]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blame - fs/userfaultfd.c
ubifs: rename_whiteout: Fix double free for whiteout_ui->data
[mirror_ubuntu-focal-kernel.git] / fs / userfaultfd.c
CommitLineData
20c8ccb1 1// SPDX-License-Identifier: GPL-2.0-only
86039bd3
AA
2/*
3 * fs/userfaultfd.c
4 *
5 * Copyright (C) 2007 Davide Libenzi <davidel@xmailserver.org>
6 * Copyright (C) 2008-2009 Red Hat, Inc.
7 * Copyright (C) 2015 Red Hat, Inc.
8 *
86039bd3
AA
9 * Some part derived from fs/eventfd.c (anon inode setup) and
10 * mm/ksm.c (mm hashing).
11 */
12
9cd75c3c 13#include <linux/list.h>
86039bd3 14#include <linux/hashtable.h>
174cd4b1 15#include <linux/sched/signal.h>
6e84f315 16#include <linux/sched/mm.h>
86039bd3
AA
17#include <linux/mm.h>
18#include <linux/poll.h>
19#include <linux/slab.h>
20#include <linux/seq_file.h>
21#include <linux/file.h>
22#include <linux/bug.h>
23#include <linux/anon_inodes.h>
24#include <linux/syscalls.h>
25#include <linux/userfaultfd_k.h>
26#include <linux/mempolicy.h>
27#include <linux/ioctl.h>
28#include <linux/security.h>
cab350af 29#include <linux/hugetlb.h>
86039bd3 30
cefdca0a
PX
31int sysctl_unprivileged_userfaultfd __read_mostly = 1;
32
3004ec9c
AA
33static struct kmem_cache *userfaultfd_ctx_cachep __read_mostly;
34
3004ec9c
AA
35/*
36 * Start with fault_pending_wqh and fault_wqh so they're more likely
37 * to be in the same cacheline.
cbcfa130
EB
38 *
39 * Locking order:
40 * fd_wqh.lock
41 * fault_pending_wqh.lock
42 * fault_wqh.lock
43 * event_wqh.lock
44 *
45 * To avoid deadlocks, IRQs must be disabled when taking any of the above locks,
46 * since fd_wqh.lock is taken by aio_poll() while it's holding a lock that's
47 * also taken in IRQ context.
3004ec9c 48 */
86039bd3 49struct userfaultfd_ctx {
15b726ef
AA
50 /* waitqueue head for the pending (i.e. not read) userfaults */
51 wait_queue_head_t fault_pending_wqh;
52 /* waitqueue head for the userfaults */
86039bd3
AA
53 wait_queue_head_t fault_wqh;
54 /* waitqueue head for the pseudo fd to wakeup poll/read */
55 wait_queue_head_t fd_wqh;
9cd75c3c
PE
56 /* waitqueue head for events */
57 wait_queue_head_t event_wqh;
2c5b7e1b
AA
58 /* a refile sequence protected by fault_pending_wqh lock */
59 struct seqcount refile_seq;
3004ec9c 60 /* pseudo fd refcounting */
ca880420 61 refcount_t refcount;
86039bd3
AA
62 /* userfaultfd syscall flags */
63 unsigned int flags;
9cd75c3c
PE
64 /* features requested from the userspace */
65 unsigned int features;
86039bd3
AA
66 /* released */
67 bool released;
df2cc96e
MR
68 /* memory mappings are changing because of non-cooperative event */
69 bool mmap_changing;
86039bd3
AA
70 /* mm with one ore more vmas attached to this userfaultfd_ctx */
71 struct mm_struct *mm;
72};
73
893e26e6
PE
74struct userfaultfd_fork_ctx {
75 struct userfaultfd_ctx *orig;
76 struct userfaultfd_ctx *new;
77 struct list_head list;
78};
79
897ab3e0
MR
80struct userfaultfd_unmap_ctx {
81 struct userfaultfd_ctx *ctx;
82 unsigned long start;
83 unsigned long end;
84 struct list_head list;
85};
86
86039bd3 87struct userfaultfd_wait_queue {
a9b85f94 88 struct uffd_msg msg;
ac6424b9 89 wait_queue_entry_t wq;
86039bd3 90 struct userfaultfd_ctx *ctx;
15a77c6f 91 bool waken;
86039bd3
AA
92};
93
94struct userfaultfd_wake_range {
95 unsigned long start;
96 unsigned long len;
97};
98
47da88c4
NA
99/* internal indication that UFFD_API ioctl was successfully executed */
100#define UFFD_FEATURE_INITIALIZED (1u << 31)
101
102static bool userfaultfd_is_initialized(struct userfaultfd_ctx *ctx)
103{
104 return ctx->features & UFFD_FEATURE_INITIALIZED;
105}
106
ac6424b9 107static int userfaultfd_wake_function(wait_queue_entry_t *wq, unsigned mode,
86039bd3
AA
108 int wake_flags, void *key)
109{
110 struct userfaultfd_wake_range *range = key;
111 int ret;
112 struct userfaultfd_wait_queue *uwq;
113 unsigned long start, len;
114
115 uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
116 ret = 0;
86039bd3
AA
117 /* len == 0 means wake all */
118 start = range->start;
119 len = range->len;
a9b85f94
AA
120 if (len && (start > uwq->msg.arg.pagefault.address ||
121 start + len <= uwq->msg.arg.pagefault.address))
86039bd3 122 goto out;
15a77c6f
AA
123 WRITE_ONCE(uwq->waken, true);
124 /*
a9668cd6
PZ
125 * The Program-Order guarantees provided by the scheduler
126 * ensure uwq->waken is visible before the task is woken.
