]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - fs/userfaultfd.c
arm64: debug: Ensure debug handlers check triggering exception level
[mirror_ubuntu-bionic-kernel.git] / fs / userfaultfd.c
CommitLineData
86039bd3
AA
1/*
2 * fs/userfaultfd.c
3 *
4 * Copyright (C) 2007 Davide Libenzi <davidel@xmailserver.org>
5 * Copyright (C) 2008-2009 Red Hat, Inc.
6 * Copyright (C) 2015 Red Hat, Inc.
7 *
8 * This work is licensed under the terms of the GNU GPL, version 2. See
9 * the COPYING file in the top-level directory.
10 *
11 * Some part derived from fs/eventfd.c (anon inode setup) and
12 * mm/ksm.c (mm hashing).
13 */
14
9cd75c3c 15#include <linux/list.h>
86039bd3 16#include <linux/hashtable.h>
174cd4b1 17#include <linux/sched/signal.h>
6e84f315 18#include <linux/sched/mm.h>
86039bd3
AA
19#include <linux/mm.h>
20#include <linux/poll.h>
21#include <linux/slab.h>
22#include <linux/seq_file.h>
23#include <linux/file.h>
24#include <linux/bug.h>
25#include <linux/anon_inodes.h>
26#include <linux/syscalls.h>
27#include <linux/userfaultfd_k.h>
28#include <linux/mempolicy.h>
29#include <linux/ioctl.h>
30#include <linux/security.h>
cab350af 31#include <linux/hugetlb.h>
86039bd3 32
3004ec9c
AA
33static struct kmem_cache *userfaultfd_ctx_cachep __read_mostly;
34
86039bd3
AA
35enum userfaultfd_state {
36 UFFD_STATE_WAIT_API,
37 UFFD_STATE_RUNNING,
38};
39
3004ec9c
AA
40/*
41 * Start with fault_pending_wqh and fault_wqh so they're more likely
42 * to be in the same cacheline.
43 */
86039bd3 44struct userfaultfd_ctx {
15b726ef
AA
45 /* waitqueue head for the pending (i.e. not read) userfaults */
46 wait_queue_head_t fault_pending_wqh;
47 /* waitqueue head for the userfaults */
86039bd3
AA
48 wait_queue_head_t fault_wqh;
49 /* waitqueue head for the pseudo fd to wakeup poll/read */
50 wait_queue_head_t fd_wqh;
9cd75c3c
PE
51 /* waitqueue head for events */
52 wait_queue_head_t event_wqh;
2c5b7e1b
AA
53 /* a refile sequence protected by fault_pending_wqh lock */
54 struct seqcount refile_seq;
3004ec9c
AA
55 /* pseudo fd refcounting */
56 atomic_t refcount;
86039bd3
AA
57 /* userfaultfd syscall flags */
58 unsigned int flags;
9cd75c3c
PE
59 /* features requested from the userspace */
60 unsigned int features;
86039bd3
AA
61 /* state machine */
62 enum userfaultfd_state state;
63 /* released */
64 bool released;
65 /* mm with one ore more vmas attached to this userfaultfd_ctx */
66 struct mm_struct *mm;
67};
68
893e26e6
PE
69struct userfaultfd_fork_ctx {
70 struct userfaultfd_ctx *orig;
71 struct userfaultfd_ctx *new;
72 struct list_head list;
73};
74
897ab3e0
MR
75struct userfaultfd_unmap_ctx {
76 struct userfaultfd_ctx *ctx;
77 unsigned long start;
78 unsigned long end;
79 struct list_head list;
80};
81
86039bd3 82struct userfaultfd_wait_queue {
a9b85f94 83 struct uffd_msg msg;
ac6424b9 84 wait_queue_entry_t wq;
86039bd3 85 struct userfaultfd_ctx *ctx;
15a77c6f 86 bool waken;
86039bd3
AA
87};
88
89struct userfaultfd_wake_range {
90 unsigned long start;
91 unsigned long len;
92};
93
ac6424b9 94static int userfaultfd_wake_function(wait_queue_entry_t *wq, unsigned mode,
86039bd3
AA
95 int wake_flags, void *key)
96{
97 struct userfaultfd_wake_range *range = key;
98 int ret;
99 struct userfaultfd_wait_queue *uwq;
100 unsigned long start, len;
101
102 uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
103 ret = 0;
86039bd3
AA
104 /* len == 0 means wake all */
105 start = range->start;
106 len = range->len;
a9b85f94
AA
107 if (len && (start > uwq->msg.arg.pagefault.address ||
108 start + len <= uwq->msg.arg.pagefault.address))
86039bd3 109 goto out;
15a77c6f
AA
110 WRITE_ONCE(uwq->waken, true);
111 /*
a9668cd6
PZ
112 * The Program-Order guarantees provided by the scheduler
113 * ensure uwq->waken is visible before the task is woken.
15a77c6f 114 */
86039bd3 115 ret = wake_up_state(wq->private, mode);
a9668cd6 116 if (ret) {
86039bd3
AA
117 /*
118 * Wake only once, autoremove behavior.
119 *
a9668cd6
PZ
120 * After the effect of list_del_init is visible to the other
121 * CPUs, the waitqueue may disappear from under us, see the
122 * !list_empty_careful() in handle_userfault().
123 *
124 * try_to_wake_up() has an implicit smp_mb(), and the
125 * wq->private is read before calling the extern function
126 * "wake_up_state" (which in turns calls try_to_wake_up).
86039bd3 127 */
2055da97 128 list_del_init(&wq->entry);
a9668cd6 129 }
86039bd3
AA
130out:
131 return ret;
132}
133
134/**
135 * userfaultfd_ctx_get - Acquires a reference to the internal userfaultfd
136 * context.
137 * @ctx: [in] Pointer to the userfaultfd context.
86039bd3
AA
138 */
139static void userfaultfd_ctx_get(struct userfaultfd_ctx *ctx)
140{
141 if (!atomic_inc_not_zero(&ctx->refcount))
142 BUG();
143}
144
145/**
146 * userfaultfd_ctx_put - Releases a reference to the internal userfaultfd
147 * context.
148 * @ctx: [in] Pointer to userfaultfd context.
149 *
150 * The userfaultfd context reference must have been previously acquired either
151 * with userfaultfd_ctx_get() or userfaultfd_ctx_fdget().
152 */
153static void userfaultfd_ctx_put(struct userfaultfd_ctx *ctx)
154{
155 if (atomic_dec_and_test(&ctx->refcount)) {
156 VM_BUG_ON(spin_is_locked(&ctx->fault_pending_wqh.lock));
157 VM_BUG_ON(waitqueue_active(&ctx->fault_pending_wqh));
158 VM_BUG_ON(spin_is_locked(&ctx->fault_wqh.lock));
159 VM_BUG_ON(waitqueue_active(&ctx->fault_wqh));
9cd75c3c
PE
160 VM_BUG_ON(spin_is_locked(&ctx->event_wqh.lock));
161 VM_BUG_ON(waitqueue_active(&ctx->event_wqh));
86039bd3
AA
162 VM_BUG_ON(spin_is_locked(&ctx->fd_wqh.lock));
163 VM_BUG_ON(waitqueue_active(&ctx->fd_wqh));
d2005e3f 164 mmdrop(ctx->mm);
3004ec9c 165 kmem_cache_free(userfaultfd_ctx_cachep, ctx);
86039bd3
AA
166 }
167}
168
a9b85f94 169static inline void msg_init(struct uffd_msg *msg)
86039bd3 170{
a9b85f94
AA
171 BUILD_BUG_ON(sizeof(struct uffd_msg) != 32);
172 /*
173 * Must use memset to zero out the paddings or kernel data is
174 * leaked to userland.
175 */
176 memset(msg, 0, sizeof(struct uffd_msg));
177}
178
179static inline struct uffd_msg userfault_msg(unsigned long address,
180 unsigned int flags,
9d4ac934
AP
181 unsigned long reason,
182 unsigned int features)
a9b85f94
AA
183{
184 struct uffd_msg msg;
185 msg_init(&msg);
186 msg.event = UFFD_EVENT_PAGEFAULT;
187 msg.arg.pagefault.address = address;
86039bd3
AA
188 if (flags & FAULT_FLAG_WRITE)
189 /*
a4605a61 190 * If UFFD_FEATURE_PAGEFAULT_FLAG_WP was set in the
a9b85f94
AA
191 * uffdio_api.features and UFFD_PAGEFAULT_FLAG_WRITE
192 * was not set in a UFFD_EVENT_PAGEFAULT, it means it
193 * was a read fault, otherwise if set it means it's
194 * a write fault.
86039bd3 195 */
a9b85f94 196 msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WRITE;
86039bd3
AA
197 if (reason & VM_UFFD_WP)
198 /*
a9b85f94
AA
199 * If UFFD_FEATURE_PAGEFAULT_FLAG_WP was set in the
200 * uffdio_api.features and UFFD_PAGEFAULT_FLAG_WP was
201 * not set in a UFFD_EVENT_PAGEFAULT, it means it was
202 * a missing fault, otherwise if set it means it's a
203 * write protect fault.
86039bd3 204 */
a9b85f94 205 msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WP;
9d4ac934 206 if (features & UFFD_FEATURE_THREAD_ID)
a36985d3 207 msg.arg.pagefault.feat.ptid = task_pid_vnr(current);
a9b85f94 208 return msg;
86039bd3
AA
209}
210
369cd212
MK
211#ifdef CONFIG_HUGETLB_PAGE
212/*
213 * Same functionality as userfaultfd_must_wait below with modifications for
214 * hugepmd ranges.
215 */
216static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx *ctx,
7868a208 217 struct vm_area_struct *vma,
369cd212
MK
218 unsigned long address,
219 unsigned long flags,
220 unsigned long reason)
221{
222 struct mm_struct *mm = ctx->mm;
f7eeab04 223 pte_t *ptep, pte;
369cd212
MK
224 bool ret = true;
225
226 VM_BUG_ON(!rwsem_is_locked(&mm->mmap_sem));
227
f7eeab04
JF
228 ptep = huge_pte_offset(mm, address, vma_mmu_pagesize(vma));
229
230 if (!ptep)
369cd212
MK
231 goto out;
232
233 ret = false;
f7eeab04 234 pte = huge_ptep_get(ptep);
369cd212
MK
235
236 /*
237 * Lockless access: we're in a wait_event so it's ok if it
238 * changes under us.
