]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - fs/ubifs/tnc.c
ubifs: remove redundant checks for encryption key
[mirror_ubuntu-artful-kernel.git] / fs / ubifs / tnc.c
CommitLineData
1e51764a
AB
1/*
2 * This file is part of UBIFS.
3 *
4 * Copyright (C) 2006-2008 Nokia Corporation.
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published by
8 * the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
15 * You should have received a copy of the GNU General Public License along with
16 * this program; if not, write to the Free Software Foundation, Inc., 51
17 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18 *
19 * Authors: Adrian Hunter
20 * Artem Bityutskiy (Битюцкий Артём)
21 */
22
23/*
24 * This file implements TNC (Tree Node Cache) which caches indexing nodes of
25 * the UBIFS B-tree.
26 *
27 * At the moment the locking rules of the TNC tree are quite simple and
28 * straightforward. We just have a mutex and lock it when we traverse the
29 * tree. If a znode is not in memory, we read it from flash while still having
30 * the mutex locked.
31 */
32
33#include <linux/crc32.h>
5a0e3ad6 34#include <linux/slab.h>
1e51764a
AB
35#include "ubifs.h"
36
37/*
38 * Returned codes of 'matches_name()' and 'fallible_matches_name()' functions.
39 * @NAME_LESS: name corresponding to the first argument is less than second
40 * @NAME_MATCHES: names match
41 * @NAME_GREATER: name corresponding to the second argument is greater than
42 * first
43 * @NOT_ON_MEDIA: node referred by zbranch does not exist on the media
44 *
45 * These constants were introduce to improve readability.
46 */
47enum {
48 NAME_LESS = 0,
49 NAME_MATCHES = 1,
50 NAME_GREATER = 2,
51 NOT_ON_MEDIA = 3,
52};
53
54/**
55 * insert_old_idx - record an index node obsoleted since the last commit start.
56 * @c: UBIFS file-system description object
57 * @lnum: LEB number of obsoleted index node
58 * @offs: offset of obsoleted index node
59 *
60 * Returns %0 on success, and a negative error code on failure.
61 *
62 * For recovery, there must always be a complete intact version of the index on
63 * flash at all times. That is called the "old index". It is the index as at the
64 * time of the last successful commit. Many of the index nodes in the old index
65 * may be dirty, but they must not be erased until the next successful commit
66 * (at which point that index becomes the old index).
67 *
68 * That means that the garbage collection and the in-the-gaps method of
69 * committing must be able to determine if an index node is in the old index.
70 * Most of the old index nodes can be found by looking up the TNC using the
71 * 'lookup_znode()' function. However, some of the old index nodes may have
72 * been deleted from the current index or may have been changed so much that
73 * they cannot be easily found. In those cases, an entry is added to an RB-tree.
74 * That is what this function does. The RB-tree is ordered by LEB number and
75 * offset because they uniquely identify the old index node.
76 */
77static int insert_old_idx(struct ubifs_info *c, int lnum, int offs)
78{
79 struct ubifs_old_idx *old_idx, *o;
80 struct rb_node **p, *parent = NULL;
81
82 old_idx = kmalloc(sizeof(struct ubifs_old_idx), GFP_NOFS);
83 if (unlikely(!old_idx))
84 return -ENOMEM;
85 old_idx->lnum = lnum;
86 old_idx->offs = offs;
87
88 p = &c->old_idx.rb_node;
89 while (*p) {
90 parent = *p;
91 o = rb_entry(parent, struct ubifs_old_idx, rb);
92 if (lnum < o->lnum)
93 p = &(*p)->rb_left;
94 else if (lnum > o->lnum)
95 p = &(*p)->rb_right;
96 else if (offs < o->offs)
97 p = &(*p)->rb_left;
98 else if (offs > o->offs)
99 p = &(*p)->rb_right;
100 else {
235c362b 101 ubifs_err(c, "old idx added twice!");
1e51764a
AB
102 kfree(old_idx);
103 return 0;
104 }
105 }
106 rb_link_node(&old_idx->rb, parent, p);
107 rb_insert_color(&old_idx->rb, &c->old_idx);
108 return 0;
109}
110
111/**
112 * insert_old_idx_znode - record a znode obsoleted since last commit start.
113 * @c: UBIFS file-system description object
114 * @znode: znode of obsoleted index node
115 *
116 * Returns %0 on success, and a negative error code on failure.
117 */
118int insert_old_idx_znode(struct ubifs_info *c, struct ubifs_znode *znode)
119{
120 if (znode->parent) {
121 struct ubifs_zbranch *zbr;
122
123 zbr = &znode->parent->zbranch[znode->iip];
124 if (zbr->len)
125 return insert_old_idx(c, zbr->lnum, zbr->offs);
126 } else
127 if (c->zroot.len)
128 return insert_old_idx(c, c->zroot.lnum,
129 c->zroot.offs);
130 return 0;
131}
132
133/**
134 * ins_clr_old_idx_znode - record a znode obsoleted since last commit start.
135 * @c: UBIFS file-system description object
136 * @znode: znode of obsoleted index node
137 *
138 * Returns %0 on success, and a negative error code on failure.
139 */
140static int ins_clr_old_idx_znode(struct ubifs_info *c,
141 struct ubifs_znode *znode)
142{
143 int err;
144
145 if (znode->parent) {
146 struct ubifs_zbranch *zbr;
147
148 zbr = &znode->parent->zbranch[znode->iip];
149 if (zbr->len) {
150 err = insert_old_idx(c, zbr->lnum, zbr->offs);
151 if (err)
152 return err;
153 zbr->lnum = 0;
154 zbr->offs = 0;
155 zbr->len = 0;
156 }
157 } else
158 if (c->zroot.len) {
159 err = insert_old_idx(c, c->zroot.lnum, c->zroot.offs);
160 if (err)
161 return err;
162 c->zroot.lnum = 0;
163 c->zroot.offs = 0;
164 c->zroot.len = 0;
165 }
166 return 0;
167}
168
169/**
170 * destroy_old_idx - destroy the old_idx RB-tree.
171 * @c: UBIFS file-system description object
172 *
173 * During start commit, the old_idx RB-tree is used to avoid overwriting index
174 * nodes that were in the index last commit but have since been deleted. This
175 * is necessary for recovery i.e. the old index must be kept intact until the
176 * new index is successfully written. The old-idx RB-tree is used for the
177 * in-the-gaps method of writing index nodes and is destroyed every commit.
178 */
179void destroy_old_idx(struct ubifs_info *c)
180{
bb25e49f
CS
181 struct ubifs_old_idx *old_idx, *n;
182
183 rbtree_postorder_for_each_entry_safe(old_idx, n, &c->old_idx, rb)
1e51764a 184 kfree(old_idx);
bb25e49f 185
1e51764a
AB
186 c->old_idx = RB_ROOT;
187}
188
189/**
190 * copy_znode - copy a dirty znode.
191 * @c: UBIFS file-system description object
192 * @znode: znode to copy
193 *
194 * A dirty znode being committed may not be changed, so it is copied.
195 */
196static struct ubifs_znode *copy_znode(struct ubifs_info *c,
197 struct ubifs_znode *znode)
198{
199 struct ubifs_znode *zn;
200
bbc8a004 201 zn = kmemdup(znode, c->max_znode_sz, GFP_NOFS);
1e51764a
AB
202 if (unlikely(!zn))
203 return ERR_PTR(-ENOMEM);
204
1e51764a
AB
205 zn->cnext = NULL;
206 __set_bit(DIRTY_ZNODE, &zn->flags);
207 __clear_bit(COW_ZNODE, &zn->flags);
208
f42eed7c 209 ubifs_assert(!ubifs_zn_obsolete(znode));
1e51764a
AB
210 __set_bit(OBSOLETE_ZNODE, &znode->flags);
211
212 if (znode->level != 0) {
213 int i;
214 const int n = zn->child_cnt;
215
216 /* The children now have new parent */
217 for (i = 0; i < n; i++) {
218 struct ubifs_zbranch *zbr = &zn->zbranch[i];
219
220 if (zbr->znode)
221 zbr->znode->parent = zn;
222 }
223 }
224
225 atomic_long_inc(&c->dirty_zn_cnt);
226 return zn;
227}
228
229/**
230 * add_idx_dirt - add dirt due to a dirty znode.
231 * @c: UBIFS file-system description object
232 * @lnum: LEB number of index node
233 * @dirt: size of index node
234 *
235 * This function updates lprops dirty space and the new size of the index.
236 */
237static int add_idx_dirt(struct ubifs_info *c, int lnum, int dirt)
238{
239 c->calc_idx_sz -= ALIGN(dirt, 8);
240 return ubifs_add_dirt(c, lnum, dirt);
241}
242
243/**
244 * dirty_cow_znode - ensure a znode is not being committed.
245 * @c: UBIFS file-system description object
246 * @zbr: branch of znode to check
247 *
248 * Returns dirtied znode on success or negative error code on failure.
249 */
250static struct ubifs_znode *dirty_cow_znode(struct ubifs_info *c,
251 struct ubifs_zbranch *zbr)
252{
253 struct ubifs_znode *znode = zbr->znode;
254 struct ubifs_znode *zn;
255 int err;
256
f42eed7c 257 if (!ubifs_zn_cow(znode)) {
1e51764a
AB
258 /* znode is not being committed */
259 if (!test_and_set_bit(DIRTY_ZNODE, &znode->flags)) {
260 atomic_long_inc(&c->dirty_zn_cnt);
261 atomic_long_dec(&c->clean_zn_cnt);
262 atomic_long_dec(&ubifs_clean_zn_cnt);
263 err = add_idx_dirt(c, zbr->lnum, zbr->len);
264 if (unlikely(err))
265 return ERR_PTR(err);
266 }
267 return znode;
268 }
269
270 zn = copy_znode(c, znode);
8d47aef4 271 if (IS_ERR(zn))
1e51764a
AB
272 return zn;
273
274 if (zbr->len) {
275 err = insert_old_idx(c, zbr->lnum, zbr->offs);
276 if (unlikely(err))
277 return ERR_PTR(err);
278 err = add_idx_dirt(c, zbr->lnum, zbr->len);
279 } else
280 err = 0;
281
282 zbr->znode = zn;
283 zbr->lnum = 0;
284 zbr->offs = 0;
285 zbr->len = 0;
286
287 if (unlikely(err))
288 return ERR_PTR(err);
289 return zn;
290}
291
292/**
293 * lnc_add - add a leaf node to the leaf node cache.
294 * @c: UBIFS file-system description object
295 * @zbr: zbranch of leaf node
296 * @node: leaf node
297 *
298 * Leaf nodes are non-index nodes directory entry nodes or data nodes. The
299 * purpose of the leaf node cache is to save re-reading the same leaf node over
300 * and over again. Most things are cached by VFS, however the file system must
301 * cache directory entries for readdir and for resolving hash collisions. The
302 * present implementation of the leaf node cache is extremely simple, and
303 * allows for error returns that are not used but that may be needed if a more
304 * complex implementation is created.
305 *
306 * Note, this function does not add the @node object to LNC directly, but
307 * allocates a copy of the object and adds the copy to LNC. The reason for this
308 * is that @node has been allocated outside of the TNC subsystem and will be
309 * used with @c->tnc_mutex unlock upon return from the TNC subsystem. But LNC
310 * may be changed at any time, e.g. freed by the shrinker.
311 */
312static int lnc_add(struct ubifs_info *c, struct ubifs_zbranch *zbr,
313 const void *node)
314{
315 int err;
316 void *lnc_node;
317 const struct ubifs_dent_node *dent = node;
318
319 ubifs_assert(!zbr->leaf);
320 ubifs_assert(zbr->len != 0);
321 ubifs_assert(is_hash_key(c, &zbr->key));
322
323 err = ubifs_validate_entry(c, dent);
324 if (err) {
7c46d0ae 325 dump_stack();
edf6be24 326 ubifs_dump_node(c, dent);
1e51764a
AB
327 return err;
328 }
329
eaecf43a 330 lnc_node = kmemdup(node, zbr->len, GFP_NOFS);
1e51764a
AB
331 if (!lnc_node)
332 /* We don't have to have the cache, so no error */
333 return 0;
334
1e51764a
AB
335 zbr->leaf = lnc_node;
336 return 0;
337}
338
339 /**
340 * lnc_add_directly - add a leaf node to the leaf-node-cache.
341 * @c: UBIFS file-system description object
342 * @zbr: zbranch of leaf node
343 * @node: leaf node
344 *
345 * This function is similar to 'lnc_add()', but it does not create a copy of
346 * @node but inserts @node to TNC directly.
347 */
348static int lnc_add_directly(struct ubifs_info *c, struct ubifs_zbranch *zbr,
349 void *node)
350{
351 int err;
352
353 ubifs_assert(!zbr->leaf);
354 ubifs_assert(zbr->len != 0);
355
356 err = ubifs_validate_entry(c, node);
357 if (err) {
7c46d0ae 358 dump_stack();
edf6be24 359 ubifs_dump_node(c, node);
1e51764a
AB
360 return err;
361 }
362
363 zbr->leaf = node;
364 return 0;
365}
366
367/**
368 * lnc_free - remove a leaf node from the leaf node cache.
369 * @zbr: zbranch of leaf node
370 * @node: leaf node
371 */
372static void lnc_free(struct ubifs_zbranch *zbr)
373{
374 if (!zbr->leaf)
375 return;
376 kfree(zbr->leaf);
377 zbr->leaf = NULL;
378}
379
380/**
b91dc981 381 * tnc_read_hashed_node - read a "hashed" leaf node.
1e51764a
AB
382 * @c: UBIFS file-system description object
383 * @zbr: key and position of the node
384 * @node: node is returned here
385 *
386 * This function reads a "hashed" node defined by @zbr from the leaf node cache
387 * (in it is there) or from the hash media, in which case the node is also
388 * added to LNC. Returns zero in case of success or a negative negative error
389 * code in case of failure.
390 */
b91dc981
RW
391static int tnc_read_hashed_node(struct ubifs_info *c, struct ubifs_zbranch *zbr,
392 void *node)
1e51764a
AB
393{
394 int err;
395
396 ubifs_assert(is_hash_key(c, &zbr->key));
397
398 if (zbr->leaf) {
399 /* Read from the leaf node cache */
400 ubifs_assert(zbr->len != 0);
401 memcpy(node, zbr->leaf, zbr->len);
402 return 0;
403 }
404
405 err = ubifs_tnc_read_node(c, zbr, node);
406 if (err)
407 return err;
408
409 /* Add the node to the leaf node cache */
410 err = lnc_add(c, zbr, node);
411 return err;
412}
413
414/**
415 * try_read_node - read a node if it is a node.
416 * @c: UBIFS file-system description object
417 * @buf: buffer to read to
418 * @type: node type
419 * @len: node length (not aligned)
420 * @lnum: LEB number of node to read
421 * @offs: offset of node to read
422 *
423 * This function tries to read a node of known type and length, checks it and
424 * stores it in @buf. This function returns %1 if a node is present and %0 if
425 * a node is not present. A negative error code is returned for I/O errors.
426 * This function performs that same function as ubifs_read_node except that
427 * it does not require that there is actually a node present and instead
428 * the return code indicates if a node was read.
6f7ab6d4
AB
429 *
430 * Note, this function does not check CRC of data nodes if @c->no_chk_data_crc
431 * is true (it is controlled by corresponding mount option). However, if
18d1d7fb
AB
432 * @c->mounting or @c->remounting_rw is true (we are mounting or re-mounting to
433 * R/W mode), @c->no_chk_data_crc is ignored and CRC is checked. This is
434 * because during mounting or re-mounting from R/O mode to R/W mode we may read
435 * journal nodes (when replying the journal or doing the recovery) and the
436 * journal nodes may potentially be corrupted, so checking is required.