15a77c6f 127 */
86039bd3 128 ret = wake_up_state(wq->private, mode);
a9668cd6 129 if (ret) {
86039bd3
AA
130 /*
131 * Wake only once, autoremove behavior.
132 *
a9668cd6
PZ
133 * After the effect of list_del_init is visible to the other
134 * CPUs, the waitqueue may disappear from under us, see the
135 * !list_empty_careful() in handle_userfault().
136 *
137 * try_to_wake_up() has an implicit smp_mb(), and the
138 * wq->private is read before calling the extern function
139 * "wake_up_state" (which in turns calls try_to_wake_up).
86039bd3 140 */
2055da97 141 list_del_init(&wq->entry);
a9668cd6 142 }
86039bd3
AA
143out:
144 return ret;
145}
146
147/**
148 * userfaultfd_ctx_get - Acquires a reference to the internal userfaultfd
149 * context.
150 * @ctx: [in] Pointer to the userfaultfd context.
86039bd3
AA
151 */
152static void userfaultfd_ctx_get(struct userfaultfd_ctx *ctx)
153{
ca880420 154 refcount_inc(&ctx->refcount);
86039bd3
AA
155}
156
157/**
158 * userfaultfd_ctx_put - Releases a reference to the internal userfaultfd
159 * context.
160 * @ctx: [in] Pointer to userfaultfd context.
161 *
162 * The userfaultfd context reference must have been previously acquired either
163 * with userfaultfd_ctx_get() or userfaultfd_ctx_fdget().
164 */
165static void userfaultfd_ctx_put(struct userfaultfd_ctx *ctx)
166{
ca880420 167 if (refcount_dec_and_test(&ctx->refcount)) {
86039bd3
AA
168 VM_BUG_ON(spin_is_locked(&ctx->fault_pending_wqh.lock));
169 VM_BUG_ON(waitqueue_active(&ctx->fault_pending_wqh));
170 VM_BUG_ON(spin_is_locked(&ctx->fault_wqh.lock));
171 VM_BUG_ON(waitqueue_active(&ctx->fault_wqh));
9cd75c3c
PE
172 VM_BUG_ON(spin_is_locked(&ctx->event_wqh.lock));
173 VM_BUG_ON(waitqueue_active(&ctx->event_wqh));
86039bd3
AA
174 VM_BUG_ON(spin_is_locked(&ctx->fd_wqh.lock));
175 VM_BUG_ON(waitqueue_active(&ctx->fd_wqh));
d2005e3f 176 mmdrop(ctx->mm);
3004ec9c 177 kmem_cache_free(userfaultfd_ctx_cachep, ctx);
86039bd3
AA
178 }
179}
180
a9b85f94 181static inline void msg_init(struct uffd_msg *msg)
86039bd3 182{
a9b85f94
AA
183 BUILD_BUG_ON(sizeof(struct uffd_msg) != 32);
184 /*
185 * Must use memset to zero out the paddings or kernel data is
186 * leaked to userland.
187 */
188 memset(msg, 0, sizeof(struct uffd_msg));
189}
190
191static inline struct uffd_msg userfault_msg(unsigned long address,
192 unsigned int flags,
9d4ac934
AP
193 unsigned long reason,
194 unsigned int features)
a9b85f94
AA
195{
196 struct uffd_msg msg;
197 msg_init(&msg);
198 msg.event = UFFD_EVENT_PAGEFAULT;
199 msg.arg.pagefault.address = address;
86039bd3
AA
200 if (flags & FAULT_FLAG_WRITE)
201 /*
a4605a61 202 * If UFFD_FEATURE_PAGEFAULT_FLAG_WP was set in the
a9b85f94
AA
203 * uffdio_api.features and UFFD_PAGEFAULT_FLAG_WRITE
204 * was not set in a UFFD_EVENT_PAGEFAULT, it means it
205 * was a read fault, otherwise if set it means it's
206 * a write fault.
