]>
Commit | Line | Data |
---|---|---|
86039bd3 AA |
1 | /* |
2 | * fs/userfaultfd.c | |
3 | * | |
4 | * Copyright (C) 2007 Davide Libenzi <davidel@xmailserver.org> | |
5 | * Copyright (C) 2008-2009 Red Hat, Inc. | |
6 | * Copyright (C) 2015 Red Hat, Inc. | |
7 | * | |
8 | * This work is licensed under the terms of the GNU GPL, version 2. See | |
9 | * the COPYING file in the top-level directory. | |
10 | * | |
11 | * Some part derived from fs/eventfd.c (anon inode setup) and | |
12 | * mm/ksm.c (mm hashing). | |
13 | */ | |
14 | ||
9cd75c3c | 15 | #include <linux/list.h> |
86039bd3 | 16 | #include <linux/hashtable.h> |
174cd4b1 | 17 | #include <linux/sched/signal.h> |
6e84f315 | 18 | #include <linux/sched/mm.h> |
86039bd3 AA |
19 | #include <linux/mm.h> |
20 | #include <linux/poll.h> | |
21 | #include <linux/slab.h> | |
22 | #include <linux/seq_file.h> | |
23 | #include <linux/file.h> | |
24 | #include <linux/bug.h> | |
25 | #include <linux/anon_inodes.h> | |
26 | #include <linux/syscalls.h> | |
27 | #include <linux/userfaultfd_k.h> | |
28 | #include <linux/mempolicy.h> | |
29 | #include <linux/ioctl.h> | |
30 | #include <linux/security.h> | |
cab350af | 31 | #include <linux/hugetlb.h> |
86039bd3 | 32 | |
3004ec9c AA |
33 | static struct kmem_cache *userfaultfd_ctx_cachep __read_mostly; |
34 | ||
86039bd3 AA |
35 | enum userfaultfd_state { |
36 | UFFD_STATE_WAIT_API, | |
37 | UFFD_STATE_RUNNING, | |
38 | }; | |
39 | ||
3004ec9c AA |
40 | /* |
41 | * Start with fault_pending_wqh and fault_wqh so they're more likely | |
42 | * to be in the same cacheline. | |
43 | */ | |
86039bd3 | 44 | struct userfaultfd_ctx { |
15b726ef AA |
45 | /* waitqueue head for the pending (i.e. not read) userfaults */ |
46 | wait_queue_head_t fault_pending_wqh; | |
47 | /* waitqueue head for the userfaults */ | |
86039bd3 AA |
48 | wait_queue_head_t fault_wqh; |
49 | /* waitqueue head for the pseudo fd to wakeup poll/read */ | |
50 | wait_queue_head_t fd_wqh; | |
9cd75c3c PE |
51 | /* waitqueue head for events */ |
52 | wait_queue_head_t event_wqh; | |
2c5b7e1b AA |
53 | /* a refile sequence protected by fault_pending_wqh lock */ |
54 | struct seqcount refile_seq; | |
3004ec9c AA |
55 | /* pseudo fd refcounting */ |
56 | atomic_t refcount; | |
86039bd3 AA |
57 | /* userfaultfd syscall flags */ |
58 | unsigned int flags; | |
9cd75c3c PE |
59 | /* features requested from the userspace */ |
60 | unsigned int features; | |
86039bd3 AA |
61 | /* state machine */ |
62 | enum userfaultfd_state state; | |
63 | /* released */ | |
64 | bool released; | |
df2cc96e MR |
65 | /* memory mappings are changing because of non-cooperative event */ |
66 | bool mmap_changing; | |
86039bd3 AA |
67 | /* mm with one ore more vmas attached to this userfaultfd_ctx */ |
68 | struct mm_struct *mm; | |
69 | }; | |
70 | ||
893e26e6 PE |
71 | struct userfaultfd_fork_ctx { |
72 | struct userfaultfd_ctx *orig; | |
73 | struct userfaultfd_ctx *new; | |
74 | struct list_head list; | |
75 | }; | |
76 | ||
897ab3e0 MR |
77 | struct userfaultfd_unmap_ctx { |
78 | struct userfaultfd_ctx *ctx; | |
79 | unsigned long start; | |
80 | unsigned long end; | |
81 | struct list_head list; | |
82 | }; | |
83 | ||
86039bd3 | 84 | struct userfaultfd_wait_queue { |
a9b85f94 | 85 | struct uffd_msg msg; |
ac6424b9 | 86 | wait_queue_entry_t wq; |
86039bd3 | 87 | struct userfaultfd_ctx *ctx; |
15a77c6f | 88 | bool waken; |
86039bd3 AA |
89 | }; |
90 | ||
91 | struct userfaultfd_wake_range { | |
92 | unsigned long start; | |
93 | unsigned long len; | |
94 | }; | |
95 | ||
ac6424b9 | 96 | static int userfaultfd_wake_function(wait_queue_entry_t *wq, unsigned mode, |
86039bd3 AA |
97 | int wake_flags, void *key) |
98 | { | |
99 | struct userfaultfd_wake_range *range = key; | |
100 | int ret; | |
101 | struct userfaultfd_wait_queue *uwq; | |
102 | unsigned long start, len; | |
103 | ||
104 | uwq = container_of(wq, struct userfaultfd_wait_queue, wq); | |
105 | ret = 0; | |
86039bd3 AA |
106 | /* len == 0 means wake all */ |
107 | start = range->start; | |
108 | len = range->len; | |
a9b85f94 AA |
109 | if (len && (start > uwq->msg.arg.pagefault.address || |
110 | start + len <= uwq->msg.arg.pagefault.address)) | |
86039bd3 | 111 | goto out; |
15a77c6f AA |
112 | WRITE_ONCE(uwq->waken, true); |
113 | /* | |
a9668cd6 PZ |
114 | * The Program-Order guarantees provided by the scheduler |
115 | * ensure uwq->waken is visible before the task is woken. | |
15a77c6f | 116 | */ |
86039bd3 | 117 | ret = wake_up_state(wq->private, mode); |
a9668cd6 | 118 | if (ret) { |
86039bd3 AA |
119 | /* |
120 | * Wake only once, autoremove behavior. | |
121 | * | |
a9668cd6 PZ |
122 | * After the effect of list_del_init is visible to the other |
123 | * CPUs, the waitqueue may disappear from under us, see the | |
124 | * !list_empty_careful() in handle_userfault(). | |
125 | * | |
126 | * try_to_wake_up() has an implicit smp_mb(), and the | |
127 | * wq->private is read before calling the extern function | |
128 | * "wake_up_state" (which in turns calls try_to_wake_up). | |
86039bd3 | 129 | */ |
2055da97 | 130 | list_del_init(&wq->entry); |
a9668cd6 | 131 | } |
86039bd3 AA |
132 | out: |
133 | return ret; | |
134 | } | |
135 | ||
136 | /** | |
137 | * userfaultfd_ctx_get - Acquires a reference to the internal userfaultfd | |
138 | * context. | |
139 | * @ctx: [in] Pointer to the userfaultfd context. | |
86039bd3 AA |
140 | */ |
141 | static void userfaultfd_ctx_get(struct userfaultfd_ctx *ctx) | |
142 | { | |
143 | if (!atomic_inc_not_zero(&ctx->refcount)) | |
144 | BUG(); | |
145 | } | |
146 | ||
147 | /** | |
148 | * userfaultfd_ctx_put - Releases a reference to the internal userfaultfd | |
149 | * context. | |
150 | * @ctx: [in] Pointer to userfaultfd context. | |
151 | * | |
152 | * The userfaultfd context reference must have been previously acquired either | |
153 | * with userfaultfd_ctx_get() or userfaultfd_ctx_fdget(). | |
154 | */ | |
155 | static void userfaultfd_ctx_put(struct userfaultfd_ctx *ctx) | |
156 | { | |
157 | if (atomic_dec_and_test(&ctx->refcount)) { | |
158 | VM_BUG_ON(spin_is_locked(&ctx->fault_pending_wqh.lock)); | |
159 | VM_BUG_ON(waitqueue_active(&ctx->fault_pending_wqh)); | |
160 | VM_BUG_ON(spin_is_locked(&ctx->fault_wqh.lock)); | |
161 | VM_BUG_ON(waitqueue_active(&ctx->fault_wqh)); | |
9cd75c3c PE |
162 | VM_BUG_ON(spin_is_locked(&ctx->event_wqh.lock)); |
163 | VM_BUG_ON(waitqueue_active(&ctx->event_wqh)); | |
86039bd3 AA |
164 | VM_BUG_ON(spin_is_locked(&ctx->fd_wqh.lock)); |
165 | VM_BUG_ON(waitqueue_active(&ctx->fd_wqh)); | |
d2005e3f | 166 | mmdrop(ctx->mm); |
3004ec9c | 167 | kmem_cache_free(userfaultfd_ctx_cachep, ctx); |
86039bd3 AA |
168 | } |
169 | } | |
170 | ||
a9b85f94 | 171 | static inline void msg_init(struct uffd_msg *msg) |
86039bd3 | 172 | { |
a9b85f94 AA |
173 | BUILD_BUG_ON(sizeof(struct uffd_msg) != 32); |
174 | /* | |
175 | * Must use memset to zero out the paddings or kernel data is | |
176 | * leaked to userland. | |
177 | */ | |
178 | memset(msg, 0, sizeof(struct uffd_msg)); | |
179 | } | |
180 | ||
181 | static inline struct uffd_msg userfault_msg(unsigned long address, | |
182 | unsigned int flags, | |
9d4ac934 AP |
183 | unsigned long reason, |
184 | unsigned int features) | |
a9b85f94 AA |
185 | { |
186 | struct uffd_msg msg; | |
187 | msg_init(&msg); | |
188 | msg.event = UFFD_EVENT_PAGEFAULT; | |
189 | msg.arg.pagefault.address = address; | |
86039bd3 AA |
190 | if (flags & FAULT_FLAG_WRITE) |
191 | /* | |
a4605a61 | 192 | * If UFFD_FEATURE_PAGEFAULT_FLAG_WP was set in the |
a9b85f94 AA |
193 | * uffdio_api.features and UFFD_PAGEFAULT_FLAG_WRITE |
194 | * was not set in a UFFD_EVENT_PAGEFAULT, it means it | |
195 | * was a read fault, otherwise if set it means it's | |
196 | * a write fault. | |
86039bd3 | 197 | */ |
a9b85f94 | 198 | msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WRITE; |
86039bd3 AA |
199 | if (reason & VM_UFFD_WP) |
200 | /* | |
a9b85f94 AA |
201 | * If UFFD_FEATURE_PAGEFAULT_FLAG_WP was set in the |
202 | * uffdio_api.features and UFFD_PAGEFAULT_FLAG_WP was | |
203 | * not set in a UFFD_EVENT_PAGEFAULT, it means it was | |
204 | * a missing fault, otherwise if set it means it's a | |
205 | * write protect fault. | |
86039bd3 | 206 | */ |
a9b85f94 | 207 | msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WP; |
9d4ac934 | 208 | if (features & UFFD_FEATURE_THREAD_ID) |
a36985d3 | 209 | msg.arg.pagefault.feat.ptid = task_pid_vnr(current); |
a9b85f94 | 210 | return msg; |
86039bd3 AA |
211 | } |
212 | ||
369cd212 MK |
213 | #ifdef CONFIG_HUGETLB_PAGE |
214 | /* | |
215 | * Same functionality as userfaultfd_must_wait below with modifications for | |
216 | * hugepmd ranges. | |
217 | */ | |
218 | static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx *ctx, | |
7868a208 | 219 | struct vm_area_struct *vma, |
369cd212 MK |
220 | unsigned long address, |
221 | unsigned long flags, | |
222 | unsigned long reason) | |
223 | { | |
224 | struct mm_struct *mm = ctx->mm; | |
1e2c0436 | 225 | pte_t *ptep, pte; |
369cd212 MK |
226 | bool ret = true; |