1e51764a
AB
437 */
438static int try_read_node(const struct ubifs_info *c, void *buf, int type,
439 int len, int lnum, int offs)
440{
441 int err, node_len;
442 struct ubifs_ch *ch = buf;
443 uint32_t crc, node_crc;
444
445 dbg_io("LEB %d:%d, %s, length %d", lnum, offs, dbg_ntype(type), len);
446
d304820a 447 err = ubifs_leb_read(c, lnum, buf, offs, len, 1);
1e51764a 448 if (err) {
235c362b 449 ubifs_err(c, "cannot read node type %d from LEB %d:%d, error %d",
1e51764a
AB
450 type, lnum, offs, err);
451 return err;
452 }
453
454 if (le32_to_cpu(ch->magic) != UBIFS_NODE_MAGIC)
455 return 0;
456
457 if (ch->node_type != type)
458 return 0;
459
460 node_len = le32_to_cpu(ch->len);
461 if (node_len != len)
462 return 0;
463
18d1d7fb
AB
464 if (type == UBIFS_DATA_NODE && c->no_chk_data_crc && !c->mounting &&
465 !c->remounting_rw)
6f7ab6d4 466 return 1;
2953e73f 467
1e51764a
AB
468 crc = crc32(UBIFS_CRC32_INIT, buf + 8, node_len - 8);
469 node_crc = le32_to_cpu(ch->crc);
470 if (crc != node_crc)
471 return 0;
472
473 return 1;
474}
475
476/**
477 * fallible_read_node - try to read a leaf node.
478 * @c: UBIFS file-system description object
479 * @key: key of node to read
480 * @zbr: position of node
481 * @node: node returned
482 *
483 * This function tries to read a node and returns %1 if the node is read, %0
484 * if the node is not present, and a negative error code in the case of error.
485 */
486static int fallible_read_node(struct ubifs_info *c, const union ubifs_key *key,
487 struct ubifs_zbranch *zbr, void *node)
488{
489 int ret;
490
515315a1 491 dbg_tnck(key, "LEB %d:%d, key ", zbr->lnum, zbr->offs);
1e51764a
AB
492
493 ret = try_read_node(c, node, key_type(c, key), zbr->len, zbr->lnum,
494 zbr->offs);
495 if (ret == 1) {
496 union ubifs_key node_key;
497 struct ubifs_dent_node *dent = node;
498
499 /* All nodes have key in the same place */
500 key_read(c, &dent->key, &node_key);
501 if (keys_cmp(c, key, &node_key) != 0)
502 ret = 0;
503 }
601c0bc4 504 if (ret == 0 && c->replaying)
515315a1
AB
505 dbg_mntk(key, "dangling branch LEB %d:%d len %d, key ",
506 zbr->lnum, zbr->offs, zbr->len);
1e51764a
AB
507 return ret;
508}
509
510/**
511 * matches_name - determine if a direntry or xattr entry matches a given name.
512 * @c: UBIFS file-system description object
513 * @zbr: zbranch of dent
514 * @nm: name to match
515 *
516 * This function checks if xentry/direntry referred by zbranch @zbr matches name
517 * @nm. Returns %NAME_MATCHES if it does, %NAME_LESS if the name referred by
518 * @zbr is less than @nm, and %NAME_GREATER if it is greater than @nm. In case
519 * of failure, a negative error code is returned.
520 */
521static int matches_name(struct ubifs_info *c, struct ubifs_zbranch *zbr,
f4f61d2c 522 const struct fscrypt_name *nm)
1e51764a
AB
523{
524 struct ubifs_dent_node *dent;
525 int nlen, err;
526
527 /* If possible, match against the dent in the leaf node cache */
528 if (!zbr->leaf) {
529 dent = kmalloc(zbr->len, GFP_NOFS);
530 if (!dent)
531 return -ENOMEM;
532
533 err = ubifs_tnc_read_node(c, zbr, dent);
534 if (err)
535 goto out_free;
536
537 /* Add the node to the leaf node cache */
538 err = lnc_add_directly(c, zbr, dent);
539 if (err)
540 goto out_free;
541 } else
542 dent = zbr->leaf;
543
544 nlen = le16_to_cpu(dent->nlen);
f4f61d2c 545 err = memcmp(dent->name, fname_name(nm), min_t(int, nlen, fname_len(nm)));
1e51764a 546 if (err == 0) {
f4f61d2c 547 if (nlen == fname_len(nm))
1e51764a 548 return NAME_MATCHES;
f4f61d2c 549 else if (nlen < fname_len(nm))
1e51764a
AB
550 return NAME_LESS;
551 else
552 return NAME_GREATER;
553 } else if (err < 0)
554 return NAME_LESS;
555 else
556 return NAME_GREATER;
557
558out_free:
559 kfree(dent);
560 return err;
561}
562
563/**
564 * get_znode - get a TNC znode that may not be loaded yet.
565 * @c: UBIFS file-system description object
566 * @znode: parent znode
567 * @n: znode branch slot number
568 *
569 * This function returns the znode or a negative error code.
570 */
571static struct ubifs_znode *get_znode(struct ubifs_info *c,
572 struct ubifs_znode *znode, int n)
573{
574 struct ubifs_zbranch *zbr;
575
576 zbr = &znode->zbranch[n];
577 if (zbr->znode)
578 znode = zbr->znode;
579 else
580 znode = ubifs_load_znode(c, zbr, znode, n);
581 return znode;
582}
583
584/**
585 * tnc_next - find next TNC entry.
586 * @c: UBIFS file-system description object
587 * @zn: znode is passed and returned here
588 * @n: znode branch slot number is passed and returned here
589 *
590 * This function returns %0 if the next TNC entry is found, %-ENOENT if there is
591 * no next entry, or a negative error code otherwise.
592 */
593static int tnc_next(struct ubifs_info *c, struct ubifs_znode **zn, int *n)
594{
595 struct ubifs_znode *znode = *zn;
596 int nn = *n;
597
598 nn += 1;
599 if (nn < znode->child_cnt) {
600 *n = nn;
601 return 0;
602 }
603 while (1) {
604 struct ubifs_znode *zp;
605
606 zp = znode->parent;
607 if (!zp)
608 return -ENOENT;
609 nn = znode->iip + 1;
610 znode = zp;
611 if (nn < znode->child_cnt) {
612 znode = get_znode(c, znode, nn);
613 if (IS_ERR(znode))
614 return PTR_ERR(znode);
615 while (znode->level != 0) {
616 znode = get_znode(c, znode, 0);
617 if (IS_ERR(znode))
618 return PTR_ERR(znode);
619 }
620 nn = 0;
621 break;
622 }
623 }
624 *zn = znode;
625 *n = nn;
626 return 0;
627}
628
629/**
630 * tnc_prev - find previous TNC entry.
631 * @c: UBIFS file-system description object
632 * @zn: znode is returned here
633 * @n: znode branch slot number is passed and returned here
634 *
635 * This function returns %0 if the previous TNC entry is found, %-ENOENT if
636 * there is no next entry, or a negative error code otherwise.
637 */
638static int tnc_prev(struct ubifs_info *c, struct ubifs_znode **zn, int *n)
639{
640 struct ubifs_znode *znode = *zn;
641 int nn = *n;
642
643 if (nn > 0) {
644 *n = nn - 1;
645 return 0;
646 }
647 while (1) {
648 struct ubifs_znode *zp;
649
650 zp = znode->parent;
651 if (!zp)
652 return -ENOENT;
653 nn = znode->iip - 1;
654 znode = zp;
655 if (nn >= 0) {
656 znode = get_znode(c, znode, nn);
657 if (IS_ERR(znode))
658 return PTR_ERR(znode);
659 while (znode->level != 0) {
660 nn = znode->child_cnt - 1;
661 znode = get_znode(c, znode, nn);
662 if (IS_ERR(znode))
663 return PTR_ERR(znode);
664 }
665 nn = znode->child_cnt - 1;
666 break;
667 }
668 }
669 *zn = znode;
670 *n = nn;
671 return 0;
672}
673
674/**
675 * resolve_collision - resolve a collision.
676 * @c: UBIFS file-system description object
677 * @key: key of a directory or extended attribute entry
678 * @zn: znode is returned here
679 * @n: zbranch number is passed and returned here
680 * @nm: name of the entry
681 *
682 * This function is called for "hashed" keys to make sure that the found key
683 * really corresponds to the looked up node (directory or extended attribute
684 * entry). It returns %1 and sets @zn and @n if the collision is resolved.
685 * %0 is returned if @nm is not found and @zn and @n are set to the previous
686 * entry, i.e. to the entry after which @nm could follow if it were in TNC.
687 * This means that @n may be set to %-1 if the leftmost key in @zn is the
688 * previous one. A negative error code is returned on failures.
689 */
690static int resolve_collision(struct ubifs_info *c, const union ubifs_key *key,
691 struct ubifs_znode **zn, int *n,
f4f61d2c 692 const struct fscrypt_name *nm)
1e51764a
AB
693{
694 int err;
695
696 err = matches_name(c, &(*zn)->zbranch[*n], nm);
697 if (unlikely(err < 0))
698 return err;
699 if (err == NAME_MATCHES)
700 return 1;
701
702 if (err == NAME_GREATER) {
703 /* Look left */
704 while (1) {
705 err = tnc_prev(c, zn, n);
706 if (err == -ENOENT) {
707 ubifs_assert(*n == 0);
708 *n = -1;
709 return 0;
710 }
711 if (err < 0)
712 return err;
713 if (keys_cmp(c, &(*zn)->zbranch[*n].key, key)) {
714 /*
715 * We have found the branch after which we would
716 * like to insert, but inserting in this znode
717 * may still be wrong. Consider the following 3
718 * znodes, in the case where we are resolving a
719 * collision with Key2.
720 *
721 * znode zp
722 * ----------------------
723 * level 1 | Key0 | Key1 |
724 * -----------------------
725 * | |
726 * znode za | | znode zb
727 * ------------ ------------
728 * level 0 | Key0 | | Key2 |
729 * ------------ ------------
730 *
731 * The lookup finds Key2 in znode zb. Lets say
732 * there is no match and the name is greater so
733 * we look left. When we find Key0, we end up
734 * here. If we return now, we will insert into
735 * znode za at slot n = 1. But that is invalid
736 * according to the parent's keys. Key2 must
737 * be inserted into znode zb.
738 *
739 * Note, this problem is not relevant for the
740 * case when we go right, because
741 * 'tnc_insert()' would correct the parent key.
742 */
743 if (*n == (*zn)->child_cnt - 1) {
744 err = tnc_next(c, zn, n);
745 if (err) {
746 /* Should be impossible */
747 ubifs_assert(0);
748 if (err == -ENOENT)
749 err = -EINVAL;
750 return err;
751 }
752 ubifs_assert(*n == 0);
753 *n = -1;
754 }
755 return 0;
756 }
757 err = matches_name(c, &(*zn)->zbranch[*n], nm);
758 if (err < 0)
759 return err;
760 if (err == NAME_LESS)
761 return 0;
762 if (err == NAME_MATCHES)
763 return 1;
764 ubifs_assert(err == NAME_GREATER);
765 }
766 } else {
767 int nn = *n;
768 struct ubifs_znode *znode = *zn;
769
770 /* Look right */
771 while (1) {
772 err = tnc_next(c, &znode, &nn);
773 if (err == -ENOENT)
774 return 0;
775 if (err < 0)
776 return err;
777 if (keys_cmp(c, &znode->zbranch[nn].key, key))
778 return 0;
779 err = matches_name(c, &znode->zbranch[nn], nm);
780 if (err < 0)
781 return err;
782 if (err == NAME_GREATER)
783 return 0;
784 *zn = znode;
785 *n = nn;
786 if (err == NAME_MATCHES)
787 return 1;
788 ubifs_assert(err == NAME_LESS);
789 }
790 }
791}
792
793/**
794 * fallible_matches_name - determine if a dent matches a given name.
795 * @c: UBIFS file-system description object
796 * @zbr: zbranch of dent
797 * @nm: name to match
798 *
799 * This is a "fallible" version of 'matches_name()' function which does not
800 * panic if the direntry/xentry referred by @zbr does not exist on the media.
801 *
802 * This function checks if xentry/direntry referred by zbranch @zbr matches name
803 * @nm. Returns %NAME_MATCHES it does, %NAME_LESS if the name referred by @zbr
804 * is less than @nm, %NAME_GREATER if it is greater than @nm, and @NOT_ON_MEDIA
805 * if xentry/direntry referred by @zbr does not exist on the media. A negative
806 * error code is returned in case of failure.
807 */
808static int fallible_matches_name(struct ubifs_info *c,
809 struct ubifs_zbranch *zbr,
f4f61d2c 810 const struct fscrypt_name *nm)
1e51764a
AB
811{
812 struct ubifs_dent_node *dent;
813 int nlen, err;
814
815 /* If possible, match against the dent in the leaf node cache */
816 if (!zbr->leaf) {
817 dent = kmalloc(zbr->len, GFP_NOFS);
818 if (!dent)
819 return -ENOMEM;
820
821 err = fallible_read_node(c, &zbr->key, zbr, dent);
822 if (err < 0)
823 goto out_free;
824 if (err == 0) {
825 /* The node was not present */
826 err = NOT_ON_MEDIA;
827 goto out_free;
828 }
829 ubifs_assert(err == 1);
830
831 err = lnc_add_directly(c, zbr, dent);
832 if (err)
833 goto out_free;
834 } else
835 dent = zbr->leaf;
836
837 nlen = le16_to_cpu(dent->nlen);
f4f61d2c 838 err = memcmp(dent->name, fname_name(nm), min_t(int, nlen, fname_len(nm)));
1e51764a 839 if (err == 0) {
f4f61d2c 840 if (nlen == fname_len(nm))
1e51764a 841 return NAME_MATCHES;
f4f61d2c 842 else if (nlen < fname_len(nm))
1e51764a
AB
843 return NAME_LESS;
844 else
845 return NAME_GREATER;
846 } else if (err < 0)
847 return NAME_LESS;
848 else
849 return NAME_GREATER;
850
851out_free:
852 kfree(dent);
853 return err;
854}
855
856/**
857 * fallible_resolve_collision - resolve a collision even if nodes are missing.
858 * @c: UBIFS file-system description object
859 * @key: key
860 * @zn: znode is returned here
861 * @n: branch number is passed and returned here
862 * @nm: name of directory entry
863 * @adding: indicates caller is adding a key to the TNC
864 *
865 * This is a "fallible" version of the 'resolve_collision()' function which
866 * does not panic if one of the nodes referred to by TNC does not exist on the
867 * media. This may happen when replaying the journal if a deleted node was
868 * Garbage-collected and the commit was not done. A branch that refers to a node
869 * that is not present is called a dangling branch. The following are the return
870 * codes for this function:
871 * o if @nm was found, %1 is returned and @zn and @n are set to the found
872 * branch;
873 * o if we are @adding and @nm was not found, %0 is returned;
874 * o if we are not @adding and @nm was not found, but a dangling branch was
875 * found, then %1 is returned and @zn and @n are set to the dangling branch;
876 * o a negative error code is returned in case of failure.
877 */
878static int fallible_resolve_collision(struct ubifs_info *c,
879 const union ubifs_key *key,
880 struct ubifs_znode **zn, int *n,
f4f61d2c
RW
881 const struct fscrypt_name *nm,
882 int adding)
1e51764a
AB
883{
884 struct ubifs_znode *o_znode = NULL, *znode = *zn;
885 int uninitialized_var(o_n), err, cmp, unsure = 0, nn = *n;
886
887 cmp = fallible_matches_name(c, &znode->zbranch[nn], nm);
888 if (unlikely(cmp < 0))
889 return cmp;
890 if (cmp == NAME_MATCHES)
891 return 1;
892 if (cmp == NOT_ON_MEDIA) {
893 o_znode = znode;
894 o_n = nn;
895 /*
896 * We are unlucky and hit a dangling branch straight away.