86039bd3 207 */
a9b85f94 208 msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WRITE;
86039bd3
AA
209 if (reason & VM_UFFD_WP)
210 /*
a9b85f94
AA
211 * If UFFD_FEATURE_PAGEFAULT_FLAG_WP was set in the
212 * uffdio_api.features and UFFD_PAGEFAULT_FLAG_WP was
213 * not set in a UFFD_EVENT_PAGEFAULT, it means it was
214 * a missing fault, otherwise if set it means it's a
215 * write protect fault.
86039bd3 216 */
a9b85f94 217 msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WP;
9d4ac934 218 if (features & UFFD_FEATURE_THREAD_ID)
a36985d3 219 msg.arg.pagefault.feat.ptid = task_pid_vnr(current);
a9b85f94 220 return msg;
86039bd3
AA
221}
222
369cd212
MK
223#ifdef CONFIG_HUGETLB_PAGE
224/*
225 * Same functionality as userfaultfd_must_wait below with modifications for
226 * hugepmd ranges.
227 */
228static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx *ctx,
7868a208 229 struct vm_area_struct *vma,
369cd212
MK
230 unsigned long address,
231 unsigned long flags,
232 unsigned long reason)
233{
234 struct mm_struct *mm = ctx->mm;
1e2c0436 235 pte_t *ptep, pte;
369cd212
MK
236 bool ret = true;
237
238 VM_BUG_ON(!rwsem_is_locked(&mm->mmap_sem));
239
1e2c0436
JF
240 ptep = huge_pte_offset(mm, address, vma_mmu_pagesize(vma));
241
242 if (!ptep)
369cd212
MK
243 goto out;
244
245 ret = false;
1e2c0436 246 pte = huge_ptep_get(ptep);
369cd212
MK
247
248 /*
249 * Lockless access: we're in a wait_event so it's ok if it
250 * changes under us.
251 */
1e2c0436 252 if (huge_pte_none(pte))
369cd212 253 ret = true;
1e2c0436 254 if (!huge_pte_write(pte) && (reason & VM_UFFD_WP))
369cd212
MK
255 ret = true;
256out:
257 return ret;
258}
259#else
260static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx *ctx,
7868a208 261 struct vm_area_struct *vma,
369cd212
MK
262 unsigned long address,
263 unsigned long flags,
264 unsigned long reason)
265{
266 return false; /* should never get here */
267}
268#endif /* CONFIG_HUGETLB_PAGE */
269
8d2afd96
AA
270/*
271 * Verify the pagetables are still not ok after having reigstered into
272 * the fault_pending_wqh to avoid userland having to UFFDIO_WAKE any
273 * userfault that has already been resolved, if userfaultfd_read and
274 * UFFDIO_COPY|ZEROPAGE are being run simultaneously on two different
275 * threads.
276 */
277static inline bool userfaultfd_must_wait(struct userfaultfd_ctx *ctx,
278 unsigned long address,
279 unsigned long flags,
280 unsigned long reason)
281{
282 struct mm_struct *mm = ctx->mm;
283 pgd_t *pgd;
c2febafc 284 p4d_t *p4d;
8d2afd96
AA
285 pud_t *pud;
286 pmd_t *pmd, _pmd;
287 pte_t *pte;
288 bool ret = true;
289
290 VM_BUG_ON(!rwsem_is_locked(&mm->mmap_sem));
291
292 pgd = pgd_offset(mm, address);
293 if (!pgd_present(*pgd))
294 goto out;
c2febafc
KS
295 p4d = p4d_offset(pgd, address);
296 if (!p4d_present(*p4d))
297 goto out;
298 pud = pud_offset(p4d, address);
8d2afd96
AA
299 if (!pud_present(*pud))
300 goto out;
301 pmd = pmd_offset(pud, address);
302 /*
303 * READ_ONCE must function as a barrier with narrower scope
304 * and it must be equivalent to:
305 * _pmd = *pmd; barrier();
306 *
307 * This is to deal with the instability (as in
308 * pmd_trans_unstable) of the pmd.