239 */
f7eeab04 240 if (huge_pte_none(pte))
369cd212 241 ret = true;
f7eeab04 242 if (!huge_pte_write(pte) && (reason & VM_UFFD_WP))
369cd212
MK
243 ret = true;
244out:
245 return ret;
246}
247#else
248static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx *ctx,
7868a208 249 struct vm_area_struct *vma,
369cd212
MK
250 unsigned long address,
251 unsigned long flags,
252 unsigned long reason)
253{
254 return false; /* should never get here */
255}
256#endif /* CONFIG_HUGETLB_PAGE */
257
8d2afd96
AA
258/*
259 * Verify the pagetables are still not ok after having reigstered into
260 * the fault_pending_wqh to avoid userland having to UFFDIO_WAKE any
261 * userfault that has already been resolved, if userfaultfd_read and
262 * UFFDIO_COPY|ZEROPAGE are being run simultaneously on two different
263 * threads.
264 */
265static inline bool userfaultfd_must_wait(struct userfaultfd_ctx *ctx,
266 unsigned long address,
267 unsigned long flags,
268 unsigned long reason)
269{
270 struct mm_struct *mm = ctx->mm;
271 pgd_t *pgd;
c2febafc 272 p4d_t *p4d;
8d2afd96
AA
273 pud_t *pud;
274 pmd_t *pmd, _pmd;
275 pte_t *pte;
276 bool ret = true;
277
278 VM_BUG_ON(!rwsem_is_locked(&mm->mmap_sem));
279
280 pgd = pgd_offset(mm, address);
281 if (!pgd_present(*pgd))
282 goto out;
c2febafc
KS
283 p4d = p4d_offset(pgd, address);
284 if (!p4d_present(*p4d))
285 goto out;
286 pud = pud_offset(p4d, address);
8d2afd96
AA
287 if (!pud_present(*pud))
288 goto out;
289 pmd = pmd_offset(pud, address);
290 /*
291 * READ_ONCE must function as a barrier with narrower scope
292 * and it must be equivalent to:
293 * _pmd = *pmd; barrier();
294 *
295 * This is to deal with the instability (as in
296 * pmd_trans_unstable) of the pmd.
297 */
298 _pmd = READ_ONCE(*pmd);
299 if (!pmd_present(_pmd))
300 goto out;
301
302 ret = false;
303 if (pmd_trans_huge(_pmd))
304 goto out;
305
306 /*
307 * the pmd is stable (as in !pmd_trans_unstable) so we can re-read it
308 * and use the standard pte_offset_map() instead of parsing _pmd.
309 */
310 pte = pte_offset_map(pmd, address);
311 /*
312 * Lockless access: we're in a wait_event so it's ok if it
313 * changes under us.
314 */
315 if (pte_none(*pte))
316 ret = true;
317 pte_unmap(pte);
318
319out:
320 return ret;
321}
322
86039bd3
AA
323/*
324 * The locking rules involved in returning VM_FAULT_RETRY depending on
325 * FAULT_FLAG_ALLOW_RETRY, FAULT_FLAG_RETRY_NOWAIT and
326 * FAULT_FLAG_KILLABLE are not straightforward. The "Caution"
327 * recommendation in __lock_page_or_retry is not an understatement.
328 *
329 * If FAULT_FLAG_ALLOW_RETRY is set, the mmap_sem must be released
330 * before returning VM_FAULT_RETRY only if FAULT_FLAG_RETRY_NOWAIT is
331 * not set.
332 *
333 * If FAULT_FLAG_ALLOW_RETRY is set but FAULT_FLAG_KILLABLE is not
334 * set, VM_FAULT_RETRY can still be returned if and only if there are
335 * fatal_signal_pending()s, and the mmap_sem must be released before
336 * returning it.
337 */
82b0f8c3 338int handle_userfault(struct vm_fault *vmf, unsigned long reason)
86039bd3 339{
82b0f8c3 340 struct mm_struct *mm = vmf->vma->vm_mm;
86039bd3
AA
341 struct userfaultfd_ctx *ctx;
342 struct userfaultfd_wait_queue uwq;
ba85c702 343 int ret;
dfa37dc3 344 bool must_wait, return_to_userland;
15a77c6f 345 long blocking_state;
86039bd3 346
ba85c702 347 ret = VM_FAULT_SIGBUS;
64c2b203
AA
348
349 /*
350 * We don't do userfault handling for the final child pid update.
351 *
352 * We also don't do userfault handling during
353 * coredumping. hugetlbfs has the special
354 * follow_hugetlb_page() to skip missing pages in the
355 * FOLL_DUMP case, anon memory also checks for FOLL_DUMP with
356 * the no_page_table() helper in follow_page_mask(), but the
357 * shmem_vm_ops->fault method is invoked even during
358 * coredumping without mmap_sem and it ends up here.
359 */
360 if (current->flags & (PF_EXITING|PF_DUMPCORE))
361 goto out;
362
363 /*
364 * Coredumping runs without mmap_sem so we can only check that
365 * the mmap_sem is held, if PF_DUMPCORE was not set.
366 */
367 WARN_ON_ONCE(!rwsem_is_locked(&mm->mmap_sem));
368
82b0f8c3 369 ctx = vmf->vma->vm_userfaultfd_ctx.ctx;
86039bd3 370 if (!ctx)
ba85c702 371 goto out;
86039bd3
AA
372
373 BUG_ON(ctx->mm != mm);
374
375 VM_BUG_ON(reason & ~(VM_UFFD_MISSING|VM_UFFD_WP));
376 VM_BUG_ON(!(reason & VM_UFFD_MISSING) ^ !!(reason & VM_UFFD_WP));
377
2d6d6f5a
PS
378 if (ctx->features & UFFD_FEATURE_SIGBUS)
379 goto out;
380
86039bd3
AA
381 /*
382 * If it's already released don't get it. This avoids to loop
383 * in __get_user_pages if userfaultfd_release waits on the
384 * caller of handle_userfault to release the mmap_sem.
385 */
6aa7de05 386 if (unlikely(READ_ONCE(ctx->released))) {
656710a6
AA
387 /*
388 * Don't return VM_FAULT_SIGBUS in this case, so a non
389 * cooperative manager can close the uffd after the
390 * last UFFDIO_COPY, without risking to trigger an
391 * involuntary SIGBUS if the process was starting the
392 * userfaultfd while the userfaultfd was still armed
393 * (but after the last UFFDIO_COPY). If the uffd
394 * wasn't already closed when the userfault reached
395 * this point, that would normally be solved by
396 * userfaultfd_must_wait returning 'false'.
397 *
398 * If we were to return VM_FAULT_SIGBUS here, the non
399 * cooperative manager would be instead forced to
400 * always call UFFDIO_UNREGISTER before it can safely
401 * close the uffd.
402 */
403 ret = VM_FAULT_NOPAGE;
ba85c702 404 goto out;
656710a6 405 }
86039bd3
AA
406
407 /*
408 * Check that we can return VM_FAULT_RETRY.
409 *
410 * NOTE: it should become possible to return VM_FAULT_RETRY
411 * even if FAULT_FLAG_TRIED is set without leading to gup()
412 * -EBUSY failures, if the userfaultfd is to be extended for
413 * VM_UFFD_WP tracking and we intend to arm the userfault
414 * without first stopping userland access to the memory. For
415 * VM_UFFD_MISSING userfaults this is enough for now.
416 */
82b0f8c3 417 if (unlikely(!(vmf->flags & FAULT_FLAG_ALLOW_RETRY))) {
86039bd3
AA
418 /*
419 * Validate the invariant that nowait must allow retry
420 * to be sure not to return SIGBUS erroneously on
421 * nowait invocations.
422 */
82b0f8c3 423 BUG_ON(vmf->flags & FAULT_FLAG_RETRY_NOWAIT);
86039bd3
AA
424#ifdef CONFIG_DEBUG_VM
425 if (printk_ratelimit()) {
426 printk(KERN_WARNING
82b0f8c3
JK
427 "FAULT_FLAG_ALLOW_RETRY missing %x\n",
428 vmf->flags);
86039bd3
AA
429 dump_stack();
430 }
431#endif
ba85c702 432 goto out;
86039bd3
AA
433 }
434
435 /*
436 * Handle nowait, not much to do other than tell it to retry
437 * and wait.
438 */
ba85c702 439 ret = VM_FAULT_RETRY;
82b0f8c3 440 if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT)
ba85c702 441 goto out;
86039bd3
AA
442
443 /* take the reference before dropping the mmap_sem */
444 userfaultfd_ctx_get(ctx);
445
86039bd3
AA
446 init_waitqueue_func_entry(&uwq.wq, userfaultfd_wake_function);
447 uwq.wq.private = current;
9d4ac934
AP
448 uwq.msg = userfault_msg(vmf->address, vmf->flags, reason,
449 ctx->features);
86039bd3 450 uwq.ctx = ctx;
15a77c6f 451 uwq.waken = false;
86039bd3 452
bae473a4 453 return_to_userland =
82b0f8c3 454 (vmf->flags & (FAULT_FLAG_USER|FAULT_FLAG_KILLABLE)) ==
dfa37dc3 455 (FAULT_FLAG_USER|FAULT_FLAG_KILLABLE);
15a77c6f
AA
456 blocking_state = return_to_userland ? TASK_INTERRUPTIBLE :
457 TASK_KILLABLE;
dfa37dc3 458
15b726ef 459 spin_lock(&ctx->fault_pending_wqh.lock);
86039bd3
AA
460 /*
461 * After the __add_wait_queue the uwq is visible to userland
462 * through poll/read().
463 */
15b726ef
AA
464 __add_wait_queue(&ctx->fault_pending_wqh, &uwq.wq);
465 /*
466 * The smp_mb() after __set_current_state prevents the reads
467 * following the spin_unlock to happen before the list_add in
468 * __add_wait_queue.