227 | ||
228 | VM_BUG_ON(!rwsem_is_locked(&mm->mmap_sem)); | |
229 | ||
1e2c0436 JF |
230 | ptep = huge_pte_offset(mm, address, vma_mmu_pagesize(vma)); |
231 | ||
232 | if (!ptep) | |
369cd212 MK |
233 | goto out; |
234 | ||
235 | ret = false; | |
1e2c0436 | 236 | pte = huge_ptep_get(ptep); |
369cd212 MK |
237 | |
238 | /* | |
239 | * Lockless access: we're in a wait_event so it's ok if it | |
240 | * changes under us. | |
241 | */ | |
1e2c0436 | 242 | if (huge_pte_none(pte)) |
369cd212 | 243 | ret = true; |
1e2c0436 | 244 | if (!huge_pte_write(pte) && (reason & VM_UFFD_WP)) |
369cd212 MK |
245 | ret = true; |
246 | out: | |
247 | return ret; | |
248 | } | |
249 | #else | |
250 | static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx *ctx, | |
7868a208 | 251 | struct vm_area_struct *vma, |
369cd212 MK |
252 | unsigned long address, |
253 | unsigned long flags, | |
254 | unsigned long reason) | |
255 | { | |
256 | return false; /* should never get here */ | |
257 | } | |
258 | #endif /* CONFIG_HUGETLB_PAGE */ | |
259 | ||
8d2afd96 AA |
260 | /* |
261 | * Verify the pagetables are still not ok after having reigstered into | |
262 | * the fault_pending_wqh to avoid userland having to UFFDIO_WAKE any | |
263 | * userfault that has already been resolved, if userfaultfd_read and | |
264 | * UFFDIO_COPY|ZEROPAGE are being run simultaneously on two different | |
265 | * threads. | |
266 | */ | |
267 | static inline bool userfaultfd_must_wait(struct userfaultfd_ctx *ctx, | |
268 | unsigned long address, | |
269 | unsigned long flags, | |
270 | unsigned long reason) | |
271 | { | |
272 | struct mm_struct *mm = ctx->mm; | |
273 | pgd_t *pgd; | |
c2febafc | 274 | p4d_t *p4d; |
8d2afd96 AA |
275 | pud_t *pud; |
276 | pmd_t *pmd, _pmd; | |
277 | pte_t *pte; | |
278 | bool ret = true; | |
279 | ||
280 | VM_BUG_ON(!rwsem_is_locked(&mm->mmap_sem)); | |
281 | ||
282 | pgd = pgd_offset(mm, address); | |
283 | if (!pgd_present(*pgd)) | |
284 | goto out; | |
c2febafc KS |
285 | p4d = p4d_offset(pgd, address); |
286 | if (!p4d_present(*p4d)) | |
287 | goto out; | |
288 | pud = pud_offset(p4d, address); | |
8d2afd96 AA |
289 | if (!pud_present(*pud)) |
290 | goto out; | |
291 | pmd = pmd_offset(pud, address); | |
292 | /* | |
293 | * READ_ONCE must function as a barrier with narrower scope | |
294 | * and it must be equivalent to: | |
295 | * _pmd = *pmd; barrier(); | |
296 | * | |
297 | * This is to deal with the instability (as in | |
298 | * pmd_trans_unstable) of the pmd. | |
299 | */ | |
300 | _pmd = READ_ONCE(*pmd); | |
a365ac09 | 301 | if (pmd_none(_pmd)) |
8d2afd96 AA |
302 | goto out; |
303 | ||
304 | ret = false; | |
a365ac09 HY |
305 | if (!pmd_present(_pmd)) |
306 | goto out; | |
307 | ||
8d2afd96 AA |
308 | if (pmd_trans_huge(_pmd)) |
309 | goto out; | |
310 | ||
311 | /* | |
312 | * the pmd is stable (as in !pmd_trans_unstable) so we can re-read it | |
313 | * and use the standard pte_offset_map() instead of parsing _pmd. | |
314 | */ | |
315 | pte = pte_offset_map(pmd, address); | |
316 | /* | |
317 | * Lockless access: we're in a wait_event so it's ok if it | |
318 | * changes under us. | |
319 | */ | |
320 | if (pte_none(*pte)) | |
321 | ret = true; | |
322 | pte_unmap(pte); | |
323 | ||
324 | out: | |
325 | return ret; | |
326 | } | |
327 | ||
86039bd3 AA |
328 | /* |
329 | * The locking rules involved in returning VM_FAULT_RETRY depending on | |
330 | * FAULT_FLAG_ALLOW_RETRY, FAULT_FLAG_RETRY_NOWAIT and | |
331 | * FAULT_FLAG_KILLABLE are not straightforward. The "Caution" | |
332 | * recommendation in __lock_page_or_retry is not an understatement. | |
333 | * | |
334 | * If FAULT_FLAG_ALLOW_RETRY is set, the mmap_sem must be released | |
335 | * before returning VM_FAULT_RETRY only if FAULT_FLAG_RETRY_NOWAIT is | |
336 | * not set. | |
337 | * | |
338 | * If FAULT_FLAG_ALLOW_RETRY is set but FAULT_FLAG_KILLABLE is not | |
339 | * set, VM_FAULT_RETRY can still be returned if and only if there are | |
340 | * fatal_signal_pending()s, and the mmap_sem must be released before | |
341 | * returning it. | |
342 | */ | |
2b740303 | 343 | vm_fault_t handle_userfault(struct vm_fault *vmf, unsigned long reason) |
86039bd3 | 344 | { |
82b0f8c3 | 345 | struct mm_struct *mm = vmf->vma->vm_mm; |
86039bd3 AA |
346 | struct userfaultfd_ctx *ctx; |
347 | struct userfaultfd_wait_queue uwq; | |
2b740303 | 348 | vm_fault_t ret = VM_FAULT_SIGBUS; |
dfa37dc3 | 349 | bool must_wait, return_to_userland; |
15a77c6f | 350 | long blocking_state; |
86039bd3 | 351 | |
64c2b203 AA |
352 | /* |
353 | * We don't do userfault handling for the final child pid update. | |
354 | * | |
355 | * We also don't do userfault handling during | |
356 | * coredumping. hugetlbfs has the special | |
357 | * follow_hugetlb_page() to skip missing pages in the | |
358 | * FOLL_DUMP case, anon memory also checks for FOLL_DUMP with | |
359 | * the no_page_table() helper in follow_page_mask(), but the | |
360 | * shmem_vm_ops->fault method is invoked even during | |
361 | * coredumping without mmap_sem and it ends up here. | |
362 | */ | |
363 | if (current->flags & (PF_EXITING|PF_DUMPCORE)) | |
364 | goto out; | |
365 | ||
366 | /* | |
367 | * Coredumping runs without mmap_sem so we can only check that | |
368 | * the mmap_sem is held, if PF_DUMPCORE was not set. | |
369 | */ | |
370 | WARN_ON_ONCE(!rwsem_is_locked(&mm->mmap_sem)); | |
371 | ||
82b0f8c3 | 372 | ctx = vmf->vma->vm_userfaultfd_ctx.ctx; |
86039bd3 | 373 | if (!ctx) |
ba85c702 | 374 | goto out; |
86039bd3 AA |
375 | |
376 | BUG_ON(ctx->mm != mm); | |
377 | ||
378 | VM_BUG_ON(reason & ~(VM_UFFD_MISSING|VM_UFFD_WP)); | |
379 | VM_BUG_ON(!(reason & VM_UFFD_MISSING) ^ !!(reason & VM_UFFD_WP)); | |
380 | ||
2d6d6f5a PS |
381 | if (ctx->features & UFFD_FEATURE_SIGBUS) |
382 | goto out; | |
383 | ||
86039bd3 AA |
384 | /* |
385 | * If it's already released don't get it. This avoids to loop | |
386 | * in __get_user_pages if userfaultfd_release waits on the | |
387 | * caller of handle_userfault to release the mmap_sem. | |
388 | */ | |
6aa7de05 | 389 | if (unlikely(READ_ONCE(ctx->released))) { |
656710a6 AA |
390 | /* |
391 | * Don't return VM_FAULT_SIGBUS in this case, so a non | |
392 | * cooperative manager can close the uffd after the | |
393 | * last UFFDIO_COPY, without risking to trigger an | |
394 | * involuntary SIGBUS if the process was starting the | |
395 | * userfaultfd while the userfaultfd was still armed | |
396 | * (but after the last UFFDIO_COPY). If the uffd | |
397 | * wasn't already closed when the userfault reached | |
398 | * this point, that would normally be solved by | |
399 | * userfaultfd_must_wait returning 'false'. | |
400 | * | |
401 | * If we were to return VM_FAULT_SIGBUS here, the non | |
402 | * cooperative manager would be instead forced to | |
403 | * always call UFFDIO_UNREGISTER before it can safely | |
404 | * close the uffd. | |
405 | */ | |
406 | ret = VM_FAULT_NOPAGE; | |
ba85c702 | 407 | goto out; |
656710a6 | 408 | } |
86039bd3 AA |
409 | |
410 | /* | |
411 | * Check that we can return VM_FAULT_RETRY. | |
412 | * | |
413 | * NOTE: it should become possible to return VM_FAULT_RETRY | |
414 | * even if FAULT_FLAG_TRIED is set without leading to gup() | |
415 | * -EBUSY failures, if the userfaultfd is to be extended for | |
416 | * VM_UFFD_WP tracking and we intend to arm the userfault | |
417 | * without first stopping userland access to the memory. For | |
418 | * VM_UFFD_MISSING userfaults this is enough for now. | |
419 | */ | |
82b0f8c3 | 420 | if (unlikely(!(vmf->flags & FAULT_FLAG_ALLOW_RETRY))) { |
86039bd3 AA |
421 | /* |
422 | * Validate the invariant that nowait must allow retry | |
423 | * to be sure not to return SIGBUS erroneously on | |
424 | * nowait invocations. | |
425 | */ | |
82b0f8c3 | 426 | BUG_ON(vmf->flags & FAULT_FLAG_RETRY_NOWAIT); |
86039bd3 AA |
427 | #ifdef CONFIG_DEBUG_VM |
428 | if (printk_ratelimit()) { | |
429 | printk(KERN_WARNING | |
82b0f8c3 JK |
430 | "FAULT_FLAG_ALLOW_RETRY missing %x\n", |
431 | vmf->flags); | |
86039bd3 AA |
432 | dump_stack(); |
433 | } | |
434 | #endif | |
ba85c702 | 435 | goto out; |
86039bd3 AA |
436 | } |
437 | ||
438 | /* | |
439 | * Handle nowait, not much to do other than tell it to retry | |
440 | * and wait. | |
441 | */ | |
ba85c702 | 442 | ret = VM_FAULT_RETRY; |
82b0f8c3 | 443 | if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT) |
ba85c702 | 444 | goto out; |
86039bd3 AA |
445 | |
446 | /* take the reference before dropping the mmap_sem */ | |
447 | userfaultfd_ctx_get(ctx); | |
448 | ||
86039bd3 AA |
449 | init_waitqueue_func_entry(&uwq.wq, userfaultfd_wake_function); |
450 | uwq.wq.private = current; | |
9d4ac934 AP |
451 | uwq.msg = userfault_msg(vmf->address, vmf->flags, reason, |
452 | ctx->features); | |
86039bd3 | 453 | uwq.ctx = ctx; |
15a77c6f | 454 | uwq.waken = false; |
86039bd3 | 455 | |
bae473a4 | 456 | return_to_userland = |
82b0f8c3 | 457 | (vmf->flags & (FAULT_FLAG_USER|FAULT_FLAG_KILLABLE)) == |
dfa37dc3 | 458 | (FAULT_FLAG_USER|FAULT_FLAG_KILLABLE); |
15a77c6f AA |