309 */
310 _pmd = READ_ONCE(*pmd);
a365ac09 311 if (pmd_none(_pmd))
8d2afd96
AA
312 goto out;
313
314 ret = false;
a365ac09
HY
315 if (!pmd_present(_pmd))
316 goto out;
317
8d2afd96
AA
318 if (pmd_trans_huge(_pmd))
319 goto out;
320
321 /*
322 * the pmd is stable (as in !pmd_trans_unstable) so we can re-read it
323 * and use the standard pte_offset_map() instead of parsing _pmd.
324 */
325 pte = pte_offset_map(pmd, address);
326 /*
327 * Lockless access: we're in a wait_event so it's ok if it
328 * changes under us.
329 */
330 if (pte_none(*pte))
331 ret = true;
332 pte_unmap(pte);
333
334out:
335 return ret;
336}
337
86039bd3
AA
338/*
339 * The locking rules involved in returning VM_FAULT_RETRY depending on
340 * FAULT_FLAG_ALLOW_RETRY, FAULT_FLAG_RETRY_NOWAIT and
341 * FAULT_FLAG_KILLABLE are not straightforward. The "Caution"
342 * recommendation in __lock_page_or_retry is not an understatement.
343 *
344 * If FAULT_FLAG_ALLOW_RETRY is set, the mmap_sem must be released
345 * before returning VM_FAULT_RETRY only if FAULT_FLAG_RETRY_NOWAIT is
346 * not set.
347 *
348 * If FAULT_FLAG_ALLOW_RETRY is set but FAULT_FLAG_KILLABLE is not
349 * set, VM_FAULT_RETRY can still be returned if and only if there are
350 * fatal_signal_pending()s, and the mmap_sem must be released before
351 * returning it.
352 */
2b740303 353vm_fault_t handle_userfault(struct vm_fault *vmf, unsigned long reason)
86039bd3 354{
82b0f8c3 355 struct mm_struct *mm = vmf->vma->vm_mm;
86039bd3
AA
356 struct userfaultfd_ctx *ctx;
357 struct userfaultfd_wait_queue uwq;
2b740303 358 vm_fault_t ret = VM_FAULT_SIGBUS;
dfa37dc3 359 bool must_wait, return_to_userland;
15a77c6f 360 long blocking_state;
86039bd3 361
64c2b203
AA
362 /*
363 * We don't do userfault handling for the final child pid update.
364 *
365 * We also don't do userfault handling during
366 * coredumping. hugetlbfs has the special
367 * follow_hugetlb_page() to skip missing pages in the
368 * FOLL_DUMP case, anon memory also checks for FOLL_DUMP with
369 * the no_page_table() helper in follow_page_mask(), but the
370 * shmem_vm_ops->fault method is invoked even during
371 * coredumping without mmap_sem and it ends up here.
372 */
373 if (current->flags & (PF_EXITING|PF_DUMPCORE))
374 goto out;
375
376 /*
377 * Coredumping runs without mmap_sem so we can only check that
378 * the mmap_sem is held, if PF_DUMPCORE was not set.
379 */
380 WARN_ON_ONCE(!rwsem_is_locked(&mm->mmap_sem));
381
82b0f8c3 382 ctx = vmf->vma->vm_userfaultfd_ctx.ctx;
86039bd3 383 if (!ctx)
ba85c702 384 goto out;
86039bd3
AA
385
386 BUG_ON(ctx->mm != mm);
387
388 VM_BUG_ON(reason & ~(VM_UFFD_MISSING|VM_UFFD_WP));
389 VM_BUG_ON(!(reason & VM_UFFD_MISSING) ^ !!(reason & VM_UFFD_WP));
390
2d6d6f5a
PS
391 if (ctx->features & UFFD_FEATURE_SIGBUS)
392 goto out;
393
86039bd3
AA
394 /*
395 * If it's already released don't get it. This avoids to loop
396 * in __get_user_pages if userfaultfd_release waits on the
397 * caller of handle_userfault to release the mmap_sem.
398 */
6aa7de05 399 if (unlikely(READ_ONCE(ctx->released))) {
656710a6
AA
400 /*
401 * Don't return VM_FAULT_SIGBUS in this case, so a non
402 * cooperative manager can close the uffd after the
403 * last UFFDIO_COPY, without risking to trigger an
404 * involuntary SIGBUS if the process was starting the
405 * userfaultfd while the userfaultfd was still armed
406 * (but after the last UFFDIO_COPY). If the uffd
407 * wasn't already closed when the userfault reached
408 * this point, that would normally be solved by
409 * userfaultfd_must_wait returning 'false'.