469 */
15a77c6f 470 set_current_state(blocking_state);
15b726ef 471 spin_unlock(&ctx->fault_pending_wqh.lock);
86039bd3 472
369cd212
MK
473 if (!is_vm_hugetlb_page(vmf->vma))
474 must_wait = userfaultfd_must_wait(ctx, vmf->address, vmf->flags,
475 reason);
476 else
7868a208
PA
477 must_wait = userfaultfd_huge_must_wait(ctx, vmf->vma,
478 vmf->address,
369cd212 479 vmf->flags, reason);
8d2afd96
AA
480 up_read(&mm->mmap_sem);
481
6aa7de05 482 if (likely(must_wait && !READ_ONCE(ctx->released) &&
dfa37dc3
AA
483 (return_to_userland ? !signal_pending(current) :
484 !fatal_signal_pending(current)))) {
86039bd3
AA
485 wake_up_poll(&ctx->fd_wqh, POLLIN);
486 schedule();
ba85c702 487 ret |= VM_FAULT_MAJOR;
15a77c6f
AA
488
489 /*
490 * False wakeups can orginate even from rwsem before
491 * up_read() however userfaults will wait either for a
492 * targeted wakeup on the specific uwq waitqueue from
493 * wake_userfault() or for signals or for uffd
494 * release.
495 */
496 while (!READ_ONCE(uwq.waken)) {
497 /*
498 * This needs the full smp_store_mb()
499 * guarantee as the state write must be
500 * visible to other CPUs before reading
501 * uwq.waken from other CPUs.
502 */
503 set_current_state(blocking_state);
504 if (READ_ONCE(uwq.waken) ||
505 READ_ONCE(ctx->released) ||
506 (return_to_userland ? signal_pending(current) :
507 fatal_signal_pending(current)))
508 break;
509 schedule();
510 }
ba85c702 511 }
86039bd3 512
ba85c702 513 __set_current_state(TASK_RUNNING);
15b726ef 514
dfa37dc3
AA
515 if (return_to_userland) {
516 if (signal_pending(current) &&
517 !fatal_signal_pending(current)) {
518 /*
519 * If we got a SIGSTOP or SIGCONT and this is
520 * a normal userland page fault, just let
521 * userland return so the signal will be
522 * handled and gdb debugging works. The page
523 * fault code immediately after we return from
524 * this function is going to release the
525 * mmap_sem and it's not depending on it
526 * (unlike gup would if we were not to return
527 * VM_FAULT_RETRY).
528 *
529 * If a fatal signal is pending we still take
530 * the streamlined VM_FAULT_RETRY failure path
531 * and there's no need to retake the mmap_sem
532 * in such case.
533 */
534 down_read(&mm->mmap_sem);
6bbc4a41 535 ret = VM_FAULT_NOPAGE;
dfa37dc3
AA
536 }
537 }
538
15b726ef
AA
539 /*
540 * Here we race with the list_del; list_add in
541 * userfaultfd_ctx_read(), however because we don't ever run
542 * list_del_init() to refile across the two lists, the prev
543 * and next pointers will never point to self. list_add also
544 * would never let any of the two pointers to point to
545 * self. So list_empty_careful won't risk to see both pointers
546 * pointing to self at any time during the list refile. The
547 * only case where list_del_init() is called is the full
548 * removal in the wake function and there we don't re-list_add
549 * and it's fine not to block on the spinlock. The uwq on this
550 * kernel stack can be released after the list_del_init.
551 */
2055da97 552 if (!list_empty_careful(&uwq.wq.entry)) {
15b726ef
AA
553 spin_lock(&ctx->fault_pending_wqh.lock);
554 /*
555 * No need of list_del_init(), the uwq on the stack
556 * will be freed shortly anyway.
557 */
2055da97 558 list_del(&uwq.wq.entry);
15b726ef 559 spin_unlock(&ctx->fault_pending_wqh.lock);
86039bd3 560 }
86039bd3
AA
561
562 /*
563 * ctx may go away after this if the userfault pseudo fd is
564 * already released.
565 */
566 userfaultfd_ctx_put(ctx);
567
ba85c702
AA
568out:
569 return ret;
86039bd3
AA
570}
571
8c9e7bb7
AA
572static void userfaultfd_event_wait_completion(struct userfaultfd_ctx *ctx,
573 struct userfaultfd_wait_queue *ewq)
9cd75c3c 574{
0cbb4b4f
AA
575 struct userfaultfd_ctx *release_new_ctx;
576
9a69a829
AA
577 if (WARN_ON_ONCE(current->flags & PF_EXITING))
578 goto out;
9cd75c3c
PE
579
580 ewq->ctx = ctx;
581 init_waitqueue_entry(&ewq->wq, current);
0cbb4b4f 582 release_new_ctx = NULL;
9cd75c3c
PE
583
584 spin_lock(&ctx->event_wqh.lock);
585 /*
586 * After the __add_wait_queue the uwq is visible to userland
587 * through poll/read().
588 */
589 __add_wait_queue(&ctx->event_wqh, &ewq->wq);
590 for (;;) {
591 set_current_state(TASK_KILLABLE);
592 if (ewq->msg.event == 0)
593 break;
6aa7de05 594 if (READ_ONCE(ctx->released) ||
9cd75c3c 595 fatal_signal_pending(current)) {
384632e6
AA
596 /*
597 * &ewq->wq may be queued in fork_event, but
598 * __remove_wait_queue ignores the head
599 * parameter. It would be a problem if it
600 * didn't.
601 */
9cd75c3c 602 __remove_wait_queue(&ctx->event_wqh, &ewq->wq);
7eb76d45
MR
603 if (ewq->msg.event == UFFD_EVENT_FORK) {
604 struct userfaultfd_ctx *new;
605
606 new = (struct userfaultfd_ctx *)
607 (unsigned long)
608 ewq->msg.arg.reserved.reserved1;
0cbb4b4f 609 release_new_ctx = new;
7eb76d45 610 }
9cd75c3c
PE
611 break;
612 }
613
614 spin_unlock(&ctx->event_wqh.lock);
615
616 wake_up_poll(&ctx->fd_wqh, POLLIN);
617 schedule();
618
619 spin_lock(&ctx->event_wqh.lock);
620 }
621 __set_current_state(TASK_RUNNING);
622 spin_unlock(&ctx->event_wqh.lock);
623
0cbb4b4f
AA
624 if (release_new_ctx) {
625 struct vm_area_struct *vma;
626 struct mm_struct *mm = release_new_ctx->mm;
627
628 /* the various vma->vm_userfaultfd_ctx still points to it */
629 down_write(&mm->mmap_sem);
630 for (vma = mm->mmap; vma; vma = vma->vm_next)
8b8be3e5 631 if (vma->vm_userfaultfd_ctx.ctx == release_new_ctx) {
0cbb4b4f 632 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
8b8be3e5
MR
633 vma->vm_flags &= ~(VM_UFFD_WP | VM_UFFD_MISSING);
634 }
0cbb4b4f
AA
635 up_write(&mm->mmap_sem);
636
637 userfaultfd_ctx_put(release_new_ctx);
638 }
639
9cd75c3c
PE
640 /*
641 * ctx may go away after this if the userfault pseudo fd is
642 * already released.
643 */
9a69a829 644out:
9cd75c3c 645 userfaultfd_ctx_put(ctx);
9cd75c3c
PE
646}
647
648static void userfaultfd_event_complete(struct userfaultfd_ctx *ctx,
649 struct userfaultfd_wait_queue *ewq)
650{
651 ewq->msg.event = 0;
652 wake_up_locked(&ctx->event_wqh);
653 __remove_wait_queue(&ctx->event_wqh, &ewq->wq);
654}
655
893e26e6
PE
656int dup_userfaultfd(struct vm_area_struct *vma, struct list_head *fcs)
657{
658 struct userfaultfd_ctx *ctx = NULL, *octx;
659 struct userfaultfd_fork_ctx *fctx;
660
661 octx = vma->vm_userfaultfd_ctx.ctx;
662 if (!octx || !(octx->features & UFFD_FEATURE_EVENT_FORK)) {
663 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
664 vma->vm_flags &= ~(VM_UFFD_WP | VM_UFFD_MISSING);
665 return 0;
666 }
667
668 list_for_each_entry(fctx, fcs, list)
669 if (fctx->orig == octx) {
670 ctx = fctx->new;
671 break;
672 }
673
674 if (!ctx) {
675 fctx = kmalloc(sizeof(*fctx), GFP_KERNEL);
676 if (!fctx)
677 return -ENOMEM;
678
679 ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL);
680 if (!ctx) {
681 kfree(fctx);
682 return -ENOMEM;
683 }
684
685 atomic_set(&ctx->refcount, 1);
686 ctx->flags = octx->flags;
687 ctx->state = UFFD_STATE_RUNNING;
688 ctx->features = octx->features;
689 ctx->released = false;
690 ctx->mm = vma->vm_mm;
00bb31fa 691 mmgrab(ctx->mm);
893e26e6
PE
692
693 userfaultfd_ctx_get(octx);
694 fctx->orig = octx;
695 fctx->new = ctx;
696 list_add_tail(&fctx->list, fcs);
697 }
698
699 vma->vm_userfaultfd_ctx.ctx = ctx;
700 return 0;
701}
702
8c9e7bb7 703static void dup_fctx(struct userfaultfd_fork_ctx *fctx)
893e26e6
PE
704{
705 struct userfaultfd_ctx *ctx = fctx->orig;
706 struct userfaultfd_wait_queue ewq;
707
708 msg_init(&ewq.msg);
709
710 ewq.msg.event = UFFD_EVENT_FORK;
711 ewq.msg.arg.reserved.reserved1 = (unsigned long)fctx->new;
712
8c9e7bb7 713 userfaultfd_event_wait_completion(ctx, &ewq);
893e26e6
PE
714}
715
716void dup_userfaultfd_complete(struct list_head *fcs)
717{
893e26e6
PE
718 struct userfaultfd_fork_ctx *fctx, *n;
719
720 list_for_each_entry_safe(fctx, n, fcs, list) {
8c9e7bb7 721 dup_fctx(fctx);
893e26e6
PE
722 list_del(&fctx->list);
