smp_rmb();
1427 if (gced_lnum != c->gced_lnum)
1428 return 1;
1429 /* Finally we can check lnum */
1430 if (gced_lnum == lnum)
1431 return 1;
1432 return 0;
1e51764a
AB
1433}
1434
1435/**
1436 * ubifs_tnc_locate - look up a file-system node and return it and its location.
1437 * @c: UBIFS file-system description object
1438 * @key: node key to lookup
1439 * @node: the node is returned here
1440 * @lnum: LEB number is returned here
1441 * @offs: offset is returned here
1442 *
e3c3efc2 1443 * This function looks up and reads node with key @key. The caller has to make
601c0bc4
AH
1444 * sure the @node buffer is large enough to fit the node. Returns zero in case
1445 * of success, %-ENOENT if the node was not found, and a negative error code in
1446 * case of failure. The node location can be returned in @lnum and @offs.
1e51764a
AB
1447 */
1448int ubifs_tnc_locate(struct ubifs_info *c, const union ubifs_key *key,
1449 void *node, int *lnum, int *offs)
1450{
601c0bc4 1451 int found, n, err, safely = 0, gc_seq1;
1e51764a
AB
1452 struct ubifs_znode *znode;
1453 struct ubifs_zbranch zbr, *zt;
1454
601c0bc4 1455again:
1e51764a
AB
1456 mutex_lock(&c->tnc_mutex);
1457 found = ubifs_lookup_level0(c, key, &znode, &n);
1458 if (!found) {
1459 err = -ENOENT;
1460 goto out;
1461 } else if (found < 0) {
1462 err = found;
1463 goto out;
1464 }
1465 zt = &znode->zbranch[n];
601c0bc4
AH
1466 if (lnum) {
1467 *lnum = zt->lnum;
1468 *offs = zt->offs;
1469 }
1e51764a
AB
1470 if (is_hash_key(c, key)) {
1471 /*
1472 * In this case the leaf node cache gets used, so we pass the
1473 * address of the zbranch and keep the mutex locked
1474 */
b91dc981 1475 err = tnc_read_hashed_node(c, zt, node);
1e51764a
AB
1476 goto out;
1477 }
601c0bc4
AH
1478 if (safely) {
1479 err = ubifs_tnc_read_node(c, zt, node);
1480 goto out;
1481 }
1482 /* Drop the TNC mutex prematurely and race with garbage collection */
1e51764a 1483 zbr = znode->zbranch[n];
601c0bc4 1484 gc_seq1 = c->gc_seq;
1e51764a
AB
1485 mutex_unlock(&c->tnc_mutex);
1486
601c0bc4
AH
1487 if (ubifs_get_wbuf(c, zbr.lnum)) {
1488 /* We do not GC journal heads */
1489 err = ubifs_tnc_read_node(c, &zbr, node);
1490 return err;
1491 }
1e51764a 1492
601c0bc4 1493 err = fallible_read_node(c, key, &zbr, node);
6dcfac4f 1494 if (err <= 0 || maybe_leb_gced(c, zbr.lnum, gc_seq1)) {
601c0bc4
AH
1495 /*
1496 * The node may have been GC'ed out from under us so try again
1497 * while keeping the TNC mutex locked.
1498 */
1499 safely = 1;
1500 goto again;
1501 }
1502 return 0;
1e51764a
AB
1503
1504out:
1505 mutex_unlock(&c->tnc_mutex);
1506 return err;
1507}
1508
4793e7c5
AH
1509/**
1510 * ubifs_tnc_get_bu_keys - lookup keys for bulk-read.
1511 * @c: UBIFS file-system description object
1512 * @bu: bulk-read parameters and results
1513 *
1514 * Lookup consecutive data node keys for the same inode that reside
6c0c42cd
AB
1515 * consecutively in the same LEB. This function returns zero in case of success
1516 * and a negative error code in case of failure.
1517 *
1518 * Note, if the bulk-read buffer length (@bu->buf_len) is known, this function
1519 * makes sure bulk-read nodes fit the buffer. Otherwise, this function prepares
6f7ab6d4 1520 * maximum possible amount of nodes for bulk-read.
4793e7c5
AH
1521 */
1522int ubifs_tnc_get_bu_keys(struct ubifs_info *c, struct bu_info *bu)
1523{
1524 int n, err = 0, lnum = -1, uninitialized_var(offs);
1525 int uninitialized_var(len);
1526 unsigned int block = key_block(c, &bu->key);
1527 struct ubifs_znode *znode;
1528
1529 bu->cnt = 0;
1530 bu->blk_cnt = 0;
1531 bu->eof = 0;
1532
1533 mutex_lock(&c->tnc_mutex);
1534 /* Find first key */
1535 err = ubifs_lookup_level0(c, &bu->key, &znode, &n);
1536 if (err < 0)
1537 goto out;
1538 if (err) {
1539 /* Key found */
1540 len = znode->zbranch[n].len;
1541 /* The buffer must be big enough for at least 1 node */
1542 if (len > bu->buf_len) {
1543 err = -EINVAL;
1544 goto out;
1545 }
1546 /* Add this key */
1547 bu->zbranch[bu->cnt++] = znode->zbranch[n];
1548 bu->blk_cnt += 1;
1549 lnum = znode->zbranch[n].lnum;
1550 offs = ALIGN(znode->zbranch[n].offs + len, 8);
1551 }
1552 while (1) {
1553 struct ubifs_zbranch *zbr;
1554 union ubifs_key *key;
1555 unsigned int next_block;
1556
1557 /* Find next key */
1558 err = tnc_next(c, &znode, &n);
1559 if (err)
1560 goto out;
1561 zbr = &znode->zbranch[n];
1562 key = &zbr->key;
1563 /* See if there is another data key for this file */
1564 if (key_inum(c, key) != key_inum(c, &bu->key) ||
1565 key_type(c, key) != UBIFS_DATA_KEY) {
1566 err = -ENOENT;
1567 goto out;
1568 }
1569 if (lnum < 0) {
1570 /* First key found */
1571 lnum = zbr->lnum;
1572 offs = ALIGN(zbr->offs + zbr->len, 8);
1573 len = zbr->len;
1574 if (len > bu->buf_len) {
1575 err = -EINVAL;
1576 goto out;
1577 }
1578 } else {
1579 /*
1580 * The data nodes must be in consecutive positions in
1581 * the same LEB.
1582 */
1583 if (zbr->lnum != lnum || zbr->offs != offs)
1584 goto out;
1585 offs += ALIGN(zbr->len, 8);
1586 len = ALIGN(len, 8) + zbr->len;
1587 /* Must not exceed buffer length */
1588 if (len > bu->buf_len)
1589 goto out;
1590 }
1591 /* Allow for holes */
1592 next_block = key_block(c, key);
1593 bu->blk_cnt += (next_block - block - 1);
1594 if (bu->blk_cnt >= UBIFS_MAX_BULK_READ)
1595 goto out;
1596 block = next_block;
1597 /* Add this key */
1598 bu->zbranch[bu->cnt++] = *zbr;
1599 bu->blk_cnt += 1;
1600 /* See if we have room for more */
1601 if (bu->cnt >= UBIFS_MAX_BULK_READ)
1602 goto out;
1603 if (bu->blk_cnt >= UBIFS_MAX_BULK_READ)
1604 goto out;
1605 }
1606out:
1607 if (err == -ENOENT) {
1608 bu->eof = 1;
1609 err = 0;
1610 }
1611 bu->gc_seq = c->gc_seq;
1612 mutex_unlock(&c->tnc_mutex);
1613 if (err)
1614 return err;
1615 /*
1616 * An enormous hole could cause bulk-read to encompass too many
1617 * page cache pages, so limit the number here.
1618 */
63c300b6 1619 if (bu->blk_cnt > UBIFS_MAX_BULK_READ)
4793e7c5
AH
1620 bu->blk_cnt = UBIFS_MAX_BULK_READ;
1621 /*
1622 * Ensure that bulk-read covers a whole number of page cache
1623 * pages.
1624 */
1625 if (UBIFS_BLOCKS_PER_PAGE == 1 ||
1626 !(bu->blk_cnt & (UBIFS_BLOCKS_PER_PAGE - 1)))
1627 return 0;
1628 if (bu->eof) {
1629 /* At the end of file we can round up */
1630 bu->blk_cnt += UBIFS_BLOCKS_PER_PAGE - 1;
1631 return 0;
1632 }
1633 /* Exclude data nodes that do not make up a whole page cache page */
1634 block = key_block(c, &bu->key) + bu->blk_cnt;
1635 block &= ~(UBIFS_BLOCKS_PER_PAGE - 1);
1636 while (bu->cnt) {
1637 if (key_block(c, &bu->zbranch[bu->cnt - 1].key) < block)
1638 break;
1639 bu->cnt -= 1;
1640 }
1641 return 0;
1642}
1643
1644/**
1645 * read_wbuf - bulk-read from a LEB with a wbuf.
1646 * @wbuf: wbuf that may overlap the read
1647 * @buf: buffer into which to read
1648 * @len: read length
1649 * @lnum: LEB number from which to read
1650 * @offs: offset from which to read
1651 *
1652 * This functions returns %0 on success or a negative error code on failure.
1653 */
1654static int read_wbuf(struct ubifs_wbuf *wbuf, void *buf, int len, int lnum,
1655 int offs)
1656{
1657 const struct ubifs_info *c = wbuf->c;
1658 int rlen, overlap;
1659
1660 dbg_io("LEB %d:%d, length %d", lnum, offs, len);
6eb61d58
RW
1661 ubifs_assert(c, wbuf && lnum >= 0 && lnum < c->leb_cnt && offs >= 0);
1662 ubifs_assert(c, !(offs & 7) && offs < c->leb_size);
1663 ubifs_assert(c, offs + len <= c->leb_size);
4793e7c5
AH
1664
1665 spin_lock(&wbuf->lock);
1666 overlap = (lnum == wbuf->lnum && offs + len > wbuf->offs);
1667 if (!overlap) {
1668 /* We may safely unlock the write-buffer and read the data */
1669 spin_unlock(&wbuf->lock);
d304820a 1670 return ubifs_leb_read(c, lnum, buf, offs, len, 0);
4793e7c5
AH
1671 }
1672
1673 /* Don't read under wbuf */
1674 rlen = wbuf->offs - offs;
1675 if (rlen < 0)
1676 rlen = 0;
1677
1678 /* Copy the rest from the write-buffer */
1679 memcpy(buf + rlen, wbuf->buf + offs + rlen - wbuf->offs, len - rlen);
1680 spin_unlock(&wbuf->lock);
1681
1682 if (rlen > 0)
1683 /* Read everything that goes before write-buffer */
d304820a 1684 return ubifs_leb_read(c, lnum, buf, offs, rlen, 0);
4793e7c5
AH
1685
1686 return 0;
1687}
1688
1689/**
1690 * validate_data_node - validate data nodes for bulk-read.