410 *
411 * If we were to return VM_FAULT_SIGBUS here, the non
412 * cooperative manager would be instead forced to
413 * always call UFFDIO_UNREGISTER before it can safely
414 * close the uffd.
415 */
416 ret = VM_FAULT_NOPAGE;
ba85c702 417 goto out;
656710a6 418 }
86039bd3
AA
419
420 /*
421 * Check that we can return VM_FAULT_RETRY.
422 *
423 * NOTE: it should become possible to return VM_FAULT_RETRY
424 * even if FAULT_FLAG_TRIED is set without leading to gup()
425 * -EBUSY failures, if the userfaultfd is to be extended for
426 * VM_UFFD_WP tracking and we intend to arm the userfault
427 * without first stopping userland access to the memory. For
428 * VM_UFFD_MISSING userfaults this is enough for now.
429 */
82b0f8c3 430 if (unlikely(!(vmf->flags & FAULT_FLAG_ALLOW_RETRY))) {
86039bd3
AA
431 /*
432 * Validate the invariant that nowait must allow retry
433 * to be sure not to return SIGBUS erroneously on
434 * nowait invocations.
435 */
82b0f8c3 436 BUG_ON(vmf->flags & FAULT_FLAG_RETRY_NOWAIT);
86039bd3
AA
437#ifdef CONFIG_DEBUG_VM
438 if (printk_ratelimit()) {
439 printk(KERN_WARNING
82b0f8c3
JK
440 "FAULT_FLAG_ALLOW_RETRY missing %x\n",
441 vmf->flags);
86039bd3
AA
442 dump_stack();
443 }
444#endif
ba85c702 445 goto out;
86039bd3
AA
446 }
447
448 /*
449 * Handle nowait, not much to do other than tell it to retry
450 * and wait.
451 */
ba85c702 452 ret = VM_FAULT_RETRY;
82b0f8c3 453 if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT)
ba85c702 454 goto out;
86039bd3
AA
455
456 /* take the reference before dropping the mmap_sem */
457 userfaultfd_ctx_get(ctx);
458
86039bd3
AA
459 init_waitqueue_func_entry(&uwq.wq, userfaultfd_wake_function);
460 uwq.wq.private = current;
9d4ac934
AP
461 uwq.msg = userfault_msg(vmf->address, vmf->flags, reason,
462 ctx->features);
86039bd3 463 uwq.ctx = ctx;
15a77c6f 464 uwq.waken = false;
86039bd3 465
bae473a4 466 return_to_userland =
82b0f8c3 467 (vmf->flags & (FAULT_FLAG_USER|FAULT_FLAG_KILLABLE)) ==
dfa37dc3 468 (FAULT_FLAG_USER|FAULT_FLAG_KILLABLE);
15a77c6f
AA
469 blocking_state = return_to_userland ? TASK_INTERRUPTIBLE :
470 TASK_KILLABLE;
dfa37dc3 471
cbcfa130 472 spin_lock_irq(&ctx->fault_pending_wqh.lock);
86039bd3
AA
473 /*
474 * After the __add_wait_queue the uwq is visible to userland
475 * through poll/read().
476 */
15b726ef
AA
477 __add_wait_queue(&ctx->fault_pending_wqh, &uwq.wq);
478 /*
479 * The smp_mb() after __set_current_state prevents the reads
480 * following the spin_unlock to happen before the list_add in
481 * __add_wait_queue.
482 */
15a77c6f 483 set_current_state(blocking_state);
cbcfa130 484 spin_unlock_irq(&ctx->fault_pending_wqh.lock);
86039bd3 485
369cd212
MK
486 if (!is_vm_hugetlb_page(vmf->vma))
487 must_wait = userfaultfd_must_wait(ctx, vmf->address, vmf->flags,
488 reason);
489 else
7868a208
PA
490 must_wait = userfaultfd_huge_must_wait(ctx, vmf->vma,
491 vmf->address,
369cd212 492 vmf->flags, reason);
8d2afd96
AA
493 up_read(&mm->mmap_sem);
494
6aa7de05 495 if (likely(must_wait && !READ_ONCE(ctx->released) &&
dfa37dc3
AA
496 (return_to_userland ? !signal_pending(current) :
497 !fatal_signal_pending(current)))) {
a9a08845 498 wake_up_poll(&ctx->fd_wqh, EPOLLIN);
86039bd3 499 schedule();
ba85c702 500 ret |= VM_FAULT_MAJOR;
15a77c6f
AA
501
502 /*
503 * False wakeups can orginate even from rwsem before
504 * up_read() however userfaults will wait either for a
505 * targeted wakeup on the specific uwq waitqueue from
506 * wake_userfault() or for signals or for uffd
507 * release.