459 | blocking_state = return_to_userland ? TASK_INTERRUPTIBLE : |
460 | TASK_KILLABLE; | |
dfa37dc3 | 461 | |
15b726ef | 462 | spin_lock(&ctx->fault_pending_wqh.lock); |
86039bd3 AA |
463 | /* |
464 | * After the __add_wait_queue the uwq is visible to userland | |
465 | * through poll/read(). | |
466 | */ | |
15b726ef AA |
467 | __add_wait_queue(&ctx->fault_pending_wqh, &uwq.wq); |
468 | /* | |
469 | * The smp_mb() after __set_current_state prevents the reads | |
470 | * following the spin_unlock to happen before the list_add in | |
471 | * __add_wait_queue. | |
472 | */ | |
15a77c6f | 473 | set_current_state(blocking_state); |
15b726ef | 474 | spin_unlock(&ctx->fault_pending_wqh.lock); |
86039bd3 | 475 | |
369cd212 MK |
476 | if (!is_vm_hugetlb_page(vmf->vma)) |
477 | must_wait = userfaultfd_must_wait(ctx, vmf->address, vmf->flags, | |
478 | reason); | |
479 | else | |
7868a208 PA |
480 | must_wait = userfaultfd_huge_must_wait(ctx, vmf->vma, |
481 | vmf->address, | |
369cd212 | 482 | vmf->flags, reason); |
8d2afd96 AA |
483 | up_read(&mm->mmap_sem); |
484 | ||
6aa7de05 | 485 | if (likely(must_wait && !READ_ONCE(ctx->released) && |
dfa37dc3 AA |
486 | (return_to_userland ? !signal_pending(current) : |
487 | !fatal_signal_pending(current)))) { | |
a9a08845 | 488 | wake_up_poll(&ctx->fd_wqh, EPOLLIN); |
86039bd3 | 489 | schedule(); |
ba85c702 | 490 | ret |= VM_FAULT_MAJOR; |
15a77c6f AA |
491 | |
492 | /* | |
493 | * False wakeups can orginate even from rwsem before | |
494 | * up_read() however userfaults will wait either for a | |
495 | * targeted wakeup on the specific uwq waitqueue from | |
496 | * wake_userfault() or for signals or for uffd | |
497 | * release. | |
498 | */ | |
499 | while (!READ_ONCE(uwq.waken)) { | |
500 | /* | |
501 | * This needs the full smp_store_mb() | |
502 | * guarantee as the state write must be | |
503 | * visible to other CPUs before reading | |
504 | * uwq.waken from other CPUs. | |
505 | */ | |
506 | set_current_state(blocking_state); | |
507 | if (READ_ONCE(uwq.waken) || | |
508 | READ_ONCE(ctx->released) || | |
509 | (return_to_userland ? signal_pending(current) : | |
510 | fatal_signal_pending(current))) | |
511 | break; | |
512 | schedule(); | |
513 | } | |
ba85c702 | 514 | } |
86039bd3 | 515 | |
ba85c702 | 516 | __set_current_state(TASK_RUNNING); |
15b726ef | 517 | |
dfa37dc3 AA |
518 | if (return_to_userland) { |
519 | if (signal_pending(current) && | |
520 | !fatal_signal_pending(current)) { | |
521 | /* | |
522 | * If we got a SIGSTOP or SIGCONT and this is | |
523 | * a normal userland page fault, just let | |
524 | * userland return so the signal will be | |
525 | * handled and gdb debugging works. The page | |
526 | * fault code immediately after we return from | |
527 | * this function is going to release the | |
528 | * mmap_sem and it's not depending on it | |
529 | * (unlike gup would if we were not to return | |
530 | * VM_FAULT_RETRY). | |
531 | * | |
532 | * If a fatal signal is pending we still take | |
533 | * the streamlined VM_FAULT_RETRY failure path | |
534 | * and there's no need to retake the mmap_sem | |
535 | * in such case. | |
536 | */ | |
537 | down_read(&mm->mmap_sem); | |
6bbc4a41 | 538 | ret = VM_FAULT_NOPAGE; |
dfa37dc3 AA |
539 | } |
540 | } | |
541 | ||
15b726ef AA |
542 | /* |
543 | * Here we race with the list_del; list_add in | |
544 | * userfaultfd_ctx_read(), however because we don't ever run | |
545 | * list_del_init() to refile across the two lists, the prev | |
546 | * and next pointers will never point to self. list_add also | |
547 | * would never let any of the two pointers to point to | |
548 | * self. So list_empty_careful won't risk to see both pointers | |
549 | * pointing to self at any time during the list refile. The | |
550 | * only case where list_del_init() is called is the full | |
551 | * removal in the wake function and there we don't re-list_add | |
552 | * and it's fine not to block on the spinlock. The uwq on this | |
553 | * kernel stack can be released after the list_del_init. | |
554 | */ | |
2055da97 | 555 | if (!list_empty_careful(&uwq.wq.entry)) { |
15b726ef AA |
556 | spin_lock(&ctx->fault_pending_wqh.lock); |
557 | /* | |
558 | * No need of list_del_init(), the uwq on the stack | |
559 | * will be freed shortly anyway. | |
560 | */ | |
2055da97 | 561 | list_del(&uwq.wq.entry); |
15b726ef | 562 | spin_unlock(&ctx->fault_pending_wqh.lock); |
86039bd3 | 563 | } |
86039bd3 AA |
564 | |
565 | /* | |
566 | * ctx may go away after this if the userfault pseudo fd is | |
567 | * already released. | |
568 | */ | |
569 | userfaultfd_ctx_put(ctx); | |
570 | ||
ba85c702 AA |
571 | out: |
572 | return ret; | |
86039bd3 AA |
573 | } |
574 | ||
8c9e7bb7 AA |
575 | static void userfaultfd_event_wait_completion(struct userfaultfd_ctx *ctx, |
576 | struct userfaultfd_wait_queue *ewq) | |
9cd75c3c | 577 | { |
0cbb4b4f AA |
578 | struct userfaultfd_ctx *release_new_ctx; |
579 | ||
9a69a829 AA |
580 | if (WARN_ON_ONCE(current->flags & PF_EXITING)) |
581 | goto out; | |
9cd75c3c PE |
582 | |
583 | ewq->ctx = ctx; | |
584 | init_waitqueue_entry(&ewq->wq, current); | |
0cbb4b4f | 585 | release_new_ctx = NULL; |
9cd75c3c PE |
586 | |
587 | spin_lock(&ctx->event_wqh.lock); | |
588 | /* | |
589 | * After the __add_wait_queue the uwq is visible to userland | |
590 | * through poll/read(). | |
591 | */ | |
592 | __add_wait_queue(&ctx->event_wqh, &ewq->wq); | |
593 | for (;;) { | |
594 | set_current_state(TASK_KILLABLE); | |
595 | if (ewq->msg.event == 0) | |
596 | break; | |
6aa7de05 | 597 | if (READ_ONCE(ctx->released) || |
9cd75c3c | 598 | fatal_signal_pending(current)) { |
384632e6 AA |
599 | /* |
600 | * &ewq->wq may be queued in fork_event, but | |
601 | * __remove_wait_queue ignores the head | |
602 | * parameter. It would be a problem if it | |
603 | * didn't. | |
604 | */ | |
9cd75c3c | 605 | __remove_wait_queue(&ctx->event_wqh, &ewq->wq); |
7eb76d45 MR |
606 | if (ewq->msg.event == UFFD_EVENT_FORK) { |
607 | struct userfaultfd_ctx *new; | |
608 | ||
609 | new = (struct userfaultfd_ctx *) | |
610 | (unsigned long) | |
611 | ewq->msg.arg.reserved.reserved1; | |
0cbb4b4f | 612 | release_new_ctx = new; |
7eb76d45 | 613 | } |
9cd75c3c PE |
614 | break; |
615 | } | |
616 | ||
617 | spin_unlock(&ctx->event_wqh.lock); | |
618 | ||
a9a08845 | 619 | wake_up_poll(&ctx->fd_wqh, EPOLLIN); |
9cd75c3c PE |
620 | schedule(); |
621 | ||
622 | spin_lock(&ctx->event_wqh.lock); | |
623 | } | |
624 | __set_current_state(TASK_RUNNING); | |
625 | spin_unlock(&ctx->event_wqh.lock); | |
626 | ||
0cbb4b4f AA |
627 | if (release_new_ctx) { |
628 | struct vm_area_struct *vma; | |
629 | struct mm_struct *mm = release_new_ctx->mm; | |
630 | ||
631 | /* the various vma->vm_userfaultfd_ctx still points to it */ | |
632 | down_write(&mm->mmap_sem); | |
633 | for (vma = mm->mmap; vma; vma = vma->vm_next) | |
31e810aa | 634 | if (vma->vm_userfaultfd_ctx.ctx == release_new_ctx) { |
0cbb4b4f | 635 | vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX; |
31e810aa MR |
636 | vma->vm_flags &= ~(VM_UFFD_WP | VM_UFFD_MISSING); |
637 | } | |
0cbb4b4f AA |
638 | up_write(&mm->mmap_sem); |
639 | ||
640 | userfaultfd_ctx_put(release_new_ctx); | |
641 | } | |
642 | ||
9cd75c3c PE |
643 | /* |
644 | * ctx may go away after this if the userfault pseudo fd is | |
645 | * already released. | |
646 | */ | |
9a69a829 | 647 | out: |
df2cc96e | 648 | WRITE_ONCE(ctx->mmap_changing, false); |
9cd75c3c | 649 | userfaultfd_ctx_put(ctx); |
9cd75c3c PE |
650 | } |
651 | ||
652 | static void userfaultfd_event_complete(struct userfaultfd_ctx *ctx, | |
653 | struct userfaultfd_wait_queue *ewq) | |
654 | { | |
655 | ewq->msg.event = 0; | |
656 | wake_up_locked(&ctx->event_wqh); | |
657 | __remove_wait_queue(&ctx->event_wqh, &ewq->wq); | |
658 | } | |
659 | ||
893e26e6 PE |
660 | int dup_userfaultfd(struct vm_area_struct *vma, struct list_head *fcs) |
661 | { | |
662 | struct userfaultfd_ctx *ctx = NULL, *octx; | |
663 | struct userfaultfd_fork_ctx *fctx; | |
664 | ||
665 | octx = vma->vm_userfaultfd_ctx.ctx; | |
666 | if (!octx || !(octx->features & UFFD_FEATURE_EVENT_FORK)) { | |
667 | vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX; | |
668 | vma->vm_flags &= ~(VM_UFFD_WP | VM_UFFD_MISSING); | |
669 | return 0; | |
670 | } | |
671 | ||
672 | list_for_each_entry(fctx, fcs, list) | |
673 | if (fctx->orig == octx) { | |
674 | ctx = fctx->new; | |
675 | break; | |
676 | } | |
677 | ||
678 | if (!ctx) { | |
679 | fctx = kmalloc(sizeof(*fctx), GFP_KERNEL); | |
680 | if (!fctx) | |
681 | return -ENOMEM; | |
682 | ||
683 | ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL); | |
684 | if (!ctx) { | |
685 | kfree(fctx); | |
686 | return -ENOMEM; | |
687 | } | |
688 | ||
689 | atomic_set(&ctx->refcount, 1); | |
690 | ctx->flags = octx->flags; | |
691 | ctx->state = UFFD_STATE_RUNNING; | |
692 | ctx->features = octx->features; | |
693 | ctx->released = false; | |
df2cc96e | 694 | ctx->mmap_changing = false; |
893e26e6 | 695 | ctx->mm = vma->vm_mm; |
00bb31fa | 696 | mmgrab(ctx->mm); |