897 * Now we do not really know where to go to find the needed
898 * branch - to the left or to the right. Well, let's try left.
899 */
900 unsure = 1;
901 } else if (!adding)
902 unsure = 1; /* Remove a dangling branch wherever it is */
903
904 if (cmp == NAME_GREATER || unsure) {
905 /* Look left */
906 while (1) {
907 err = tnc_prev(c, zn, n);
908 if (err == -ENOENT) {
909 ubifs_assert(*n == 0);
910 *n = -1;
911 break;
912 }
913 if (err < 0)
914 return err;
915 if (keys_cmp(c, &(*zn)->zbranch[*n].key, key)) {
916 /* See comments in 'resolve_collision()' */
917 if (*n == (*zn)->child_cnt - 1) {
918 err = tnc_next(c, zn, n);
919 if (err) {
920 /* Should be impossible */
921 ubifs_assert(0);
922 if (err == -ENOENT)
923 err = -EINVAL;
924 return err;
925 }
926 ubifs_assert(*n == 0);
927 *n = -1;
928 }
929 break;
930 }
931 err = fallible_matches_name(c, &(*zn)->zbranch[*n], nm);
932 if (err < 0)
933 return err;
934 if (err == NAME_MATCHES)
935 return 1;
936 if (err == NOT_ON_MEDIA) {
937 o_znode = *zn;
938 o_n = *n;
939 continue;
940 }
941 if (!adding)
942 continue;
943 if (err == NAME_LESS)
944 break;
945 else
946 unsure = 0;
947 }
948 }
949
950 if (cmp == NAME_LESS || unsure) {
951 /* Look right */
952 *zn = znode;
953 *n = nn;
954 while (1) {
955 err = tnc_next(c, &znode, &nn);
956 if (err == -ENOENT)
957 break;
958 if (err < 0)
959 return err;
960 if (keys_cmp(c, &znode->zbranch[nn].key, key))
961 break;
962 err = fallible_matches_name(c, &znode->zbranch[nn], nm);
963 if (err < 0)
964 return err;
965 if (err == NAME_GREATER)
966 break;
967 *zn = znode;
968 *n = nn;
969 if (err == NAME_MATCHES)
970 return 1;
971 if (err == NOT_ON_MEDIA) {
972 o_znode = znode;
973 o_n = nn;
974 }
975 }
976 }
977
978 /* Never match a dangling branch when adding */
979 if (adding || !o_znode)
980 return 0;
981
515315a1 982 dbg_mntk(key, "dangling match LEB %d:%d len %d key ",
1e51764a 983 o_znode->zbranch[o_n].lnum, o_znode->zbranch[o_n].offs,
515315a1 984 o_znode->zbranch[o_n].len);
1e51764a
AB
985 *zn = o_znode;
986 *n = o_n;
987 return 1;
988}
989
990/**
991 * matches_position - determine if a zbranch matches a given position.
992 * @zbr: zbranch of dent
993 * @lnum: LEB number of dent to match
994 * @offs: offset of dent to match
995 *
996 * This function returns %1 if @lnum:@offs matches, and %0 otherwise.
997 */
998static int matches_position(struct ubifs_zbranch *zbr, int lnum, int offs)
999{
1000 if (zbr->lnum == lnum && zbr->offs == offs)
1001 return 1;
1002 else
1003 return 0;
1004}
1005
1006/**
1007 * resolve_collision_directly - resolve a collision directly.
1008 * @c: UBIFS file-system description object
1009 * @key: key of directory entry
1010 * @zn: znode is passed and returned here
1011 * @n: zbranch number is passed and returned here
1012 * @lnum: LEB number of dent node to match
1013 * @offs: offset of dent node to match
1014 *
1015 * This function is used for "hashed" keys to make sure the found directory or
1016 * extended attribute entry node is what was looked for. It is used when the
1017 * flash address of the right node is known (@lnum:@offs) which makes it much
1018 * easier to resolve collisions (no need to read entries and match full
1019 * names). This function returns %1 and sets @zn and @n if the collision is
1020 * resolved, %0 if @lnum:@offs is not found and @zn and @n are set to the
1021 * previous directory entry. Otherwise a negative error code is returned.
1022 */
1023static int resolve_collision_directly(struct ubifs_info *c,
1024 const union ubifs_key *key,
1025 struct ubifs_znode **zn, int *n,
1026 int lnum, int offs)
1027{
1028 struct ubifs_znode *znode;
1029 int nn, err;
1030
1031 znode = *zn;
1032 nn = *n;
1033 if (matches_position(&znode->zbranch[nn], lnum, offs))
1034 return 1;
1035
1036 /* Look left */
1037 while (1) {
1038 err = tnc_prev(c, &znode, &nn);
1039 if (err == -ENOENT)
1040 break;
1041 if (err < 0)
1042 return err;
1043 if (keys_cmp(c, &znode->zbranch[nn].key, key))
1044 break;
1045 if (matches_position(&znode->zbranch[nn], lnum, offs)) {
1046 *zn = znode;
1047 *n = nn;
1048 return 1;
1049 }
1050 }
1051
1052 /* Look right */
1053 znode = *zn;
1054 nn = *n;
1055 while (1) {
1056 err = tnc_next(c, &znode, &nn);
1057 if (err == -ENOENT)
1058 return 0;
1059 if (err < 0)
1060 return err;
1061 if (keys_cmp(c, &znode->zbranch[nn].key, key))
1062 return 0;
1063 *zn = znode;
1064 *n = nn;
1065 if (matches_position(&znode->zbranch[nn], lnum, offs))
1066 return 1;
1067 }
1068}
1069
1070/**
1071 * dirty_cow_bottom_up - dirty a znode and its ancestors.
1072 * @c: UBIFS file-system description object
1073 * @znode: znode to dirty
1074 *
1075 * If we do not have a unique key that resides in a znode, then we cannot
1076 * dirty that znode from the top down (i.e. by using lookup_level0_dirty)
1077 * This function records the path back to the last dirty ancestor, and then
1078 * dirties the znodes on that path.
1079 */
1080static struct ubifs_znode *dirty_cow_bottom_up(struct ubifs_info *c,
1081 struct ubifs_znode *znode)
1082{
1083 struct ubifs_znode *zp;
1084 int *path = c->bottom_up_buf, p = 0;
1085
1086 ubifs_assert(c->zroot.znode);
1087 ubifs_assert(znode);
1088 if (c->zroot.znode->level > BOTTOM_UP_HEIGHT) {
1089 kfree(c->bottom_up_buf);
1090 c->bottom_up_buf = kmalloc(c->zroot.znode->level * sizeof(int),
1091 GFP_NOFS);
1092 if (!c->bottom_up_buf)
1093 return ERR_PTR(-ENOMEM);
1094 path = c->bottom_up_buf;
1095 }
1096 if (c->zroot.znode->level) {
1097 /* Go up until parent is dirty */
1098 while (1) {
1099 int n;
1100
1101 zp = znode->parent;
1102 if (!zp)
1103 break;
1104 n = znode->iip;
1105 ubifs_assert(p < c->zroot.znode->level);
1106 path[p++] = n;
1107 if (!zp->cnext && ubifs_zn_dirty(znode))
1108 break;
1109 znode = zp;
1110 }
1111 }
1112
1113 /* Come back down, dirtying as we go */
1114 while (1) {
1115 struct ubifs_zbranch *zbr;
1116
1117 zp = znode->parent;
1118 if (zp) {
1119 ubifs_assert(path[p - 1] >= 0);
1120 ubifs_assert(path[p - 1] < zp->child_cnt);
1121 zbr = &zp->zbranch[path[--p]];
1122 znode = dirty_cow_znode(c, zbr);
1123 } else {
1124 ubifs_assert(znode == c->zroot.znode);
1125 znode = dirty_cow_znode(c, &c->zroot);
1126 }
8d47aef4 1127 if (IS_ERR(znode) || !p)
1e51764a
AB
1128 break;
1129 ubifs_assert(path[p - 1] >= 0);
1130 ubifs_assert(path[p - 1] < znode->child_cnt);
1131 znode = znode->zbranch[path[p - 1]].znode;
1132 }
1133
1134 return znode;
1135}
1136
1137/**
1138 * ubifs_lookup_level0 - search for zero-level znode.
1139 * @c: UBIFS file-system description object
1140 * @key: key to lookup
1141 * @zn: znode is returned here
1142 * @n: znode branch slot number is returned here
1143 *
1144 * This function looks up the TNC tree and search for zero-level znode which
1145 * refers key @key. The found zero-level znode is returned in @zn. There are 3
1146 * cases:
1147 * o exact match, i.e. the found zero-level znode contains key @key, then %1
1148 * is returned and slot number of the matched branch is stored in @n;
1149 * o not exact match, which means that zero-level znode does not contain
e3c3efc2
AB
1150 * @key, then %0 is returned and slot number of the closest branch is stored
1151 * in @n;
1e51764a
AB
1152 * o @key is so small that it is even less than the lowest key of the
1153 * leftmost zero-level node, then %0 is returned and %0 is stored in @n.
1154 *
1155 * Note, when the TNC tree is traversed, some znodes may be absent, then this
1156 * function reads corresponding indexing nodes and inserts them to TNC. In
1157 * case of failure, a negative error code is returned.
1158 */
1159int ubifs_lookup_level0(struct ubifs_info *c, const union ubifs_key *key,
1160 struct ubifs_znode **zn, int *n)
1161{
1162 int err, exact;
1163 struct ubifs_znode *znode;
1164 unsigned long time = get_seconds();
1165
515315a1 1166 dbg_tnck(key, "search key ");
ba2f48f7 1167 ubifs_assert(key_type(c, key) < UBIFS_INVALID_KEY);
1e51764a
AB
1168
1169 znode = c->zroot.znode;
1170 if (unlikely(!znode)) {
1171 znode = ubifs_load_znode(c, &c->zroot, NULL, 0);
1172 if (IS_ERR(znode))
1173 return PTR_ERR(znode);
1174 }
1175
1176 znode->time = time;
1177
1178 while (1) {
1179 struct ubifs_zbranch *zbr;
1180
1181 exact = ubifs_search_zbranch(c, znode, key, n);
1182
1183 if (znode->level == 0)
1184 break;
1185
1186 if (*n < 0)
1187 *n = 0;
1188 zbr = &znode->zbranch[*n];
1189
1190 if (zbr->znode) {
1191 znode->time = time;
1192 znode = zbr->znode;
1193 continue;
1194 }
1195
1196 /* znode is not in TNC cache, load it from the media */
1197 znode = ubifs_load_znode(c, zbr, znode, *n);
1198 if (IS_ERR(znode))
1199 return PTR_ERR(znode);
1200 }
1201
1202 *zn = znode;
1203 if (exact || !is_hash_key(c, key) || *n != -1) {
1204 dbg_tnc("found %d, lvl %d, n %d", exact, znode->level, *n);
1205 return exact;
1206 }
1207
1208 /*
1209 * Here is a tricky place. We have not found the key and this is a
1210 * "hashed" key, which may collide. The rest of the code deals with
1211 * situations like this:
1212 *
1213 * | 3 | 5 |
1214 * / \
1215 * | 3 | 5 | | 6 | 7 | (x)
1216 *
1217 * Or more a complex example:
1218 *
1219 * | 1 | 5 |
1220 * / \
1221 * | 1 | 3 | | 5 | 8 |
1222 * \ /
1223 * | 5 | 5 | | 6 | 7 | (x)
1224 *
1225 * In the examples, if we are looking for key "5", we may reach nodes
1226 * marked with "(x)". In this case what we have do is to look at the
1227 * left and see if there is "5" key there. If there is, we have to
1228 * return it.
1229 *
1230 * Note, this whole situation is possible because we allow to have
1231 * elements which are equivalent to the next key in the parent in the
1232 * children of current znode. For example, this happens if we split a
1233 * znode like this: | 3 | 5 | 5 | 6 | 7 |, which results in something
1234 * like this:
1235 * | 3 | 5 |
1236 * / \
1237 * | 3 | 5 | | 5 | 6 | 7 |
1238 * ^
1239 * And this becomes what is at the first "picture" after key "5" marked
1240 * with "^" is removed. What could be done is we could prohibit
1241 * splitting in the middle of the colliding sequence. Also, when
1242 * removing the leftmost key, we would have to correct the key of the
1243 * parent node, which would introduce additional complications. Namely,
7d4e9ccb 1244 * if we changed the leftmost key of the parent znode, the garbage
1e51764a
AB
1245 * collector would be unable to find it (GC is doing this when GC'ing
1246 * indexing LEBs). Although we already have an additional RB-tree where
1247 * we save such changed znodes (see 'ins_clr_old_idx_znode()') until
1248 * after the commit. But anyway, this does not look easy to implement
1249 * so we did not try this.
1250 */
1251 err = tnc_prev(c, &znode, n);
1252 if (err == -ENOENT) {
1253 dbg_tnc("found 0, lvl %d, n -1", znode->level);
1254 *n = -1;
1255 return 0;
1256 }
1257 if (unlikely(err < 0))
1258 return err;
1259 if (keys_cmp(c, key, &znode->zbranch[*n].key)) {
1260 dbg_tnc("found 0, lvl %d, n -1", znode->level);
1261 *n = -1;
1262 return 0;
1263 }
1264
1265 dbg_tnc("found 1, lvl %d, n %d", znode->level, *n);
1266 *zn = znode;
1267 return 1;
1268}
1269
1270/**
1271 * lookup_level0_dirty - search for zero-level znode dirtying.
1272 * @c: UBIFS file-system description object
1273 * @key: key to lookup
1274 * @zn: znode is returned here
1275 * @n: znode branch slot number is returned here
1276 *
1277 * This function looks up the TNC tree and search for zero-level znode which
1278 * refers key @key. The found zero-level znode is returned in @zn. There are 3
1279 * cases:
1280 * o exact match, i.e. the found zero-level znode contains key @key, then %1
1281 * is returned and slot number of the matched branch is stored in @n;
1282 * o not exact match, which means that zero-level znode does not contain @key
1283 * then %0 is returned and slot number of the closed branch is stored in
1284 * @n;
1285 * o @key is so small that it is even less than the lowest key of the
1286 * leftmost zero-level node, then %0 is returned and %-1 is stored in @n.
1287 *
1288 * Additionally all znodes in the path from the root to the located zero-level
1289 * znode are marked as dirty.
1290 *
1291 * Note, when the TNC tree is traversed, some znodes may be absent, then this
1292 * function reads corresponding indexing nodes and inserts them to TNC. In
1293 * case of failure, a negative error code is returned.
1294 */
1295static int lookup_level0_dirty(struct ubifs_info *c, const union ubifs_key *key,
1296 struct ubifs_znode **zn, int *n)
1297{
1298 int err, exact;
1299 struct ubifs_znode *znode;
1300 unsigned long time = get_seconds();
1301
515315a1 1302 dbg_tnck(key, "search and dirty key ");
1e51764a
AB
1303
1304 znode = c->zroot.znode;
1305 if (unlikely(!znode)) {
1306 znode = ubifs_load_znode(c, &c->zroot, NULL, 0);
1307 if (IS_ERR(znode))
1308 return PTR_ERR(znode);
1309 }
1310
1311 znode = dirty_cow_znode(c, &c->zroot);
1312 if (IS_ERR(znode))
1313 return PTR_ERR(znode);
1314
1315 znode->time = time;
1316
1317 while (1) {
1318 struct ubifs_zbranch *zbr;
1319
1320 exact = ubifs_search_zbranch(c, znode, key, n);
1321
1322 if (znode->level == 0)
1323 break;
1324
1325 if (*n < 0)
1326 *n = 0;
1327 zbr = &znode->zbranch[*n];
1328
1329 if (zbr->znode) {
1330 znode->time = time;
1331 znode = dirty_cow_znode(c, zbr);
1332 if (IS_ERR(znode))
1333 return PTR_ERR(znode);
1334 continue;
1335 }
1336
1337 /* znode is not in TNC cache, load it from the media */
1338 znode = ubifs_load_znode(c, zbr, znode, *n);
1339 if (IS_ERR(znode))
1340 return PTR_ERR(znode);
1341 znode = dirty_cow_znode(c, zbr);
1342 if (IS_ERR(znode))
1343 return PTR_ERR(znode);
1344 }
1345
1346 *zn = znode;
1347 if (exact || !is_hash_key(c, key) || *n != -1) {
1348 dbg_tnc("found %d, lvl %d, n %d", exact, znode->level, *n);
1349 return exact;
1350 }
1351
1352 /*
1353 * See huge comment at 'lookup_level0_dirty()' what is the rest of the
1354 * code.