508 */
509 while (!READ_ONCE(uwq.waken)) {
510 /*
511 * This needs the full smp_store_mb()
512 * guarantee as the state write must be
513 * visible to other CPUs before reading
514 * uwq.waken from other CPUs.
515 */
516 set_current_state(blocking_state);
517 if (READ_ONCE(uwq.waken) ||
518 READ_ONCE(ctx->released) ||
519 (return_to_userland ? signal_pending(current) :
520 fatal_signal_pending(current)))
521 break;
522 schedule();
523 }
ba85c702 524 }
86039bd3 525
ba85c702 526 __set_current_state(TASK_RUNNING);
15b726ef 527
dfa37dc3
AA
528 if (return_to_userland) {
529 if (signal_pending(current) &&
530 !fatal_signal_pending(current)) {
531 /*
532 * If we got a SIGSTOP or SIGCONT and this is
533 * a normal userland page fault, just let
534 * userland return so the signal will be
535 * handled and gdb debugging works. The page
536 * fault code immediately after we return from
537 * this function is going to release the
538 * mmap_sem and it's not depending on it
539 * (unlike gup would if we were not to return
540 * VM_FAULT_RETRY).
541 *
542 * If a fatal signal is pending we still take
543 * the streamlined VM_FAULT_RETRY failure path
544 * and there's no need to retake the mmap_sem
545 * in such case.
546 */
547 down_read(&mm->mmap_sem);
6bbc4a41 548 ret = VM_FAULT_NOPAGE;
dfa37dc3
AA
549 }
550 }
551
15b726ef
AA
552 /*
553 * Here we race with the list_del; list_add in
554 * userfaultfd_ctx_read(), however because we don't ever run
555 * list_del_init() to refile across the two lists, the prev
556 * and next pointers will never point to self. list_add also
557 * would never let any of the two pointers to point to
558 * self. So list_empty_careful won't risk to see both pointers
559 * pointing to self at any time during the list refile. The
560 * only case where list_del_init() is called is the full
561 * removal in the wake function and there we don't re-list_add
562 * and it's fine not to block on the spinlock. The uwq on this
563 * kernel stack can be released after the list_del_init.
564 */
2055da97 565 if (!list_empty_careful(&uwq.wq.entry)) {
cbcfa130 566 spin_lock_irq(&ctx->fault_pending_wqh.lock);
15b726ef
AA
567 /*
568 * No need of list_del_init(), the uwq on the stack
569 * will be freed shortly anyway.
570 */
2055da97 571 list_del(&uwq.wq.entry);
cbcfa130 572 spin_unlock_irq(&ctx->fault_pending_wqh.lock);
86039bd3 573 }
86039bd3
AA
574
575 /*
576 * ctx may go away after this if the userfault pseudo fd is
577 * already released.
578 */
579 userfaultfd_ctx_put(ctx);
580
ba85c702
AA
581out:
582 return ret;
86039bd3
AA
583}
584
8c9e7bb7
AA
585static void userfaultfd_event_wait_completion(struct userfaultfd_ctx *ctx,
586 struct userfaultfd_wait_queue *ewq)
9cd75c3c 587{
0cbb4b4f
AA
588 struct userfaultfd_ctx *release_new_ctx;
589
9a69a829
AA
590 if (WARN_ON_ONCE(current->flags & PF_EXITING))
591 goto out;
9cd75c3c
PE
592
593 ewq->ctx = ctx;
594 init_waitqueue_entry(&ewq->wq, current);
0cbb4b4f 595 release_new_ctx = NULL;
9cd75c3c 596
cbcfa130 597 spin_lock_irq(&ctx->event_wqh.lock);
9cd75c3c
PE
598 /*
599 * After the __add_wait_queue the uwq is visible to userland
600 * through poll/read().
601 */
602 __add_wait_queue(&ctx->event_wqh, &ewq->wq);
603 for (;;) {
604 set_current_state(TASK_KILLABLE);
605 if (ewq->msg.event == 0)
606 break;
6aa7de05 607 if (READ_ONCE(ctx->released) ||
9cd75c3c 608 fatal_signal_pending(current)) {
384632e6
AA
609 /*
610 * &ewq->wq may be queued in fork_event, but
611 * __remove_wait_queue ignores the head
612 * parameter. It would be a problem if it
613 * didn't.