1691 * @c: UBIFS file-system description object
1692 * @buf: buffer containing data node to validate
1693 * @zbr: zbranch of data node to validate
1694 *
1695 * This functions returns %0 on success or a negative error code on failure.
1696 */
1697static int validate_data_node(struct ubifs_info *c, void *buf,
1698 struct ubifs_zbranch *zbr)
1699{
1700 union ubifs_key key1;
1701 struct ubifs_ch *ch = buf;
1702 int err, len;
1703
1704 if (ch->node_type != UBIFS_DATA_NODE) {
235c362b 1705 ubifs_err(c, "bad node type (%d but expected %d)",
4793e7c5
AH
1706 ch->node_type, UBIFS_DATA_NODE);
1707 goto out_err;
1708 }
1709
2953e73f 1710 err = ubifs_check_node(c, buf, zbr->lnum, zbr->offs, 0, 0);
4793e7c5 1711 if (err) {
235c362b 1712 ubifs_err(c, "expected node type %d", UBIFS_DATA_NODE);
4793e7c5
AH
1713 goto out;
1714 }
1715
1716 len = le32_to_cpu(ch->len);
1717 if (len != zbr->len) {
235c362b 1718 ubifs_err(c, "bad node length %d, expected %d", len, zbr->len);
4793e7c5
AH
1719 goto out_err;
1720 }
1721
1722 /* Make sure the key of the read node is correct */
1723 key_read(c, buf + UBIFS_KEY_OFFSET, &key1);
1724 if (!keys_eq(c, &zbr->key, &key1)) {
235c362b 1725 ubifs_err(c, "bad key in node at LEB %d:%d",
4793e7c5 1726 zbr->lnum, zbr->offs);
515315a1
AB
1727 dbg_tnck(&zbr->key, "looked for key ");
1728 dbg_tnck(&key1, "found node's key ");
4793e7c5
AH
1729 goto out_err;
1730 }
1731
1732 return 0;
1733
1734out_err:
1735 err = -EINVAL;
1736out:
235c362b 1737 ubifs_err(c, "bad node at LEB %d:%d", zbr->lnum, zbr->offs);
edf6be24 1738 ubifs_dump_node(c, buf);
7c46d0ae 1739 dump_stack();
4793e7c5
AH
1740 return err;
1741}
1742
1743/**
1744 * ubifs_tnc_bulk_read - read a number of data nodes in one go.
1745 * @c: UBIFS file-system description object
1746 * @bu: bulk-read parameters and results
1747 *
1748 * This functions reads and validates the data nodes that were identified by the
1749 * 'ubifs_tnc_get_bu_keys()' function. This functions returns %0 on success,
1750 * -EAGAIN to indicate a race with GC, or another negative error code on
1751 * failure.
1752 */
1753int ubifs_tnc_bulk_read(struct ubifs_info *c, struct bu_info *bu)
1754{
1755 int lnum = bu->zbranch[0].lnum, offs = bu->zbranch[0].offs, len, err, i;
1756 struct ubifs_wbuf *wbuf;
1757 void *buf;
1758
1759 len = bu->zbranch[bu->cnt - 1].offs;
1760 len += bu->zbranch[bu->cnt - 1].len - offs;
1761 if (len > bu->buf_len) {
235c362b 1762 ubifs_err(c, "buffer too small %d vs %d", bu->buf_len, len);
4793e7c5
AH
1763 return -EINVAL;
1764 }
1765
1766 /* Do the read */
1767 wbuf = ubifs_get_wbuf(c, lnum);
1768 if (wbuf)
1769 err = read_wbuf(wbuf, bu->buf, len, lnum, offs);
1770 else
d304820a 1771 err = ubifs_leb_read(c, lnum, bu->buf, offs, len, 0);
4793e7c5
AH
1772
1773 /* Check for a race with GC */
1774 if (maybe_leb_gced(c, lnum, bu->gc_seq))
1775 return -EAGAIN;
1776
1777 if (err && err != -EBADMSG) {
235c362b 1778 ubifs_err(c, "failed to read from LEB %d:%d, error %d",
4793e7c5 1779 lnum, offs, err);
7c46d0ae 1780 dump_stack();
515315a1 1781 dbg_tnck(&bu->key, "key ");
4793e7c5
AH
1782 return err;
1783 }
1784
1785 /* Validate the nodes read */
1786 buf = bu->buf;
1787 for (i = 0; i < bu->cnt; i++) {
1788 err = validate_data_node(c, buf, &bu->zbranch[i]);
1789 if (err)
1790 return err;
1791 buf = buf + ALIGN(bu->zbranch[i].len, 8);
1792 }
1793
1794 return 0;
1795}
1796
1e51764a
AB
1797/**
1798 * do_lookup_nm- look up a "hashed" node.
1799 * @c: UBIFS file-system description object
1800 * @key: node key to lookup
1801 * @node: the node is returned here
1802 * @nm: node name
1803 *
528e3d17 1804 * This function looks up and reads a node which contains name hash in the key.
1e51764a
AB
1805 * Since the hash may have collisions, there may be many nodes with the same
1806 * key, so we have to sequentially look to all of them until the needed one is
1807 * found. This function returns zero in case of success, %-ENOENT if the node
1808 * was not found, and a negative error code in case of failure.
1809 */
1810static int do_lookup_nm(struct ubifs_info *c, const union ubifs_key *key,
f4f61d2c 1811 void *node, const struct fscrypt_name *nm)
1e51764a
AB
1812{
1813 int found, n, err;
1814 struct ubifs_znode *znode;
1e51764a 1815
35ee314c 1816 dbg_tnck(key, "key ");
1e51764a
AB
1817 mutex_lock(&c->tnc_mutex);
1818 found = ubifs_lookup_level0(c, key, &znode, &n);
1819 if (!found) {
1820 err = -ENOENT;
1821 goto out_unlock;
1822 } else if (found < 0) {
1823 err = found;
1824 goto out_unlock;
1825 }
1826
6eb61d58 1827 ubifs_assert(c, n >= 0);
1e51764a
AB
1828
1829 err = resolve_collision(c, key, &znode, &n, nm);
1830 dbg_tnc("rc returned %d, znode %p, n %d", err, znode, n);
1831 if (unlikely(err < 0))
1832 goto out_unlock;
1833 if (err == 0) {
1834 err = -ENOENT;
1835 goto out_unlock;
1836 }
1837
b91dc981 1838 err = tnc_read_hashed_node(c, &znode->zbranch[n], node);
1e51764a
AB
1839
1840out_unlock:
1841 mutex_unlock(&c->tnc_mutex);
1842 return err;
1843}
1844
1845/**
1846 * ubifs_tnc_lookup_nm - look up a "hashed" node.
1847 * @c: UBIFS file-system description object
1848 * @key: node key to lookup
1849 * @node: the node is returned here
1850 * @nm: node name
1851 *
528e3d17 1852 * This function looks up and reads a node which contains name hash in the key.
1e51764a
AB
1853 * Since the hash may have collisions, there may be many nodes with the same
1854 * key, so we have to sequentially look to all of them until the needed one is
1855 * found. This function returns zero in case of success, %-ENOENT if the node
1856 * was not found, and a negative error code in case of failure.
1857 */
1858int ubifs_tnc_lookup_nm(struct ubifs_info *c, const union ubifs_key *key,
f4f61d2c 1859 void *node, const struct fscrypt_name *nm)
1e51764a
AB
1860{
1861 int err, len;
1862 const struct ubifs_dent_node *dent = node;
1863
1864 /*
1865 * We assume that in most of the cases there are no name collisions and
1866 * 'ubifs_tnc_lookup()' returns us the right direntry.
1867 */
1868 err = ubifs_tnc_lookup(c, key, node);
1869 if (err)
1870 return err;
1871
1872 len = le16_to_cpu(dent->nlen);
f4f61d2c 1873 if (fname_len(nm) == len && !memcmp(dent->name, fname_name(nm), len))
1e51764a
AB
1874 return 0;
1875
1876 /*
1877 * Unluckily, there are hash collisions and we have to iterate over
1878 * them look at each direntry with colliding name hash sequentially.