1355 */
1356 err = tnc_prev(c, &znode, n);
1357 if (err == -ENOENT) {
1358 *n = -1;
1359 dbg_tnc("found 0, lvl %d, n -1", znode->level);
1360 return 0;
1361 }
1362 if (unlikely(err < 0))
1363 return err;
1364 if (keys_cmp(c, key, &znode->zbranch[*n].key)) {
1365 *n = -1;
1366 dbg_tnc("found 0, lvl %d, n -1", znode->level);
1367 return 0;
1368 }
1369
1370 if (znode->cnext || !ubifs_zn_dirty(znode)) {
1371 znode = dirty_cow_bottom_up(c, znode);
1372 if (IS_ERR(znode))
1373 return PTR_ERR(znode);
1374 }
1375
1376 dbg_tnc("found 1, lvl %d, n %d", znode->level, *n);
1377 *zn = znode;
1378 return 1;
1379}
1380
1381/**
601c0bc4 1382 * maybe_leb_gced - determine if a LEB may have been garbage collected.
1e51764a 1383 * @c: UBIFS file-system description object
601c0bc4
AH
1384 * @lnum: LEB number
1385 * @gc_seq1: garbage collection sequence number
1e51764a 1386 *
601c0bc4
AH
1387 * This function determines if @lnum may have been garbage collected since
1388 * sequence number @gc_seq1. If it may have been then %1 is returned, otherwise
1389 * %0 is returned.
1e51764a 1390 */
601c0bc4 1391static int maybe_leb_gced(struct ubifs_info *c, int lnum, int gc_seq1)
1e51764a 1392{
601c0bc4 1393 int gc_seq2, gced_lnum;
1e51764a 1394
601c0bc4
AH
1395 gced_lnum = c->gced_lnum;
1396 smp_rmb();
1397 gc_seq2 = c->gc_seq;
1398 /* Same seq means no GC */
1399 if (gc_seq1 == gc_seq2)
1400 return 0;
1401 /* Different by more than 1 means we don't know */
1402 if (gc_seq1 + 1 != gc_seq2)
1403 return 1;
1404 /*
1405 * We have seen the sequence number has increased by 1. Now we need to
1406 * be sure we read the right LEB number, so read it again.
1407 */
1408 smp_rmb();
1409 if (gced_lnum != c->gced_lnum)
1410 return 1;
1411 /* Finally we can check lnum */
1412 if (gced_lnum == lnum)
1413 return 1;
1414 return 0;
1e51764a
AB
1415}
1416
1417/**
1418 * ubifs_tnc_locate - look up a file-system node and return it and its location.
1419 * @c: UBIFS file-system description object
1420 * @key: node key to lookup
1421 * @node: the node is returned here
1422 * @lnum: LEB number is returned here
1423 * @offs: offset is returned here
1424 *
e3c3efc2 1425 * This function looks up and reads node with key @key. The caller has to make
601c0bc4
AH
1426 * sure the @node buffer is large enough to fit the node. Returns zero in case
1427 * of success, %-ENOENT if the node was not found, and a negative error code in
1428 * case of failure. The node location can be returned in @lnum and @offs.
1e51764a
AB
1429 */
1430int ubifs_tnc_locate(struct ubifs_info *c, const union ubifs_key *key,
1431 void *node, int *lnum, int *offs)
1432{
601c0bc4 1433 int found, n, err, safely = 0, gc_seq1;
1e51764a
AB
1434 struct ubifs_znode *znode;
1435 struct ubifs_zbranch zbr, *zt;
1436
601c0bc4 1437again:
1e51764a
AB
1438 mutex_lock(&c->tnc_mutex);
1439 found = ubifs_lookup_level0(c, key, &znode, &n);
1440 if (!found) {
1441 err = -ENOENT;
1442 goto out;
1443 } else if (found < 0) {
1444 err = found;
1445 goto out;
1446 }
1447 zt = &znode->zbranch[n];
601c0bc4
AH
1448 if (lnum) {
1449 *lnum = zt->lnum;
1450 *offs = zt->offs;
1451 }
1e51764a
AB
1452 if (is_hash_key(c, key)) {
1453 /*
1454 * In this case the leaf node cache gets used, so we pass the
1455 * address of the zbranch and keep the mutex locked
1456 */
b91dc981 1457 err = tnc_read_hashed_node(c, zt, node);
1e51764a
AB
1458 goto out;
1459 }
601c0bc4
AH
1460 if (safely) {
1461 err = ubifs_tnc_read_node(c, zt, node);
1462 goto out;
1463 }
1464 /* Drop the TNC mutex prematurely and race with garbage collection */
1e51764a 1465 zbr = znode->zbranch[n];
601c0bc4 1466 gc_seq1 = c->gc_seq;
1e51764a
AB
1467 mutex_unlock(&c->tnc_mutex);
1468
601c0bc4
AH
1469 if (ubifs_get_wbuf(c, zbr.lnum)) {
1470 /* We do not GC journal heads */
1471 err = ubifs_tnc_read_node(c, &zbr, node);
1472 return err;
1473 }
1e51764a 1474
601c0bc4 1475 err = fallible_read_node(c, key, &zbr, node);
6dcfac4f 1476 if (err <= 0 || maybe_leb_gced(c, zbr.lnum, gc_seq1)) {
601c0bc4
AH
1477 /*
1478 * The node may have been GC'ed out from under us so try again
1479 * while keeping the TNC mutex locked.
1480 */
1481 safely = 1;
1482 goto again;
1483 }
1484 return 0;
1e51764a
AB
1485
1486out:
1487 mutex_unlock(&c->tnc_mutex);
1488 return err;
1489}
1490
4793e7c5
AH
1491/**
1492 * ubifs_tnc_get_bu_keys - lookup keys for bulk-read.
1493 * @c: UBIFS file-system description object
1494 * @bu: bulk-read parameters and results
1495 *
1496 * Lookup consecutive data node keys for the same inode that reside
6c0c42cd
AB
1497 * consecutively in the same LEB. This function returns zero in case of success
1498 * and a negative error code in case of failure.
1499 *
1500 * Note, if the bulk-read buffer length (@bu->buf_len) is known, this function
1501 * makes sure bulk-read nodes fit the buffer. Otherwise, this function prepares
6f7ab6d4 1502 * maximum possible amount of nodes for bulk-read.
4793e7c5
AH
1503 */
1504int ubifs_tnc_get_bu_keys(struct ubifs_info *c, struct bu_info *bu)
1505{
1506 int n, err = 0, lnum = -1, uninitialized_var(offs);
1507 int uninitialized_var(len);
1508 unsigned int block = key_block(c, &bu->key);
1509 struct ubifs_znode *znode;
1510
1511 bu->cnt = 0;
1512 bu->blk_cnt = 0;
1513 bu->eof = 0;
1514
1515 mutex_lock(&c->tnc_mutex);
1516 /* Find first key */
1517 err = ubifs_lookup_level0(c, &bu->key, &znode, &n);
1518 if (err < 0)
1519 goto out;
1520 if (err) {
1521 /* Key found */
1522 len = znode->zbranch[n].len;
1523 /* The buffer must be big enough for at least 1 node */
1524 if (len > bu->buf_len) {
1525 err = -EINVAL;
1526 goto out;
1527 }
1528 /* Add this key */
1529 bu->zbranch[bu->cnt++] = znode->zbranch[n];
1530 bu->blk_cnt += 1;
1531 lnum = znode->zbranch[n].lnum;
1532 offs = ALIGN(znode->zbranch[n].offs + len, 8);
1533 }
1534 while (1) {
1535 struct ubifs_zbranch *zbr;
1536 union ubifs_key *key;
1537 unsigned int next_block;
1538
1539 /* Find next key */
1540 err = tnc_next(c, &znode, &n);
1541 if (err)
1542 goto out;
1543 zbr = &znode->zbranch[n];
1544 key = &zbr->key;
1545 /* See if there is another data key for this file */
1546 if (key_inum(c, key) != key_inum(c, &bu->key) ||
1547 key_type(c, key) != UBIFS_DATA_KEY) {
1548 err = -ENOENT;
1549 goto out;
1550 }
1551 if (lnum < 0) {
1552 /* First key found */
1553 lnum = zbr->lnum;
1554 offs = ALIGN(zbr->offs + zbr->len, 8);
1555 len = zbr->len;
1556 if (len > bu->buf_len) {
1557 err = -EINVAL;
1558 goto out;
1559 }
1560 } else {
1561 /*
1562 * The data nodes must be in consecutive positions in
1563 * the same LEB.
1564 */
1565 if (zbr->lnum != lnum || zbr->offs != offs)
1566 goto out;
1567 offs += ALIGN(zbr->len, 8);
1568 len = ALIGN(len, 8) + zbr->len;
1569 /* Must not exceed buffer length */
1570 if (len > bu->buf_len)
1571 goto out;
1572 }
1573 /* Allow for holes */
1574 next_block = key_block(c, key);
1575 bu->blk_cnt += (next_block - block - 1);
1576 if (bu->blk_cnt >= UBIFS_MAX_BULK_READ)
1577 goto out;
1578 block = next_block;
1579 /* Add this key */
1580 bu->zbranch[bu->cnt++] = *zbr;
1581 bu->blk_cnt += 1;
1582 /* See if we have room for more */
1583 if (bu->cnt >= UBIFS_MAX_BULK_READ)
1584 goto out;
1585 if (bu->blk_cnt >= UBIFS_MAX_BULK_READ)
1586 goto out;
1587 }
1588out:
1589 if (err == -ENOENT) {
1590 bu->eof = 1;
1591 err = 0;
1592 }
1593 bu->gc_seq = c->gc_seq;
1594 mutex_unlock(&c->tnc_mutex);
1595 if (err)
1596 return err;
1597 /*
1598 * An enormous hole could cause bulk-read to encompass too many
1599 * page cache pages, so limit the number here.
1600 */
63c300b6 1601 if (bu->blk_cnt > UBIFS_MAX_BULK_READ)
4793e7c5
AH
1602 bu->blk_cnt = UBIFS_MAX_BULK_READ;
1603 /*
1604 * Ensure that bulk-read covers a whole number of page cache
1605 * pages.
1606 */
1607 if (UBIFS_BLOCKS_PER_PAGE == 1 ||
1608 !(bu->blk_cnt & (UBIFS_BLOCKS_PER_PAGE - 1)))
1609 return 0;
1610 if (bu->eof) {
1611 /* At the end of file we can round up */
1612 bu->blk_cnt += UBIFS_BLOCKS_PER_PAGE - 1;
1613 return 0;
1614 }
1615 /* Exclude data nodes that do not make up a whole page cache page */
1616 block = key_block(c, &bu->key) + bu->blk_cnt;
1617 block &= ~(UBIFS_BLOCKS_PER_PAGE - 1);
1618 while (bu->cnt) {
1619 if (key_block(c, &bu->zbranch[bu->cnt - 1].key) < block)
1620 break;
1621 bu->cnt -= 1;
1622 }
1623 return 0;
1624}
1625
1626/**
1627 * read_wbuf - bulk-read from a LEB with a wbuf.
1628 * @wbuf: wbuf that may overlap the read
1629 * @buf: buffer into which to read
1630 * @len: read length
1631 * @lnum: LEB number from which to read
1632 * @offs: offset from which to read
1633 *
1634 * This functions returns %0 on success or a negative error code on failure.
1635 */
1636static int read_wbuf(struct ubifs_wbuf *wbuf, void *buf, int len, int lnum,
1637 int offs)
1638{
1639 const struct ubifs_info *c = wbuf->c;
1640 int rlen, overlap;
1641
1642 dbg_io("LEB %d:%d, length %d", lnum, offs, len);
1643 ubifs_assert(wbuf && lnum >= 0 && lnum < c->leb_cnt && offs >= 0);
1644 ubifs_assert(!(offs & 7) && offs < c->leb_size);
1645 ubifs_assert(offs + len <= c->leb_size);
1646
1647 spin_lock(&wbuf->lock);
1648 overlap = (lnum == wbuf->lnum && offs + len > wbuf->offs);
1649 if (!overlap) {
1650 /* We may safely unlock the write-buffer and read the data */
1651 spin_unlock(&wbuf->lock);
d304820a 1652 return ubifs_leb_read(c, lnum, buf, offs, len, 0);
4793e7c5
AH
1653 }
1654
1655 /* Don't read under wbuf */
1656 rlen = wbuf->offs - offs;
1657 if (rlen < 0)
1658 rlen = 0;
1659
1660 /* Copy the rest from the write-buffer */
1661 memcpy(buf + rlen, wbuf->buf + offs + rlen - wbuf->offs, len - rlen);
1662 spin_unlock(&wbuf->lock);
1663
1664 if (rlen > 0)
1665 /* Read everything that goes before write-buffer */
d304820a 1666 return ubifs_leb_read(c, lnum, buf, offs, rlen, 0);
4793e7c5
AH
1667
1668 return 0;
1669}
1670
1671/**
1672 * validate_data_node - validate data nodes for bulk-read.
1673 * @c: UBIFS file-system description object
1674 * @buf: buffer containing data node to validate
1675 * @zbr: zbranch of data node to validate
1676 *
1677 * This functions returns %0 on success or a negative error code on failure.
1678 */
1679static int validate_data_node(struct ubifs_info *c, void *buf,
1680 struct ubifs_zbranch *zbr)
1681{
1682 union ubifs_key key1;
1683 struct ubifs_ch *ch = buf;
1684 int err, len;
1685
1686 if (ch->node_type != UBIFS_DATA_NODE) {
235c362b 1687 ubifs_err(c, "bad node type (%d but expected %d)",
4793e7c5
AH
1688 ch->node_type, UBIFS_DATA_NODE);
1689 goto out_err;
1690 }
1691
2953e73f 1692 err = ubifs_check_node(c, buf, zbr->lnum, zbr->offs, 0, 0);
4793e7c5 1693 if (err) {
235c362b 1694 ubifs_err(c, "expected node type %d", UBIFS_DATA_NODE);
4793e7c5
AH
1695 goto out;
1696 }
1697
1698 len = le32_to_cpu(ch->len);
1699 if (len != zbr->len) {
235c362b 1700 ubifs_err(c, "bad node length %d, expected %d", len, zbr->len);
4793e7c5
AH
1701 goto out_err;
1702 }
1703
1704 /* Make sure the key of the read node is correct */
1705 key_read(c, buf + UBIFS_KEY_OFFSET, &key1);
1706 if (!keys_eq(c, &zbr->key, &key1)) {
235c362b 1707 ubifs_err(c, "bad key in node at LEB %d:%d",
4793e7c5 1708 zbr->lnum, zbr->offs);
515315a1
AB
1709 dbg_tnck(&zbr->key, "looked for key ");
1710 dbg_tnck(&key1, "found node's key ");
4793e7c5
AH
1711 goto out_err;
1712 }
1713
1714 return 0;
1715
1716out_err:
1717 err = -EINVAL;
1718out:
235c362b 1719 ubifs_err(c, "bad node at LEB %d:%d", zbr->lnum, zbr->offs);
edf6be24 1720 ubifs_dump_node(c, buf);
7c46d0ae 1721 dump_stack();
4793e7c5
AH
1722 return err;
1723}
1724
1725/**
1726 * ubifs_tnc_bulk_read - read a number of data nodes in one go.