893e26e6 PE |
697 | |
698 | userfaultfd_ctx_get(octx); | |
df2cc96e | 699 | WRITE_ONCE(octx->mmap_changing, true); |
893e26e6 PE |
700 | fctx->orig = octx; |
701 | fctx->new = ctx; | |
702 | list_add_tail(&fctx->list, fcs); | |
703 | } | |
704 | ||
705 | vma->vm_userfaultfd_ctx.ctx = ctx; | |
706 | return 0; | |
707 | } | |
708 | ||
8c9e7bb7 | 709 | static void dup_fctx(struct userfaultfd_fork_ctx *fctx) |
893e26e6 PE |
710 | { |
711 | struct userfaultfd_ctx *ctx = fctx->orig; | |
712 | struct userfaultfd_wait_queue ewq; | |
713 | ||
714 | msg_init(&ewq.msg); | |
715 | ||
716 | ewq.msg.event = UFFD_EVENT_FORK; | |
717 | ewq.msg.arg.reserved.reserved1 = (unsigned long)fctx->new; | |
718 | ||
8c9e7bb7 | 719 | userfaultfd_event_wait_completion(ctx, &ewq); |
893e26e6 PE |
720 | } |
721 | ||
722 | void dup_userfaultfd_complete(struct list_head *fcs) | |
723 | { | |
893e26e6 PE |
724 | struct userfaultfd_fork_ctx *fctx, *n; |
725 | ||
726 | list_for_each_entry_safe(fctx, n, fcs, list) { | |
8c9e7bb7 | 727 | dup_fctx(fctx); |
893e26e6 PE |
728 | list_del(&fctx->list); |
729 | kfree(fctx); | |
730 | } | |
731 | } | |
732 | ||
72f87654 PE |
733 | void mremap_userfaultfd_prep(struct vm_area_struct *vma, |
734 | struct vm_userfaultfd_ctx *vm_ctx) | |
735 | { | |
736 | struct userfaultfd_ctx *ctx; | |
737 | ||
738 | ctx = vma->vm_userfaultfd_ctx.ctx; | |
739 | if (ctx && (ctx->features & UFFD_FEATURE_EVENT_REMAP)) { | |
740 | vm_ctx->ctx = ctx; | |
741 | userfaultfd_ctx_get(ctx); | |
df2cc96e | 742 | WRITE_ONCE(ctx->mmap_changing, true); |
72f87654 PE |
743 | } |
744 | } | |
745 | ||
90794bf1 | 746 | void mremap_userfaultfd_complete(struct vm_userfaultfd_ctx *vm_ctx, |
72f87654 PE |
747 | unsigned long from, unsigned long to, |
748 | unsigned long len) | |
749 | { | |
90794bf1 | 750 | struct userfaultfd_ctx *ctx = vm_ctx->ctx; |
72f87654 PE |
751 | struct userfaultfd_wait_queue ewq; |
752 | ||
753 | if (!ctx) | |
754 | return; | |
755 | ||
756 | if (to & ~PAGE_MASK) { | |
757 | userfaultfd_ctx_put(ctx); | |
758 | return; | |
759 | } | |
760 | ||
761 | msg_init(&ewq.msg); | |
762 | ||
763 | ewq.msg.event = UFFD_EVENT_REMAP; | |
764 | ewq.msg.arg.remap.from = from; | |
765 | ewq.msg.arg.remap.to = to; | |
766 | ewq.msg.arg.remap.len = len; | |
767 | ||
768 | userfaultfd_event_wait_completion(ctx, &ewq); | |
769 | } | |
770 | ||
70ccb92f | 771 | bool userfaultfd_remove(struct vm_area_struct *vma, |
d811914d | 772 | unsigned long start, unsigned long end) |
05ce7724 PE |
773 | { |
774 | struct mm_struct *mm = vma->vm_mm; | |
775 | struct userfaultfd_ctx *ctx; | |
776 | struct userfaultfd_wait_queue ewq; | |
777 | ||
778 | ctx = vma->vm_userfaultfd_ctx.ctx; | |
d811914d | 779 | if (!ctx || !(ctx->features & UFFD_FEATURE_EVENT_REMOVE)) |
70ccb92f | 780 | return true; |
05ce7724 PE |
781 | |
782 | userfaultfd_ctx_get(ctx); | |
df2cc96e | 783 | WRITE_ONCE(ctx->mmap_changing, true); |
05ce7724 PE |
784 | up_read(&mm->mmap_sem); |
785 | ||
05ce7724 PE |
786 | msg_init(&ewq.msg); |
787 | ||
d811914d MR |
788 | ewq.msg.event = UFFD_EVENT_REMOVE; |
789 | ewq.msg.arg.remove.start = start; | |
790 | ewq.msg.arg.remove.end = end; | |
05ce7724 PE |
791 | |
792 | userfaultfd_event_wait_completion(ctx, &ewq); | |
793 | ||
70ccb92f | 794 | return false; |
05ce7724 PE |
795 | } |
796 | ||
897ab3e0 MR |
797 | static bool has_unmap_ctx(struct userfaultfd_ctx *ctx, struct list_head *unmaps, |
798 | unsigned long start, unsigned long end) | |
799 | { | |
800 | struct userfaultfd_unmap_ctx *unmap_ctx; | |
801 | ||
802 | list_for_each_entry(unmap_ctx, unmaps, list) | |
803 | if (unmap_ctx->ctx == ctx && unmap_ctx->start == start && | |
804 | unmap_ctx->end == end) | |
805 | return true; | |
806 | ||
807 | return false; | |
808 | } | |
809 | ||
810 | int userfaultfd_unmap_prep(struct vm_area_struct *vma, | |
811 | unsigned long start, unsigned long end, | |
812 | struct list_head *unmaps) | |
813 | { | |
814 | for ( ; vma && vma->vm_start < end; vma = vma->vm_next) { | |
815 | struct userfaultfd_unmap_ctx *unmap_ctx; | |
816 | struct userfaultfd_ctx *ctx = vma->vm_userfaultfd_ctx.ctx; | |
817 | ||
818 | if (!ctx || !(ctx->features & UFFD_FEATURE_EVENT_UNMAP) || | |
819 | has_unmap_ctx(ctx, unmaps, start, end)) | |
820 | continue; | |
821 | ||
822 | unmap_ctx = kzalloc(sizeof(*unmap_ctx), GFP_KERNEL); | |
823 | if (!unmap_ctx) | |
824 | return -ENOMEM; | |
825 | ||
826 | userfaultfd_ctx_get(ctx); | |
df2cc96e | 827 | WRITE_ONCE(ctx->mmap_changing, true); |
897ab3e0 MR |
828 | unmap_ctx->ctx = ctx; |
829 | unmap_ctx->start = start; | |
830 | unmap_ctx->end = end; | |
831 | list_add_tail(&unmap_ctx->list, unmaps); | |
832 | } | |
833 | ||
834 | return 0; | |
835 | } | |
836 | ||
837 | void userfaultfd_unmap_complete(struct mm_struct *mm, struct list_head *uf) | |
838 | { | |
839 | struct userfaultfd_unmap_ctx *ctx, *n; | |
840 | struct userfaultfd_wait_queue ewq; | |
841 | ||
842 | list_for_each_entry_safe(ctx, n, uf, list) { | |
843 | msg_init(&ewq.msg); | |
844 | ||
845 | ewq.msg.event = UFFD_EVENT_UNMAP; | |
846 | ewq.msg.arg.remove.start = ctx->start; | |
847 | ewq.msg.arg.remove.end = ctx->end; | |
848 | ||
849 | userfaultfd_event_wait_completion(ctx->ctx, &ewq); | |
850 | ||
851 | list_del(&ctx->list); | |
852 | kfree(ctx); | |
853 | } | |
854 | } | |
855 | ||
86039bd3 AA |
856 | static int userfaultfd_release(struct inode *inode, struct file *file) |
857 | { | |
858 | struct userfaultfd_ctx *ctx = file->private_data; | |
859 | struct mm_struct *mm = ctx->mm; | |
860 | struct vm_area_struct *vma, *prev; | |
861 | /* len == 0 means wake all */ | |
862 | struct userfaultfd_wake_range range = { .len = 0, }; | |
863 | unsigned long new_flags; | |
864 | ||
6aa7de05 | 865 | WRITE_ONCE(ctx->released, true); |
86039bd3 | 866 | |
d2005e3f ON |
867 | if (!mmget_not_zero(mm)) |
868 | goto wakeup; | |
869 | ||
86039bd3 AA |
870 | /* |
871 | * Flush page faults out of all CPUs. NOTE: all page faults | |
872 | * must be retried without returning VM_FAULT_SIGBUS if | |
873 | * userfaultfd_ctx_get() succeeds but vma->vma_userfault_ctx | |
874 | * changes while handle_userfault released the mmap_sem. So | |
875 | * it's critical that released is set to true (above), before | |
876 | * taking the mmap_sem for writing. | |
877 | */ | |
878 | down_write(&mm->mmap_sem); | |
879 | prev = NULL; | |
880 | for (vma = mm->mmap; vma; vma = vma->vm_next) { | |
881 | cond_resched(); | |
882 | BUG_ON(!!vma->vm_userfaultfd_ctx.ctx ^ | |
883 | !!(vma->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP))); | |
884 | if (vma->vm_userfaultfd_ctx.ctx != ctx) { | |
885 | prev = vma; | |
886 | continue; | |
887 | } | |
888 | new_flags = vma->vm_flags & ~(VM_UFFD_MISSING | VM_UFFD_WP); | |
889 | prev = vma_merge(mm, prev, vma->vm_start, vma->vm_end, | |
890 | new_flags, vma->anon_vma, | |
891 | vma->vm_file, vma->vm_pgoff, | |
892 | vma_policy(vma), | |
893 | NULL_VM_UFFD_CTX); | |
894 | if (prev) | |
895 | vma = prev; | |
896 | else | |
897 | prev = vma; | |
898 | vma->vm_flags = new_flags; | |
899 | vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX; | |
900 | } | |
901 | up_write(&mm->mmap_sem); | |
d2005e3f ON |
902 | mmput(mm); |
903 | wakeup: | |
86039bd3 | 904 | /* |
15b726ef | 905 | * After no new page faults can wait on this fault_*wqh, flush |
86039bd3 | 906 | * the last page faults that may have been already waiting on |
15b726ef | 907 | * the fault_*wqh. |
86039bd3 | 908 | */ |
15b726ef | 909 | spin_lock(&ctx->fault_pending_wqh.lock); |
ac5be6b4 | 910 | __wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL, &range); |
c430d1e8 | 911 | __wake_up(&ctx->fault_wqh, TASK_NORMAL, 1, &range); |
15b726ef | 912 | spin_unlock(&ctx->fault_pending_wqh.lock); |
86039bd3 | 913 | |
5a18b64e MR |
914 | /* Flush pending events that may still wait on event_wqh */ |
915 | wake_up_all(&ctx->event_wqh); | |
916 | ||
a9a08845 | 917 | wake_up_poll(&ctx->fd_wqh, EPOLLHUP); |
86039bd3 AA |
918 | userfaultfd_ctx_put(ctx); |
919 | return 0; | |
920 | } | |
921 | ||
15b726ef | 922 | /* fault_pending_wqh.lock must be hold by the caller */ |
6dcc27fd PE |
923 | static inline struct userfaultfd_wait_queue *find_userfault_in( |
924 | wait_queue_head_t *wqh) | |
86039bd3 | 925 | { |
ac6424b9 | 926 | wait_queue_entry_t *wq; |
15b726ef | 927 | struct userfaultfd_wait_queue *uwq; |
86039bd3 | 928 | |
6dcc27fd | 929 | VM_BUG_ON(!spin_is_locked(&wqh->lock)); |
86039bd3 | 930 | |
15b726ef | 931 | uwq = NULL; |
6dcc27fd | 932 | if (!waitqueue_active(wqh)) |
15b726ef AA |
933 | goto out; |
934 | /* walk in reverse to provide FIFO behavior to read userfaults */ | |
2055da97 | 935 | wq = list_last_entry(&wqh->head, typeof(*wq), entry); |
15b726ef AA |
936 | uwq = container_of(wq, struct userfaultfd_wait_queue, wq); |
937 | out: | |
938 | return uwq; | |
86039bd3 | 939 | } |
6dcc27fd PE |
940 | |
941 | static inline struct userfaultfd_wait_queue *find_userfault( | |
942 | struct userfaultfd_ctx *ctx) | |
943 | { | |
944 | return find_userfault_in(&ctx->fault_pending_wqh); | |
945 | } | |
86039bd3 | 946 | |