723 kfree(fctx);
724 }
725}
726
72f87654
PE
727void mremap_userfaultfd_prep(struct vm_area_struct *vma,
728 struct vm_userfaultfd_ctx *vm_ctx)
729{
730 struct userfaultfd_ctx *ctx;
731
732 ctx = vma->vm_userfaultfd_ctx.ctx;
4c08fe4b
PX
733
734 if (!ctx)
735 return;
736
737 if (ctx->features & UFFD_FEATURE_EVENT_REMAP) {
72f87654
PE
738 vm_ctx->ctx = ctx;
739 userfaultfd_ctx_get(ctx);
4c08fe4b
PX
740 } else {
741 /* Drop uffd context if remap feature not enabled */
742 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
743 vma->vm_flags &= ~(VM_UFFD_WP | VM_UFFD_MISSING);
72f87654
PE
744 }
745}
746
90794bf1 747void mremap_userfaultfd_complete(struct vm_userfaultfd_ctx *vm_ctx,
72f87654
PE
748 unsigned long from, unsigned long to,
749 unsigned long len)
750{
90794bf1 751 struct userfaultfd_ctx *ctx = vm_ctx->ctx;
72f87654
PE
752 struct userfaultfd_wait_queue ewq;
753
754 if (!ctx)
755 return;
756
757 if (to & ~PAGE_MASK) {
758 userfaultfd_ctx_put(ctx);
759 return;
760 }
761
762 msg_init(&ewq.msg);
763
764 ewq.msg.event = UFFD_EVENT_REMAP;
765 ewq.msg.arg.remap.from = from;
766 ewq.msg.arg.remap.to = to;
767 ewq.msg.arg.remap.len = len;
768
769 userfaultfd_event_wait_completion(ctx, &ewq);
770}
771
70ccb92f 772bool userfaultfd_remove(struct vm_area_struct *vma,
d811914d 773 unsigned long start, unsigned long end)
05ce7724
PE
774{
775 struct mm_struct *mm = vma->vm_mm;
776 struct userfaultfd_ctx *ctx;
777 struct userfaultfd_wait_queue ewq;
778
779 ctx = vma->vm_userfaultfd_ctx.ctx;
d811914d 780 if (!ctx || !(ctx->features & UFFD_FEATURE_EVENT_REMOVE))
70ccb92f 781 return true;
05ce7724
PE
782
783 userfaultfd_ctx_get(ctx);
784 up_read(&mm->mmap_sem);
785
05ce7724
PE
786 msg_init(&ewq.msg);
787
d811914d
MR
788 ewq.msg.event = UFFD_EVENT_REMOVE;
789 ewq.msg.arg.remove.start = start;
790 ewq.msg.arg.remove.end = end;
05ce7724
PE
791
792 userfaultfd_event_wait_completion(ctx, &ewq);
793
70ccb92f 794 return false;
05ce7724
PE
795}
796
897ab3e0
MR
797static bool has_unmap_ctx(struct userfaultfd_ctx *ctx, struct list_head *unmaps,
798 unsigned long start, unsigned long end)
799{
800 struct userfaultfd_unmap_ctx *unmap_ctx;
801
802 list_for_each_entry(unmap_ctx, unmaps, list)
803 if (unmap_ctx->ctx == ctx && unmap_ctx->start == start &&
804 unmap_ctx->end == end)
805 return true;
806
807 return false;
808}
809
810int userfaultfd_unmap_prep(struct vm_area_struct *vma,
811 unsigned long start, unsigned long end,
812 struct list_head *unmaps)
813{
814 for ( ; vma && vma->vm_start < end; vma = vma->vm_next) {
815 struct userfaultfd_unmap_ctx *unmap_ctx;
816 struct userfaultfd_ctx *ctx = vma->vm_userfaultfd_ctx.ctx;
817
818 if (!ctx || !(ctx->features & UFFD_FEATURE_EVENT_UNMAP) ||
819 has_unmap_ctx(ctx, unmaps, start, end))
820 continue;
821
822 unmap_ctx = kzalloc(sizeof(*unmap_ctx), GFP_KERNEL);
823 if (!unmap_ctx)
824 return -ENOMEM;
825
826 userfaultfd_ctx_get(ctx);
827 unmap_ctx->ctx = ctx;
828 unmap_ctx->start = start;
829 unmap_ctx->end = end;
830 list_add_tail(&unmap_ctx->list, unmaps);
831 }
832
833 return 0;
834}
835
836void userfaultfd_unmap_complete(struct mm_struct *mm, struct list_head *uf)
837{
838 struct userfaultfd_unmap_ctx *ctx, *n;
839 struct userfaultfd_wait_queue ewq;
840
841 list_for_each_entry_safe(ctx, n, uf, list) {
842 msg_init(&ewq.msg);
843
844 ewq.msg.event = UFFD_EVENT_UNMAP;
845 ewq.msg.arg.remove.start = ctx->start;
846 ewq.msg.arg.remove.end = ctx->end;
847
848 userfaultfd_event_wait_completion(ctx->ctx, &ewq);
849
850 list_del(&ctx->list);
851 kfree(ctx);
852 }
853}
854
86039bd3
AA
855static int userfaultfd_release(struct inode *inode, struct file *file)
856{
857 struct userfaultfd_ctx *ctx = file->private_data;
858 struct mm_struct *mm = ctx->mm;
859 struct vm_area_struct *vma, *prev;
860 /* len == 0 means wake all */
861 struct userfaultfd_wake_range range = { .len = 0, };
862 unsigned long new_flags;
863
6aa7de05 864 WRITE_ONCE(ctx->released, true);
86039bd3 865
d2005e3f
ON
866 if (!mmget_not_zero(mm))
867 goto wakeup;
868
86039bd3
AA
869 /*
870 * Flush page faults out of all CPUs. NOTE: all page faults
871 * must be retried without returning VM_FAULT_SIGBUS if
872 * userfaultfd_ctx_get() succeeds but vma->vma_userfault_ctx
873 * changes while handle_userfault released the mmap_sem. So
874 * it's critical that released is set to true (above), before
875 * taking the mmap_sem for writing.
876 */
877 down_write(&mm->mmap_sem);
878 prev = NULL;
879 for (vma = mm->mmap; vma; vma = vma->vm_next) {
880 cond_resched();
881 BUG_ON(!!vma->vm_userfaultfd_ctx.ctx ^
882 !!(vma->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP)));
883 if (vma->vm_userfaultfd_ctx.ctx != ctx) {
884 prev = vma;
885 continue;
886 }
887 new_flags = vma->vm_flags & ~(VM_UFFD_MISSING | VM_UFFD_WP);
888 prev = vma_merge(mm, prev, vma->vm_start, vma->vm_end,
889 new_flags, vma->anon_vma,
890 vma->vm_file, vma->vm_pgoff,
891 vma_policy(vma),
892 NULL_VM_UFFD_CTX);
893 if (prev)
894 vma = prev;
895 else
896 prev = vma;
897 vma->vm_flags = new_flags;
898 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
899 }
900 up_write(&mm->mmap_sem);
d2005e3f
ON
901 mmput(mm);
902wakeup:
86039bd3 903 /*
15b726ef 904 * After no new page faults can wait on this fault_*wqh, flush
86039bd3 905 * the last page faults that may have been already waiting on
15b726ef 906 * the fault_*wqh.
86039bd3 907 */
15b726ef 908 spin_lock(&ctx->fault_pending_wqh.lock);
ac5be6b4
AA
909 __wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL, &range);
910 __wake_up_locked_key(&ctx->fault_wqh, TASK_NORMAL, &range);
15b726ef 911 spin_unlock(&ctx->fault_pending_wqh.lock);
86039bd3 912
5a18b64e
MR
913 /* Flush pending events that may still wait on event_wqh */
914 wake_up_all(&ctx->event_wqh);
915
86039bd3
AA
916 wake_up_poll(&ctx->fd_wqh, POLLHUP);
917 userfaultfd_ctx_put(ctx);
918 return 0;
919}
920
15b726ef 921/* fault_pending_wqh.lock must be hold by the caller */
6dcc27fd
PE
922static inline struct userfaultfd_wait_queue *find_userfault_in(
923 wait_queue_head_t *wqh)
86039bd3 924{
ac6424b9 925 wait_queue_entry_t *wq;
15b726ef 926 struct userfaultfd_wait_queue *uwq;
86039bd3 927
6dcc27fd 928 VM_BUG_ON(!spin_is_locked(&wqh->lock));
86039bd3 929
15b726ef 930 uwq = NULL;
6dcc27fd 931 if (!waitqueue_active(wqh))
15b726ef
AA
932 goto out;
933 /* walk in reverse to provide FIFO behavior to read userfaults */
2055da97 934 wq = list_last_entry(&wqh->head, typeof(*wq), entry);
15b726ef
AA
935 uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
936out:
937 return uwq;
86039bd3 938}
6dcc27fd
PE
939
940static inline struct userfaultfd_wait_queue *find_userfault(
941 struct userfaultfd_ctx *ctx)
942{
943 return find_userfault_in(&ctx->fault_pending_wqh);
944}
86039bd3 945
9cd75c3c
PE
946static inline struct userfaultfd_wait_queue *find_userfault_evt(
947 struct userfaultfd_ctx *ctx)
948{
949 return find_userfault_in(&ctx->event_wqh);
950}
951
86039bd3
AA
952static unsigned int userfaultfd_poll(struct file *file, poll_table *wait)
953{
954 struct userfaultfd_ctx *ctx = file->private_data;
955 unsigned int ret;
956
957 poll_wait(file, &ctx->fd_wqh, wait);
958
959 switch (ctx->state) {
960 case UFFD_STATE_WAIT_API:
961 return POLLERR;
962 case UFFD_STATE_RUNNING:
ba85c702
AA
963 /*
964 * poll() never guarantees that read won't block.
965 * userfaults can be waken before they're read().
966 */
967 if (unlikely(!(file->f_flags & O_NONBLOCK)))
968 return POLLERR;
15b726ef
AA
969 /*
970 * lockless access to see if there are pending faults
971 * __pollwait last action is the add_wait_queue but
972 * the spin_unlock would allow the waitqueue_active to
973 * pass above the actual list_add inside
974 * add_wait_queue critical section. So use a full
975 * memory barrier to serialize the list_add write of
976 * add_wait_queue() with the waitqueue_active read
977 * below.