1727 * @c: UBIFS file-system description object
1728 * @bu: bulk-read parameters and results
1729 *
1730 * This functions reads and validates the data nodes that were identified by the
1731 * 'ubifs_tnc_get_bu_keys()' function. This functions returns %0 on success,
1732 * -EAGAIN to indicate a race with GC, or another negative error code on
1733 * failure.
1734 */
1735int ubifs_tnc_bulk_read(struct ubifs_info *c, struct bu_info *bu)
1736{
1737 int lnum = bu->zbranch[0].lnum, offs = bu->zbranch[0].offs, len, err, i;
1738 struct ubifs_wbuf *wbuf;
1739 void *buf;
1740
1741 len = bu->zbranch[bu->cnt - 1].offs;
1742 len += bu->zbranch[bu->cnt - 1].len - offs;
1743 if (len > bu->buf_len) {
235c362b 1744 ubifs_err(c, "buffer too small %d vs %d", bu->buf_len, len);
4793e7c5
AH
1745 return -EINVAL;
1746 }
1747
1748 /* Do the read */
1749 wbuf = ubifs_get_wbuf(c, lnum);
1750 if (wbuf)
1751 err = read_wbuf(wbuf, bu->buf, len, lnum, offs);
1752 else
d304820a 1753 err = ubifs_leb_read(c, lnum, bu->buf, offs, len, 0);
4793e7c5
AH
1754
1755 /* Check for a race with GC */
1756 if (maybe_leb_gced(c, lnum, bu->gc_seq))
1757 return -EAGAIN;
1758
1759 if (err && err != -EBADMSG) {
235c362b 1760 ubifs_err(c, "failed to read from LEB %d:%d, error %d",
4793e7c5 1761 lnum, offs, err);
7c46d0ae 1762 dump_stack();
515315a1 1763 dbg_tnck(&bu->key, "key ");
4793e7c5
AH
1764 return err;
1765 }
1766
1767 /* Validate the nodes read */
1768 buf = bu->buf;
1769 for (i = 0; i < bu->cnt; i++) {
1770 err = validate_data_node(c, buf, &bu->zbranch[i]);
1771 if (err)
1772 return err;
1773 buf = buf + ALIGN(bu->zbranch[i].len, 8);
1774 }
1775
1776 return 0;
1777}
1778
1e51764a
AB
1779/**
1780 * do_lookup_nm- look up a "hashed" node.
1781 * @c: UBIFS file-system description object
1782 * @key: node key to lookup
1783 * @node: the node is returned here
1784 * @nm: node name
1785 *
528e3d17 1786 * This function looks up and reads a node which contains name hash in the key.
1e51764a
AB
1787 * Since the hash may have collisions, there may be many nodes with the same
1788 * key, so we have to sequentially look to all of them until the needed one is
1789 * found. This function returns zero in case of success, %-ENOENT if the node
1790 * was not found, and a negative error code in case of failure.
1791 */
1792static int do_lookup_nm(struct ubifs_info *c, const union ubifs_key *key,
f4f61d2c 1793 void *node, const struct fscrypt_name *nm)
1e51764a
AB
1794{
1795 int found, n, err;
1796 struct ubifs_znode *znode;
1e51764a 1797
f4f61d2c 1798 //dbg_tnck(key, "name '%.*s' key ", nm->len, nm->name);
1e51764a
AB
1799 mutex_lock(&c->tnc_mutex);
1800 found = ubifs_lookup_level0(c, key, &znode, &n);
1801 if (!found) {
1802 err = -ENOENT;
1803 goto out_unlock;
1804 } else if (found < 0) {
1805 err = found;
1806 goto out_unlock;
1807 }
1808
1809 ubifs_assert(n >= 0);
1810
1811 err = resolve_collision(c, key, &znode, &n, nm);
1812 dbg_tnc("rc returned %d, znode %p, n %d", err, znode, n);
1813 if (unlikely(err < 0))
1814 goto out_unlock;
1815 if (err == 0) {
1816 err = -ENOENT;
1817 goto out_unlock;
1818 }
1819
b91dc981 1820 err = tnc_read_hashed_node(c, &znode->zbranch[n], node);
1e51764a
AB
1821
1822out_unlock:
1823 mutex_unlock(&c->tnc_mutex);
1824 return err;
1825}
1826
1827/**
1828 * ubifs_tnc_lookup_nm - look up a "hashed" node.
1829 * @c: UBIFS file-system description object
1830 * @key: node key to lookup
1831 * @node: the node is returned here
1832 * @nm: node name
1833 *
528e3d17 1834 * This function looks up and reads a node which contains name hash in the key.
1e51764a
AB
1835 * Since the hash may have collisions, there may be many nodes with the same
1836 * key, so we have to sequentially look to all of them until the needed one is
1837 * found. This function returns zero in case of success, %-ENOENT if the node
1838 * was not found, and a negative error code in case of failure.
1839 */
1840int ubifs_tnc_lookup_nm(struct ubifs_info *c, const union ubifs_key *key,
f4f61d2c 1841 void *node, const struct fscrypt_name *nm)
1e51764a
AB
1842{
1843 int err, len;
1844 const struct ubifs_dent_node *dent = node;
1845
1846 /*
1847 * We assume that in most of the cases there are no name collisions and
1848 * 'ubifs_tnc_lookup()' returns us the right direntry.
1849 */
1850 err = ubifs_tnc_lookup(c, key, node);
1851 if (err)
1852 return err;
1853
1854 len = le16_to_cpu(dent->nlen);
f4f61d2c 1855 if (fname_len(nm) == len && !memcmp(dent->name, fname_name(nm), len))
1e51764a
AB
1856 return 0;
1857
1858 /*
1859 * Unluckily, there are hash collisions and we have to iterate over
1860 * them look at each direntry with colliding name hash sequentially.
1861 */
528e3d17 1862
1e51764a
AB
1863 return do_lookup_nm(c, key, node, nm);
1864}
1865
528e3d17
RW
1866static int do_lookup_dh(struct ubifs_info *c, const union ubifs_key *key,
1867 struct ubifs_dent_node *dent, uint32_t cookie)
1868{
1869 int n, err, type = key_type(c, key);
1870 struct ubifs_znode *znode;
1871 struct ubifs_zbranch *zbr;
1872 union ubifs_key *dkey, start_key;
1873
1874 ubifs_assert(is_hash_key(c, key));
1875
1876 lowest_dent_key(c, &start_key, key_inum(c, key));
1877
1878 mutex_lock(&c->tnc_mutex);
1879 err = ubifs_lookup_level0(c, &start_key, &znode, &n);
1880 if (unlikely(err < 0))
1881 goto out_unlock;
1882
1883 for (;;) {
1884 if (!err) {
1885 err = tnc_next(c, &znode, &n);
1886 if (err)
1887 goto out_unlock;
1888 }
1889
1890 zbr = &znode->zbranch[n];
1891 dkey = &zbr->key;
1892
1893 if (key_inum(c, dkey) != key_inum(c, key) ||
1894 key_type(c, dkey) != type) {
1895 err = -ENOENT;
1896 goto out_unlock;
1897 }
1898
1899 err = tnc_read_hashed_node(c, zbr, dent);
1900 if (err)
1901 goto out_unlock;
1902
1903 if (key_hash(c, key) == key_hash(c, dkey) &&
1904 le32_to_cpu(dent->cookie) == cookie)
1905 goto out_unlock;
1906 }
1907
1908out_unlock:
1909 mutex_unlock(&c->tnc_mutex);
1910 return err;
1911}
1912
1913/**
1914 * ubifs_tnc_lookup_dh - look up a "double hashed" node.
1915 * @c: UBIFS file-system description object
1916 * @key: node key to lookup
1917 * @node: the node is returned here
1918 * @cookie: node cookie for collision resolution
1919 *
1920 * This function looks up and reads a node which contains name hash in the key.
1921 * Since the hash may have collisions, there may be many nodes with the same
1922 * key, so we have to sequentially look to all of them until the needed one
1923 * with the same cookie value is found.
1924 * This function returns zero in case of success, %-ENOENT if the node
1925 * was not found, and a negative error code in case of failure.
1926 */
1927int ubifs_tnc_lookup_dh(struct ubifs_info *c, const union ubifs_key *key,
1928 void *node, uint32_t cookie)
1929{
1930 int err;
1931 const struct ubifs_dent_node *dent = node;
1932
d63d61c1
RW
1933 if (!c->double_hash)
1934 return -EOPNOTSUPP;
1935
528e3d17
RW
1936 /*
1937 * We assume that in most of the cases there are no name collisions and
1938 * 'ubifs_tnc_lookup()' returns us the right direntry.
1939 */
1940 err = ubifs_tnc_lookup(c, key, node);
1941 if (err)
1942 return err;
1943
1944 if (le32_to_cpu(dent->cookie) == cookie)
1945 return 0;
1946
1947 /*
1948 * Unluckily, there are hash collisions and we have to iterate over
1949 * them look at each direntry with colliding name hash sequentially.
1950 */
1951 return do_lookup_dh(c, key, node, cookie);
1952}
1953
1e51764a
AB
1954/**
1955 * correct_parent_keys - correct parent znodes' keys.
1956 * @c: UBIFS file-system description object
1957 * @znode: znode to correct parent znodes for
1958 *
1959 * This is a helper function for 'tnc_insert()'. When the key of the leftmost
1960 * zbranch changes, keys of parent znodes have to be corrected. This helper
1961 * function is called in such situations and corrects the keys if needed.
1962 */
1963static void correct_parent_keys(const struct ubifs_info *c,
1964 struct ubifs_znode *znode)
1965{
1966 union ubifs_key *key, *key1;
1967
1968 ubifs_assert(znode->parent);
1969 ubifs_assert(znode->iip == 0);
1970
1971 key = &znode->zbranch[0].key;
1972 key1 = &znode->parent->zbranch[0].key;
1973
1974 while (keys_cmp(c, key, key1) < 0) {
1975 key_copy(c, key, key1);
1976 znode = znode->parent;
1977 znode->alt = 1;
1978 if (!znode->parent || znode->iip)
1979 break;
1980 key1 = &znode->parent->zbranch[0].key;
1981 }
1982}
1983
1984/**
1985 * insert_zbranch - insert a zbranch into a znode.
1986 * @znode: znode into which to insert
1987 * @zbr: zbranch to insert
1988 * @n: slot number to insert to
1989 *
1990 * This is a helper function for 'tnc_insert()'. UBIFS does not allow "gaps" in
1991 * znode's array of zbranches and keeps zbranches consolidated, so when a new
1992 * zbranch has to be inserted to the @znode->zbranches[]' array at the @n-th
1993 * slot, zbranches starting from @n have to be moved right.
1994 */
1995static void insert_zbranch(struct ubifs_znode *znode,
1996 const struct ubifs_zbranch *zbr, int n)
1997{
1998 int i;
1999
2000 ubifs_assert(ubifs_zn_dirty(znode));
2001
2002 if (znode->level) {
2003 for (i = znode->child_cnt; i > n; i--) {
2004 znode->zbranch[i] = znode->zbranch[i - 1];
2005 if (znode->zbranch[i].znode)
2006 znode->zbranch[i].znode->iip = i;
2007 }
2008 if (zbr->znode)
2009 zbr->znode->iip = n;
2010 } else
2011 for (i = znode->child_cnt; i > n; i--)
2012 znode->zbranch[i] = znode->zbranch[i - 1];
2013
2014 znode->zbranch[n] = *zbr;
2015 znode->child_cnt += 1;
2016
2017 /*
2018 * After inserting at slot zero, the lower bound of the key range of
2019 * this znode may have changed. If this znode is subsequently split
2020 * then the upper bound of the key range may change, and furthermore
2021 * it could change to be lower than the original lower bound. If that
2022 * happens, then it will no longer be possible to find this znode in the
2023 * TNC using the key from the index node on flash. That is bad because
2024 * if it is not found, we will assume it is obsolete and may overwrite
2025 * it. Then if there is an unclean unmount, we will start using the
2026 * old index which will be broken.
2027 *
2028 * So we first mark znodes that have insertions at slot zero, and then
2029 * if they are split we add their lnum/offs to the old_idx tree.
2030 */
2031 if (n == 0)
2032 znode->alt = 1;
2033}
2034
2035/**
2036 * tnc_insert - insert a node into TNC.
2037 * @c: UBIFS file-system description object
2038 * @znode: znode to insert into
2039 * @zbr: branch to insert
2040 * @n: slot number to insert new zbranch to
2041 *
2042 * This function inserts a new node described by @zbr into znode @znode. If
2043 * znode does not have a free slot for new zbranch, it is split. Parent znodes
2044 * are splat as well if needed. Returns zero in case of success or a negative
2045 * error code in case of failure.
2046 */
2047static int tnc_insert(struct ubifs_info *c, struct ubifs_znode *znode,
2048 struct ubifs_zbranch *zbr, int n)
2049{
2050 struct ubifs_znode *zn, *zi, *zp;
2051 int i, keep, move, appending = 0;
2242c689 2052 union ubifs_key *key = &zbr->key, *key1;
1e51764a
AB
2053
2054 ubifs_assert(n >= 0 && n <= c->fanout);
2055
2056 /* Implement naive insert for now */
2057again:
2058 zp = znode->parent;
2059 if (znode->child_cnt < c->fanout) {
2060 ubifs_assert(n != c->fanout);
515315a1 2061 dbg_tnck(key, "inserted at %d level %d, key ", n, znode->level);
1e51764a
AB
2062
2063 insert_zbranch(znode, zbr, n);
2064
2065 /* Ensure parent's key is correct */
2066 if (n == 0 && zp && znode->iip == 0)
2067 correct_parent_keys(c, znode);
2068
2069 return 0;
2070 }
2071
2072 /*
2073 * Unfortunately, @znode does not have more empty slots and we have to
2074 * split it.
2075 */
515315a1 2076 dbg_tnck(key, "splitting level %d, key ", znode->level);
1e51764a
AB
2077
2078 if (znode->alt)
2079 /*
2080 * We can no longer be sure of finding this znode by key, so we
2081 * record it in the old_idx tree.
2082 */
2083 ins_clr_old_idx_znode(c, znode);
2084
2085 zn = kzalloc(c->max_znode_sz, GFP_NOFS);
2086 if (!zn)
2087 return -ENOMEM;
2088 zn->parent = zp;
2089 zn->level = znode->level;
2090
2091 /* Decide where to split */
2242c689
AH
2092 if (znode->level == 0 && key_type(c, key) == UBIFS_DATA_KEY) {
2093 /* Try not to split consecutive data keys */
2094 if (n == c->fanout) {
2095 key1 = &znode->zbranch[n - 1].key;
2096 if (key_inum(c, key1) == key_inum(c, key) &&
2097 key_type(c, key1) == UBIFS_DATA_KEY)
2098 appending = 1;
2099 } else
2100 goto check_split;
2101 } else if (appending && n != c->fanout) {
2102 /* Try not to split consecutive data keys */
2103 appending = 0;
2104check_split:
2105 if (n >= (c->fanout + 1) / 2) {
2106 key1 = &znode->zbranch[0].key;
2107 if (key_inum(c, key1) == key_inum(c, key) &&
2108 key_type(c, key1) == UBIFS_DATA_KEY) {
2109 key1 = &znode->zbranch[n].key;
2110 if (key_inum(c, key1) != key_inum(c, key) ||
2111 key_type(c, key1) != UBIFS_DATA_KEY) {
2112 keep = n;
2113 move = c->fanout - keep;
2114 zi = znode;
2115 goto do_split;
2116 }
2117 }
2118 }
1e51764a
AB
2119 }
2120
2121 if (appending) {
2122 keep = c->fanout;
2123 move = 0;
2124 } else {
2125 keep = (c->fanout + 1) / 2;
2126 move = c->fanout - keep;
2127 }
2128
2129 /*
2130 * Although we don't at present, we could look at the neighbors and see
2131 * if we can move some zbranches there.