1879 */
528e3d17 1880
1e51764a
AB
1881 return do_lookup_nm(c, key, node, nm);
1882}
1883
781f675e
RW
1884static int search_dh_cookie(struct ubifs_info *c, const union ubifs_key *key,
1885 struct ubifs_dent_node *dent, uint32_t cookie,
1886 struct ubifs_znode **zn, int *n)
528e3d17 1887{
781f675e
RW
1888 int err;
1889 struct ubifs_znode *znode = *zn;
528e3d17 1890 struct ubifs_zbranch *zbr;
781f675e 1891 union ubifs_key *dkey;
528e3d17
RW
1892
1893 for (;;) {
781f675e 1894 zbr = &znode->zbranch[*n];
528e3d17
RW
1895 dkey = &zbr->key;
1896
1897 if (key_inum(c, dkey) != key_inum(c, key) ||
781f675e 1898 key_type(c, dkey) != key_type(c, key)) {
c877154d 1899 return -ENOENT;
528e3d17
RW
1900 }
1901
1902 err = tnc_read_hashed_node(c, zbr, dent);
1903 if (err)
c877154d 1904 return err;
528e3d17
RW
1905
1906 if (key_hash(c, key) == key_hash(c, dkey) &&
781f675e
RW
1907 le32_to_cpu(dent->cookie) == cookie) {
1908 *zn = znode;
c877154d 1909 return 0;
781f675e 1910 }
781f675e 1911
c877154d
GU
1912 err = tnc_next(c, &znode, n);
1913 if (err)
1914 return err;
1915 }
781f675e
RW
1916}
1917
1918static int do_lookup_dh(struct ubifs_info *c, const union ubifs_key *key,
1919 struct ubifs_dent_node *dent, uint32_t cookie)
1920{
1921 int n, err;
1922 struct ubifs_znode *znode;
1923 union ubifs_key start_key;
1924
6eb61d58 1925 ubifs_assert(c, is_hash_key(c, key));
781f675e
RW
1926
1927 lowest_dent_key(c, &start_key, key_inum(c, key));
1928
1929 mutex_lock(&c->tnc_mutex);
1930 err = ubifs_lookup_level0(c, &start_key, &znode, &n);
1931 if (unlikely(err < 0))
1932 goto out_unlock;
1933
1934 err = search_dh_cookie(c, key, dent, cookie, &znode, &n);
1935
528e3d17
RW
1936out_unlock:
1937 mutex_unlock(&c->tnc_mutex);
1938 return err;
1939}
1940
1941/**
1942 * ubifs_tnc_lookup_dh - look up a "double hashed" node.
1943 * @c: UBIFS file-system description object
1944 * @key: node key to lookup
1945 * @node: the node is returned here
1946 * @cookie: node cookie for collision resolution
1947 *
1948 * This function looks up and reads a node which contains name hash in the key.
1949 * Since the hash may have collisions, there may be many nodes with the same
1950 * key, so we have to sequentially look to all of them until the needed one
1951 * with the same cookie value is found.
1952 * This function returns zero in case of success, %-ENOENT if the node
1953 * was not found, and a negative error code in case of failure.
1954 */
1955int ubifs_tnc_lookup_dh(struct ubifs_info *c, const union ubifs_key *key,
1956 void *node, uint32_t cookie)
1957{
1958 int err;
1959 const struct ubifs_dent_node *dent = node;
1960
d63d61c1
RW
1961 if (!c->double_hash)
1962 return -EOPNOTSUPP;
1963
528e3d17
RW
1964 /*
1965 * We assume that in most of the cases there are no name collisions and
1966 * 'ubifs_tnc_lookup()' returns us the right direntry.
1967 */
1968 err = ubifs_tnc_lookup(c, key, node);
1969 if (err)
1970 return err;
1971
1972 if (le32_to_cpu(dent->cookie) == cookie)
1973 return 0;
1974
1975 /*
1976 * Unluckily, there are hash collisions and we have to iterate over
1977 * them look at each direntry with colliding name hash sequentially.
1978 */
1979 return do_lookup_dh(c, key, node, cookie);
1980}
1981
1e51764a
AB
1982/**
1983 * correct_parent_keys - correct parent znodes' keys.
1984 * @c: UBIFS file-system description object
1985 * @znode: znode to correct parent znodes for
1986 *
1987 * This is a helper function for 'tnc_insert()'. When the key of the leftmost
1988 * zbranch changes, keys of parent znodes have to be corrected. This helper
1989 * function is called in such situations and corrects the keys if needed.
1990 */
1991static void correct_parent_keys(const struct ubifs_info *c,
1992 struct ubifs_znode *znode)
1993{
1994 union ubifs_key *key, *key1;
1995
6eb61d58
RW
1996 ubifs_assert(c, znode->parent);
1997 ubifs_assert(c, znode->iip == 0);
1e51764a
AB
1998
1999 key = &znode->zbranch[0].key;
2000 key1 = &znode->parent->zbranch[0].key;
2001
2002 while (keys_cmp(c, key, key1) < 0) {
2003 key_copy(c, key, key1);
2004 znode = znode->parent;
2005 znode->alt = 1;
2006 if (!znode->parent || znode->iip)
2007 break;
2008 key1 = &znode->parent->zbranch[0].key;
2009 }
2010}
2011
2012/**
2013 * insert_zbranch - insert a zbranch into a znode.
6eb61d58 2014 * @c: UBIFS file-system description object
1e51764a
AB
2015 * @znode: znode into which to insert
2016 * @zbr: zbranch to insert
2017 * @n: slot number to insert to
2018 *
2019 * This is a helper function for 'tnc_insert()'. UBIFS does not allow "gaps" in
2020 * znode's array of zbranches and keeps zbranches consolidated, so when a new
2021 * zbranch has to be inserted to the @znode->zbranches[]' array at the @n-th
2022 * slot, zbranches starting from @n have to be moved right.
2023 */
6eb61d58 2024static void insert_zbranch(struct ubifs_info *c, struct ubifs_znode *znode,
1e51764a
AB
2025 const struct ubifs_zbranch *zbr, int n)
2026{
2027 int i;
2028
6eb61d58 2029 ubifs_assert(c, ubifs_zn_dirty(znode));
1e51764a
AB
2030
2031 if (znode->level) {
2032 for (i = znode->child_cnt; i > n; i--) {
2033 znode->zbranch[i] = znode->zbranch[i - 1];
2034 if (znode->zbranch[i].znode)
2035 znode->zbranch[i].znode->iip = i;
2036 }
2037 if (zbr->znode)
2038 zbr->znode->iip = n;
2039 } else
2040 for (i = znode->child_cnt; i > n; i--)
2041 znode->zbranch[i] = znode->zbranch[i - 1];
2042
2043 znode->zbranch[n] = *zbr;
2044 znode->child_cnt += 1;
2045
2046 /*
2047 * After inserting at slot zero, the lower bound of the key range of
2048 * this znode may have changed. If this znode is subsequently split
2049 * then the upper bound of the key range may change, and furthermore
2050 * it could change to be lower than the original lower bound. If that
2051 * happens, then it will no longer be possible to find this znode in the
2052 * TNC using the key from the index node on flash. That is bad because
2053 * if it is not found, we will assume it is obsolete and may overwrite
2054 * it. Then if there is an unclean unmount, we will start using the
2055 * old index which will be broken.
2056 *
2057 * So we first mark znodes that have insertions at slot zero, and then
2058 * if they are split we add their lnum/offs to the old_idx tree.
2059 */
2060 if (n == 0)
2061 znode->alt = 1;
2062}
2063
2064/**
2065 * tnc_insert - insert a node into TNC.
2066 * @c: UBIFS file-system description object
2067 * @znode: znode to insert into
2068 * @zbr: branch to insert
2069 * @n: slot number to insert new zbranch to
2070 *
2071 * This function inserts a new node described by @zbr into znode @znode. If
2072 * znode does not have a free slot for new zbranch, it is split. Parent znodes
2073 * are splat as well if needed. Returns zero in case of success or a negative
2074 * error code in case of failure.
2075 */
2076static int tnc_insert(struct ubifs_info *c, struct ubifs_znode *znode,
2077 struct ubifs_zbranch *zbr, int n)
2078{
2079 struct ubifs_znode *zn, *zi, *zp;
2080 int i, keep, move, appending = 0;
2242c689 2081 union ubifs_key *key = &zbr->key, *key1;
1e51764a 2082
6eb61d58 2083 ubifs_assert(c, n >= 0 && n <= c->fanout);
1e51764a
AB
2084
2085 /* Implement naive insert for now */
2086again:
2087 zp = znode->parent;
2088 if (znode->child_cnt < c->fanout) {
6eb61d58 2089 ubifs_assert(c, n != c->fanout);
515315a1 2090 dbg_tnck(key, "inserted at %d level %d, key ", n, znode->level);
1e51764a 2091
6eb61d58 2092 insert_zbranch(c, znode, zbr, n);
1e51764a
AB
2093
2094 /* Ensure parent's key is correct */
2095 if (n == 0 && zp && znode->iip == 0)
2096 correct_parent_keys(c, znode);
2097
2098 return 0;
2099 }
2100
2101 /*
2102 * Unfortunately, @znode does not have more empty slots and we have to
2103 * split it.
2104 */
515315a1 2105 dbg_tnck(key, "splitting level %d, key ", znode->level);
1e51764a
AB
2106
2107 if (znode->alt)
2108 /*
2109 * We can no longer be sure of finding this znode by key, so we
2110 * record it in the old_idx tree.
2111 */
2112 ins_clr_old_idx_znode(c, znode);
2113
2114 zn = kzalloc(c->max_znode_sz, GFP_NOFS);
2115 if (!zn)
2116 return -ENOMEM;
2117 zn->parent = zp;
2118 zn->level = znode->level;
2119
2120 /* Decide where to split */
2242c689
AH
2121 if (znode->level == 0 && key_type(c, key) == UBIFS_DATA_KEY) {
2122 /* Try not to split consecutive data keys */
2123 if (n == c->fanout) {
2124 key1 = &znode->zbranch[n - 1].key;
2125 if (key_inum(c, key1) == key_inum(c, key) &&
2126 key_type(c, key1) == UBIFS_DATA_KEY)
2127 appending = 1;
2128 } else
2129 goto check_split;
2130 } else if (appending && n != c->fanout) {
2131 /* Try not to split consecutive data keys */
2132 appending = 0;
2133check_split:
2134 if (n >= (c->fanout + 1) / 2) {
2135 key1 = &znode->zbranch[0].key;
2136 if (key_inum(c, key1) == key_inum(c, key) &&
2137 key_type(c, key1) == UBIFS_DATA_KEY) {
2138 key1 = &znode->zbranch[n].key;
2139 if (key_inum(c, key1) != key_inum(c, key) ||
2140 key_type(c, key1) != UBIFS_DATA_KEY) {
2141 keep = n;
2142 move = c->fanout - keep;
2143 zi = znode;
2144 goto do_split;
2145 }
2146 }
2147 }
1e51764a
AB
2148 }
2149
2150 if (appending) {
2151 keep = c->fanout;
2152 move = 0;
2153 } else {
2154 keep = (c->fanout + 1) / 2;
2155 move = c->fanout - keep;
2156 }
2157
2158 /*
2159 * Although we don't at present, we could look at the neighbors and see
2160 * if we can move some zbranches there.