978 */
979 ret = 0;
980 smp_mb();
981 if (waitqueue_active(&ctx->fault_pending_wqh))
982 ret = POLLIN;
9cd75c3c
PE
983 else if (waitqueue_active(&ctx->event_wqh))
984 ret = POLLIN;
985
86039bd3
AA
986 return ret;
987 default:
8474901a
AA
988 WARN_ON_ONCE(1);
989 return POLLERR;
86039bd3
AA
990 }
991}
992
893e26e6
PE
993static const struct file_operations userfaultfd_fops;
994
995static int resolve_userfault_fork(struct userfaultfd_ctx *ctx,
996 struct userfaultfd_ctx *new,
997 struct uffd_msg *msg)
998{
999 int fd;
1000 struct file *file;
1001 unsigned int flags = new->flags & UFFD_SHARED_FCNTL_FLAGS;
1002
1003 fd = get_unused_fd_flags(flags);
1004 if (fd < 0)
1005 return fd;
1006
1007 file = anon_inode_getfile("[userfaultfd]", &userfaultfd_fops, new,
1008 O_RDWR | flags);
1009 if (IS_ERR(file)) {
1010 put_unused_fd(fd);
1011 return PTR_ERR(file);
1012 }
1013
1014 fd_install(fd, file);
1015 msg->arg.reserved.reserved1 = 0;
1016 msg->arg.fork.ufd = fd;
1017
1018 return 0;
1019}
1020
86039bd3 1021static ssize_t userfaultfd_ctx_read(struct userfaultfd_ctx *ctx, int no_wait,
a9b85f94 1022 struct uffd_msg *msg)
86039bd3
AA
1023{
1024 ssize_t ret;
1025 DECLARE_WAITQUEUE(wait, current);
15b726ef 1026 struct userfaultfd_wait_queue *uwq;
893e26e6
PE
1027 /*
1028 * Handling fork event requires sleeping operations, so
1029 * we drop the event_wqh lock, then do these ops, then
1030 * lock it back and wake up the waiter. While the lock is
1031 * dropped the ewq may go away so we keep track of it
1032 * carefully.
1033 */
1034 LIST_HEAD(fork_event);
1035 struct userfaultfd_ctx *fork_nctx = NULL;
86039bd3 1036
15b726ef 1037 /* always take the fd_wqh lock before the fault_pending_wqh lock */
86039bd3
AA
1038 spin_lock(&ctx->fd_wqh.lock);
1039 __add_wait_queue(&ctx->fd_wqh, &wait);
1040 for (;;) {
1041 set_current_state(TASK_INTERRUPTIBLE);
15b726ef
AA
1042 spin_lock(&ctx->fault_pending_wqh.lock);
1043 uwq = find_userfault(ctx);
1044 if (uwq) {
2c5b7e1b
AA
1045 /*
1046 * Use a seqcount to repeat the lockless check
1047 * in wake_userfault() to avoid missing
1048 * wakeups because during the refile both
1049 * waitqueue could become empty if this is the
1050 * only userfault.
1051 */
1052 write_seqcount_begin(&ctx->refile_seq);
1053
86039bd3 1054 /*
15b726ef
AA
1055 * The fault_pending_wqh.lock prevents the uwq
1056 * to disappear from under us.
1057 *
1058 * Refile this userfault from
1059 * fault_pending_wqh to fault_wqh, it's not
1060 * pending anymore after we read it.
1061 *
1062 * Use list_del() by hand (as
1063 * userfaultfd_wake_function also uses
1064 * list_del_init() by hand) to be sure nobody
1065 * changes __remove_wait_queue() to use
1066 * list_del_init() in turn breaking the
1067 * !list_empty_careful() check in
2055da97 1068 * handle_userfault(). The uwq->wq.head list
15b726ef
AA
1069 * must never be empty at any time during the
1070 * refile, or the waitqueue could disappear
1071 * from under us. The "wait_queue_head_t"
1072 * parameter of __remove_wait_queue() is unused
1073 * anyway.
86039bd3 1074 */
2055da97 1075 list_del(&uwq->wq.entry);
15b726ef
AA
1076 __add_wait_queue(&ctx->fault_wqh, &uwq->wq);
1077
2c5b7e1b
AA
1078 write_seqcount_end(&ctx->refile_seq);
1079
a9b85f94
AA
1080 /* careful to always initialize msg if ret == 0 */
1081 *msg = uwq->msg;
15b726ef 1082 spin_unlock(&ctx->fault_pending_wqh.lock);
86039bd3
AA
1083 ret = 0;
1084 break;
1085 }
15b726ef 1086 spin_unlock(&ctx->fault_pending_wqh.lock);
9cd75c3c
PE
1087
1088 spin_lock(&ctx->event_wqh.lock);
1089 uwq = find_userfault_evt(ctx);
1090 if (uwq) {
1091 *msg = uwq->msg;
1092
893e26e6
PE
1093 if (uwq->msg.event == UFFD_EVENT_FORK) {
1094 fork_nctx = (struct userfaultfd_ctx *)
1095 (unsigned long)
1096 uwq->msg.arg.reserved.reserved1;
2055da97 1097 list_move(&uwq->wq.entry, &fork_event);
384632e6
AA
1098 /*
1099 * fork_nctx can be freed as soon as
1100 * we drop the lock, unless we take a
1101 * reference on it.
1102 */
1103 userfaultfd_ctx_get(fork_nctx);
893e26e6
PE
1104 spin_unlock(&ctx->event_wqh.lock);
1105 ret = 0;
1106 break;
1107 }
1108
9cd75c3c
PE
1109 userfaultfd_event_complete(ctx, uwq);
1110 spin_unlock(&ctx->event_wqh.lock);
1111 ret = 0;
1112 break;
1113 }
1114 spin_unlock(&ctx->event_wqh.lock);
1115
86039bd3
AA
1116 if (signal_pending(current)) {
1117 ret = -ERESTARTSYS;
1118 break;
1119 }
1120 if (no_wait) {
1121 ret = -EAGAIN;
1122 break;
1123 }
1124 spin_unlock(&ctx->fd_wqh.lock);
1125 schedule();
1126 spin_lock(&ctx->fd_wqh.lock);
1127 }
1128 __remove_wait_queue(&ctx->fd_wqh, &wait);
1129 __set_current_state(TASK_RUNNING);
1130 spin_unlock(&ctx->fd_wqh.lock);
1131
893e26e6
PE
1132 if (!ret && msg->event == UFFD_EVENT_FORK) {
1133 ret = resolve_userfault_fork(ctx, fork_nctx, msg);
384632e6
AA
1134 spin_lock(&ctx->event_wqh.lock);
1135 if (!list_empty(&fork_event)) {
1136 /*
1137 * The fork thread didn't abort, so we can
1138 * drop the temporary refcount.
1139 */
1140 userfaultfd_ctx_put(fork_nctx);
1141
1142 uwq = list_first_entry(&fork_event,
1143 typeof(*uwq),
1144 wq.entry);
1145 /*
1146 * If fork_event list wasn't empty and in turn
1147 * the event wasn't already released by fork
1148 * (the event is allocated on fork kernel
1149 * stack), put the event back to its place in
1150 * the event_wq. fork_event head will be freed
1151 * as soon as we return so the event cannot
1152 * stay queued there no matter the current
1153 * "ret" value.
1154 */
1155 list_del(&uwq->wq.entry);
1156 __add_wait_queue(&ctx->event_wqh, &uwq->wq);
893e26e6 1157
384632e6
AA
1158 /*
1159 * Leave the event in the waitqueue and report
1160 * error to userland if we failed to resolve
1161 * the userfault fork.
1162 */
1163 if (likely(!ret))
893e26e6 1164 userfaultfd_event_complete(ctx, uwq);
384632e6
AA
1165 } else {
1166 /*
1167 * Here the fork thread aborted and the
1168 * refcount from the fork thread on fork_nctx
1169 * has already been released. We still hold
1170 * the reference we took before releasing the
1171 * lock above. If resolve_userfault_fork
1172 * failed we've to drop it because the
1173 * fork_nctx has to be freed in such case. If
1174 * it succeeded we'll hold it because the new
1175 * uffd references it.
1176 */
1177 if (ret)
1178 userfaultfd_ctx_put(fork_nctx);
893e26e6 1179 }
384632e6 1180 spin_unlock(&ctx->event_wqh.lock);
893e26e6
PE
1181 }
1182
86039bd3
AA
1183 return ret;
1184}
1185
1186static ssize_t userfaultfd_read(struct file *file, char __user *buf,
1187 size_t count, loff_t *ppos)
1188{
1189 struct userfaultfd_ctx *ctx = file->private_data;
1190 ssize_t _ret, ret = 0;
a9b85f94 1191 struct uffd_msg msg;
86039bd3
AA
1192 int no_wait = file->f_flags & O_NONBLOCK;
1193
1194 if (ctx->state == UFFD_STATE_WAIT_API)
1195 return -EINVAL;
86039bd3
AA
1196
1197 for (;;) {
a9b85f94 1198 if (count < sizeof(msg))
86039bd3 1199 return ret ? ret : -EINVAL;
a9b85f94 1200 _ret = userfaultfd_ctx_read(ctx, no_wait, &msg);
86039bd3
AA
1201 if (_ret < 0)
1202 return ret ? ret : _ret;
a9b85f94 1203 if (copy_to_user((__u64 __user *) buf, &msg, sizeof(msg)))
86039bd3 1204 return ret ? ret : -EFAULT;
a9b85f94
AA
1205 ret += sizeof(msg);
1206 buf += sizeof(msg);
1207 count -= sizeof(msg);
86039bd3
AA
1208 /*
1209 * Allow to read more than one fault at time but only
1210 * block if waiting for the very first one.