2132 */
2133
2134 if (n < keep) {
2135 /* Insert into existing znode */
2136 zi = znode;
2137 move += 1;
2138 keep -= 1;
2139 } else {
2140 /* Insert into new znode */
2141 zi = zn;
2142 n -= keep;
2143 /* Re-parent */
2144 if (zn->level != 0)
2145 zbr->znode->parent = zn;
2146 }
2147
2242c689
AH
2148do_split:
2149
1e51764a
AB
2150 __set_bit(DIRTY_ZNODE, &zn->flags);
2151 atomic_long_inc(&c->dirty_zn_cnt);
2152
2153 zn->child_cnt = move;
2154 znode->child_cnt = keep;
2155
2156 dbg_tnc("moving %d, keeping %d", move, keep);
2157
2158 /* Move zbranch */
2159 for (i = 0; i < move; i++) {
2160 zn->zbranch[i] = znode->zbranch[keep + i];
2161 /* Re-parent */
2162 if (zn->level != 0)
2163 if (zn->zbranch[i].znode) {
2164 zn->zbranch[i].znode->parent = zn;
2165 zn->zbranch[i].znode->iip = i;
2166 }
2167 }
2168
2169 /* Insert new key and branch */
515315a1 2170 dbg_tnck(key, "inserting at %d level %d, key ", n, zn->level);
1e51764a
AB
2171
2172 insert_zbranch(zi, zbr, n);
2173
2174 /* Insert new znode (produced by spitting) into the parent */
2175 if (zp) {
2242c689
AH
2176 if (n == 0 && zi == znode && znode->iip == 0)
2177 correct_parent_keys(c, znode);
2178
1e51764a
AB
2179 /* Locate insertion point */
2180 n = znode->iip + 1;
1e51764a
AB
2181
2182 /* Tail recursion */
2183 zbr->key = zn->zbranch[0].key;
2184 zbr->znode = zn;
2185 zbr->lnum = 0;
2186 zbr->offs = 0;
2187 zbr->len = 0;
2188 znode = zp;
2189
2190 goto again;
2191 }
2192
2193 /* We have to split root znode */
2194 dbg_tnc("creating new zroot at level %d", znode->level + 1);
2195
2196 zi = kzalloc(c->max_znode_sz, GFP_NOFS);
2197 if (!zi)
2198 return -ENOMEM;
2199
2200 zi->child_cnt = 2;
2201 zi->level = znode->level + 1;
2202
2203 __set_bit(DIRTY_ZNODE, &zi->flags);
2204 atomic_long_inc(&c->dirty_zn_cnt);
2205
2206 zi->zbranch[0].key = znode->zbranch[0].key;
2207 zi->zbranch[0].znode = znode;
2208 zi->zbranch[0].lnum = c->zroot.lnum;
2209 zi->zbranch[0].offs = c->zroot.offs;
2210 zi->zbranch[0].len = c->zroot.len;
2211 zi->zbranch[1].key = zn->zbranch[0].key;
2212 zi->zbranch[1].znode = zn;
2213
2214 c->zroot.lnum = 0;
2215 c->zroot.offs = 0;
2216 c->zroot.len = 0;
2217 c->zroot.znode = zi;
2218
2219 zn->parent = zi;
2220 zn->iip = 1;
2221 znode->parent = zi;
2222 znode->iip = 0;
2223
2224 return 0;
2225}
2226
2227/**
2228 * ubifs_tnc_add - add a node to TNC.
2229 * @c: UBIFS file-system description object
2230 * @key: key to add
2231 * @lnum: LEB number of node
2232 * @offs: node offset
2233 * @len: node length
2234 *
2235 * This function adds a node with key @key to TNC. The node may be new or it may
2236 * obsolete some existing one. Returns %0 on success or negative error code on
2237 * failure.
2238 */
2239int ubifs_tnc_add(struct ubifs_info *c, const union ubifs_key *key, int lnum,
2240 int offs, int len)
2241{
2242 int found, n, err = 0;
2243 struct ubifs_znode *znode;
2244
2245 mutex_lock(&c->tnc_mutex);
515315a1 2246 dbg_tnck(key, "%d:%d, len %d, key ", lnum, offs, len);
1e51764a
AB
2247 found = lookup_level0_dirty(c, key, &znode, &n);
2248 if (!found) {
2249 struct ubifs_zbranch zbr;
2250
2251 zbr.znode = NULL;
2252 zbr.lnum = lnum;
2253 zbr.offs = offs;
2254 zbr.len = len;
2255 key_copy(c, key, &zbr.key);
2256 err = tnc_insert(c, znode, &zbr, n + 1);
2257 } else if (found == 1) {
2258 struct ubifs_zbranch *zbr = &znode->zbranch[n];
2259
2260 lnc_free(zbr);
2261 err = ubifs_add_dirt(c, zbr->lnum, zbr->len);
2262 zbr->lnum = lnum;
2263 zbr->offs = offs;
2264 zbr->len = len;
2265 } else
2266 err = found;
2267 if (!err)
2268 err = dbg_check_tnc(c, 0);
2269 mutex_unlock(&c->tnc_mutex);
2270
2271 return err;
2272}
2273
2274/**
2275 * ubifs_tnc_replace - replace a node in the TNC only if the old node is found.
2276 * @c: UBIFS file-system description object
2277 * @key: key to add
2278 * @old_lnum: LEB number of old node
2279 * @old_offs: old node offset
2280 * @lnum: LEB number of node
2281 * @offs: node offset
2282 * @len: node length
2283 *
2284 * This function replaces a node with key @key in the TNC only if the old node
2285 * is found. This function is called by garbage collection when node are moved.
2286 * Returns %0 on success or negative error code on failure.
2287 */
2288int ubifs_tnc_replace(struct ubifs_info *c, const union ubifs_key *key,
2289 int old_lnum, int old_offs, int lnum, int offs, int len)
2290{
2291 int found, n, err = 0;
2292 struct ubifs_znode *znode;
2293
2294 mutex_lock(&c->tnc_mutex);
515315a1
AB
2295 dbg_tnck(key, "old LEB %d:%d, new LEB %d:%d, len %d, key ", old_lnum,
2296 old_offs, lnum, offs, len);
1e51764a
AB
2297 found = lookup_level0_dirty(c, key, &znode, &n);
2298 if (found < 0) {
2299 err = found;
2300 goto out_unlock;
2301 }
2302
2303 if (found == 1) {
2304 struct ubifs_zbranch *zbr = &znode->zbranch[n];
2305
2306 found = 0;
2307 if (zbr->lnum == old_lnum && zbr->offs == old_offs) {
2308 lnc_free(zbr);
2309 err = ubifs_add_dirt(c, zbr->lnum, zbr->len);
2310 if (err)
2311 goto out_unlock;
2312 zbr->lnum = lnum;
2313 zbr->offs = offs;
2314 zbr->len = len;
2315 found = 1;
2316 } else if (is_hash_key(c, key)) {
2317 found = resolve_collision_directly(c, key, &znode, &n,
2318 old_lnum, old_offs);
2319 dbg_tnc("rc returned %d, znode %p, n %d, LEB %d:%d",
2320 found, znode, n, old_lnum, old_offs);
2321 if (found < 0) {
2322 err = found;
2323 goto out_unlock;
2324 }
2325
2326 if (found) {
2327 /* Ensure the znode is dirtied */
2328 if (znode->cnext || !ubifs_zn_dirty(znode)) {
f92b9826
AB
2329 znode = dirty_cow_bottom_up(c, znode);
2330 if (IS_ERR(znode)) {
2331 err = PTR_ERR(znode);
2332 goto out_unlock;
2333 }
1e51764a
AB
2334 }
2335 zbr = &znode->zbranch[n];
2336 lnc_free(zbr);
2337 err = ubifs_add_dirt(c, zbr->lnum,
2338 zbr->len);
2339 if (err)
2340 goto out_unlock;
2341 zbr->lnum = lnum;
2342 zbr->offs = offs;
2343 zbr->len = len;
2344 }
2345 }
2346 }
2347
2348 if (!found)
2349 err = ubifs_add_dirt(c, lnum, len);
2350
2351 if (!err)
2352 err = dbg_check_tnc(c, 0);
2353
2354out_unlock:
2355 mutex_unlock(&c->tnc_mutex);
2356 return err;
2357}
2358
2359/**
2360 * ubifs_tnc_add_nm - add a "hashed" node to TNC.
2361 * @c: UBIFS file-system description object
2362 * @key: key to add
2363 * @lnum: LEB number of node
2364 * @offs: node offset
2365 * @len: node length
2366 * @nm: node name
2367 *
2368 * This is the same as 'ubifs_tnc_add()' but it should be used with keys which
2369 * may have collisions, like directory entry keys.
2370 */
2371int ubifs_tnc_add_nm(struct ubifs_info *c, const union ubifs_key *key,
f4f61d2c
RW
2372 int lnum, int offs, int len,
2373 const struct fscrypt_name *nm)
1e51764a
AB
2374{
2375 int found, n, err = 0;
2376 struct ubifs_znode *znode;
2377
2378 mutex_lock(&c->tnc_mutex);
f4f61d2c
RW
2379 //dbg_tnck(key, "LEB %d:%d, name '%.*s', key ",
2380 // lnum, offs, nm->len, nm->name);
1e51764a
AB
2381 found = lookup_level0_dirty(c, key, &znode, &n);
2382 if (found < 0) {
2383 err = found;
2384 goto out_unlock;
2385 }
2386
2387 if (found == 1) {
2388 if (c->replaying)
2389 found = fallible_resolve_collision(c, key, &znode, &n,
2390 nm, 1);
2391 else
2392 found = resolve_collision(c, key, &znode, &n, nm);
2393 dbg_tnc("rc returned %d, znode %p, n %d", found, znode, n);
2394 if (found < 0) {
2395 err = found;
2396 goto out_unlock;
2397 }
2398
2399 /* Ensure the znode is dirtied */
2400 if (znode->cnext || !ubifs_zn_dirty(znode)) {
f92b9826
AB
2401 znode = dirty_cow_bottom_up(c, znode);
2402 if (IS_ERR(znode)) {
2403 err = PTR_ERR(znode);
2404 goto out_unlock;
2405 }
1e51764a
AB
2406 }
2407
2408 if (found == 1) {
2409 struct ubifs_zbranch *zbr = &znode->zbranch[n];
2410
2411 lnc_free(zbr);
2412 err = ubifs_add_dirt(c, zbr->lnum, zbr->len);
2413 zbr->lnum = lnum;
2414 zbr->offs = offs;
2415 zbr->len = len;
2416 goto out_unlock;
2417 }
2418 }
2419
2420 if (!found) {
2421 struct ubifs_zbranch zbr;
2422
2423 zbr.znode = NULL;
2424 zbr.lnum = lnum;
2425 zbr.offs = offs;
2426 zbr.len = len;
2427 key_copy(c, key, &zbr.key);
2428 err = tnc_insert(c, znode, &zbr, n + 1);
2429 if (err)
2430 goto out_unlock;
2431 if (c->replaying) {
2432 /*
2433 * We did not find it in the index so there may be a
2434 * dangling branch still in the index. So we remove it
2435 * by passing 'ubifs_tnc_remove_nm()' the same key but
2436 * an unmatchable name.
2437 */
f4f61d2c 2438 struct fscrypt_name noname = { .disk_name = { .name = "", .len = 1 } };
1e51764a
AB
2439
2440 err = dbg_check_tnc(c, 0);
2441 mutex_unlock(&c->tnc_mutex);
2442 if (err)
2443 return err;
2444 return ubifs_tnc_remove_nm(c, key, &noname);
2445 }
2446 }
2447
2448out_unlock:
2449 if (!err)
2450 err = dbg_check_tnc(c, 0);
2451 mutex_unlock(&c->tnc_mutex);
2452 return err;
2453}
2454
2455/**
2456 * tnc_delete - delete a znode form TNC.
2457 * @c: UBIFS file-system description object
2458 * @znode: znode to delete from
2459 * @n: zbranch slot number to delete
2460 *
2461 * This function deletes a leaf node from @n-th slot of @znode. Returns zero in
2462 * case of success and a negative error code in case of failure.
2463 */
2464static int tnc_delete(struct ubifs_info *c, struct ubifs_znode *znode, int n)
2465{
2466 struct ubifs_zbranch *zbr;
2467 struct ubifs_znode *zp;
2468 int i, err;
2469
2470 /* Delete without merge for now */
2471 ubifs_assert(znode->level == 0);
2472 ubifs_assert(n >= 0 && n < c->fanout);
515315a1 2473 dbg_tnck(&znode->zbranch[n].key, "deleting key ");
1e51764a
AB
2474
2475 zbr = &znode->zbranch[n];
2476 lnc_free(zbr);
2477
2478 err = ubifs_add_dirt(c, zbr->lnum, zbr->len);
2479 if (err) {
edf6be24 2480 ubifs_dump_znode(c, znode);
1e51764a
AB
2481 return err;
2482 }
2483
2484 /* We do not "gap" zbranch slots */
2485 for (i = n; i < znode->child_cnt - 1; i++)
2486 znode->zbranch[i] = znode->zbranch[i + 1];
2487 znode->child_cnt -= 1;
2488
2489 if (znode->child_cnt > 0)
2490 return 0;
2491
2492 /*
2493 * This was the last zbranch, we have to delete this znode from the
2494 * parent.
2495 */
2496
2497 do {
f42eed7c 2498 ubifs_assert(!ubifs_zn_obsolete(znode));
1e51764a
AB
2499 ubifs_assert(ubifs_zn_dirty(znode));
2500
2501 zp = znode->parent;
2502 n = znode->iip;
2503
2504 atomic_long_dec(&c->dirty_zn_cnt);
2505
2506 err = insert_old_idx_znode(c, znode);
2507 if (err)
2508 return err;
2509
2510 if (znode->cnext) {
2511 __set_bit(OBSOLETE_ZNODE, &znode->flags);
2512 atomic_long_inc(&c->clean_zn_cnt);
2513 atomic_long_inc(&ubifs_clean_zn_cnt);
2514 } else
2515 kfree(znode);
2516 znode = zp;
2517 } while (znode->child_cnt == 1); /* while removing last child */
2518
2519 /* Remove from znode, entry n - 1 */
2520 znode->child_cnt -= 1;
2521 ubifs_assert(znode->level != 0);
2522 for (i = n; i < znode->child_cnt; i++) {
2523 znode->zbranch[i] = znode->zbranch[i + 1];
2524 if (znode->zbranch[i].znode)
2525 znode->zbranch[i].znode->iip = i;
2526 }
2527
2528 /*
2529 * If this is the root and it has only 1 child then
2530 * collapse the tree.