2161 */
2162
2163 if (n < keep) {
2164 /* Insert into existing znode */
2165 zi = znode;
2166 move += 1;
2167 keep -= 1;
2168 } else {
2169 /* Insert into new znode */
2170 zi = zn;
2171 n -= keep;
2172 /* Re-parent */
2173 if (zn->level != 0)
2174 zbr->znode->parent = zn;
2175 }
2176
2242c689
AH
2177do_split:
2178
1e51764a
AB
2179 __set_bit(DIRTY_ZNODE, &zn->flags);
2180 atomic_long_inc(&c->dirty_zn_cnt);
2181
2182 zn->child_cnt = move;
2183 znode->child_cnt = keep;
2184
2185 dbg_tnc("moving %d, keeping %d", move, keep);
2186
2187 /* Move zbranch */
2188 for (i = 0; i < move; i++) {
2189 zn->zbranch[i] = znode->zbranch[keep + i];
2190 /* Re-parent */
2191 if (zn->level != 0)
2192 if (zn->zbranch[i].znode) {
2193 zn->zbranch[i].znode->parent = zn;
2194 zn->zbranch[i].znode->iip = i;
2195 }
2196 }
2197
2198 /* Insert new key and branch */
515315a1 2199 dbg_tnck(key, "inserting at %d level %d, key ", n, zn->level);
1e51764a 2200
6eb61d58 2201 insert_zbranch(c, zi, zbr, n);
1e51764a
AB
2202
2203 /* Insert new znode (produced by spitting) into the parent */
2204 if (zp) {
2242c689
AH
2205 if (n == 0 && zi == znode && znode->iip == 0)
2206 correct_parent_keys(c, znode);
2207
1e51764a
AB
2208 /* Locate insertion point */
2209 n = znode->iip + 1;
1e51764a
AB
2210
2211 /* Tail recursion */
2212 zbr->key = zn->zbranch[0].key;
2213 zbr->znode = zn;
2214 zbr->lnum = 0;
2215 zbr->offs = 0;
2216 zbr->len = 0;
2217 znode = zp;
2218
2219 goto again;
2220 }
2221
2222 /* We have to split root znode */
2223 dbg_tnc("creating new zroot at level %d", znode->level + 1);
2224
2225 zi = kzalloc(c->max_znode_sz, GFP_NOFS);
2226 if (!zi)
2227 return -ENOMEM;
2228
2229 zi->child_cnt = 2;
2230 zi->level = znode->level + 1;
2231
2232 __set_bit(DIRTY_ZNODE, &zi->flags);
2233 atomic_long_inc(&c->dirty_zn_cnt);
2234
2235 zi->zbranch[0].key = znode->zbranch[0].key;
2236 zi->zbranch[0].znode = znode;
2237 zi->zbranch[0].lnum = c->zroot.lnum;
2238 zi->zbranch[0].offs = c->zroot.offs;
2239 zi->zbranch[0].len = c->zroot.len;
2240 zi->zbranch[1].key = zn->zbranch[0].key;
2241 zi->zbranch[1].znode = zn;
2242
2243 c->zroot.lnum = 0;
2244 c->zroot.offs = 0;
2245 c->zroot.len = 0;
2246 c->zroot.znode = zi;
2247
2248 zn->parent = zi;
2249 zn->iip = 1;
2250 znode->parent = zi;
2251 znode->iip = 0;
2252
2253 return 0;
2254}
2255
2256/**
2257 * ubifs_tnc_add - add a node to TNC.
2258 * @c: UBIFS file-system description object
2259 * @key: key to add
2260 * @lnum: LEB number of node
2261 * @offs: node offset
2262 * @len: node length
2263 *
2264 * This function adds a node with key @key to TNC. The node may be new or it may
2265 * obsolete some existing one. Returns %0 on success or negative error code on
2266 * failure.
2267 */
2268int ubifs_tnc_add(struct ubifs_info *c, const union ubifs_key *key, int lnum,
2269 int offs, int len)
2270{
2271 int found, n, err = 0;
2272 struct ubifs_znode *znode;
2273
2274 mutex_lock(&c->tnc_mutex);
515315a1 2275 dbg_tnck(key, "%d:%d, len %d, key ", lnum, offs, len);
1e51764a
AB
2276 found = lookup_level0_dirty(c, key, &znode, &n);
2277 if (!found) {
2278 struct ubifs_zbranch zbr;
2279
2280 zbr.znode = NULL;
2281 zbr.lnum = lnum;
2282 zbr.offs = offs;
2283 zbr.len = len;
2284 key_copy(c, key, &zbr.key);
2285 err = tnc_insert(c, znode, &zbr, n + 1);
2286 } else if (found == 1) {
2287 struct ubifs_zbranch *zbr = &znode->zbranch[n];
2288
2289 lnc_free(zbr);
2290 err = ubifs_add_dirt(c, zbr->lnum, zbr->len);
2291 zbr->lnum = lnum;
2292 zbr->offs = offs;
2293 zbr->len = len;
2294 } else
2295 err = found;
2296 if (!err)
2297 err = dbg_check_tnc(c, 0);
2298 mutex_unlock(&c->tnc_mutex);
2299
2300 return err;
2301}
2302
2303/**
2304 * ubifs_tnc_replace - replace a node in the TNC only if the old node is found.
2305 * @c: UBIFS file-system description object
2306 * @key: key to add
2307 * @old_lnum: LEB number of old node
2308 * @old_offs: old node offset
2309 * @lnum: LEB number of node
2310 * @offs: node offset
2311 * @len: node length
2312 *
2313 * This function replaces a node with key @key in the TNC only if the old node
2314 * is found. This function is called by garbage collection when node are moved.
2315 * Returns %0 on success or negative error code on failure.
2316 */
2317int ubifs_tnc_replace(struct ubifs_info *c, const union ubifs_key *key,
2318 int old_lnum, int old_offs, int lnum, int offs, int len)
2319{
2320 int found, n, err = 0;
2321 struct ubifs_znode *znode;
2322
2323 mutex_lock(&c->tnc_mutex);
515315a1
AB
2324 dbg_tnck(key, "old LEB %d:%d, new LEB %d:%d, len %d, key ", old_lnum,
2325 old_offs, lnum, offs, len);
1e51764a
AB
2326 found = lookup_level0_dirty(c, key, &znode, &n);
2327 if (found < 0) {
2328 err = found;
2329 goto out_unlock;
2330 }
2331
2332 if (found == 1) {
2333 struct ubifs_zbranch *zbr = &znode->zbranch[n];
2334
2335 found = 0;
2336 if (zbr->lnum == old_lnum && zbr->offs == old_offs) {
2337 lnc_free(zbr);
2338 err = ubifs_add_dirt(c, zbr->lnum, zbr->len);
2339 if (err)
2340 goto out_unlock;
2341 zbr->lnum = lnum;
2342 zbr->offs = offs;
2343 zbr->len = len;
2344 found = 1;
2345 } else if (is_hash_key(c, key)) {
2346 found = resolve_collision_directly(c, key, &znode, &n,
2347 old_lnum, old_offs);
2348 dbg_tnc("rc returned %d, znode %p, n %d, LEB %d:%d",
2349 found, znode, n, old_lnum, old_offs);
2350 if (found < 0) {
2351 err = found;
2352 goto out_unlock;
2353 }
2354
2355 if (found) {
2356 /* Ensure the znode is dirtied */
2357 if (znode->cnext || !ubifs_zn_dirty(znode)) {
f92b9826
AB
2358 znode = dirty_cow_bottom_up(c, znode);
2359 if (IS_ERR(znode)) {
2360 err = PTR_ERR(znode);
2361 goto out_unlock;
2362 }
1e51764a
AB
2363 }
2364 zbr = &znode->zbranch[n];
2365 lnc_free(zbr);
2366 err = ubifs_add_dirt(c, zbr->lnum,
2367 zbr->len);
2368 if (err)
2369 goto out_unlock;
2370 zbr->lnum = lnum;
2371 zbr->offs = offs;
2372 zbr->len = len;
2373 }
2374 }
2375 }
2376
2377 if (!found)
2378 err = ubifs_add_dirt(c, lnum, len);
2379
2380 if (!err)
2381 err = dbg_check_tnc(c, 0);
2382
2383out_unlock:
2384 mutex_unlock(&c->tnc_mutex);
2385 return err;
2386}
2387
2388/**
2389 * ubifs_tnc_add_nm - add a "hashed" node to TNC.
2390 * @c: UBIFS file-system description object
2391 * @key: key to add
2392 * @lnum: LEB number of node
2393 * @offs: node offset
2394 * @len: node length
2395 * @nm: node name
2396 *
2397 * This is the same as 'ubifs_tnc_add()' but it should be used with keys which
2398 * may have collisions, like directory entry keys.