9cd75c3c PE |
947 | static inline struct userfaultfd_wait_queue *find_userfault_evt( |
948 | struct userfaultfd_ctx *ctx) | |
949 | { | |
950 | return find_userfault_in(&ctx->event_wqh); | |
951 | } | |
952 | ||
076ccb76 | 953 | static __poll_t userfaultfd_poll(struct file *file, poll_table *wait) |
86039bd3 AA |
954 | { |
955 | struct userfaultfd_ctx *ctx = file->private_data; | |
076ccb76 | 956 | __poll_t ret; |
86039bd3 AA |
957 | |
958 | poll_wait(file, &ctx->fd_wqh, wait); | |
959 | ||
960 | switch (ctx->state) { | |
961 | case UFFD_STATE_WAIT_API: | |
a9a08845 | 962 | return EPOLLERR; |
86039bd3 | 963 | case UFFD_STATE_RUNNING: |
ba85c702 AA |
964 | /* |
965 | * poll() never guarantees that read won't block. | |
966 | * userfaults can be waken before they're read(). | |
967 | */ | |
968 | if (unlikely(!(file->f_flags & O_NONBLOCK))) | |
a9a08845 | 969 | return EPOLLERR; |
15b726ef AA |
970 | /* |
971 | * lockless access to see if there are pending faults | |
972 | * __pollwait last action is the add_wait_queue but | |
973 | * the spin_unlock would allow the waitqueue_active to | |
974 | * pass above the actual list_add inside | |
975 | * add_wait_queue critical section. So use a full | |
976 | * memory barrier to serialize the list_add write of | |
977 | * add_wait_queue() with the waitqueue_active read | |
978 | * below. | |
979 | */ | |
980 | ret = 0; | |
981 | smp_mb(); | |
982 | if (waitqueue_active(&ctx->fault_pending_wqh)) | |
a9a08845 | 983 | ret = EPOLLIN; |
9cd75c3c | 984 | else if (waitqueue_active(&ctx->event_wqh)) |
a9a08845 | 985 | ret = EPOLLIN; |
9cd75c3c | 986 | |
86039bd3 AA |
987 | return ret; |
988 | default: | |
8474901a | 989 | WARN_ON_ONCE(1); |
a9a08845 | 990 | return EPOLLERR; |
86039bd3 AA |
991 | } |
992 | } | |
993 | ||
893e26e6 PE |
994 | static const struct file_operations userfaultfd_fops; |
995 | ||
996 | static int resolve_userfault_fork(struct userfaultfd_ctx *ctx, | |
997 | struct userfaultfd_ctx *new, | |
998 | struct uffd_msg *msg) | |
999 | { | |
1000 | int fd; | |
893e26e6 | 1001 | |
284cd241 EB |
1002 | fd = anon_inode_getfd("[userfaultfd]", &userfaultfd_fops, new, |
1003 | O_RDWR | (new->flags & UFFD_SHARED_FCNTL_FLAGS)); | |
893e26e6 PE |
1004 | if (fd < 0) |
1005 | return fd; | |
1006 | ||
893e26e6 PE |
1007 | msg->arg.reserved.reserved1 = 0; |
1008 | msg->arg.fork.ufd = fd; | |
893e26e6 PE |
1009 | return 0; |
1010 | } | |
1011 | ||
86039bd3 | 1012 | static ssize_t userfaultfd_ctx_read(struct userfaultfd_ctx *ctx, int no_wait, |
a9b85f94 | 1013 | struct uffd_msg *msg) |
86039bd3 AA |
1014 | { |
1015 | ssize_t ret; | |
1016 | DECLARE_WAITQUEUE(wait, current); | |
15b726ef | 1017 | struct userfaultfd_wait_queue *uwq; |
893e26e6 PE |
1018 | /* |
1019 | * Handling fork event requires sleeping operations, so | |
1020 | * we drop the event_wqh lock, then do these ops, then | |
1021 | * lock it back and wake up the waiter. While the lock is | |
1022 | * dropped the ewq may go away so we keep track of it | |
1023 | * carefully. | |
1024 | */ | |
1025 | LIST_HEAD(fork_event); | |
1026 | struct userfaultfd_ctx *fork_nctx = NULL; | |
86039bd3 | 1027 | |
15b726ef | 1028 | /* always take the fd_wqh lock before the fault_pending_wqh lock */ |
86039bd3 AA |
1029 | spin_lock(&ctx->fd_wqh.lock); |
1030 | __add_wait_queue(&ctx->fd_wqh, &wait); | |
1031 | for (;;) { | |
1032 | set_current_state(TASK_INTERRUPTIBLE); | |
15b726ef AA |
1033 | spin_lock(&ctx->fault_pending_wqh.lock); |
1034 | uwq = find_userfault(ctx); | |
1035 | if (uwq) { | |
2c5b7e1b AA |
1036 | /* |
1037 | * Use a seqcount to repeat the lockless check | |
1038 | * in wake_userfault() to avoid missing | |
1039 | * wakeups because during the refile both | |
1040 | * waitqueue could become empty if this is the | |
1041 | * only userfault. | |
1042 | */ | |
1043 | write_seqcount_begin(&ctx->refile_seq); | |
1044 | ||
86039bd3 | 1045 | /* |
15b726ef AA |
1046 | * The fault_pending_wqh.lock prevents the uwq |
1047 | * to disappear from under us. | |
1048 | * | |
1049 | * Refile this userfault from | |
1050 | * fault_pending_wqh to fault_wqh, it's not | |
1051 | * pending anymore after we read it. | |
1052 | * | |
1053 | * Use list_del() by hand (as | |
1054 | * userfaultfd_wake_function also uses | |
1055 | * list_del_init() by hand) to be sure nobody | |
1056 | * changes __remove_wait_queue() to use | |
1057 | * list_del_init() in turn breaking the | |
1058 | * !list_empty_careful() check in | |
2055da97 | 1059 | * handle_userfault(). The uwq->wq.head list |
15b726ef AA |
1060 | * must never be empty at any time during the |
1061 | * refile, or the waitqueue could disappear | |
1062 | * from under us. The "wait_queue_head_t" | |
1063 | * parameter of __remove_wait_queue() is unused | |
1064 | * anyway. | |
86039bd3 | 1065 | */ |
2055da97 | 1066 | list_del(&uwq->wq.entry); |
c430d1e8 | 1067 | add_wait_queue(&ctx->fault_wqh, &uwq->wq); |
15b726ef | 1068 | |
2c5b7e1b AA |
1069 | write_seqcount_end(&ctx->refile_seq); |
1070 | ||
a9b85f94 AA |
1071 | /* careful to always initialize msg if ret == 0 */ |
1072 | *msg = uwq->msg; | |
15b726ef | 1073 | spin_unlock(&ctx->fault_pending_wqh.lock); |
86039bd3 AA |
1074 | ret = 0; |
1075 | break; | |
1076 | } | |
15b726ef | 1077 | spin_unlock(&ctx->fault_pending_wqh.lock); |
9cd75c3c PE |
1078 | |
1079 | spin_lock(&ctx->event_wqh.lock); | |
1080 | uwq = find_userfault_evt(ctx); | |
1081 | if (uwq) { | |
1082 | *msg = uwq->msg; | |
1083 | ||
893e26e6 PE |
1084 | if (uwq->msg.event == UFFD_EVENT_FORK) { |
1085 | fork_nctx = (struct userfaultfd_ctx *) | |
1086 | (unsigned long) | |
1087 | uwq->msg.arg.reserved.reserved1; | |
2055da97 | 1088 | list_move(&uwq->wq.entry, &fork_event); |
384632e6 AA |
1089 | /* |
1090 | * fork_nctx can be freed as soon as | |
1091 | * we drop the lock, unless we take a | |
1092 | * reference on it. | |
1093 | */ | |
1094 | userfaultfd_ctx_get(fork_nctx); | |
893e26e6 PE |
1095 | spin_unlock(&ctx->event_wqh.lock); |
1096 | ret = 0; | |
1097 | break; | |
1098 | } | |
1099 | ||
9cd75c3c PE |
1100 | userfaultfd_event_complete(ctx, uwq); |
1101 | spin_unlock(&ctx->event_wqh.lock); | |
1102 | ret = 0; | |
1103 | break; | |
1104 | } | |
1105 | spin_unlock(&ctx->event_wqh.lock); | |
1106 | ||
86039bd3 AA |
1107 | if (signal_pending(current)) { |
1108 | ret = -ERESTARTSYS; | |
1109 | break; | |
1110 | } | |
1111 | if (no_wait) { | |
1112 | ret = -EAGAIN; | |
1113 | break; | |
1114 | } | |
1115 | spin_unlock(&ctx->fd_wqh.lock); | |
1116 | schedule(); | |
1117 | spin_lock(&ctx->fd_wqh.lock); | |
1118 | } | |
1119 | __remove_wait_queue(&ctx->fd_wqh, &wait); | |
1120 | __set_current_state(TASK_RUNNING); | |
1121 | spin_unlock(&ctx->fd_wqh.lock); | |
1122 | ||
893e26e6 PE |
1123 | if (!ret && msg->event == UFFD_EVENT_FORK) { |
1124 | ret = resolve_userfault_fork(ctx, fork_nctx, msg); | |
384632e6 AA |
1125 | spin_lock(&ctx->event_wqh.lock); |
1126 | if (!list_empty(&fork_event)) { | |
1127 | /* | |
1128 | * The fork thread didn't abort, so we can | |
1129 | * drop the temporary refcount. | |
1130 | */ | |
1131 | userfaultfd_ctx_put(fork_nctx); | |
1132 | ||
1133 | uwq = list_first_entry(&fork_event, | |
1134 | typeof(*uwq), | |
1135 | wq.entry); | |
1136 | /* | |
1137 | * If fork_event list wasn't empty and in turn | |
1138 | * the event wasn't already released by fork | |
1139 | * (the event is allocated on fork kernel | |
1140 | * stack), put the event back to its place in | |
1141 | * the event_wq. fork_event head will be freed | |
1142 | * as soon as we return so the event cannot | |
1143 | * stay queued there no matter the current | |
1144 | * "ret" value. | |
1145 | */ | |
1146 | list_del(&uwq->wq.entry); | |
1147 | __add_wait_queue(&ctx->event_wqh, &uwq->wq); | |
893e26e6 | 1148 | |
384632e6 AA |
1149 | /* |
1150 | * Leave the event in the waitqueue and report | |
1151 | * error to userland if we failed to resolve | |
1152 | * the userfault fork. | |
1153 | */ | |
1154 | if (likely(!ret)) | |
893e26e6 | 1155 | userfaultfd_event_complete(ctx, uwq); |
384632e6 AA |
1156 | } else { |
1157 | /* | |
1158 | * Here the fork thread aborted and the | |
1159 | * refcount from the fork thread on fork_nctx | |
1160 | * has already been released. We still hold | |
1161 | * the reference we took before releasing the | |
1162 | * lock above. If resolve_userfault_fork | |
1163 | * failed we've to drop it because the | |
1164 | * fork_nctx has to be freed in such case. If | |
1165 | * it succeeded we'll hold it because the new | |
1166 | * uffd references it. | |
1167 | */ | |
1168 | if (ret) | |
1169 | userfaultfd_ctx_put(fork_nctx); | |
893e26e6 | 1170 | } |
384632e6 | 1171 | spin_unlock(&ctx->event_wqh.lock); |
893e26e6 PE |
1172 | } |
1173 | ||
86039bd3 AA |
1174 | return ret; |
1175 | } | |
1176 | ||
1177 | static ssize_t userfaultfd_read(struct file *file, char __user *buf, | |
1178 | size_t count, loff_t *ppos) | |
1179 | { | |
1180 | struct userfaultfd_ctx *ctx = file->private_data; | |
1181 | ssize_t _ret, ret = 0; | |
a9b85f94 | 1182 | struct uffd_msg msg; |
86039bd3 AA |