2531 */
2532 if (!znode->parent) {
2533 while (znode->child_cnt == 1 && znode->level != 0) {
2534 zp = znode;
2535 zbr = &znode->zbranch[0];
2536 znode = get_znode(c, znode, 0);
2537 if (IS_ERR(znode))
2538 return PTR_ERR(znode);
2539 znode = dirty_cow_znode(c, zbr);
2540 if (IS_ERR(znode))
2541 return PTR_ERR(znode);
2542 znode->parent = NULL;
2543 znode->iip = 0;
2544 if (c->zroot.len) {
2545 err = insert_old_idx(c, c->zroot.lnum,
2546 c->zroot.offs);
2547 if (err)
2548 return err;
2549 }
2550 c->zroot.lnum = zbr->lnum;
2551 c->zroot.offs = zbr->offs;
2552 c->zroot.len = zbr->len;
2553 c->zroot.znode = znode;
f42eed7c
AB
2554 ubifs_assert(!ubifs_zn_obsolete(zp));
2555 ubifs_assert(ubifs_zn_dirty(zp));
1e51764a
AB
2556 atomic_long_dec(&c->dirty_zn_cnt);
2557
2558 if (zp->cnext) {
2559 __set_bit(OBSOLETE_ZNODE, &zp->flags);
2560 atomic_long_inc(&c->clean_zn_cnt);
2561 atomic_long_inc(&ubifs_clean_zn_cnt);
2562 } else
2563 kfree(zp);
2564 }
2565 }
2566
2567 return 0;
2568}
2569
2570/**
2571 * ubifs_tnc_remove - remove an index entry of a node.
2572 * @c: UBIFS file-system description object
2573 * @key: key of node
2574 *
2575 * Returns %0 on success or negative error code on failure.
2576 */
2577int ubifs_tnc_remove(struct ubifs_info *c, const union ubifs_key *key)
2578{
2579 int found, n, err = 0;
2580 struct ubifs_znode *znode;
2581
2582 mutex_lock(&c->tnc_mutex);
515315a1 2583 dbg_tnck(key, "key ");
1e51764a
AB
2584 found = lookup_level0_dirty(c, key, &znode, &n);
2585 if (found < 0) {
2586 err = found;
2587 goto out_unlock;
2588 }
2589 if (found == 1)
2590 err = tnc_delete(c, znode, n);
2591 if (!err)
2592 err = dbg_check_tnc(c, 0);
2593
2594out_unlock:
2595 mutex_unlock(&c->tnc_mutex);
2596 return err;
2597}
2598
2599/**
2600 * ubifs_tnc_remove_nm - remove an index entry for a "hashed" node.
2601 * @c: UBIFS file-system description object
2602 * @key: key of node
2603 * @nm: directory entry name
2604 *
2605 * Returns %0 on success or negative error code on failure.
2606 */
2607int ubifs_tnc_remove_nm(struct ubifs_info *c, const union ubifs_key *key,
f4f61d2c 2608 const struct fscrypt_name *nm)
1e51764a
AB
2609{
2610 int n, err;
2611 struct ubifs_znode *znode;
2612
2613 mutex_lock(&c->tnc_mutex);
f4f61d2c 2614 //dbg_tnck(key, "%.*s, key ", nm->len, nm->name);
1e51764a
AB
2615 err = lookup_level0_dirty(c, key, &znode, &n);
2616 if (err < 0)
2617 goto out_unlock;
2618
2619 if (err) {
2620 if (c->replaying)
2621 err = fallible_resolve_collision(c, key, &znode, &n,
2622 nm, 0);
2623 else
2624 err = resolve_collision(c, key, &znode, &n, nm);
2625 dbg_tnc("rc returned %d, znode %p, n %d", err, znode, n);
2626 if (err < 0)
2627 goto out_unlock;
2628 if (err) {
2629 /* Ensure the znode is dirtied */
2630 if (znode->cnext || !ubifs_zn_dirty(znode)) {
c4361570
AB
2631 znode = dirty_cow_bottom_up(c, znode);
2632 if (IS_ERR(znode)) {
2633 err = PTR_ERR(znode);
2634 goto out_unlock;
2635 }
1e51764a
AB
2636 }
2637 err = tnc_delete(c, znode, n);
2638 }
2639 }
2640
2641out_unlock:
2642 if (!err)
2643 err = dbg_check_tnc(c, 0);
2644 mutex_unlock(&c->tnc_mutex);
2645 return err;
2646}
2647
2648/**
2649 * key_in_range - determine if a key falls within a range of keys.
2650 * @c: UBIFS file-system description object
2651 * @key: key to check
2652 * @from_key: lowest key in range
2653 * @to_key: highest key in range
2654 *
2655 * This function returns %1 if the key is in range and %0 otherwise.
2656 */
2657static int key_in_range(struct ubifs_info *c, union ubifs_key *key,
2658 union ubifs_key *from_key, union ubifs_key *to_key)
2659{
2660 if (keys_cmp(c, key, from_key) < 0)
2661 return 0;
2662 if (keys_cmp(c, key, to_key) > 0)
2663 return 0;
2664 return 1;
2665}
2666
2667/**
2668 * ubifs_tnc_remove_range - remove index entries in range.
2669 * @c: UBIFS file-system description object
2670 * @from_key: lowest key to remove
2671 * @to_key: highest key to remove
2672 *
2673 * This function removes index entries starting at @from_key and ending at
2674 * @to_key. This function returns zero in case of success and a negative error
2675 * code in case of failure.
2676 */
2677int ubifs_tnc_remove_range(struct ubifs_info *c, union ubifs_key *from_key,
2678 union ubifs_key *to_key)
2679{
2680 int i, n, k, err = 0;
2681 struct ubifs_znode *znode;
2682 union ubifs_key *key;
2683
2684 mutex_lock(&c->tnc_mutex);
2685 while (1) {
2686 /* Find first level 0 znode that contains keys to remove */
2687 err = ubifs_lookup_level0(c, from_key, &znode, &n);
2688 if (err < 0)
2689 goto out_unlock;
2690
2691 if (err)
2692 key = from_key;
2693 else {
2694 err = tnc_next(c, &znode, &n);
2695 if (err == -ENOENT) {
2696 err = 0;
2697 goto out_unlock;
2698 }
2699 if (err < 0)
2700 goto out_unlock;
2701 key = &znode->zbranch[n].key;
2702 if (!key_in_range(c, key, from_key, to_key)) {
2703 err = 0;
2704 goto out_unlock;
2705 }
2706 }
2707
2708 /* Ensure the znode is dirtied */
2709 if (znode->cnext || !ubifs_zn_dirty(znode)) {
f92b9826
AB
2710 znode = dirty_cow_bottom_up(c, znode);
2711 if (IS_ERR(znode)) {
2712 err = PTR_ERR(znode);
2713 goto out_unlock;
2714 }
1e51764a
AB
2715 }
2716
2717 /* Remove all keys in range except the first */
2718 for (i = n + 1, k = 0; i < znode->child_cnt; i++, k++) {
2719 key = &znode->zbranch[i].key;
2720 if (!key_in_range(c, key, from_key, to_key))
2721 break;
2722 lnc_free(&znode->zbranch[i]);
2723 err = ubifs_add_dirt(c, znode->zbranch[i].lnum,
2724 znode->zbranch[i].len);
2725 if (err) {
edf6be24 2726 ubifs_dump_znode(c, znode);
1e51764a
AB
2727 goto out_unlock;
2728 }
515315a1 2729 dbg_tnck(key, "removing key ");
1e51764a
AB
2730 }
2731 if (k) {
2732 for (i = n + 1 + k; i < znode->child_cnt; i++)
2733 znode->zbranch[i - k] = znode->zbranch[i];
2734 znode->child_cnt -= k;
2735 }
2736
2737 /* Now delete the first */
2738 err = tnc_delete(c, znode, n);
2739 if (err)
2740 goto out_unlock;
2741 }
2742
2743out_unlock:
2744 if (!err)
2745 err = dbg_check_tnc(c, 0);
2746 mutex_unlock(&c->tnc_mutex);
2747 return err;
2748}
2749
2750/**
2751 * ubifs_tnc_remove_ino - remove an inode from TNC.
2752 * @c: UBIFS file-system description object
2753 * @inum: inode number to remove
2754 *
2755 * This function remove inode @inum and all the extended attributes associated
2756 * with the anode from TNC and returns zero in case of success or a negative
2757 * error code in case of failure.
2758 */
2759int ubifs_tnc_remove_ino(struct ubifs_info *c, ino_t inum)
2760{
2761 union ubifs_key key1, key2;
2762 struct ubifs_dent_node *xent, *pxent = NULL;
f4f61d2c 2763 struct fscrypt_name nm = {0};
1e51764a 2764
e84461ad 2765 dbg_tnc("ino %lu", (unsigned long)inum);
1e51764a
AB
2766
2767 /*
2768 * Walk all extended attribute entries and remove them together with
2769 * corresponding extended attribute inodes.
2770 */
2771 lowest_xent_key(c, &key1, inum);
2772 while (1) {
2773 ino_t xattr_inum;
2774 int err;
2775
2776 xent = ubifs_tnc_next_ent(c, &key1, &nm);
2777 if (IS_ERR(xent)) {
2778 err = PTR_ERR(xent);
2779 if (err == -ENOENT)
2780 break;
2781 return err;
2782 }
2783
2784 xattr_inum = le64_to_cpu(xent->inum);
e84461ad
AB
2785 dbg_tnc("xent '%s', ino %lu", xent->name,
2786 (unsigned long)xattr_inum);
1e51764a 2787
f4f61d2c
RW
2788 fname_name(&nm) = xent->name;
2789 fname_len(&nm) = le16_to_cpu(xent->nlen);
1e51764a
AB
2790 err = ubifs_tnc_remove_nm(c, &key1, &nm);
2791 if (err) {
2792 kfree(xent);
2793 return err;
2794 }
2795
2796 lowest_ino_key(c, &key1, xattr_inum);
2797 highest_ino_key(c, &key2, xattr_inum);
2798 err = ubifs_tnc_remove_range(c, &key1, &key2);
2799 if (err) {
2800 kfree(xent);
2801 return err;
2802 }
2803
2804 kfree(pxent);
2805 pxent = xent;
2806 key_read(c, &xent->key, &key1);
2807 }
2808
2809 kfree(pxent);
2810 lowest_ino_key(c, &key1, inum);
2811 highest_ino_key(c, &key2, inum);
2812
2813 return ubifs_tnc_remove_range(c, &key1, &key2);
2814}
2815
2816/**
2817 * ubifs_tnc_next_ent - walk directory or extended attribute entries.
2818 * @c: UBIFS file-system description object
2819 * @key: key of last entry
2820 * @nm: name of last entry found or %NULL
2821 *
2822 * This function finds and reads the next directory or extended attribute entry
2823 * after the given key (@key) if there is one. @nm is used to resolve
2824 * collisions.
2825 *
2826 * If the name of the current entry is not known and only the key is known,
2827 * @nm->name has to be %NULL. In this case the semantics of this function is a
2828 * little bit different and it returns the entry corresponding to this key, not
2829 * the next one. If the key was not found, the closest "right" entry is
2830 * returned.
2831 *
2832 * If the fist entry has to be found, @key has to contain the lowest possible
2833 * key value for this inode and @name has to be %NULL.
2834 *
2835 * This function returns the found directory or extended attribute entry node
2836 * in case of success, %-ENOENT is returned if no entry was found, and a
2837 * negative error code is returned in case of failure.
2838 */
2839struct ubifs_dent_node *ubifs_tnc_next_ent(struct ubifs_info *c,
2840 union ubifs_key *key,
f4f61d2c 2841 const struct fscrypt_name *nm)
1e51764a
AB
2842{
2843 int n, err, type = key_type(c, key);
2844 struct ubifs_znode *znode;
2845 struct ubifs_dent_node *dent;
2846 struct ubifs_zbranch *zbr;
2847 union ubifs_key *dkey;
2848
f4f61d2c 2849 //dbg_tnck(key, "%s ", nm->name ? (char *)nm->name : "(lowest)");
1e51764a
AB
2850 ubifs_assert(is_hash_key(c, key));
2851
2852 mutex_lock(&c->tnc_mutex);
2853 err = ubifs_lookup_level0(c, key, &znode, &n);
2854 if (unlikely(err < 0))
2855 goto out_unlock;
2856
f4f61d2c 2857 if (fname_len(nm) > 0) {
1e51764a
AB
2858 if (err) {
2859 /* Handle collisions */
2860 err = resolve_collision(c, key, &znode, &n, nm);
2861 dbg_tnc("rc returned %d, znode %p, n %d",
2862 err, znode, n);
2863 if (unlikely(err < 0))
2864 goto out_unlock;
2865 }
2866
2867 /* Now find next entry */
2868 err = tnc_next(c, &znode, &n);
2869 if (unlikely(err))
2870 goto out_unlock;
2871 } else {
2872 /*
2873 * The full name of the entry was not given, in which case the
2874 * behavior of this function is a little different and it
2875 * returns current entry, not the next one.
2876 */
2877 if (!err) {
2878 /*
2879 * However, the given key does not exist in the TNC
2880 * tree and @znode/@n variables contain the closest
2881 * "preceding" element. Switch to the next one.
2882 */
2883 err = tnc_next(c, &znode, &n);
2884 if (err)
2885 goto out_unlock;
2886 }
2887 }
2888
2889 zbr = &znode->zbranch[n];
2890 dent = kmalloc(zbr->len, GFP_NOFS);
2891 if (unlikely(!dent)) {
2892 err = -ENOMEM;
2893 goto out_unlock;
2894 }
2895
2896 /*
2897 * The above 'tnc_next()' call could lead us to the next inode, check
2898 * this.
2899 */
2900 dkey = &zbr->key;
2901 if (key_inum(c, dkey) != key_inum(c, key) ||
2902 key_type(c, dkey) != type) {
2903 err = -ENOENT;
2904 goto out_free;
2905 }
2906
b91dc981 2907 err = tnc_read_hashed_node(c, zbr, dent);
1e51764a
AB
2908 if (unlikely(err))
2909 goto out_free;
2910
2911 mutex_unlock(&c->tnc_mutex);
2912 return dent;
2913
2914out_free:
2915 kfree(dent);
2916out_unlock:
2917 mutex_unlock(&c->tnc_mutex);
2918 return ERR_PTR(err);
2919}
2920
2921/**
2922 * tnc_destroy_cnext - destroy left-over obsolete znodes from a failed commit.
2923 * @c: UBIFS file-system description object
2924 *
2925 * Destroy left-over obsolete znodes from a failed commit.
2926 */
2927static void tnc_destroy_cnext(struct ubifs_info *c)
2928{
2929 struct ubifs_znode *cnext;
2930
2931 if (!c->cnext)
2932 return;
2933 ubifs_assert(c->cmt_state == COMMIT_BROKEN);
2934 cnext = c->cnext;
2935 do {
2936 struct ubifs_znode *znode = cnext;
2937
2938 cnext = cnext->cnext;
f42eed7c 2939 if (ubifs_zn_obsolete(znode))
1e51764a
AB
2940 kfree(znode);
2941 } while (cnext && cnext != c->cnext);
2942}
2943
2944/**
2945 * ubifs_tnc_close - close TNC subsystem and free all related resources.
2946 * @c: UBIFS file-system description object
2947 */
2948void ubifs_tnc_close(struct ubifs_info *c)
2949{
1e51764a
AB
2950 tnc_destroy_cnext(c);
2951 if (c->zroot.znode) {
380347e9 2952 long n, freed;
83707237 2953
83707237 2954 n = atomic_long_read(&c->clean_zn_cnt);
380347e9 2955 freed = ubifs_destroy_tnc_subtree(c->zroot.znode);
2956 ubifs_assert(freed == n);
83707237 2957 atomic_long_sub(n, &ubifs_clean_zn_cnt);
1e51764a
AB
2958 }
2959 kfree(c->gap_lebs);
2960 kfree(c->ilebs);
2961 destroy_old_idx(c);
2962}
2963
2964/**
2965 * left_znode - get the znode to the left.
2966 * @c: UBIFS file-system description object
2967 * @znode: znode
2968 *
2969 * This function returns a pointer to the znode to the left of @znode or NULL if
2970 * there is not one. A negative error code is returned on failure.