1211 */
1212 no_wait = O_NONBLOCK;
1213 }
1214}
1215
1216static void __wake_userfault(struct userfaultfd_ctx *ctx,
1217 struct userfaultfd_wake_range *range)
1218{
15b726ef 1219 spin_lock(&ctx->fault_pending_wqh.lock);
86039bd3 1220 /* wake all in the range and autoremove */
15b726ef 1221 if (waitqueue_active(&ctx->fault_pending_wqh))
ac5be6b4 1222 __wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL,
15b726ef
AA
1223 range);
1224 if (waitqueue_active(&ctx->fault_wqh))
ac5be6b4 1225 __wake_up_locked_key(&ctx->fault_wqh, TASK_NORMAL, range);
15b726ef 1226 spin_unlock(&ctx->fault_pending_wqh.lock);
86039bd3
AA
1227}
1228
1229static __always_inline void wake_userfault(struct userfaultfd_ctx *ctx,
1230 struct userfaultfd_wake_range *range)
1231{
2c5b7e1b
AA
1232 unsigned seq;
1233 bool need_wakeup;
1234
86039bd3
AA
1235 /*
1236 * To be sure waitqueue_active() is not reordered by the CPU
1237 * before the pagetable update, use an explicit SMP memory
1238 * barrier here. PT lock release or up_read(mmap_sem) still
1239 * have release semantics that can allow the
1240 * waitqueue_active() to be reordered before the pte update.
1241 */
1242 smp_mb();
1243
1244 /*
1245 * Use waitqueue_active because it's very frequent to
1246 * change the address space atomically even if there are no
1247 * userfaults yet. So we take the spinlock only when we're
1248 * sure we've userfaults to wake.
1249 */
2c5b7e1b
AA
1250 do {
1251 seq = read_seqcount_begin(&ctx->refile_seq);
1252 need_wakeup = waitqueue_active(&ctx->fault_pending_wqh) ||
1253 waitqueue_active(&ctx->fault_wqh);
1254 cond_resched();
1255 } while (read_seqcount_retry(&ctx->refile_seq, seq));
1256 if (need_wakeup)
86039bd3
AA
1257 __wake_userfault(ctx, range);
1258}
1259
1260static __always_inline int validate_range(struct mm_struct *mm,
1261 __u64 start, __u64 len)
1262{
1263 __u64 task_size = mm->task_size;
1264
1265 if (start & ~PAGE_MASK)
1266 return -EINVAL;
1267 if (len & ~PAGE_MASK)
1268 return -EINVAL;
1269 if (!len)
1270 return -EINVAL;
1271 if (start < mmap_min_addr)
1272 return -EINVAL;
1273 if (start >= task_size)
1274 return -EINVAL;
1275 if (len > task_size - start)
1276 return -EINVAL;
1277 return 0;
1278}
1279
ba6907db
MR
1280static inline bool vma_can_userfault(struct vm_area_struct *vma)
1281{
cac67329
MR
1282 return vma_is_anonymous(vma) || is_vm_hugetlb_page(vma) ||
1283 vma_is_shmem(vma);
ba6907db
MR
1284}
1285
86039bd3
AA
1286static int userfaultfd_register(struct userfaultfd_ctx *ctx,
1287 unsigned long arg)
1288{
1289 struct mm_struct *mm = ctx->mm;
1290 struct vm_area_struct *vma, *prev, *cur;
1291 int ret;
1292 struct uffdio_register uffdio_register;
1293 struct uffdio_register __user *user_uffdio_register;
1294 unsigned long vm_flags, new_flags;
1295 bool found;
ce53e8e6 1296 bool basic_ioctls;
86039bd3
AA
1297 unsigned long start, end, vma_end;
1298
1299 user_uffdio_register = (struct uffdio_register __user *) arg;
1300
1301 ret = -EFAULT;
1302 if (copy_from_user(&uffdio_register, user_uffdio_register,
1303 sizeof(uffdio_register)-sizeof(__u64)))
1304 goto out;
1305
1306 ret = -EINVAL;
1307 if (!uffdio_register.mode)
1308 goto out;
1309 if (uffdio_register.mode & ~(UFFDIO_REGISTER_MODE_MISSING|
1310 UFFDIO_REGISTER_MODE_WP))
1311 goto out;
1312 vm_flags = 0;
1313 if (uffdio_register.mode & UFFDIO_REGISTER_MODE_MISSING)
1314 vm_flags |= VM_UFFD_MISSING;
1315 if (uffdio_register.mode & UFFDIO_REGISTER_MODE_WP) {
1316 vm_flags |= VM_UFFD_WP;
1317 /*
1318 * FIXME: remove the below error constraint by
1319 * implementing the wprotect tracking mode.
1320 */
1321 ret = -EINVAL;
1322 goto out;
1323 }
1324
1325 ret = validate_range(mm, uffdio_register.range.start,
1326 uffdio_register.range.len);
1327 if (ret)
1328 goto out;
1329
1330 start = uffdio_register.range.start;
1331 end = start + uffdio_register.range.len;
1332
d2005e3f
ON
1333 ret = -ENOMEM;
1334 if (!mmget_not_zero(mm))
1335 goto out;
1336
86039bd3
AA
1337 down_write(&mm->mmap_sem);
1338 vma = find_vma_prev(mm, start, &prev);
86039bd3
AA
1339 if (!vma)
1340 goto out_unlock;
1341
1342 /* check that there's at least one vma in the range */
1343 ret = -EINVAL;
1344 if (vma->vm_start >= end)
1345 goto out_unlock;
1346
cab350af
MK
1347 /*
1348 * If the first vma contains huge pages, make sure start address
1349 * is aligned to huge page size.
1350 */
1351 if (is_vm_hugetlb_page(vma)) {
1352 unsigned long vma_hpagesize = vma_kernel_pagesize(vma);
1353
1354 if (start & (vma_hpagesize - 1))
1355 goto out_unlock;
1356 }
1357
86039bd3
AA
1358 /*
1359 * Search for not compatible vmas.
86039bd3
AA
1360 */
1361 found = false;
ce53e8e6 1362 basic_ioctls = false;
86039bd3
AA
1363 for (cur = vma; cur && cur->vm_start < end; cur = cur->vm_next) {
1364 cond_resched();
1365
1366 BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^
1367 !!(cur->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP)));
1368
1369 /* check not compatible vmas */
1370 ret = -EINVAL;
ba6907db 1371 if (!vma_can_userfault(cur))
86039bd3 1372 goto out_unlock;
613c12df
AA
1373
1374 /*
1375 * UFFDIO_COPY will fill file holes even without
1376 * PROT_WRITE. This check enforces that if this is a
1377 * MAP_SHARED, the process has write permission to the backing
1378 * file. If VM_MAYWRITE is set it also enforces that on a
1379 * MAP_SHARED vma: there is no F_WRITE_SEAL and no further
1380 * F_WRITE_SEAL can be taken until the vma is destroyed.
1381 */
1382 ret = -EPERM;
1383 if (unlikely(!(cur->vm_flags & VM_MAYWRITE)))
1384 goto out_unlock;
1385
cab350af
MK
1386 /*
1387 * If this vma contains ending address, and huge pages
1388 * check alignment.
1389 */
1390 if (is_vm_hugetlb_page(cur) && end <= cur->vm_end &&
1391 end > cur->vm_start) {
1392 unsigned long vma_hpagesize = vma_kernel_pagesize(cur);
1393
1394 ret = -EINVAL;
1395
1396 if (end & (vma_hpagesize - 1))
1397 goto out_unlock;
1398 }
86039bd3
AA
1399
1400 /*
1401 * Check that this vma isn't already owned by a
1402 * different userfaultfd. We can't allow more than one
1403 * userfaultfd to own a single vma simultaneously or we
1404 * wouldn't know which one to deliver the userfaults to.
1405 */
1406 ret = -EBUSY;
1407 if (cur->vm_userfaultfd_ctx.ctx &&
1408 cur->vm_userfaultfd_ctx.ctx != ctx)
1409 goto out_unlock;
1410
cab350af
MK
1411 /*
1412 * Note vmas containing huge pages
1413 */
ce53e8e6
MR
1414 if (is_vm_hugetlb_page(cur))
1415 basic_ioctls = true;
cab350af 1416
86039bd3
AA
1417 found = true;
1418 }
1419 BUG_ON(!found);
1420
1421 if (vma->vm_start < start)
1422 prev = vma;
1423
1424 ret = 0;
1425 do {
1426 cond_resched();
1427
ba6907db 1428 BUG_ON(!vma_can_userfault(vma));
86039bd3
AA
1429 BUG_ON(vma->vm_userfaultfd_ctx.ctx &&
1430 vma->vm_userfaultfd_ctx.ctx != ctx);
613c12df 1431 WARN_ON(!(vma->vm_flags & VM_MAYWRITE));
86039bd3
AA
1432
1433 /*
1434 * Nothing to do: this vma is already registered into this
1435 * userfaultfd and with the right tracking mode too.
1436 */
1437 if (vma->vm_userfaultfd_ctx.ctx == ctx &&
1438 (vma->vm_flags & vm_flags) == vm_flags)
1439 goto skip;
1440
1441 if (vma->vm_start > start)
1442 start = vma->vm_start;
1443 vma_end = min(end, vma->vm_end);
1444
1445 new_flags = (vma->vm_flags & ~vm_flags) | vm_flags;
1446 prev = vma_merge(mm, prev, start, vma_end, new_flags,
1447 vma->anon_vma, vma->vm_file, vma->vm_pgoff,
1448 vma_policy(vma),
1449 ((struct vm_userfaultfd_ctx){ ctx }));
1450 if (prev) {
1451 vma = prev;
1452 goto next;
1453 }
1454 if (vma->vm_start < start) {
1455 ret = split_vma(mm, vma, start, 1);
1456 if (ret)
1457 break;
1458 }
1459 if (vma->vm_end > end) {
1460 ret = split_vma(mm, vma, end, 0);
1461 if (ret)
1462 break;
1463 }
1464 next:
1465 /*
1466 * In the vma_merge() successful mprotect-like case 8:
1467 * the next vma was merged into the current one and
1468 * the current one has not been updated yet.
1469 */
1470 vma->vm_flags = new_flags;
1471 vma->vm_userfaultfd_ctx.ctx = ctx;
1472
1473 skip:
1474 prev = vma;
1475 start = vma->vm_end;
1476 vma = vma->vm_next;
1477 } while (vma && vma->vm_start < end);
1478out_unlock:
1479 up_write(&mm->mmap_sem);
d2005e3f 1480 mmput(mm);
86039bd3
AA
1481 if (!ret) {
1482 /*
1483 * Now that we scanned all vmas we can already tell
1484 * userland which ioctls methods are guaranteed to
1485 * succeed on this range.