614 */
9cd75c3c 615 __remove_wait_queue(&ctx->event_wqh, &ewq->wq);
7eb76d45
MR
616 if (ewq->msg.event == UFFD_EVENT_FORK) {
617 struct userfaultfd_ctx *new;
618
619 new = (struct userfaultfd_ctx *)
620 (unsigned long)
621 ewq->msg.arg.reserved.reserved1;
0cbb4b4f 622 release_new_ctx = new;
7eb76d45 623 }
9cd75c3c
PE
624 break;
625 }
626
cbcfa130 627 spin_unlock_irq(&ctx->event_wqh.lock);
9cd75c3c 628
a9a08845 629 wake_up_poll(&ctx->fd_wqh, EPOLLIN);
9cd75c3c
PE
630 schedule();
631
cbcfa130 632 spin_lock_irq(&ctx->event_wqh.lock);
9cd75c3c
PE
633 }
634 __set_current_state(TASK_RUNNING);
cbcfa130 635 spin_unlock_irq(&ctx->event_wqh.lock);
9cd75c3c 636
0cbb4b4f
AA
637 if (release_new_ctx) {
638 struct vm_area_struct *vma;
639 struct mm_struct *mm = release_new_ctx->mm;
640
641 /* the various vma->vm_userfaultfd_ctx still points to it */
642 down_write(&mm->mmap_sem);
04f5866e
AA
643 /* no task can run (and in turn coredump) yet */
644 VM_WARN_ON(!mmget_still_valid(mm));
0cbb4b4f 645 for (vma = mm->mmap; vma; vma = vma->vm_next)
31e810aa 646 if (vma->vm_userfaultfd_ctx.ctx == release_new_ctx) {
0cbb4b4f 647 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
31e810aa
MR
648 vma->vm_flags &= ~(VM_UFFD_WP | VM_UFFD_MISSING);
649 }
0cbb4b4f
AA
650 up_write(&mm->mmap_sem);
651
652 userfaultfd_ctx_put(release_new_ctx);
653 }
654
9cd75c3c
PE
655 /*
656 * ctx may go away after this if the userfault pseudo fd is
657 * already released.
658 */
9a69a829 659out:
df2cc96e 660 WRITE_ONCE(ctx->mmap_changing, false);
9cd75c3c 661 userfaultfd_ctx_put(ctx);
9cd75c3c
PE
662}
663
664static void userfaultfd_event_complete(struct userfaultfd_ctx *ctx,
665 struct userfaultfd_wait_queue *ewq)
666{
667 ewq->msg.event = 0;
668 wake_up_locked(&ctx->event_wqh);
669 __remove_wait_queue(&ctx->event_wqh, &ewq->wq);
670}
671
893e26e6
PE
672int dup_userfaultfd(struct vm_area_struct *vma, struct list_head *fcs)
673{
674 struct userfaultfd_ctx *ctx = NULL, *octx;
675 struct userfaultfd_fork_ctx *fctx;
676
677 octx = vma->vm_userfaultfd_ctx.ctx;
678 if (!octx || !(octx->features & UFFD_FEATURE_EVENT_FORK)) {
679 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
680 vma->vm_flags &= ~(VM_UFFD_WP | VM_UFFD_MISSING);
681 return 0;
682 }
683
684 list_for_each_entry(fctx, fcs, list)
685 if (fctx->orig == octx) {
686 ctx = fctx->new;
687 break;
688 }
689
690 if (!ctx) {
691 fctx = kmalloc(sizeof(*fctx), GFP_KERNEL);
692 if (!fctx)
693 return -ENOMEM;
694
695 ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL);
696 if (!ctx) {
697 kfree(fctx);
698 return -ENOMEM;
699 }
700
ca880420 701 refcount_set(&ctx->refcount, 1);
893e26e6 702 ctx->flags = octx->flags;
893e26e6
PE
703 ctx->features = octx->features;
704 ctx->released = false;
df2cc96e 705 ctx->mmap_changing = false;
893e26e6 706 ctx->mm = vma->vm_mm;
00bb31fa 707 mmgrab(ctx->mm);
893e26e6
PE
708
709 userfaultfd_ctx_get(octx);
df2cc96e 710 WRITE_ONCE(octx->mmap_changing, true);
893e26e6
PE
711 fctx->orig = octx;
712 fctx->new = ctx;
713 list_add_tail(&fctx->list, fcs);
714 }
715
716 vma->vm_userfaultfd_ctx.ctx = ctx;
717 return 0;
718}
719
8c9e7bb7 720static void dup_fctx(struct userfaultfd_fork_ctx *fctx)
893e26e6
PE
721{
722 struct userfaultfd_ctx *ctx = fctx->orig;