1183 | int no_wait = file->f_flags & O_NONBLOCK; |
1184 | ||
1185 | if (ctx->state == UFFD_STATE_WAIT_API) | |
1186 | return -EINVAL; | |
86039bd3 AA |
1187 | |
1188 | for (;;) { | |
a9b85f94 | 1189 | if (count < sizeof(msg)) |
86039bd3 | 1190 | return ret ? ret : -EINVAL; |
a9b85f94 | 1191 | _ret = userfaultfd_ctx_read(ctx, no_wait, &msg); |
86039bd3 AA |
1192 | if (_ret < 0) |
1193 | return ret ? ret : _ret; | |
a9b85f94 | 1194 | if (copy_to_user((__u64 __user *) buf, &msg, sizeof(msg))) |
86039bd3 | 1195 | return ret ? ret : -EFAULT; |
a9b85f94 AA |
1196 | ret += sizeof(msg); |
1197 | buf += sizeof(msg); | |
1198 | count -= sizeof(msg); | |
86039bd3 AA |
1199 | /* |
1200 | * Allow to read more than one fault at time but only | |
1201 | * block if waiting for the very first one. | |
1202 | */ | |
1203 | no_wait = O_NONBLOCK; | |
1204 | } | |
1205 | } | |
1206 | ||
1207 | static void __wake_userfault(struct userfaultfd_ctx *ctx, | |
1208 | struct userfaultfd_wake_range *range) | |
1209 | { | |
15b726ef | 1210 | spin_lock(&ctx->fault_pending_wqh.lock); |
86039bd3 | 1211 | /* wake all in the range and autoremove */ |
15b726ef | 1212 | if (waitqueue_active(&ctx->fault_pending_wqh)) |
ac5be6b4 | 1213 | __wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL, |
15b726ef AA |
1214 | range); |
1215 | if (waitqueue_active(&ctx->fault_wqh)) | |
c430d1e8 | 1216 | __wake_up(&ctx->fault_wqh, TASK_NORMAL, 1, range); |
15b726ef | 1217 | spin_unlock(&ctx->fault_pending_wqh.lock); |
86039bd3 AA |
1218 | } |
1219 | ||
1220 | static __always_inline void wake_userfault(struct userfaultfd_ctx *ctx, | |
1221 | struct userfaultfd_wake_range *range) | |
1222 | { | |
2c5b7e1b AA |
1223 | unsigned seq; |
1224 | bool need_wakeup; | |
1225 | ||
86039bd3 AA |
1226 | /* |
1227 | * To be sure waitqueue_active() is not reordered by the CPU | |
1228 | * before the pagetable update, use an explicit SMP memory | |
1229 | * barrier here. PT lock release or up_read(mmap_sem) still | |
1230 | * have release semantics that can allow the | |
1231 | * waitqueue_active() to be reordered before the pte update. | |
1232 | */ | |
1233 | smp_mb(); | |
1234 | ||
1235 | /* | |
1236 | * Use waitqueue_active because it's very frequent to | |
1237 | * change the address space atomically even if there are no | |
1238 | * userfaults yet. So we take the spinlock only when we're | |
1239 | * sure we've userfaults to wake. | |
1240 | */ | |
2c5b7e1b AA |
1241 | do { |
1242 | seq = read_seqcount_begin(&ctx->refile_seq); | |
1243 | need_wakeup = waitqueue_active(&ctx->fault_pending_wqh) || | |
1244 | waitqueue_active(&ctx->fault_wqh); | |
1245 | cond_resched(); | |
1246 | } while (read_seqcount_retry(&ctx->refile_seq, seq)); | |
1247 | if (need_wakeup) | |
86039bd3 AA |
1248 | __wake_userfault(ctx, range); |
1249 | } | |
1250 | ||
1251 | static __always_inline int validate_range(struct mm_struct *mm, | |
1252 | __u64 start, __u64 len) | |
1253 | { | |
1254 | __u64 task_size = mm->task_size; | |
1255 | ||
1256 | if (start & ~PAGE_MASK) | |
1257 | return -EINVAL; | |
1258 | if (len & ~PAGE_MASK) | |
1259 | return -EINVAL; | |
1260 | if (!len) | |
1261 | return -EINVAL; | |
1262 | if (start < mmap_min_addr) | |
1263 | return -EINVAL; | |
1264 | if (start >= task_size) | |
1265 | return -EINVAL; | |
1266 | if (len > task_size - start) | |
1267 | return -EINVAL; | |
1268 | return 0; | |
1269 | } | |
1270 | ||
ba6907db MR |
1271 | static inline bool vma_can_userfault(struct vm_area_struct *vma) |
1272 | { | |
cac67329 MR |
1273 | return vma_is_anonymous(vma) || is_vm_hugetlb_page(vma) || |
1274 | vma_is_shmem(vma); | |
ba6907db MR |
1275 | } |
1276 | ||
86039bd3 AA |
1277 | static int userfaultfd_register(struct userfaultfd_ctx *ctx, |
1278 | unsigned long arg) | |
1279 | { | |
1280 | struct mm_struct *mm = ctx->mm; | |
1281 | struct vm_area_struct *vma, *prev, *cur; | |
1282 | int ret; | |
1283 | struct uffdio_register uffdio_register; | |
1284 | struct uffdio_register __user *user_uffdio_register; | |
1285 | unsigned long vm_flags, new_flags; | |
1286 | bool found; | |
ce53e8e6 | 1287 | bool basic_ioctls; |
86039bd3 AA |
1288 | unsigned long start, end, vma_end; |
1289 | ||
1290 | user_uffdio_register = (struct uffdio_register __user *) arg; | |
1291 | ||
1292 | ret = -EFAULT; | |
1293 | if (copy_from_user(&uffdio_register, user_uffdio_register, | |
1294 | sizeof(uffdio_register)-sizeof(__u64))) | |
1295 | goto out; | |
1296 | ||
1297 | ret = -EINVAL; | |
1298 | if (!uffdio_register.mode) | |
1299 | goto out; | |
1300 | if (uffdio_register.mode & ~(UFFDIO_REGISTER_MODE_MISSING| | |
1301 | UFFDIO_REGISTER_MODE_WP)) | |
1302 | goto out; | |
1303 | vm_flags = 0; | |
1304 | if (uffdio_register.mode & UFFDIO_REGISTER_MODE_MISSING) | |
1305 | vm_flags |= VM_UFFD_MISSING; | |
1306 | if (uffdio_register.mode & UFFDIO_REGISTER_MODE_WP) { | |
1307 | vm_flags |= VM_UFFD_WP; | |
1308 | /* | |
1309 | * FIXME: remove the below error constraint by | |
1310 | * implementing the wprotect tracking mode. | |
1311 | */ | |
1312 | ret = -EINVAL; | |
1313 | goto out; | |
1314 | } | |
1315 | ||
1316 | ret = validate_range(mm, uffdio_register.range.start, | |
1317 | uffdio_register.range.len); | |
1318 | if (ret) | |
1319 | goto out; | |
1320 | ||
1321 | start = uffdio_register.range.start; | |
1322 | end = start + uffdio_register.range.len; | |
1323 | ||
d2005e3f ON |
1324 | ret = -ENOMEM; |
1325 | if (!mmget_not_zero(mm)) | |
1326 | goto out; | |
1327 | ||
86039bd3 AA |
1328 | down_write(&mm->mmap_sem); |
1329 | vma = find_vma_prev(mm, start, &prev); | |
86039bd3 AA |
1330 | if (!vma) |
1331 | goto out_unlock; | |
1332 | ||
1333 | /* check that there's at least one vma in the range */ | |
1334 | ret = -EINVAL; | |
1335 | if (vma->vm_start >= end) | |
1336 | goto out_unlock; | |
1337 | ||
cab350af MK |
1338 | /* |
1339 | * If the first vma contains huge pages, make sure start address | |
1340 | * is aligned to huge page size. | |
1341 | */ | |
1342 | if (is_vm_hugetlb_page(vma)) { | |
1343 | unsigned long vma_hpagesize = vma_kernel_pagesize(vma); | |
1344 | ||
1345 | if (start & (vma_hpagesize - 1)) | |
1346 | goto out_unlock; | |
1347 | } | |
1348 | ||
86039bd3 AA |
1349 | /* |
1350 | * Search for not compatible vmas. | |
86039bd3 AA |
1351 | */ |
1352 | found = false; | |
ce53e8e6 | 1353 | basic_ioctls = false; |
86039bd3 AA |
1354 | for (cur = vma; cur && cur->vm_start < end; cur = cur->vm_next) { |
1355 | cond_resched(); | |
1356 | ||
1357 | BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^ | |
1358 | !!(cur->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP))); | |
1359 | ||
1360 | /* check not compatible vmas */ | |
1361 | ret = -EINVAL; | |
ba6907db | 1362 | if (!vma_can_userfault(cur)) |
86039bd3 | 1363 | goto out_unlock; |
cab350af MK |
1364 | /* |
1365 | * If this vma contains ending address, and huge pages | |
1366 | * check alignment. | |
1367 | */ | |
1368 | if (is_vm_hugetlb_page(cur) && end <= cur->vm_end && | |
1369 | end > cur->vm_start) { | |
1370 | unsigned long vma_hpagesize = vma_kernel_pagesize(cur); | |
1371 | ||
1372 | ret = -EINVAL; | |
1373 | ||
1374 | if (end & (vma_hpagesize - 1)) | |
1375 | goto out_unlock; | |
1376 | } | |
86039bd3 AA |
1377 | |
1378 | /* | |
1379 | * Check that this vma isn't already owned by a | |
1380 | * different userfaultfd. We can't allow more than one | |
1381 | * userfaultfd to own a single vma simultaneously or we | |
1382 | * wouldn't know which one to deliver the userfaults to. | |
1383 | */ | |
1384 | ret = -EBUSY; | |
1385 | if (cur->vm_userfaultfd_ctx.ctx && | |
1386 | cur->vm_userfaultfd_ctx.ctx != ctx) | |
1387 | goto out_unlock; | |
1388 | ||
cab350af MK |
1389 | /* |
1390 | * Note vmas containing huge pages | |
1391 | */ | |
ce53e8e6 MR |
1392 | if (is_vm_hugetlb_page(cur)) |
1393 | basic_ioctls = true; | |
cab350af | 1394 | |
86039bd3 AA |
1395 | found = true; |
1396 | } | |
1397 | BUG_ON(!found); | |
1398 | ||
1399 | if (vma->vm_start < start) | |
1400 | prev = vma; | |
1401 | ||
1402 | ret = 0; | |
1403 | do { | |
1404 | cond_resched(); | |
1405 | ||
ba6907db | 1406 | BUG_ON(!vma_can_userfault(vma)); |
86039bd3 AA |
1407 | BUG_ON(vma->vm_userfaultfd_ctx.ctx && |
1408 | vma->vm_userfaultfd_ctx.ctx != ctx); | |
1409 | ||
1410 | /* | |
1411 | * Nothing to do: this vma is already registered into this | |
1412 | * userfaultfd and with the right tracking mode too. | |
1413 | */ | |
1414 | if (vma->vm_userfaultfd_ctx.ctx == ctx && | |
1415 | (vma->vm_flags & vm_flags) == vm_flags) | |
1416 | goto skip; | |
1417 | ||
1418 | if (vma->vm_start > start) | |
1419 | start = vma->vm_start; | |
1420 | vma_end = min(end, vma->vm_end); | |
1421 | ||
1422 | new_flags = (vma->vm_flags & ~vm_flags) | vm_flags; | |
1423 | prev = vma_merge(mm, prev, start, vma_end, new_flags, | |
1424 | vma->anon_vma, vma->vm_file, vma->vm_pgoff, | |
1425 | vma_policy(vma), | |
1426 | ((struct vm_userfaultfd_ctx){ ctx })); | |
1427 | if (prev) { | |
1428 | vma = prev; | |
1429 | goto next; | |
1430 | } | |
1431 | if (vma->vm_start < start) { | |