2399 */
2400int ubifs_tnc_add_nm(struct ubifs_info *c, const union ubifs_key *key,
f4f61d2c
RW
2401 int lnum, int offs, int len,
2402 const struct fscrypt_name *nm)
1e51764a
AB
2403{
2404 int found, n, err = 0;
2405 struct ubifs_znode *znode;
2406
2407 mutex_lock(&c->tnc_mutex);
35ee314c 2408 dbg_tnck(key, "LEB %d:%d, key ", lnum, offs);
1e51764a
AB
2409 found = lookup_level0_dirty(c, key, &znode, &n);
2410 if (found < 0) {
2411 err = found;
2412 goto out_unlock;
2413 }
2414
2415 if (found == 1) {
2416 if (c->replaying)
2417 found = fallible_resolve_collision(c, key, &znode, &n,
2418 nm, 1);
2419 else
2420 found = resolve_collision(c, key, &znode, &n, nm);
2421 dbg_tnc("rc returned %d, znode %p, n %d", found, znode, n);
2422 if (found < 0) {
2423 err = found;
2424 goto out_unlock;
2425 }
2426
2427 /* Ensure the znode is dirtied */
2428 if (znode->cnext || !ubifs_zn_dirty(znode)) {
f92b9826
AB
2429 znode = dirty_cow_bottom_up(c, znode);
2430 if (IS_ERR(znode)) {
2431 err = PTR_ERR(znode);
2432 goto out_unlock;
2433 }
1e51764a
AB
2434 }
2435
2436 if (found == 1) {
2437 struct ubifs_zbranch *zbr = &znode->zbranch[n];
2438
2439 lnc_free(zbr);
2440 err = ubifs_add_dirt(c, zbr->lnum, zbr->len);
2441 zbr->lnum = lnum;
2442 zbr->offs = offs;
2443 zbr->len = len;
2444 goto out_unlock;
2445 }
2446 }
2447
2448 if (!found) {
2449 struct ubifs_zbranch zbr;
2450
2451 zbr.znode = NULL;
2452 zbr.lnum = lnum;
2453 zbr.offs = offs;
2454 zbr.len = len;
2455 key_copy(c, key, &zbr.key);
2456 err = tnc_insert(c, znode, &zbr, n + 1);
2457 if (err)
2458 goto out_unlock;
2459 if (c->replaying) {
2460 /*
2461 * We did not find it in the index so there may be a
2462 * dangling branch still in the index. So we remove it
2463 * by passing 'ubifs_tnc_remove_nm()' the same key but
2464 * an unmatchable name.
2465 */
f4f61d2c 2466 struct fscrypt_name noname = { .disk_name = { .name = "", .len = 1 } };
1e51764a
AB
2467
2468 err = dbg_check_tnc(c, 0);
2469 mutex_unlock(&c->tnc_mutex);
2470 if (err)
2471 return err;
2472 return ubifs_tnc_remove_nm(c, key, &noname);
2473 }
2474 }
2475
2476out_unlock:
2477 if (!err)
2478 err = dbg_check_tnc(c, 0);
2479 mutex_unlock(&c->tnc_mutex);
2480 return err;
2481}
2482
2483/**
2484 * tnc_delete - delete a znode form TNC.
2485 * @c: UBIFS file-system description object
2486 * @znode: znode to delete from
2487 * @n: zbranch slot number to delete
2488 *
2489 * This function deletes a leaf node from @n-th slot of @znode. Returns zero in
2490 * case of success and a negative error code in case of failure.
2491 */
2492static int tnc_delete(struct ubifs_info *c, struct ubifs_znode *znode, int n)
2493{
2494 struct ubifs_zbranch *zbr;
2495 struct ubifs_znode *zp;
2496 int i, err;
2497
2498 /* Delete without merge for now */
6eb61d58
RW
2499 ubifs_assert(c, znode->level == 0);
2500 ubifs_assert(c, n >= 0 && n < c->fanout);
515315a1 2501 dbg_tnck(&znode->zbranch[n].key, "deleting key ");
1e51764a
AB
2502
2503 zbr = &znode->zbranch[n];
2504 lnc_free(zbr);
2505
2506 err = ubifs_add_dirt(c, zbr->lnum, zbr->len);
2507 if (err) {
edf6be24 2508 ubifs_dump_znode(c, znode);
1e51764a
AB
2509 return err;
2510 }
2511
2512 /* We do not "gap" zbranch slots */
2513 for (i = n; i < znode->child_cnt - 1; i++)
2514 znode->zbranch[i] = znode->zbranch[i + 1];
2515 znode->child_cnt -= 1;
2516
2517 if (znode->child_cnt > 0)
2518 return 0;
2519
2520 /*
2521 * This was the last zbranch, we have to delete this znode from the
2522 * parent.
2523 */
2524
2525 do {
6eb61d58
RW
2526 ubifs_assert(c, !ubifs_zn_obsolete(znode));
2527 ubifs_assert(c, ubifs_zn_dirty(znode));
1e51764a
AB
2528
2529 zp = znode->parent;
2530 n = znode->iip;
2531
2532 atomic_long_dec(&c->dirty_zn_cnt);
2533
2534 err = insert_old_idx_znode(c, znode);
2535 if (err)
2536 return err;
2537
2538 if (znode->cnext) {
2539 __set_bit(OBSOLETE_ZNODE, &znode->flags);
2540 atomic_long_inc(&c->clean_zn_cnt);
2541 atomic_long_inc(&ubifs_clean_zn_cnt);
2542 } else
2543 kfree(znode);
2544 znode = zp;
2545 } while (znode->child_cnt == 1); /* while removing last child */
2546
2547 /* Remove from znode, entry n - 1 */
2548 znode->child_cnt -= 1;
6eb61d58 2549 ubifs_assert(c, znode->level != 0);
1e51764a
AB
2550 for (i = n; i < znode->child_cnt; i++) {
2551 znode->zbranch[i] = znode->zbranch[i + 1];
2552 if (znode->zbranch[i].znode)
2553 znode->zbranch[i].znode->iip = i;
2554 }
2555
2556 /*
2557 * If this is the root and it has only 1 child then
2558 * collapse the tree.
2559 */
2560 if (!znode->parent) {
2561 while (znode->child_cnt == 1 && znode->level != 0) {
2562 zp = znode;
2563 zbr = &znode->zbranch[0];
2564 znode = get_znode(c, znode, 0);
2565 if (IS_ERR(znode))
2566 return PTR_ERR(znode);
2567 znode = dirty_cow_znode(c, zbr);
2568 if (IS_ERR(znode))
2569 return PTR_ERR(znode);
2570 znode->parent = NULL;
2571 znode->iip = 0;
2572 if (c->zroot.len) {
2573 err = insert_old_idx(c, c->zroot.lnum,
2574 c->zroot.offs);
2575 if (err)
2576 return err;
2577 }
2578 c->zroot.lnum = zbr->lnum;
2579 c->zroot.offs = zbr->offs;
2580 c->zroot.len = zbr->len;
2581 c->zroot.znode = znode;
6eb61d58
RW
2582 ubifs_assert(c, !ubifs_zn_obsolete(zp));
2583 ubifs_assert(c, ubifs_zn_dirty(zp));
1e51764a
AB
2584 atomic_long_dec(&c->dirty_zn_cnt);
2585
2586 if (zp->cnext) {
2587 __set_bit(OBSOLETE_ZNODE, &zp->flags);
2588 atomic_long_inc(&c->clean_zn_cnt);
2589 atomic_long_inc(&ubifs_clean_zn_cnt);
2590 } else
2591 kfree(zp);
2592 }
2593 }
2594
2595 return 0;
2596}
2597
2598/**
2599 * ubifs_tnc_remove - remove an index entry of a node.
2600 * @c: UBIFS file-system description object
2601 * @key: key of node
2602 *
2603 * Returns %0 on success or negative error code on failure.
2604 */
2605int ubifs_tnc_remove(struct ubifs_info *c, const union ubifs_key *key)
2606{
2607 int found, n, err = 0;
2608 struct ubifs_znode *znode;
2609
2610 mutex_lock(&c->tnc_mutex);
515315a1 2611 dbg_tnck(key, "key ");
1e51764a
AB
2612 found = lookup_level0_dirty(c, key, &znode, &n);
2613 if (found < 0) {
2614 err = found;
2615 goto out_unlock;
2616 }
2617 if (found == 1)
2618 err = tnc_delete(c, znode, n);
2619 if (!err)
2620 err = dbg_check_tnc(c, 0);
2621
2622out_unlock:
2623 mutex_unlock(&c->tnc_mutex);
2624 return err;
2625}
2626
2627/**
2628 * ubifs_tnc_remove_nm - remove an index entry for a "hashed" node.
2629 * @c: UBIFS file-system description object
2630 * @key: key of node
2631 * @nm: directory entry name
2632 *
2633 * Returns %0 on success or negative error code on failure.
2634 */
2635int ubifs_tnc_remove_nm(struct ubifs_info *c, const union ubifs_key *key,
f4f61d2c 2636 const struct fscrypt_name *nm)
1e51764a
AB
2637{
2638 int n, err;
2639 struct ubifs_znode *znode;
2640
2641 mutex_lock(&c->tnc_mutex);
35ee314c 2642 dbg_tnck(key, "key ");
1e51764a
AB
2643 err = lookup_level0_dirty(c, key, &znode, &n);
2644 if (err < 0)
2645 goto out_unlock;
2646
2647 if (err) {
2648 if (c->replaying)
2649 err = fallible_resolve_collision(c, key, &znode, &n,
2650 nm, 0);
2651 else
2652 err = resolve_collision(c, key, &znode, &n, nm);
2653 dbg_tnc("rc returned %d, znode %p, n %d", err, znode, n);
2654 if (err < 0)
2655 goto out_unlock;
2656 if (err) {
2657 /* Ensure the znode is dirtied */
2658 if (znode->cnext || !ubifs_zn_dirty(znode)) {
c4361570
AB
2659 znode = dirty_cow_bottom_up(c, znode);
2660 if (IS_ERR(znode)) {
2661 err = PTR_ERR(znode);
2662 goto out_unlock;
2663 }
1e51764a
AB
2664 }
2665 err = tnc_delete(c, znode, n);
2666 }
2667 }
2668
2669out_unlock:
2670 if (!err)
2671 err = dbg_check_tnc(c, 0);
2672 mutex_unlock(&c->tnc_mutex);
2673 return err;
2674}
2675
781f675e
RW
2676/**
2677 * ubifs_tnc_remove_dh - remove an index entry for a "double hashed" node.
2678 * @c: UBIFS file-system description object
2679 * @key: key of node
2680 * @cookie: node cookie for collision resolution
2681 *
2682 * Returns %0 on success or negative error code on failure.