2971 */
2972static struct ubifs_znode *left_znode(struct ubifs_info *c,
2973 struct ubifs_znode *znode)
2974{
2975 int level = znode->level;
2976
2977 while (1) {
2978 int n = znode->iip - 1;
2979
2980 /* Go up until we can go left */
2981 znode = znode->parent;
2982 if (!znode)
2983 return NULL;
2984 if (n >= 0) {
2985 /* Now go down the rightmost branch to 'level' */
2986 znode = get_znode(c, znode, n);
2987 if (IS_ERR(znode))
2988 return znode;
2989 while (znode->level != level) {
2990 n = znode->child_cnt - 1;
2991 znode = get_znode(c, znode, n);
2992 if (IS_ERR(znode))
2993 return znode;
2994 }
2995 break;
2996 }
2997 }
2998 return znode;
2999}
3000
3001/**
3002 * right_znode - get the znode to the right.
3003 * @c: UBIFS file-system description object
3004 * @znode: znode
3005 *
3006 * This function returns a pointer to the znode to the right of @znode or NULL
3007 * if there is not one. A negative error code is returned on failure.
3008 */
3009static struct ubifs_znode *right_znode(struct ubifs_info *c,
3010 struct ubifs_znode *znode)
3011{
3012 int level = znode->level;
3013
3014 while (1) {
3015 int n = znode->iip + 1;
3016
3017 /* Go up until we can go right */
3018 znode = znode->parent;
3019 if (!znode)
3020 return NULL;
3021 if (n < znode->child_cnt) {
3022 /* Now go down the leftmost branch to 'level' */
3023 znode = get_znode(c, znode, n);
3024 if (IS_ERR(znode))
3025 return znode;
3026 while (znode->level != level) {
3027 znode = get_znode(c, znode, 0);
3028 if (IS_ERR(znode))
3029 return znode;
3030 }
3031 break;
3032 }
3033 }
3034 return znode;
3035}
3036
3037/**
3038 * lookup_znode - find a particular indexing node from TNC.
3039 * @c: UBIFS file-system description object
3040 * @key: index node key to lookup
3041 * @level: index node level
3042 * @lnum: index node LEB number
3043 * @offs: index node offset
3044 *
3045 * This function searches an indexing node by its first key @key and its
3046 * address @lnum:@offs. It looks up the indexing tree by pulling all indexing
ba2f48f7 3047 * nodes it traverses to TNC. This function is called for indexing nodes which
1e51764a
AB
3048 * were found on the media by scanning, for example when garbage-collecting or
3049 * when doing in-the-gaps commit. This means that the indexing node which is
3050 * looked for does not have to have exactly the same leftmost key @key, because
3051 * the leftmost key may have been changed, in which case TNC will contain a
3052 * dirty znode which still refers the same @lnum:@offs. This function is clever
3053 * enough to recognize such indexing nodes.
3054 *
3055 * Note, if a znode was deleted or changed too much, then this function will
3056 * not find it. For situations like this UBIFS has the old index RB-tree
3057 * (indexed by @lnum:@offs).
3058 *
3059 * This function returns a pointer to the znode found or %NULL if it is not
3060 * found. A negative error code is returned on failure.
3061 */
3062static struct ubifs_znode *lookup_znode(struct ubifs_info *c,
3063 union ubifs_key *key, int level,
3064 int lnum, int offs)
3065{
3066 struct ubifs_znode *znode, *zn;
3067 int n, nn;
3068
ba2f48f7
AB
3069 ubifs_assert(key_type(c, key) < UBIFS_INVALID_KEY);
3070
1e51764a
AB
3071 /*
3072 * The arguments have probably been read off flash, so don't assume
3073 * they are valid.
3074 */
3075 if (level < 0)
3076 return ERR_PTR(-EINVAL);
3077
3078 /* Get the root znode */
3079 znode = c->zroot.znode;
3080 if (!znode) {
3081 znode = ubifs_load_znode(c, &c->zroot, NULL, 0);
3082 if (IS_ERR(znode))
3083 return znode;
3084 }
3085 /* Check if it is the one we are looking for */
3086 if (c->zroot.lnum == lnum && c->zroot.offs == offs)
3087 return znode;
3088 /* Descend to the parent level i.e. (level + 1) */
3089 if (level >= znode->level)
3090 return NULL;
3091 while (1) {
3092 ubifs_search_zbranch(c, znode, key, &n);
3093 if (n < 0) {
3094 /*
3095 * We reached a znode where the leftmost key is greater
3096 * than the key we are searching for. This is the same
3097 * situation as the one described in a huge comment at
3098 * the end of the 'ubifs_lookup_level0()' function. And
3099 * for exactly the same reasons we have to try to look
3100 * left before giving up.
3101 */
3102 znode = left_znode(c, znode);
3103 if (!znode)
3104 return NULL;
3105 if (IS_ERR(znode))
3106 return znode;
3107 ubifs_search_zbranch(c, znode, key, &n);
3108 ubifs_assert(n >= 0);
3109 }
3110 if (znode->level == level + 1)
3111 break;
3112 znode = get_znode(c, znode, n);
3113 if (IS_ERR(znode))
3114 return znode;
3115 }
3116 /* Check if the child is the one we are looking for */
3117 if (znode->zbranch[n].lnum == lnum && znode->zbranch[n].offs == offs)
3118 return get_znode(c, znode, n);
3119 /* If the key is unique, there is nowhere else to look */
3120 if (!is_hash_key(c, key))
3121 return NULL;
3122 /*
3123 * The key is not unique and so may be also in the znodes to either
3124 * side.
3125 */
3126 zn = znode;
3127 nn = n;
3128 /* Look left */
3129 while (1) {
3130 /* Move one branch to the left */
3131 if (n)
3132 n -= 1;
3133 else {
3134 znode = left_znode(c, znode);
3135 if (!znode)
3136 break;
3137 if (IS_ERR(znode))
3138 return znode;
3139 n = znode->child_cnt - 1;
3140 }
3141 /* Check it */
3142 if (znode->zbranch[n].lnum == lnum &&
3143 znode->zbranch[n].offs == offs)
3144 return get_znode(c, znode, n);
3145 /* Stop if the key is less than the one we are looking for */
3146 if (keys_cmp(c, &znode->zbranch[n].key, key) < 0)
3147 break;
3148 }
3149 /* Back to the middle */
3150 znode = zn;
3151 n = nn;
3152 /* Look right */
3153 while (1) {
3154 /* Move one branch to the right */
3155 if (++n >= znode->child_cnt) {
3156 znode = right_znode(c, znode);
3157 if (!znode)
3158 break;
3159 if (IS_ERR(znode))
3160 return znode;
3161 n = 0;
3162 }
3163 /* Check it */
3164 if (znode->zbranch[n].lnum == lnum &&
3165 znode->zbranch[n].offs == offs)
3166 return get_znode(c, znode, n);
3167 /* Stop if the key is greater than the one we are looking for */
3168 if (keys_cmp(c, &znode->zbranch[n].key, key) > 0)
3169 break;
3170 }
3171 return NULL;
3172}
3173
3174/**
3175 * is_idx_node_in_tnc - determine if an index node is in the TNC.
3176 * @c: UBIFS file-system description object
3177 * @key: key of index node
3178 * @level: index node level
3179 * @lnum: LEB number of index node
3180 * @offs: offset of index node
3181 *
3182 * This function returns %0 if the index node is not referred to in the TNC, %1
3183 * if the index node is referred to in the TNC and the corresponding znode is
3184 * dirty, %2 if an index node is referred to in the TNC and the corresponding
3185 * znode is clean, and a negative error code in case of failure.
3186 *
3187 * Note, the @key argument has to be the key of the first child. Also note,
3188 * this function relies on the fact that 0:0 is never a valid LEB number and
3189 * offset for a main-area node.
3190 */
3191int is_idx_node_in_tnc(struct ubifs_info *c, union ubifs_key *key, int level,
3192 int lnum, int offs)
3193{
3194 struct ubifs_znode *znode;
3195
3196 znode = lookup_znode(c, key, level, lnum, offs);
3197 if (!znode)
3198 return 0;
3199 if (IS_ERR(znode))
3200 return PTR_ERR(znode);
3201
3202 return ubifs_zn_dirty(znode) ? 1 : 2;
3203}
3204
3205/**
3206 * is_leaf_node_in_tnc - determine if a non-indexing not is in the TNC.
3207 * @c: UBIFS file-system description object
3208 * @key: node key
3209 * @lnum: node LEB number
3210 * @offs: node offset
3211 *
3212 * This function returns %1 if the node is referred to in the TNC, %0 if it is
3213 * not, and a negative error code in case of failure.
3214 *
3215 * Note, this function relies on the fact that 0:0 is never a valid LEB number
3216 * and offset for a main-area node.
3217 */
3218static int is_leaf_node_in_tnc(struct ubifs_info *c, union ubifs_key *key,
3219 int lnum, int offs)
3220{
3221 struct ubifs_zbranch *zbr;
3222 struct ubifs_znode *znode, *zn;
3223 int n, found, err, nn;
3224 const int unique = !is_hash_key(c, key);
3225
3226 found = ubifs_lookup_level0(c, key, &znode, &n);
3227 if (found < 0)
3228 return found; /* Error code */
3229 if (!found)
3230 return 0;
3231 zbr = &znode->zbranch[n];
3232 if (lnum == zbr->lnum && offs == zbr->offs)
3233 return 1; /* Found it */
3234 if (unique)
3235 return 0;
3236 /*
3237 * Because the key is not unique, we have to look left
3238 * and right as well
3239 */
3240 zn = znode;
3241 nn = n;
3242 /* Look left */
3243 while (1) {
3244 err = tnc_prev(c, &znode, &n);
3245 if (err == -ENOENT)
3246 break;
3247 if (err)
3248 return err;
3249 if (keys_cmp(c, key, &znode->zbranch[n].key))
3250 break;
3251 zbr = &znode->zbranch[n];
3252 if (lnum == zbr->lnum && offs == zbr->offs)
3253 return 1; /* Found it */
3254 }
3255 /* Look right */
3256 znode = zn;
3257 n = nn;
3258 while (1) {
3259 err = tnc_next(c, &znode, &n);
3260 if (err) {
3261 if (err == -ENOENT)
3262 return 0;
3263 return err;
3264 }
3265 if (keys_cmp(c, key, &znode->zbranch[n].key))
3266 break;
3267 zbr = &znode->zbranch[n];
3268 if (lnum == zbr->lnum && offs == zbr->offs)
3269 return 1; /* Found it */
3270 }
3271 return 0;
3272}
3273
3274/**
3275 * ubifs_tnc_has_node - determine whether a node is in the TNC.
3276 * @c: UBIFS file-system description object
3277 * @key: node key
3278 * @level: index node level (if it is an index node)
3279 * @lnum: node LEB number
3280 * @offs: node offset
3281 * @is_idx: non-zero if the node is an index node
3282 *
3283 * This function returns %1 if the node is in the TNC, %0 if it is not, and a
3284 * negative error code in case of failure. For index nodes, @key has to be the
3285 * key of the first child. An index node is considered to be in the TNC only if
3286 * the corresponding znode is clean or has not been loaded.
3287 */
3288int ubifs_tnc_has_node(struct ubifs_info *c, union ubifs_key *key, int level,
3289 int lnum, int offs, int is_idx)
3290{
3291 int err;
3292
3293 mutex_lock(&c->tnc_mutex);
3294 if (is_idx) {
3295 err = is_idx_node_in_tnc(c, key, level, lnum, offs);
3296 if (err < 0)
3297 goto out_unlock;
3298 if (err == 1)
3299 /* The index node was found but it was dirty */
3300 err = 0;
3301 else if (err == 2)
3302 /* The index node was found and it was clean */
3303 err = 1;
3304 else
3305 BUG_ON(err != 0);
3306 } else
3307 err = is_leaf_node_in_tnc(c, key, lnum, offs);
3308
3309out_unlock:
3310 mutex_unlock(&c->tnc_mutex);
3311 return err;
3312}
3313
3314/**
3315 * ubifs_dirty_idx_node - dirty an index node.
3316 * @c: UBIFS file-system description object
3317 * @key: index node key
3318 * @level: index node level
3319 * @lnum: index node LEB number
3320 * @offs: index node offset
3321 *
3322 * This function loads and dirties an index node so that it can be garbage
3323 * collected. The @key argument has to be the key of the first child. This
3324 * function relies on the fact that 0:0 is never a valid LEB number and offset
3325 * for a main-area node. Returns %0 on success and a negative error code on
3326 * failure.
3327 */
3328int ubifs_dirty_idx_node(struct ubifs_info *c, union ubifs_key *key, int level,
3329 int lnum, int offs)
3330{
3331 struct ubifs_znode *znode;
3332 int err = 0;
3333
3334 mutex_lock(&c->tnc_mutex);
3335 znode = lookup_znode(c, key, level, lnum, offs);
3336 if (!znode)
3337 goto out_unlock;
3338 if (IS_ERR(znode)) {
3339 err = PTR_ERR(znode);
3340 goto out_unlock;
3341 }
3342 znode = dirty_cow_bottom_up(c, znode);
3343 if (IS_ERR(znode)) {
3344 err = PTR_ERR(znode);
3345 goto out_unlock;
3346 }
3347
3348out_unlock:
3349 mutex_unlock(&c->tnc_mutex);
3350 return err;
3351}
e3c3efc2 3352
e3c3efc2
AB
3353/**
3354 * dbg_check_inode_size - check if inode size is correct.
3355 * @c: UBIFS file-system description object
3356 * @inum: inode number
3357 * @size: inode size
3358 *
3359 * This function makes sure that the inode size (@size) is correct and it does
3360 * not have any pages beyond @size. Returns zero if the inode is OK, %-EINVAL
3361 * if it has a data page beyond @size, and other negative error code in case of
3362 * other errors.
3363 */
3364int dbg_check_inode_size(struct ubifs_info *c, const struct inode *inode,
3365 loff_t size)
3366{
3367 int err, n;
3368 union ubifs_key from_key, to_key, *key;
3369 struct ubifs_znode *znode;
3370 unsigned int block;
3371
3372 if (!S_ISREG(inode->i_mode))
3373 return 0;
2b1844a8 3374 if (!dbg_is_chk_gen(c))
e3c3efc2
AB
3375 return 0;
3376
3377 block = (size + UBIFS_BLOCK_SIZE - 1) >> UBIFS_BLOCK_SHIFT;
3378 data_key_init(c, &from_key, inode->i_ino, block);
3379 highest_data_key(c, &to_key, inode->i_ino);
3380
3381 mutex_lock(&c->tnc_mutex);
3382 err = ubifs_lookup_level0(c, &from_key, &znode, &n);
3383 if (err < 0)
3384 goto out_unlock;
3385
3386 if (err) {
e3c3efc2
AB
3387 key = &from_key;
3388 goto out_dump;
3389 }
3390
3391 err = tnc_next(c, &znode, &n);
3392 if (err == -ENOENT) {
3393 err = 0;
3394 goto out_unlock;
3395 }
3396 if (err < 0)
3397 goto out_unlock;
3398
3399 ubifs_assert(err == 0);
3400 key = &znode->zbranch[n].key;
3401 if (!key_in_range(c, key, &from_key, &to_key))
3402 goto out_unlock;
3403
3404out_dump:
3405 block = key_block(c, key);
235c362b 3406 ubifs_err(c, "inode %lu has size %lld, but there are data at offset %lld",
515315a1
AB
3407 (unsigned long)inode->i_ino, size,
3408 ((loff_t)block) << UBIFS_BLOCK_SHIFT);
4315fb40 3409 mutex_unlock(&c->tnc_mutex);
edf6be24 3410 ubifs_dump_inode(c, inode);
7c46d0ae 3411 dump_stack();
4315fb40 3412 return -EINVAL;
e3c3efc2
AB
3413
3414out_unlock:
3415 mutex_unlock(&c->tnc_mutex);
3416 return err;
3417}