1432 | ret = split_vma(mm, vma, start, 1); | |
1433 | if (ret) | |
1434 | break; | |
1435 | } | |
1436 | if (vma->vm_end > end) { | |
1437 | ret = split_vma(mm, vma, end, 0); | |
1438 | if (ret) | |
1439 | break; | |
1440 | } | |
1441 | next: | |
1442 | /* | |
1443 | * In the vma_merge() successful mprotect-like case 8: | |
1444 | * the next vma was merged into the current one and | |
1445 | * the current one has not been updated yet. | |
1446 | */ | |
1447 | vma->vm_flags = new_flags; | |
1448 | vma->vm_userfaultfd_ctx.ctx = ctx; | |
1449 | ||
1450 | skip: | |
1451 | prev = vma; | |
1452 | start = vma->vm_end; | |
1453 | vma = vma->vm_next; | |
1454 | } while (vma && vma->vm_start < end); | |
1455 | out_unlock: | |
1456 | up_write(&mm->mmap_sem); | |
d2005e3f | 1457 | mmput(mm); |
86039bd3 AA |
1458 | if (!ret) { |
1459 | /* | |
1460 | * Now that we scanned all vmas we can already tell | |
1461 | * userland which ioctls methods are guaranteed to | |
1462 | * succeed on this range. | |
1463 | */ | |
ce53e8e6 | 1464 | if (put_user(basic_ioctls ? UFFD_API_RANGE_IOCTLS_BASIC : |
cab350af | 1465 | UFFD_API_RANGE_IOCTLS, |
86039bd3 AA |
1466 | &user_uffdio_register->ioctls)) |
1467 | ret = -EFAULT; | |
1468 | } | |
1469 | out: | |
1470 | return ret; | |
1471 | } | |
1472 | ||
1473 | static int userfaultfd_unregister(struct userfaultfd_ctx *ctx, | |
1474 | unsigned long arg) | |
1475 | { | |
1476 | struct mm_struct *mm = ctx->mm; | |
1477 | struct vm_area_struct *vma, *prev, *cur; | |
1478 | int ret; | |
1479 | struct uffdio_range uffdio_unregister; | |
1480 | unsigned long new_flags; | |
1481 | bool found; | |
1482 | unsigned long start, end, vma_end; | |
1483 | const void __user *buf = (void __user *)arg; | |
1484 | ||
1485 | ret = -EFAULT; | |
1486 | if (copy_from_user(&uffdio_unregister, buf, sizeof(uffdio_unregister))) | |
1487 | goto out; | |
1488 | ||
1489 | ret = validate_range(mm, uffdio_unregister.start, | |
1490 | uffdio_unregister.len); | |
1491 | if (ret) | |
1492 | goto out; | |
1493 | ||
1494 | start = uffdio_unregister.start; | |
1495 | end = start + uffdio_unregister.len; | |
1496 | ||
d2005e3f ON |
1497 | ret = -ENOMEM; |
1498 | if (!mmget_not_zero(mm)) | |
1499 | goto out; | |
1500 | ||
86039bd3 AA |
1501 | down_write(&mm->mmap_sem); |
1502 | vma = find_vma_prev(mm, start, &prev); | |
86039bd3 AA |
1503 | if (!vma) |
1504 | goto out_unlock; | |
1505 | ||
1506 | /* check that there's at least one vma in the range */ | |
1507 | ret = -EINVAL; | |
1508 | if (vma->vm_start >= end) | |
1509 | goto out_unlock; | |
1510 | ||
cab350af MK |
1511 | /* |
1512 | * If the first vma contains huge pages, make sure start address | |
1513 | * is aligned to huge page size. | |
1514 | */ | |
1515 | if (is_vm_hugetlb_page(vma)) { | |
1516 | unsigned long vma_hpagesize = vma_kernel_pagesize(vma); | |
1517 | ||
1518 | if (start & (vma_hpagesize - 1)) | |
1519 | goto out_unlock; | |
1520 | } | |
1521 | ||
86039bd3 AA |
1522 | /* |
1523 | * Search for not compatible vmas. | |
86039bd3 AA |
1524 | */ |
1525 | found = false; | |
1526 | ret = -EINVAL; | |
1527 | for (cur = vma; cur && cur->vm_start < end; cur = cur->vm_next) { | |
1528 | cond_resched(); | |
1529 | ||
1530 | BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^ | |
1531 | !!(cur->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP))); | |
1532 | ||
1533 | /* | |
1534 | * Check not compatible vmas, not strictly required | |
1535 | * here as not compatible vmas cannot have an | |
1536 | * userfaultfd_ctx registered on them, but this | |
1537 | * provides for more strict behavior to notice | |
1538 | * unregistration errors. | |
1539 | */ | |
ba6907db | 1540 | if (!vma_can_userfault(cur)) |
86039bd3 AA |
1541 | goto out_unlock; |
1542 | ||
1543 | found = true; | |
1544 | } | |
1545 | BUG_ON(!found); | |
1546 | ||
1547 | if (vma->vm_start < start) | |
1548 | prev = vma; | |
1549 | ||
1550 | ret = 0; | |
1551 | do { | |
1552 | cond_resched(); | |
1553 | ||
ba6907db | 1554 | BUG_ON(!vma_can_userfault(vma)); |
86039bd3 AA |
1555 | |
1556 | /* | |
1557 | * Nothing to do: this vma is already registered into this | |
1558 | * userfaultfd and with the right tracking mode too. | |
1559 | */ | |
1560 | if (!vma->vm_userfaultfd_ctx.ctx) | |
1561 | goto skip; | |
1562 | ||
1563 | if (vma->vm_start > start) | |
1564 | start = vma->vm_start; | |
1565 | vma_end = min(end, vma->vm_end); | |
1566 | ||
09fa5296 AA |
1567 | if (userfaultfd_missing(vma)) { |
1568 | /* | |
1569 | * Wake any concurrent pending userfault while | |
1570 | * we unregister, so they will not hang | |
1571 | * permanently and it avoids userland to call | |
1572 | * UFFDIO_WAKE explicitly. | |
1573 | */ | |
1574 | struct userfaultfd_wake_range range; | |
1575 | range.start = start; | |
1576 | range.len = vma_end - start; | |
1577 | wake_userfault(vma->vm_userfaultfd_ctx.ctx, &range); | |
1578 | } | |
1579 | ||
86039bd3 AA |
1580 | new_flags = vma->vm_flags & ~(VM_UFFD_MISSING | VM_UFFD_WP); |
1581 | prev = vma_merge(mm, prev, start, vma_end, new_flags, | |
1582 | vma->anon_vma, vma->vm_file, vma->vm_pgoff, | |
1583 | vma_policy(vma), | |
1584 | NULL_VM_UFFD_CTX); | |
1585 | if (prev) { | |
1586 | vma = prev; | |
1587 | goto next; | |
1588 | } | |
1589 | if (vma->vm_start < start) { | |
1590 | ret = split_vma(mm, vma, start, 1); | |
1591 | if (ret) | |
1592 | break; | |
1593 | } | |
1594 | if (vma->vm_end > end) { | |
1595 | ret = split_vma(mm, vma, end, 0); | |
1596 | if (ret) | |
1597 | break; | |
1598 | } | |
1599 | next: | |
1600 | /* | |
1601 | * In the vma_merge() successful mprotect-like case 8: | |
1602 | * the next vma was merged into the current one and | |
1603 | * the current one has not been updated yet. | |
1604 | */ | |
1605 | vma->vm_flags = new_flags; | |
1606 | vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX; | |
1607 | ||
1608 | skip: | |
1609 | prev = vma; | |
1610 | start = vma->vm_end; | |
1611 | vma = vma->vm_next; | |
1612 | } while (vma && vma->vm_start < end); | |
1613 | out_unlock: | |
1614 | up_write(&mm->mmap_sem); | |
d2005e3f | 1615 | mmput(mm); |
86039bd3 AA |
1616 | out: |
1617 | return ret; | |
1618 | } | |
1619 | ||
1620 | /* | |
ba85c702 AA |
1621 | * userfaultfd_wake may be used in combination with the |
1622 | * UFFDIO_*_MODE_DONTWAKE to wakeup userfaults in batches. | |
86039bd3 AA |
1623 | */ |
1624 | static int userfaultfd_wake(struct userfaultfd_ctx *ctx, | |
1625 | unsigned long arg) | |
1626 | { | |
1627 | int ret; | |
1628 | struct uffdio_range uffdio_wake; | |
1629 | struct userfaultfd_wake_range range; | |
1630 | const void __user *buf = (void __user *)arg; | |
1631 | ||
1632 | ret = -EFAULT; | |
1633 | if (copy_from_user(&uffdio_wake, buf, sizeof(uffdio_wake))) | |
1634 | goto out; | |
1635 | ||
1636 | ret = validate_range(ctx->mm, uffdio_wake.start, uffdio_wake.len); | |
1637 | if (ret) | |
1638 | goto out; | |
1639 | ||
1640 | range.start = uffdio_wake.start; | |
1641 | range.len = uffdio_wake.len; | |
1642 | ||
1643 | /* | |
1644 | * len == 0 means wake all and we don't want to wake all here, | |
1645 | * so check it again to be sure. | |
1646 | */ | |
1647 | VM_BUG_ON(!range.len); | |
1648 | ||
1649 | wake_userfault(ctx, &range); | |
1650 | ret = 0; | |
1651 | ||
1652 | out: | |
1653 | return ret; | |
1654 | } | |
1655 | ||
ad465cae AA |
1656 | static int userfaultfd_copy(struct userfaultfd_ctx *ctx, |
1657 | unsigned long arg) | |
1658 | { | |
1659 | __s64 ret; | |
1660 | struct uffdio_copy uffdio_copy; | |
1661 | struct uffdio_copy __user *user_uffdio_copy; | |
1662 | struct userfaultfd_wake_range range; | |
1663 | ||
1664 | user_uffdio_copy = (struct uffdio_copy __user *) arg; | |
1665 | ||
df2cc96e MR |
1666 | ret = -EAGAIN; |
1667 | if (READ_ONCE(ctx->mmap_changing)) | |
1668 | goto out; | |
1669 | ||
ad465cae AA |
1670 | ret = -EFAULT; |
1671 | if (copy_from_user(&uffdio_copy, user_uffdio_copy, | |
1672 | /* don't copy "copy" last field */ | |
1673 | sizeof(uffdio_copy)-sizeof(__s64))) | |
1674 | goto out; | |
1675 | ||
1676 | ret = validate_range(ctx->mm, uffdio_copy.dst, uffdio_copy.len); | |
1677 | if (ret) | |
1678 | goto out; | |
1679 | /* | |
1680 | * double check for wraparound just in case. copy_from_user() | |
1681 | * will later check uffdio_copy.src + uffdio_copy.len to fit | |
1682 | * in the userland range. | |
1683 | */ | |
1684 | ret = -EINVAL; | |
1685 | if (uffdio_copy.src + uffdio_copy.len <= uffdio_copy.src) | |
1686 | goto out; | |
1687 | if (uffdio_copy.mode & ~UFFDIO_COPY_MODE_DONTWAKE) | |
1688 | goto out; | |
d2005e3f ON |
1689 | if (mmget_not_zero(ctx->mm)) { |
1690 | ret = mcopy_atomic(ctx->mm, uffdio_copy.dst, uffdio_copy.src, | |
df2cc96e | 1691 | uffdio_copy.len, &ctx->mmap_changing); |
d2005e3f | 1692 | mmput(ctx->mm); |
96333187 | 1693 | } else { |
e86b298b | 1694 | return -ESRCH; |
d2005e3f | 1695 | } |
ad465cae AA |
1696 | if (unlikely(put_user(ret, &user_uffdio_copy->copy))) |
1697 | return -EFAULT; | |
1698 | if (ret < 0) | |
1699 | goto out; | |
1700 | BUG_ON(!ret); | |
1701 | /* len == 0 would wake all */ | |
1702 | range.len = ret; | |