2683 */
2684int ubifs_tnc_remove_dh(struct ubifs_info *c, const union ubifs_key *key,
2685 uint32_t cookie)
2686{
2687 int n, err;
2688 struct ubifs_znode *znode;
2689 struct ubifs_dent_node *dent;
2690 struct ubifs_zbranch *zbr;
2691
2692 if (!c->double_hash)
2693 return -EOPNOTSUPP;
2694
2695 mutex_lock(&c->tnc_mutex);
2696 err = lookup_level0_dirty(c, key, &znode, &n);
2697 if (err <= 0)
2698 goto out_unlock;
2699
2700 zbr = &znode->zbranch[n];
2701 dent = kmalloc(UBIFS_MAX_DENT_NODE_SZ, GFP_NOFS);
2702 if (!dent) {
2703 err = -ENOMEM;
2704 goto out_unlock;
2705 }
2706
2707 err = tnc_read_hashed_node(c, zbr, dent);
2708 if (err)
2709 goto out_free;
2710
2711 /* If the cookie does not match, we're facing a hash collision. */
2712 if (le32_to_cpu(dent->cookie) != cookie) {
2713 union ubifs_key start_key;
2714
2715 lowest_dent_key(c, &start_key, key_inum(c, key));
2716
2717 err = ubifs_lookup_level0(c, &start_key, &znode, &n);
2718 if (unlikely(err < 0))
2719 goto out_free;
2720
2721 err = search_dh_cookie(c, key, dent, cookie, &znode, &n);
2722 if (err)
2723 goto out_free;
2724 }
2725
2726 if (znode->cnext || !ubifs_zn_dirty(znode)) {
2727 znode = dirty_cow_bottom_up(c, znode);
2728 if (IS_ERR(znode)) {
2729 err = PTR_ERR(znode);
2730 goto out_free;
2731 }
2732 }
2733 err = tnc_delete(c, znode, n);
2734
2735out_free:
2736 kfree(dent);
2737out_unlock:
2738 if (!err)
2739 err = dbg_check_tnc(c, 0);
2740 mutex_unlock(&c->tnc_mutex);
2741 return err;
2742}
2743
1e51764a
AB
2744/**
2745 * key_in_range - determine if a key falls within a range of keys.
2746 * @c: UBIFS file-system description object
2747 * @key: key to check
2748 * @from_key: lowest key in range
2749 * @to_key: highest key in range
2750 *
2751 * This function returns %1 if the key is in range and %0 otherwise.
2752 */
2753static int key_in_range(struct ubifs_info *c, union ubifs_key *key,
2754 union ubifs_key *from_key, union ubifs_key *to_key)
2755{
2756 if (keys_cmp(c, key, from_key) < 0)
2757 return 0;
2758 if (keys_cmp(c, key, to_key) > 0)
2759 return 0;
2760 return 1;
2761}
2762
2763/**
2764 * ubifs_tnc_remove_range - remove index entries in range.
2765 * @c: UBIFS file-system description object
2766 * @from_key: lowest key to remove
2767 * @to_key: highest key to remove
2768 *
2769 * This function removes index entries starting at @from_key and ending at
2770 * @to_key. This function returns zero in case of success and a negative error
2771 * code in case of failure.
2772 */
2773int ubifs_tnc_remove_range(struct ubifs_info *c, union ubifs_key *from_key,
2774 union ubifs_key *to_key)
2775{
2776 int i, n, k, err = 0;
2777 struct ubifs_znode *znode;
2778 union ubifs_key *key;
2779
2780 mutex_lock(&c->tnc_mutex);
2781 while (1) {
2782 /* Find first level 0 znode that contains keys to remove */
2783 err = ubifs_lookup_level0(c, from_key, &znode, &n);
2784 if (err < 0)
2785 goto out_unlock;
2786
2787 if (err)
2788 key = from_key;
2789 else {
2790 err = tnc_next(c, &znode, &n);
2791 if (err == -ENOENT) {
2792 err = 0;
2793 goto out_unlock;
2794 }
2795 if (err < 0)
2796 goto out_unlock;
2797 key = &znode->zbranch[n].key;
2798 if (!key_in_range(c, key, from_key, to_key)) {
2799 err = 0;
2800 goto out_unlock;
2801 }
2802 }
2803
2804 /* Ensure the znode is dirtied */
2805 if (znode->cnext || !ubifs_zn_dirty(znode)) {
f92b9826
AB
2806 znode = dirty_cow_bottom_up(c, znode);
2807 if (IS_ERR(znode)) {
2808 err = PTR_ERR(znode);
2809 goto out_unlock;
2810 }
1e51764a
AB
2811 }
2812
2813 /* Remove all keys in range except the first */
2814 for (i = n + 1, k = 0; i < znode->child_cnt; i++, k++) {
2815 key = &znode->zbranch[i].key;
2816 if (!key_in_range(c, key, from_key, to_key))
2817 break;
2818 lnc_free(&znode->zbranch[i]);
2819 err = ubifs_add_dirt(c, znode->zbranch[i].lnum,
2820 znode->zbranch[i].len);
2821 if (err) {
edf6be24 2822 ubifs_dump_znode(c, znode);
1e51764a
AB
2823 goto out_unlock;
2824 }
515315a1 2825 dbg_tnck(key, "removing key ");
1e51764a
AB
2826 }
2827 if (k) {
2828 for (i = n + 1 + k; i < znode->child_cnt; i++)
2829 znode->zbranch[i - k] = znode->zbranch[i];
2830 znode->child_cnt -= k;
2831 }
2832
2833 /* Now delete the first */
2834 err = tnc_delete(c, znode, n);
2835 if (err)
2836 goto out_unlock;
2837 }
2838
2839out_unlock:
2840 if (!err)
2841 err = dbg_check_tnc(c, 0);
2842 mutex_unlock(&c->tnc_mutex);
2843 return err;
2844}
2845
2846/**
2847 * ubifs_tnc_remove_ino - remove an inode from TNC.
2848 * @c: UBIFS file-system description object
2849 * @inum: inode number to remove
2850 *
2851 * This function remove inode @inum and all the extended attributes associated
2852 * with the anode from TNC and returns zero in case of success or a negative
2853 * error code in case of failure.
2854 */
2855int ubifs_tnc_remove_ino(struct ubifs_info *c, ino_t inum)
2856{
2857 union ubifs_key key1, key2;
2858 struct ubifs_dent_node *xent, *pxent = NULL;
f4f61d2c 2859 struct fscrypt_name nm = {0};
1e51764a 2860
e84461ad 2861 dbg_tnc("ino %lu", (unsigned long)inum);
1e51764a
AB
2862
2863 /*
2864 * Walk all extended attribute entries and remove them together with
2865 * corresponding extended attribute inodes.
2866 */
2867 lowest_xent_key(c, &key1, inum);
2868 while (1) {
2869 ino_t xattr_inum;
2870 int err;
2871
2872 xent = ubifs_tnc_next_ent(c, &key1, &nm);
2873 if (IS_ERR(xent)) {
2874 err = PTR_ERR(xent);
2875 if (err == -ENOENT)
2876 break;
2877 return err;
2878 }
2879
2880 xattr_inum = le64_to_cpu(xent->inum);
e84461ad
AB
2881 dbg_tnc("xent '%s', ino %lu", xent->name,
2882 (unsigned long)xattr_inum);
1e51764a 2883
272eda82
RW
2884 ubifs_evict_xattr_inode(c, xattr_inum);
2885
f4f61d2c
RW
2886 fname_name(&nm) = xent->name;
2887 fname_len(&nm) = le16_to_cpu(xent->nlen);
1e51764a
AB
2888 err = ubifs_tnc_remove_nm(c, &key1, &nm);
2889 if (err) {
2890 kfree(xent);
2891 return err;
2892 }
2893
2894 lowest_ino_key(c, &key1, xattr_inum);
2895 highest_ino_key(c, &key2, xattr_inum);
2896 err = ubifs_tnc_remove_range(c, &key1, &key2);
2897 if (err) {
2898 kfree(xent);
2899 return err;
2900 }
2901
2902 kfree(pxent);
2903 pxent = xent;
2904 key_read(c, &xent->key, &key1);
2905 }
2906
2907 kfree(pxent);
2908 lowest_ino_key(c, &key1, inum);
2909 highest_ino_key(c, &key2, inum);
2910
2911 return ubifs_tnc_remove_range(c, &key1, &key2);
2912}
2913
2914/**
2915 * ubifs_tnc_next_ent - walk directory or extended attribute entries.
2916 * @c: UBIFS file-system description object
2917 * @key: key of last entry
2918 * @nm: name of last entry found or %NULL
2919 *
2920 * This function finds and reads the next directory or extended attribute entry
2921 * after the given key (@key) if there is one. @nm is used to resolve
2922 * collisions.
2923 *
2924 * If the name of the current entry is not known and only the key is known,
2925 * @nm->name has to be %NULL. In this case the semantics of this function is a
2926 * little bit different and it returns the entry corresponding to this key, not
2927 * the next one. If the key was not found, the closest "right" entry is
2928 * returned.
2929 *
2930 * If the fist entry has to be found, @key has to contain the lowest possible
2931 * key value for this inode and @name has to be %NULL.
2932 *
2933 * This function returns the found directory or extended attribute entry node
2934 * in case of success, %-ENOENT is returned if no entry was found, and a
2935 * negative error code is returned in case of failure.
2936 */
2937struct ubifs_dent_node *ubifs_tnc_next_ent(struct ubifs_info *c,
2938 union ubifs_key *key,
f4f61d2c 2939 const struct fscrypt_name *nm)
1e51764a
AB
2940{
2941 int n, err, type = key_type(c, key);
2942 struct ubifs_znode *znode;
2943 struct ubifs_dent_node *dent;
2944 struct ubifs_zbranch *zbr;
2945 union ubifs_key *dkey;
2946
35ee314c 2947 dbg_tnck(key, "key ");
6eb61d58 2948 ubifs_assert(c, is_hash_key(c, key));
1e51764a
AB
2949
2950 mutex_lock(&c->tnc_mutex);
2951 err = ubifs_lookup_level0(c, key, &znode, &n);
2952 if (unlikely(err < 0))
2953 goto out_unlock;
2954
f4f61d2c 2955 if (fname_len(nm) > 0) {
1e51764a
AB
2956 if (err) {
2957 /* Handle collisions */
1cb51a15
RW
2958 if (c->replaying)
2959 err = fallible_resolve_collision(c, key, &znode, &n,
2960 nm, 0);
2961 else
2962 err = resolve_collision(c, key, &znode, &n, nm);
1e51764a
AB
2963 dbg_tnc("rc returned %d, znode %p, n %d",
2964 err, znode, n);
2965 if (unlikely(err < 0))
2966 goto out_unlock;
2967 }
2968
2969 /* Now find next entry */
2970 err = tnc_next(c, &znode, &n);
2971 if (unlikely(err))
2972 goto out_unlock;
2973 } else {
2974 /*
2975 * The full name of the entry was not given, in which case the
2976 * behavior of this function is a little different and it
2977 * returns current entry, not the next one.