1486 */
ce53e8e6 1487 if (put_user(basic_ioctls ? UFFD_API_RANGE_IOCTLS_BASIC :
cab350af 1488 UFFD_API_RANGE_IOCTLS,
86039bd3
AA
1489 &user_uffdio_register->ioctls))
1490 ret = -EFAULT;
1491 }
1492out:
1493 return ret;
1494}
1495
1496static int userfaultfd_unregister(struct userfaultfd_ctx *ctx,
1497 unsigned long arg)
1498{
1499 struct mm_struct *mm = ctx->mm;
1500 struct vm_area_struct *vma, *prev, *cur;
1501 int ret;
1502 struct uffdio_range uffdio_unregister;
1503 unsigned long new_flags;
1504 bool found;
1505 unsigned long start, end, vma_end;
1506 const void __user *buf = (void __user *)arg;
1507
1508 ret = -EFAULT;
1509 if (copy_from_user(&uffdio_unregister, buf, sizeof(uffdio_unregister)))
1510 goto out;
1511
1512 ret = validate_range(mm, uffdio_unregister.start,
1513 uffdio_unregister.len);
1514 if (ret)
1515 goto out;
1516
1517 start = uffdio_unregister.start;
1518 end = start + uffdio_unregister.len;
1519
d2005e3f
ON
1520 ret = -ENOMEM;
1521 if (!mmget_not_zero(mm))
1522 goto out;
1523
86039bd3
AA
1524 down_write(&mm->mmap_sem);
1525 vma = find_vma_prev(mm, start, &prev);
86039bd3
AA
1526 if (!vma)
1527 goto out_unlock;
1528
1529 /* check that there's at least one vma in the range */
1530 ret = -EINVAL;
1531 if (vma->vm_start >= end)
1532 goto out_unlock;
1533
cab350af
MK
1534 /*
1535 * If the first vma contains huge pages, make sure start address
1536 * is aligned to huge page size.
1537 */
1538 if (is_vm_hugetlb_page(vma)) {
1539 unsigned long vma_hpagesize = vma_kernel_pagesize(vma);
1540
1541 if (start & (vma_hpagesize - 1))
1542 goto out_unlock;
1543 }
1544
86039bd3
AA
1545 /*
1546 * Search for not compatible vmas.
86039bd3
AA
1547 */
1548 found = false;
1549 ret = -EINVAL;
1550 for (cur = vma; cur && cur->vm_start < end; cur = cur->vm_next) {
1551 cond_resched();
1552
1553 BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^
1554 !!(cur->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP)));
1555
1556 /*
1557 * Check not compatible vmas, not strictly required
1558 * here as not compatible vmas cannot have an
1559 * userfaultfd_ctx registered on them, but this
1560 * provides for more strict behavior to notice
1561 * unregistration errors.
1562 */
ba6907db 1563 if (!vma_can_userfault(cur))
86039bd3
AA
1564 goto out_unlock;
1565
1566 found = true;
1567 }
1568 BUG_ON(!found);
1569
1570 if (vma->vm_start < start)
1571 prev = vma;
1572
1573 ret = 0;
1574 do {
1575 cond_resched();
1576
ba6907db 1577 BUG_ON(!vma_can_userfault(vma));
86039bd3
AA
1578
1579 /*
1580 * Nothing to do: this vma is already registered into this
1581 * userfaultfd and with the right tracking mode too.
1582 */
1583 if (!vma->vm_userfaultfd_ctx.ctx)
1584 goto skip;
1585
822ffc9e
AA
1586 WARN_ON(!(vma->vm_flags & VM_MAYWRITE));
1587
86039bd3
AA
1588 if (vma->vm_start > start)
1589 start = vma->vm_start;
1590 vma_end = min(end, vma->vm_end);
1591
09fa5296
AA
1592 if (userfaultfd_missing(vma)) {
1593 /*
1594 * Wake any concurrent pending userfault while
1595 * we unregister, so they will not hang
1596 * permanently and it avoids userland to call
1597 * UFFDIO_WAKE explicitly.
1598 */
1599 struct userfaultfd_wake_range range;
1600 range.start = start;
1601 range.len = vma_end - start;
1602 wake_userfault(vma->vm_userfaultfd_ctx.ctx, &range);
1603 }
1604
86039bd3
AA
1605 new_flags = vma->vm_flags & ~(VM_UFFD_MISSING | VM_UFFD_WP);
1606 prev = vma_merge(mm, prev, start, vma_end, new_flags,
1607 vma->anon_vma, vma->vm_file, vma->vm_pgoff,
1608 vma_policy(vma),
1609 NULL_VM_UFFD_CTX);
1610 if (prev) {
1611 vma = prev;
1612 goto next;
1613 }
1614 if (vma->vm_start < start) {
1615 ret = split_vma(mm, vma, start, 1);
1616 if (ret)
1617 break;
1618 }
1619 if (vma->vm_end > end) {
1620 ret = split_vma(mm, vma, end, 0);
1621 if (ret)
1622 break;
1623 }
1624 next:
1625 /*
1626 * In the vma_merge() successful mprotect-like case 8:
1627 * the next vma was merged into the current one and
1628 * the current one has not been updated yet.
1629 */
1630 vma->vm_flags = new_flags;
1631 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
1632
1633 skip:
1634 prev = vma;
1635 start = vma->vm_end;
1636 vma = vma->vm_next;
1637 } while (vma && vma->vm_start < end);
1638out_unlock:
1639 up_write(&mm->mmap_sem);
d2005e3f 1640 mmput(mm);
86039bd3
AA
1641out:
1642 return ret;
1643}
1644
1645/*
ba85c702
AA
1646 * userfaultfd_wake may be used in combination with the
1647 * UFFDIO_*_MODE_DONTWAKE to wakeup userfaults in batches.
86039bd3
AA
1648 */
1649static int userfaultfd_wake(struct userfaultfd_ctx *ctx,
1650 unsigned long arg)
1651{
1652 int ret;
1653 struct uffdio_range uffdio_wake;
1654 struct userfaultfd_wake_range range;
1655 const void __user *buf = (void __user *)arg;
1656
1657 ret = -EFAULT;
1658 if (copy_from_user(&uffdio_wake, buf, sizeof(uffdio_wake)))
1659 goto out;
1660
1661 ret = validate_range(ctx->mm, uffdio_wake.start, uffdio_wake.len);
1662 if (ret)
1663 goto out;
1664
1665 range.start = uffdio_wake.start;
1666 range.len = uffdio_wake.len;
1667
1668 /*
1669 * len == 0 means wake all and we don't want to wake all here,
1670 * so check it again to be sure.
1671 */
1672 VM_BUG_ON(!range.len);
1673
1674 wake_userfault(ctx, &range);
1675 ret = 0;
1676
1677out:
1678 return ret;
1679}
1680
ad465cae
AA
1681static int userfaultfd_copy(struct userfaultfd_ctx *ctx,
1682 unsigned long arg)
1683{
1684 __s64 ret;
1685 struct uffdio_copy uffdio_copy;
1686 struct uffdio_copy __user *user_uffdio_copy;
1687 struct userfaultfd_wake_range range;
1688
1689 user_uffdio_copy = (struct uffdio_copy __user *) arg;
1690
1691 ret = -EFAULT;
1692 if (copy_from_user(&uffdio_copy, user_uffdio_copy,
1693 /* don't copy "copy" last field */
1694 sizeof(uffdio_copy)-sizeof(__s64)))
1695 goto out;
1696
1697 ret = validate_range(ctx->mm, uffdio_copy.dst, uffdio_copy.len);
1698 if (ret)
1699 goto out;
1700 /*
1701 * double check for wraparound just in case. copy_from_user()
1702 * will later check uffdio_copy.src + uffdio_copy.len to fit
1703 * in the userland range.
1704 */
1705 ret = -EINVAL;
1706 if (uffdio_copy.src + uffdio_copy.len <= uffdio_copy.src)
1707 goto out;
1708 if (uffdio_copy.mode & ~UFFDIO_COPY_MODE_DONTWAKE)
1709 goto out;
d2005e3f
ON
1710 if (mmget_not_zero(ctx->mm)) {
1711 ret = mcopy_atomic(ctx->mm, uffdio_copy.dst, uffdio_copy.src,
1712 uffdio_copy.len);
1713 mmput(ctx->mm);
96333187 1714 } else {
e86b298b 1715 return -ESRCH;
d2005e3f 1716 }
ad465cae
AA
1717 if (unlikely(put_user(ret, &user_uffdio_copy->copy)))
1718 return -EFAULT;
1719 if (ret < 0)
1720 goto out;
1721 BUG_ON(!ret);
1722 /* len == 0 would wake all */
1723 range.len = ret;
1724 if (!(uffdio_copy.mode & UFFDIO_COPY_MODE_DONTWAKE)) {
1725 range.start = uffdio_copy.dst;
1726 wake_userfault(ctx, &range);
1727 }
1728 ret = range.len == uffdio_copy.len ? 0 : -EAGAIN;
1729out:
1730 return ret;
1731}
1732
1733static int userfaultfd_zeropage(struct userfaultfd_ctx *ctx,
1734 unsigned long arg)
1735{
1736 __s64 ret;
1737 struct uffdio_zeropage uffdio_zeropage;
1738 struct uffdio_zeropage __user *user_uffdio_zeropage;
1739 struct userfaultfd_wake_range range;
1740
1741 user_uffdio_zeropage = (struct uffdio_zeropage __user *) arg;
1742
1743 ret = -EFAULT;
1744 if (copy_from_user(&uffdio_zeropage, user_uffdio_zeropage,
1745 /* don't copy "zeropage" last field */
1746 sizeof(uffdio_zeropage)-sizeof(__s64)))
1747 goto out;
1748
1749 ret = validate_range(ctx->mm, uffdio_zeropage.range.start,
1750 uffdio_zeropage.range.len);
1751 if (ret)
1752 goto out;
1753 ret = -EINVAL;
1754 if (uffdio_zeropage.mode & ~UFFDIO_ZEROPAGE_MODE_DONTWAKE)
1755 goto out;
1756
d2005e3f
ON
1757 if (mmget_not_zero(ctx->mm)) {
1758 ret = mfill_zeropage(ctx->mm, uffdio_zeropage.range.start,
1759 uffdio_zeropage.range.len);
1760 mmput(ctx->mm);
9d95aa4b 1761 } else {
e86b298b 1762 return -ESRCH;
d2005e3f 1763 }
ad465cae
AA
1764 if (unlikely(put_user(ret, &user_uffdio_zeropage->zeropage)))
1765 return -EFAULT;
1766 if (ret < 0)
1767 goto out;
1768 /* len == 0 would wake all */
1769 BUG_ON(!ret);
1770 range.len = ret;
1771 if (!(uffdio_zeropage.mode & UFFDIO_ZEROPAGE_MODE_DONTWAKE)) {
1772 range.start = uffdio_zeropage.range.start;
1773 wake_userfault(ctx, &range);
1774 }
1775 ret = range.len == uffdio_zeropage.range.len ? 0 : -EAGAIN;
1776out:
1777 return ret;
1778}
1779
9cd75c3c
PE
1780static inline unsigned int uffd_ctx_features(__u64 user_features)
1781{
1782 /*
1783 * For the current set of features the bits just coincide
1784 */
1785 return (unsigned int)user_features;
1786}
1787
86039bd3
AA
1788/*
1789 * userland asks for a certain API version and we return which bits
1790 * and ioctl commands are implemented in this kernel for such API
1791 * version or -EINVAL if unknown.