1703 | if (!(uffdio_copy.mode & UFFDIO_COPY_MODE_DONTWAKE)) { | |
1704 | range.start = uffdio_copy.dst; | |
1705 | wake_userfault(ctx, &range); | |
1706 | } | |
1707 | ret = range.len == uffdio_copy.len ? 0 : -EAGAIN; | |
1708 | out: | |
1709 | return ret; | |
1710 | } | |
1711 | ||
1712 | static int userfaultfd_zeropage(struct userfaultfd_ctx *ctx, | |
1713 | unsigned long arg) | |
1714 | { | |
1715 | __s64 ret; | |
1716 | struct uffdio_zeropage uffdio_zeropage; | |
1717 | struct uffdio_zeropage __user *user_uffdio_zeropage; | |
1718 | struct userfaultfd_wake_range range; | |
1719 | ||
1720 | user_uffdio_zeropage = (struct uffdio_zeropage __user *) arg; | |
1721 | ||
df2cc96e MR |
1722 | ret = -EAGAIN; |
1723 | if (READ_ONCE(ctx->mmap_changing)) | |
1724 | goto out; | |
1725 | ||
ad465cae AA |
1726 | ret = -EFAULT; |
1727 | if (copy_from_user(&uffdio_zeropage, user_uffdio_zeropage, | |
1728 | /* don't copy "zeropage" last field */ | |
1729 | sizeof(uffdio_zeropage)-sizeof(__s64))) | |
1730 | goto out; | |
1731 | ||
1732 | ret = validate_range(ctx->mm, uffdio_zeropage.range.start, | |
1733 | uffdio_zeropage.range.len); | |
1734 | if (ret) | |
1735 | goto out; | |
1736 | ret = -EINVAL; | |
1737 | if (uffdio_zeropage.mode & ~UFFDIO_ZEROPAGE_MODE_DONTWAKE) | |
1738 | goto out; | |
1739 | ||
d2005e3f ON |
1740 | if (mmget_not_zero(ctx->mm)) { |
1741 | ret = mfill_zeropage(ctx->mm, uffdio_zeropage.range.start, | |
df2cc96e MR |
1742 | uffdio_zeropage.range.len, |
1743 | &ctx->mmap_changing); | |
d2005e3f | 1744 | mmput(ctx->mm); |
9d95aa4b | 1745 | } else { |
e86b298b | 1746 | return -ESRCH; |
d2005e3f | 1747 | } |
ad465cae AA |
1748 | if (unlikely(put_user(ret, &user_uffdio_zeropage->zeropage))) |
1749 | return -EFAULT; | |
1750 | if (ret < 0) | |
1751 | goto out; | |
1752 | /* len == 0 would wake all */ | |
1753 | BUG_ON(!ret); | |
1754 | range.len = ret; | |
1755 | if (!(uffdio_zeropage.mode & UFFDIO_ZEROPAGE_MODE_DONTWAKE)) { | |
1756 | range.start = uffdio_zeropage.range.start; | |
1757 | wake_userfault(ctx, &range); | |
1758 | } | |
1759 | ret = range.len == uffdio_zeropage.range.len ? 0 : -EAGAIN; | |
1760 | out: | |
1761 | return ret; | |
1762 | } | |
1763 | ||
9cd75c3c PE |
1764 | static inline unsigned int uffd_ctx_features(__u64 user_features) |
1765 | { | |
1766 | /* | |
1767 | * For the current set of features the bits just coincide | |
1768 | */ | |
1769 | return (unsigned int)user_features; | |
1770 | } | |
1771 | ||
86039bd3 AA |
1772 | /* |
1773 | * userland asks for a certain API version and we return which bits | |
1774 | * and ioctl commands are implemented in this kernel for such API | |
1775 | * version or -EINVAL if unknown. | |
1776 | */ | |
1777 | static int userfaultfd_api(struct userfaultfd_ctx *ctx, | |
1778 | unsigned long arg) | |
1779 | { | |
1780 | struct uffdio_api uffdio_api; | |
1781 | void __user *buf = (void __user *)arg; | |
1782 | int ret; | |
65603144 | 1783 | __u64 features; |
86039bd3 AA |
1784 | |
1785 | ret = -EINVAL; | |
1786 | if (ctx->state != UFFD_STATE_WAIT_API) | |
1787 | goto out; | |
1788 | ret = -EFAULT; | |
a9b85f94 | 1789 | if (copy_from_user(&uffdio_api, buf, sizeof(uffdio_api))) |
86039bd3 | 1790 | goto out; |
65603144 AA |
1791 | features = uffdio_api.features; |
1792 | if (uffdio_api.api != UFFD_API || (features & ~UFFD_API_FEATURES)) { | |
86039bd3 AA |
1793 | memset(&uffdio_api, 0, sizeof(uffdio_api)); |
1794 | if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api))) | |
1795 | goto out; | |
1796 | ret = -EINVAL; | |
1797 | goto out; | |
1798 | } | |
65603144 AA |
1799 | /* report all available features and ioctls to userland */ |
1800 | uffdio_api.features = UFFD_API_FEATURES; | |
86039bd3 AA |
1801 | uffdio_api.ioctls = UFFD_API_IOCTLS; |
1802 | ret = -EFAULT; | |
1803 | if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api))) | |
1804 | goto out; | |
1805 | ctx->state = UFFD_STATE_RUNNING; | |
65603144 AA |
1806 | /* only enable the requested features for this uffd context */ |
1807 | ctx->features = uffd_ctx_features(features); | |
86039bd3 AA |
1808 | ret = 0; |
1809 | out: | |
1810 | return ret; | |
1811 | } | |
1812 | ||
1813 | static long userfaultfd_ioctl(struct file *file, unsigned cmd, | |
1814 | unsigned long arg) | |
1815 | { | |
1816 | int ret = -EINVAL; | |
1817 | struct userfaultfd_ctx *ctx = file->private_data; | |
1818 | ||
e6485a47 AA |
1819 | if (cmd != UFFDIO_API && ctx->state == UFFD_STATE_WAIT_API) |
1820 | return -EINVAL; | |
1821 | ||
86039bd3 AA |
1822 | switch(cmd) { |
1823 | case UFFDIO_API: | |
1824 | ret = userfaultfd_api(ctx, arg); | |
1825 | break; | |
1826 | case UFFDIO_REGISTER: | |
1827 | ret = userfaultfd_register(ctx, arg); | |
1828 | break; | |
1829 | case UFFDIO_UNREGISTER: | |
1830 | ret = userfaultfd_unregister(ctx, arg); | |
1831 | break; | |
1832 | case UFFDIO_WAKE: | |
1833 | ret = userfaultfd_wake(ctx, arg); | |
1834 | break; | |
ad465cae AA |
1835 | case UFFDIO_COPY: |
1836 | ret = userfaultfd_copy(ctx, arg); | |
1837 | break; | |
1838 | case UFFDIO_ZEROPAGE: | |
1839 | ret = userfaultfd_zeropage(ctx, arg); | |
1840 | break; | |
86039bd3 AA |
1841 | } |
1842 | return ret; | |
1843 | } | |
1844 | ||
1845 | #ifdef CONFIG_PROC_FS | |
1846 | static void userfaultfd_show_fdinfo(struct seq_file *m, struct file *f) | |
1847 | { | |
1848 | struct userfaultfd_ctx *ctx = f->private_data; | |
ac6424b9 | 1849 | wait_queue_entry_t *wq; |
86039bd3 AA |
1850 | unsigned long pending = 0, total = 0; |
1851 | ||
15b726ef | 1852 | spin_lock(&ctx->fault_pending_wqh.lock); |
2055da97 | 1853 | list_for_each_entry(wq, &ctx->fault_pending_wqh.head, entry) { |
15b726ef AA |
1854 | pending++; |
1855 | total++; | |
1856 | } | |
2055da97 | 1857 | list_for_each_entry(wq, &ctx->fault_wqh.head, entry) { |
86039bd3 AA |
1858 | total++; |
1859 | } | |
15b726ef | 1860 | spin_unlock(&ctx->fault_pending_wqh.lock); |
86039bd3 AA |
1861 | |
1862 | /* | |
1863 | * If more protocols will be added, there will be all shown | |
1864 | * separated by a space. Like this: | |
1865 | * protocols: aa:... bb:... | |
1866 | */ | |
1867 | seq_printf(m, "pending:\t%lu\ntotal:\t%lu\nAPI:\t%Lx:%x:%Lx\n", | |
045098e9 | 1868 | pending, total, UFFD_API, ctx->features, |
86039bd3 AA |
1869 | UFFD_API_IOCTLS|UFFD_API_RANGE_IOCTLS); |
1870 | } | |
1871 | #endif | |
1872 | ||
1873 | static const struct file_operations userfaultfd_fops = { | |
1874 | #ifdef CONFIG_PROC_FS | |
1875 | .show_fdinfo = userfaultfd_show_fdinfo, | |
1876 | #endif | |
1877 | .release = userfaultfd_release, | |
1878 | .poll = userfaultfd_poll, | |
1879 | .read = userfaultfd_read, | |
1880 | .unlocked_ioctl = userfaultfd_ioctl, | |
1881 | .compat_ioctl = userfaultfd_ioctl, | |
1882 | .llseek = noop_llseek, | |
1883 | }; | |
1884 | ||
3004ec9c AA |
1885 | static void init_once_userfaultfd_ctx(void *mem) |
1886 | { | |
1887 | struct userfaultfd_ctx *ctx = (struct userfaultfd_ctx *) mem; | |
1888 | ||
1889 | init_waitqueue_head(&ctx->fault_pending_wqh); | |
1890 | init_waitqueue_head(&ctx->fault_wqh); | |
9cd75c3c | 1891 | init_waitqueue_head(&ctx->event_wqh); |
3004ec9c | 1892 | init_waitqueue_head(&ctx->fd_wqh); |
2c5b7e1b | 1893 | seqcount_init(&ctx->refile_seq); |
3004ec9c AA |
1894 | } |
1895 | ||
284cd241 | 1896 | SYSCALL_DEFINE1(userfaultfd, int, flags) |
86039bd3 | 1897 | { |
86039bd3 | 1898 | struct userfaultfd_ctx *ctx; |
284cd241 | 1899 | int fd; |
86039bd3 AA |
1900 | |
1901 | BUG_ON(!current->mm); | |
1902 | ||
1903 | /* Check the UFFD_* constants for consistency. */ | |
1904 | BUILD_BUG_ON(UFFD_CLOEXEC != O_CLOEXEC); | |
1905 | BUILD_BUG_ON(UFFD_NONBLOCK != O_NONBLOCK); | |
1906 | ||
86039bd3 | 1907 | if (flags & ~UFFD_SHARED_FCNTL_FLAGS) |
284cd241 | 1908 | return -EINVAL; |
86039bd3 | 1909 | |
3004ec9c | 1910 | ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL); |
86039bd3 | 1911 | if (!ctx) |
284cd241 | 1912 | return -ENOMEM; |
86039bd3 AA |
1913 | |
1914 | atomic_set(&ctx->refcount, 1); | |
86039bd3 | 1915 | ctx->flags = flags; |
9cd75c3c | 1916 | ctx->features = 0; |
86039bd3 AA |
1917 | ctx->state = UFFD_STATE_WAIT_API; |
1918 | ctx->released = false; | |
df2cc96e | 1919 | ctx->mmap_changing = false; |
86039bd3 AA |
1920 | ctx->mm = current->mm; |
1921 | /* prevent the mm struct to be freed */ | |
f1f10076 | 1922 | mmgrab(ctx->mm); |
86039bd3 | 1923 | |
284cd241 EB |
1924 | fd = anon_inode_getfd("[userfaultfd]", &userfaultfd_fops, ctx, |
1925 | O_RDWR | (flags & UFFD_SHARED_FCNTL_FLAGS)); | |
1926 | if (fd < 0) { | |
d2005e3f | 1927 | mmdrop(ctx->mm); |
3004ec9c | 1928 | kmem_cache_free(userfaultfd_ctx_cachep, ctx); |
c03e946f | 1929 | } |
86039bd3 | 1930 | return fd; |
86039bd3 | 1931 | } |
3004ec9c AA |
1932 | |
1933 | static int __init userfaultfd_init(void) | |
1934 | { | |
1935 | userfaultfd_ctx_cachep = kmem_cache_create("userfaultfd_ctx_cache", | |
1936 | sizeof(struct userfaultfd_ctx), | |
1937 | 0, | |
1938 | SLAB_HWCACHE_ALIGN|SLAB_PANIC, | |
1939 | init_once_userfaultfd_ctx); | |
1940 | return 0; | |
1941 | } | |
1942 | __initcall(userfaultfd_init); |