2978 */
2979 if (!err) {
2980 /*
2981 * However, the given key does not exist in the TNC
2982 * tree and @znode/@n variables contain the closest
2983 * "preceding" element. Switch to the next one.
2984 */
2985 err = tnc_next(c, &znode, &n);
2986 if (err)
2987 goto out_unlock;
2988 }
2989 }
2990
2991 zbr = &znode->zbranch[n];
2992 dent = kmalloc(zbr->len, GFP_NOFS);
2993 if (unlikely(!dent)) {
2994 err = -ENOMEM;
2995 goto out_unlock;
2996 }
2997
2998 /*
2999 * The above 'tnc_next()' call could lead us to the next inode, check
3000 * this.
3001 */
3002 dkey = &zbr->key;
3003 if (key_inum(c, dkey) != key_inum(c, key) ||
3004 key_type(c, dkey) != type) {
3005 err = -ENOENT;
3006 goto out_free;
3007 }
3008
b91dc981 3009 err = tnc_read_hashed_node(c, zbr, dent);
1e51764a
AB
3010 if (unlikely(err))
3011 goto out_free;
3012
3013 mutex_unlock(&c->tnc_mutex);
3014 return dent;
3015
3016out_free:
3017 kfree(dent);
3018out_unlock:
3019 mutex_unlock(&c->tnc_mutex);
3020 return ERR_PTR(err);
3021}
3022
3023/**
3024 * tnc_destroy_cnext - destroy left-over obsolete znodes from a failed commit.
3025 * @c: UBIFS file-system description object
3026 *
3027 * Destroy left-over obsolete znodes from a failed commit.
3028 */
3029static void tnc_destroy_cnext(struct ubifs_info *c)
3030{
3031 struct ubifs_znode *cnext;
3032
3033 if (!c->cnext)
3034 return;
6eb61d58 3035 ubifs_assert(c, c->cmt_state == COMMIT_BROKEN);
1e51764a
AB
3036 cnext = c->cnext;
3037 do {
3038 struct ubifs_znode *znode = cnext;
3039
3040 cnext = cnext->cnext;
f42eed7c 3041 if (ubifs_zn_obsolete(znode))
1e51764a
AB
3042 kfree(znode);
3043 } while (cnext && cnext != c->cnext);
3044}
3045
3046/**
3047 * ubifs_tnc_close - close TNC subsystem and free all related resources.
3048 * @c: UBIFS file-system description object
3049 */
3050void ubifs_tnc_close(struct ubifs_info *c)
3051{
1e51764a
AB
3052 tnc_destroy_cnext(c);
3053 if (c->zroot.znode) {
380347e9 3054 long n, freed;
83707237 3055
83707237 3056 n = atomic_long_read(&c->clean_zn_cnt);
6eb61d58
RW
3057 freed = ubifs_destroy_tnc_subtree(c, c->zroot.znode);
3058 ubifs_assert(c, freed == n);
83707237 3059 atomic_long_sub(n, &ubifs_clean_zn_cnt);
1e51764a
AB
3060 }
3061 kfree(c->gap_lebs);
3062 kfree(c->ilebs);
3063 destroy_old_idx(c);
3064}
3065
3066/**
3067 * left_znode - get the znode to the left.
3068 * @c: UBIFS file-system description object
3069 * @znode: znode
3070 *
3071 * This function returns a pointer to the znode to the left of @znode or NULL if
3072 * there is not one. A negative error code is returned on failure.
3073 */
3074static struct ubifs_znode *left_znode(struct ubifs_info *c,
3075 struct ubifs_znode *znode)
3076{
3077 int level = znode->level;
3078
3079 while (1) {
3080 int n = znode->iip - 1;
3081
3082 /* Go up until we can go left */
3083 znode = znode->parent;
3084 if (!znode)
3085 return NULL;
3086 if (n >= 0) {
3087 /* Now go down the rightmost branch to 'level' */
3088 znode = get_znode(c, znode, n);
3089 if (IS_ERR(znode))
3090 return znode;
3091 while (znode->level != level) {
3092 n = znode->child_cnt - 1;
3093 znode = get_znode(c, znode, n);
3094 if (IS_ERR(znode))
3095 return znode;
3096 }
3097 break;
3098 }
3099 }
3100 return znode;
3101}
3102
3103/**
3104 * right_znode - get the znode to the right.
3105 * @c: UBIFS file-system description object
3106 * @znode: znode
3107 *
3108 * This function returns a pointer to the znode to the right of @znode or NULL
3109 * if there is not one. A negative error code is returned on failure.
3110 */
3111static struct ubifs_znode *right_znode(struct ubifs_info *c,
3112 struct ubifs_znode *znode)
3113{
3114 int level = znode->level;
3115
3116 while (1) {
3117 int n = znode->iip + 1;
3118
3119 /* Go up until we can go right */
3120 znode = znode->parent;
3121 if (!znode)
3122 return NULL;
3123 if (n < znode->child_cnt) {
3124 /* Now go down the leftmost branch to 'level' */
3125 znode = get_znode(c, znode, n);
3126 if (IS_ERR(znode))
3127 return znode;
3128 while (znode->level != level) {
3129 znode = get_znode(c, znode, 0);
3130 if (IS_ERR(znode))
3131 return znode;
3132 }
3133 break;
3134 }
3135 }
3136 return znode;
3137}
3138
3139/**
3140 * lookup_znode - find a particular indexing node from TNC.
3141 * @c: UBIFS file-system description object
3142 * @key: index node key to lookup
3143 * @level: index node level
3144 * @lnum: index node LEB number
3145 * @offs: index node offset
3146 *
3147 * This function searches an indexing node by its first key @key and its
3148 * address @lnum:@offs. It looks up the indexing tree by pulling all indexing
ba2f48f7 3149 * nodes it traverses to TNC. This function is called for indexing nodes which
1e51764a
AB
3150 * were found on the media by scanning, for example when garbage-collecting or
3151 * when doing in-the-gaps commit. This means that the indexing node which is
3152 * looked for does not have to have exactly the same leftmost key @key, because
3153 * the leftmost key may have been changed, in which case TNC will contain a
3154 * dirty znode which still refers the same @lnum:@offs. This function is clever
3155 * enough to recognize such indexing nodes.
3156 *
3157 * Note, if a znode was deleted or changed too much, then this function will
3158 * not find it. For situations like this UBIFS has the old index RB-tree
3159 * (indexed by @lnum:@offs).
3160 *
3161 * This function returns a pointer to the znode found or %NULL if it is not
3162 * found. A negative error code is returned on failure.
3163 */
3164static struct ubifs_znode *lookup_znode(struct ubifs_info *c,
3165 union ubifs_key *key, int level,
3166 int lnum, int offs)
3167{
3168 struct ubifs_znode *znode, *zn;
3169 int n, nn;
3170
6eb61d58 3171 ubifs_assert(c, key_type(c, key) < UBIFS_INVALID_KEY);
ba2f48f7 3172
1e51764a
AB
3173 /*
3174 * The arguments have probably been read off flash, so don't assume
3175 * they are valid.
3176 */
3177 if (level < 0)
3178 return ERR_PTR(-EINVAL);
3179
3180 /* Get the root znode */
3181 znode = c->zroot.znode;
3182 if (!znode) {
3183 znode = ubifs_load_znode(c, &c->zroot, NULL, 0);
3184 if (IS_ERR(znode))
3185 return znode;
3186 }
3187 /* Check if it is the one we are looking for */
3188 if (c->zroot.lnum == lnum && c->zroot.offs == offs)
3189 return znode;
3190 /* Descend to the parent level i.e. (level + 1) */
3191 if (level >= znode->level)
3192 return NULL;
3193 while (1) {
3194 ubifs_search_zbranch(c, znode, key, &n);
3195 if (n < 0) {
3196 /*
3197 * We reached a znode where the leftmost key is greater
3198 * than the key we are searching for. This is the same
3199 * situation as the one described in a huge comment at
3200 * the end of the 'ubifs_lookup_level0()' function. And
3201 * for exactly the same reasons we have to try to look
3202 * left before giving up.
3203 */
3204 znode = left_znode(c, znode);
3205 if (!znode)
3206 return NULL;
3207 if (IS_ERR(znode))
3208 return znode;
3209 ubifs_search_zbranch(c, znode, key, &n);
6eb61d58 3210 ubifs_assert(c, n >= 0);
1e51764a
AB
3211 }
3212 if (znode->level == level + 1)
3213 break;
3214 znode = get_znode(c, znode, n);
3215 if (IS_ERR(znode))
3216 return znode;
3217 }
3218 /* Check if the child is the one we are looking for */
3219 if (znode->zbranch[n].lnum == lnum && znode->zbranch[n].offs == offs)
3220 return get_znode(c, znode, n);
3221 /* If the key is unique, there is nowhere else to look */
3222 if (!is_hash_key(c, key))
3223 return NULL;
3224 /*
3225 * The key is not unique and so may be also in the znodes to either
3226 * side.