1792 */
1793static int userfaultfd_api(struct userfaultfd_ctx *ctx,
1794 unsigned long arg)
1795{
1796 struct uffdio_api uffdio_api;
1797 void __user *buf = (void __user *)arg;
1798 int ret;
65603144 1799 __u64 features;
86039bd3
AA
1800
1801 ret = -EINVAL;
1802 if (ctx->state != UFFD_STATE_WAIT_API)
1803 goto out;
1804 ret = -EFAULT;
a9b85f94 1805 if (copy_from_user(&uffdio_api, buf, sizeof(uffdio_api)))
86039bd3 1806 goto out;
65603144
AA
1807 features = uffdio_api.features;
1808 if (uffdio_api.api != UFFD_API || (features & ~UFFD_API_FEATURES)) {
86039bd3
AA
1809 memset(&uffdio_api, 0, sizeof(uffdio_api));
1810 if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api)))
1811 goto out;
1812 ret = -EINVAL;
1813 goto out;
1814 }
65603144
AA
1815 /* report all available features and ioctls to userland */
1816 uffdio_api.features = UFFD_API_FEATURES;
86039bd3
AA
1817 uffdio_api.ioctls = UFFD_API_IOCTLS;
1818 ret = -EFAULT;
1819 if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api)))
1820 goto out;
1821 ctx->state = UFFD_STATE_RUNNING;
65603144
AA
1822 /* only enable the requested features for this uffd context */
1823 ctx->features = uffd_ctx_features(features);
86039bd3
AA
1824 ret = 0;
1825out:
1826 return ret;
1827}
1828
1829static long userfaultfd_ioctl(struct file *file, unsigned cmd,
1830 unsigned long arg)
1831{
1832 int ret = -EINVAL;
1833 struct userfaultfd_ctx *ctx = file->private_data;
1834
e6485a47
AA
1835 if (cmd != UFFDIO_API && ctx->state == UFFD_STATE_WAIT_API)
1836 return -EINVAL;
1837
86039bd3
AA
1838 switch(cmd) {
1839 case UFFDIO_API:
1840 ret = userfaultfd_api(ctx, arg);
1841 break;
1842 case UFFDIO_REGISTER:
1843 ret = userfaultfd_register(ctx, arg);
1844 break;
1845 case UFFDIO_UNREGISTER:
1846 ret = userfaultfd_unregister(ctx, arg);
1847 break;
1848 case UFFDIO_WAKE:
1849 ret = userfaultfd_wake(ctx, arg);
1850 break;
ad465cae
AA
1851 case UFFDIO_COPY:
1852 ret = userfaultfd_copy(ctx, arg);
1853 break;
1854 case UFFDIO_ZEROPAGE:
1855 ret = userfaultfd_zeropage(ctx, arg);
1856 break;
86039bd3
AA
1857 }
1858 return ret;
1859}
1860
1861#ifdef CONFIG_PROC_FS
1862static void userfaultfd_show_fdinfo(struct seq_file *m, struct file *f)
1863{
1864 struct userfaultfd_ctx *ctx = f->private_data;
ac6424b9 1865 wait_queue_entry_t *wq;
86039bd3
AA
1866 struct userfaultfd_wait_queue *uwq;
1867 unsigned long pending = 0, total = 0;
1868
15b726ef 1869 spin_lock(&ctx->fault_pending_wqh.lock);
2055da97 1870 list_for_each_entry(wq, &ctx->fault_pending_wqh.head, entry) {
15b726ef
AA
1871 uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
1872 pending++;
1873 total++;
1874 }
2055da97 1875 list_for_each_entry(wq, &ctx->fault_wqh.head, entry) {
86039bd3 1876 uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
86039bd3
AA
1877 total++;
1878 }
15b726ef 1879 spin_unlock(&ctx->fault_pending_wqh.lock);
86039bd3
AA
1880
1881 /*
1882 * If more protocols will be added, there will be all shown
1883 * separated by a space. Like this:
1884 * protocols: aa:... bb:...
1885 */
1886 seq_printf(m, "pending:\t%lu\ntotal:\t%lu\nAPI:\t%Lx:%x:%Lx\n",
045098e9 1887 pending, total, UFFD_API, ctx->features,
86039bd3
AA
1888 UFFD_API_IOCTLS|UFFD_API_RANGE_IOCTLS);
1889}
1890#endif
1891
1892static const struct file_operations userfaultfd_fops = {
1893#ifdef CONFIG_PROC_FS
1894 .show_fdinfo = userfaultfd_show_fdinfo,
1895#endif
1896 .release = userfaultfd_release,
1897 .poll = userfaultfd_poll,
1898 .read = userfaultfd_read,
1899 .unlocked_ioctl = userfaultfd_ioctl,
1900 .compat_ioctl = userfaultfd_ioctl,
1901 .llseek = noop_llseek,
1902};
1903
3004ec9c
AA
1904static void init_once_userfaultfd_ctx(void *mem)
1905{
1906 struct userfaultfd_ctx *ctx = (struct userfaultfd_ctx *) mem;
1907
1908 init_waitqueue_head(&ctx->fault_pending_wqh);
1909 init_waitqueue_head(&ctx->fault_wqh);
9cd75c3c 1910 init_waitqueue_head(&ctx->event_wqh);
3004ec9c 1911 init_waitqueue_head(&ctx->fd_wqh);
2c5b7e1b 1912 seqcount_init(&ctx->refile_seq);
3004ec9c
AA
1913}
1914
86039bd3 1915/**
9332ef9d 1916 * userfaultfd_file_create - Creates a userfaultfd file pointer.
86039bd3
AA
1917 * @flags: Flags for the userfaultfd file.
1918 *
9332ef9d 1919 * This function creates a userfaultfd file pointer, w/out installing
86039bd3
AA
1920 * it into the fd table. This is useful when the userfaultfd file is
1921 * used during the initialization of data structures that require
1922 * extra setup after the userfaultfd creation. So the userfaultfd
1923 * creation is split into the file pointer creation phase, and the
1924 * file descriptor installation phase. In this way races with
1925 * userspace closing the newly installed file descriptor can be
9332ef9d 1926 * avoided. Returns a userfaultfd file pointer, or a proper error
86039bd3
AA
1927 * pointer.
1928 */
1929static struct file *userfaultfd_file_create(int flags)
1930{
1931 struct file *file;
1932 struct userfaultfd_ctx *ctx;
1933
1934 BUG_ON(!current->mm);
1935
1936 /* Check the UFFD_* constants for consistency. */
1937 BUILD_BUG_ON(UFFD_CLOEXEC != O_CLOEXEC);
1938 BUILD_BUG_ON(UFFD_NONBLOCK != O_NONBLOCK);
1939
1940 file = ERR_PTR(-EINVAL);
1941 if (flags & ~UFFD_SHARED_FCNTL_FLAGS)
1942 goto out;
1943
1944 file = ERR_PTR(-ENOMEM);
3004ec9c 1945 ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL);
86039bd3
AA
1946 if (!ctx)
1947 goto out;
1948
1949 atomic_set(&ctx->refcount, 1);
86039bd3 1950 ctx->flags = flags;
9cd75c3c 1951 ctx->features = 0;
86039bd3
AA
1952 ctx->state = UFFD_STATE_WAIT_API;
1953 ctx->released = false;
1954 ctx->mm = current->mm;
1955 /* prevent the mm struct to be freed */
f1f10076 1956 mmgrab(ctx->mm);
86039bd3
AA
1957
1958 file = anon_inode_getfile("[userfaultfd]", &userfaultfd_fops, ctx,
1959 O_RDWR | (flags & UFFD_SHARED_FCNTL_FLAGS));
c03e946f 1960 if (IS_ERR(file)) {
d2005e3f 1961 mmdrop(ctx->mm);
3004ec9c 1962 kmem_cache_free(userfaultfd_ctx_cachep, ctx);
c03e946f 1963 }
86039bd3
AA
1964out:
1965 return file;
1966}
1967
1968SYSCALL_DEFINE1(userfaultfd, int, flags)
1969{
1970 int fd, error;
1971 struct file *file;
1972
1973 error = get_unused_fd_flags(flags & UFFD_SHARED_FCNTL_FLAGS);
1974 if (error < 0)
1975 return error;
1976 fd = error;
1977
1978 file = userfaultfd_file_create(flags);
1979 if (IS_ERR(file)) {
1980 error = PTR_ERR(file);
1981 goto err_put_unused_fd;
1982 }
1983 fd_install(fd, file);
1984
1985 return fd;
1986
1987err_put_unused_fd:
1988 put_unused_fd(fd);
1989
1990 return error;
1991}
3004ec9c
AA
1992
1993static int __init userfaultfd_init(void)
1994{
1995 userfaultfd_ctx_cachep = kmem_cache_create("userfaultfd_ctx_cache",
1996 sizeof(struct userfaultfd_ctx),
1997 0,
1998 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
1999 init_once_userfaultfd_ctx);
2000 return 0;
2001}
2002__initcall(userfaultfd_init);