3227 */
3228 zn = znode;
3229 nn = n;
3230 /* Look left */
3231 while (1) {
3232 /* Move one branch to the left */
3233 if (n)
3234 n -= 1;
3235 else {
3236 znode = left_znode(c, znode);
3237 if (!znode)
3238 break;
3239 if (IS_ERR(znode))
3240 return znode;
3241 n = znode->child_cnt - 1;
3242 }
3243 /* Check it */
3244 if (znode->zbranch[n].lnum == lnum &&
3245 znode->zbranch[n].offs == offs)
3246 return get_znode(c, znode, n);
3247 /* Stop if the key is less than the one we are looking for */
3248 if (keys_cmp(c, &znode->zbranch[n].key, key) < 0)
3249 break;
3250 }
3251 /* Back to the middle */
3252 znode = zn;
3253 n = nn;
3254 /* Look right */
3255 while (1) {
3256 /* Move one branch to the right */
3257 if (++n >= znode->child_cnt) {
3258 znode = right_znode(c, znode);
3259 if (!znode)
3260 break;
3261 if (IS_ERR(znode))
3262 return znode;
3263 n = 0;
3264 }
3265 /* Check it */
3266 if (znode->zbranch[n].lnum == lnum &&
3267 znode->zbranch[n].offs == offs)
3268 return get_znode(c, znode, n);
3269 /* Stop if the key is greater than the one we are looking for */
3270 if (keys_cmp(c, &znode->zbranch[n].key, key) > 0)
3271 break;
3272 }
3273 return NULL;
3274}
3275
3276/**
3277 * is_idx_node_in_tnc - determine if an index node is in the TNC.
3278 * @c: UBIFS file-system description object
3279 * @key: key of index node
3280 * @level: index node level
3281 * @lnum: LEB number of index node
3282 * @offs: offset of index node
3283 *
3284 * This function returns %0 if the index node is not referred to in the TNC, %1
3285 * if the index node is referred to in the TNC and the corresponding znode is
3286 * dirty, %2 if an index node is referred to in the TNC and the corresponding
3287 * znode is clean, and a negative error code in case of failure.
3288 *
3289 * Note, the @key argument has to be the key of the first child. Also note,
3290 * this function relies on the fact that 0:0 is never a valid LEB number and
3291 * offset for a main-area node.
3292 */
3293int is_idx_node_in_tnc(struct ubifs_info *c, union ubifs_key *key, int level,
3294 int lnum, int offs)
3295{
3296 struct ubifs_znode *znode;
3297
3298 znode = lookup_znode(c, key, level, lnum, offs);
3299 if (!znode)
3300 return 0;
3301 if (IS_ERR(znode))
3302 return PTR_ERR(znode);
3303
3304 return ubifs_zn_dirty(znode) ? 1 : 2;
3305}
3306
3307/**
3308 * is_leaf_node_in_tnc - determine if a non-indexing not is in the TNC.
3309 * @c: UBIFS file-system description object
3310 * @key: node key
3311 * @lnum: node LEB number
3312 * @offs: node offset
3313 *
3314 * This function returns %1 if the node is referred to in the TNC, %0 if it is
3315 * not, and a negative error code in case of failure.
3316 *
3317 * Note, this function relies on the fact that 0:0 is never a valid LEB number
3318 * and offset for a main-area node.
3319 */
3320static int is_leaf_node_in_tnc(struct ubifs_info *c, union ubifs_key *key,
3321 int lnum, int offs)
3322{
3323 struct ubifs_zbranch *zbr;
3324 struct ubifs_znode *znode, *zn;
3325 int n, found, err, nn;
3326 const int unique = !is_hash_key(c, key);
3327
3328 found = ubifs_lookup_level0(c, key, &znode, &n);
3329 if (found < 0)
3330 return found; /* Error code */
3331 if (!found)
3332 return 0;
3333 zbr = &znode->zbranch[n];
3334 if (lnum == zbr->lnum && offs == zbr->offs)
3335 return 1; /* Found it */
3336 if (unique)
3337 return 0;
3338 /*
3339 * Because the key is not unique, we have to look left
3340 * and right as well
3341 */
3342 zn = znode;
3343 nn = n;
3344 /* Look left */
3345 while (1) {
3346 err = tnc_prev(c, &znode, &n);
3347 if (err == -ENOENT)
3348 break;
3349 if (err)
3350 return err;
3351 if (keys_cmp(c, key, &znode->zbranch[n].key))
3352 break;
3353 zbr = &znode->zbranch[n];
3354 if (lnum == zbr->lnum && offs == zbr->offs)
3355 return 1; /* Found it */
3356 }
3357 /* Look right */
3358 znode = zn;
3359 n = nn;
3360 while (1) {
3361 err = tnc_next(c, &znode, &n);
3362 if (err) {
3363 if (err == -ENOENT)
3364 return 0;
3365 return err;
3366 }
3367 if (keys_cmp(c, key, &znode->zbranch[n].key))
3368 break;
3369 zbr = &znode->zbranch[n];
3370 if (lnum == zbr->lnum && offs == zbr->offs)
3371 return 1; /* Found it */
3372 }
3373 return 0;
3374}
3375
3376/**
3377 * ubifs_tnc_has_node - determine whether a node is in the TNC.
3378 * @c: UBIFS file-system description object
3379 * @key: node key
3380 * @level: index node level (if it is an index node)
3381 * @lnum: node LEB number
3382 * @offs: node offset
3383 * @is_idx: non-zero if the node is an index node
3384 *
3385 * This function returns %1 if the node is in the TNC, %0 if it is not, and a
3386 * negative error code in case of failure. For index nodes, @key has to be the
3387 * key of the first child. An index node is considered to be in the TNC only if
3388 * the corresponding znode is clean or has not been loaded.
3389 */
3390int ubifs_tnc_has_node(struct ubifs_info *c, union ubifs_key *key, int level,
3391 int lnum, int offs, int is_idx)
3392{
3393 int err;
3394
3395 mutex_lock(&c->tnc_mutex);
3396 if (is_idx) {
3397 err = is_idx_node_in_tnc(c, key, level, lnum, offs);
3398 if (err < 0)
3399 goto out_unlock;
3400 if (err == 1)
3401 /* The index node was found but it was dirty */
3402 err = 0;
3403 else if (err == 2)
3404 /* The index node was found and it was clean */
3405 err = 1;
3406 else
3407 BUG_ON(err != 0);
3408 } else
3409 err = is_leaf_node_in_tnc(c, key, lnum, offs);
3410
3411out_unlock:
3412 mutex_unlock(&c->tnc_mutex);
3413 return err;
3414}
3415
3416/**
3417 * ubifs_dirty_idx_node - dirty an index node.
3418 * @c: UBIFS file-system description object
3419 * @key: index node key
3420 * @level: index node level
3421 * @lnum: index node LEB number
3422 * @offs: index node offset
3423 *
3424 * This function loads and dirties an index node so that it can be garbage
3425 * collected. The @key argument has to be the key of the first child. This
3426 * function relies on the fact that 0:0 is never a valid LEB number and offset
3427 * for a main-area node. Returns %0 on success and a negative error code on
3428 * failure.
3429 */
3430int ubifs_dirty_idx_node(struct ubifs_info *c, union ubifs_key *key, int level,
3431 int lnum, int offs)
3432{
3433 struct ubifs_znode *znode;
3434 int err = 0;
3435
3436 mutex_lock(&c->tnc_mutex);
3437 znode = lookup_znode(c, key, level, lnum, offs);
3438 if (!znode)
3439 goto out_unlock;
3440 if (IS_ERR(znode)) {
3441 err = PTR_ERR(znode);
3442 goto out_unlock;
3443 }
3444 znode = dirty_cow_bottom_up(c, znode);
3445 if (IS_ERR(znode)) {
3446 err = PTR_ERR(znode);
3447 goto out_unlock;
3448 }
3449
3450out_unlock:
3451 mutex_unlock(&c->tnc_mutex);
3452 return err;
3453}
e3c3efc2 3454
e3c3efc2
AB
3455/**
3456 * dbg_check_inode_size - check if inode size is correct.
3457 * @c: UBIFS file-system description object
3458 * @inum: inode number
3459 * @size: inode size
3460 *
3461 * This function makes sure that the inode size (@size) is correct and it does
3462 * not have any pages beyond @size. Returns zero if the inode is OK, %-EINVAL
3463 * if it has a data page beyond @size, and other negative error code in case of
3464 * other errors.
3465 */
3466int dbg_check_inode_size(struct ubifs_info *c, const struct inode *inode,
3467 loff_t size)
3468{
3469 int err, n;
3470 union ubifs_key from_key, to_key, *key;
3471 struct ubifs_znode *znode;
3472 unsigned int block;
3473
3474 if (!S_ISREG(inode->i_mode))
3475 return 0;
2b1844a8 3476 if (!dbg_is_chk_gen(c))
e3c3efc2
AB
3477 return 0;
3478
3479 block = (size + UBIFS_BLOCK_SIZE - 1) >> UBIFS_BLOCK_SHIFT;
3480 data_key_init(c, &from_key, inode->i_ino, block);
3481 highest_data_key(c, &to_key, inode->i_ino);
3482
3483 mutex_lock(&c->tnc_mutex);
3484 err = ubifs_lookup_level0(c, &from_key, &znode, &n);
3485 if (err < 0)
3486 goto out_unlock;
3487
3488 if (err) {
e3c3efc2
AB
3489 key = &from_key;
3490 goto out_dump;
3491 }
3492
3493 err = tnc_next(c, &znode, &n);
3494 if (err == -ENOENT) {
3495 err = 0;
3496 goto out_unlock;
3497 }
3498 if (err < 0)
3499 goto out_unlock;
3500
6eb61d58 3501 ubifs_assert(c, err == 0);
e3c3efc2
AB
3502 key = &znode->zbranch[n].key;
3503 if (!key_in_range(c, key, &from_key, &to_key))
3504 goto out_unlock;
3505
3506out_dump:
3507 block = key_block(c, key);
235c362b 3508 ubifs_err(c, "inode %lu has size %lld, but there are data at offset %lld",
515315a1
AB
3509 (unsigned long)inode->i_ino, size,
3510 ((loff_t)block) << UBIFS_BLOCK_SHIFT);
4315fb40 3511 mutex_unlock(&c->tnc_mutex);
edf6be24 3512 ubifs_dump_inode(c, inode);
7c46d0ae 3513 dump_stack();
4315fb40 3514 return -EINVAL;
e3c3efc2
AB
3515
3516out_unlock:
3517 mutex_unlock(&c->tnc_mutex);
3518 return err;
3519}