723 struct userfaultfd_wait_queue ewq;
724
725 msg_init(&ewq.msg);
726
727 ewq.msg.event = UFFD_EVENT_FORK;
728 ewq.msg.arg.reserved.reserved1 = (unsigned long)fctx->new;
729
8c9e7bb7 730 userfaultfd_event_wait_completion(ctx, &ewq);
893e26e6
PE
731}
732
733void dup_userfaultfd_complete(struct list_head *fcs)
734{
893e26e6
PE
735 struct userfaultfd_fork_ctx *fctx, *n;
736
737 list_for_each_entry_safe(fctx, n, fcs, list) {
8c9e7bb7 738 dup_fctx(fctx);
893e26e6
PE
739 list_del(&fctx->list);
740 kfree(fctx);
741 }
742}
743
72f87654
PE
744void mremap_userfaultfd_prep(struct vm_area_struct *vma,
745 struct vm_userfaultfd_ctx *vm_ctx)
746{
747 struct userfaultfd_ctx *ctx;
748
749 ctx = vma->vm_userfaultfd_ctx.ctx;
3cfd22be
PX
750
751 if (!ctx)
752 return;
753
754 if (ctx->features & UFFD_FEATURE_EVENT_REMAP) {
72f87654
PE
755 vm_ctx->ctx = ctx;
756 userfaultfd_ctx_get(ctx);
df2cc96e 757 WRITE_ONCE(ctx->mmap_changing, true);
3cfd22be
PX
758 } else {
759 /* Drop uffd context if remap feature not enabled */
760 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
761 vma->vm_flags &= ~(VM_UFFD_WP | VM_UFFD_MISSING);
72f87654
PE
762 }
763}
764
90794bf1 765void mremap_userfaultfd_complete(struct vm_userfaultfd_ctx *vm_ctx,
72f87654
PE
766 unsigned long from, unsigned long to,
767 unsigned long len)
768{
90794bf1 769 struct userfaultfd_ctx *ctx = vm_ctx->ctx;
72f87654
PE
770 struct userfaultfd_wait_queue ewq;
771
772 if (!ctx)
773 return;
774
775 if (to & ~PAGE_MASK) {
776 userfaultfd_ctx_put(ctx);
777 return;
778 }
779
780 msg_init(&ewq.msg);
781
782 ewq.msg.event = UFFD_EVENT_REMAP;
783 ewq.msg.arg.remap.from = from;
784 ewq.msg.arg.remap.to = to;
785 ewq.msg.arg.remap.len = len;
786
787 userfaultfd_event_wait_completion(ctx, &ewq);
788}
789
70ccb92f 790bool userfaultfd_remove(struct vm_area_struct *vma,
d811914d 791 unsigned long start, unsigned long end)
05ce7724
PE
792{
793 struct mm_struct *mm = vma->vm_mm;
794 struct userfaultfd_ctx *ctx;
795 struct userfaultfd_wait_queue ewq;
796
797 ctx = vma->vm_userfaultfd_ctx.ctx;
d811914d 798 if (!ctx || !(ctx->features & UFFD_FEATURE_EVENT_REMOVE))
70ccb92f 799 return true;
05ce7724
PE
800
801 userfaultfd_ctx_get(ctx);
df2cc96e 802 WRITE_ONCE(ctx->mmap_changing, true);
05ce7724
PE
803 up_read(&mm->mmap_sem);
804
05ce7724
PE
805 msg_init(&ewq.msg);
806
d811914d
MR
807 ewq.msg.event = UFFD_EVENT_REMOVE;
808 ewq.msg.arg.remove.start = start;
809 ewq.msg.arg.remove.end = end;
05ce7724
PE
810
811 userfaultfd_event_wait_completion(ctx, &ewq);
812
70ccb92f 813 return false;
05ce7724
PE
814}
815
897ab3e0
MR
816static bool has_unmap_ctx(struct userfaultfd_ctx *ctx, struct list_head *unmaps,
817 unsigned long start, unsigned long end)
818{
819 struct userfaultfd_unmap_ctx *unmap_ctx;
820
821 list_for_each_entry(unmap_ctx, unmaps, list)
822 if (unmap_ctx->ctx == ctx && unmap_ctx->start == start &&
823 unmap_ctx->end == end)
824 return true;
825
826 return false;
827}
828
829int userfaultfd_unmap_prep(struct vm_area_struct *vma,
830 unsigned long start, unsigned long end,
831 struct list_head *unmaps)
832{
833 for ( ; vma && vma->vm_start < end; vma = vma->vm_next) {
834 struct userfaultfd_unmap_ctx *unmap_ctx;
835 struct userfaultfd_ctx *ctx = vma->vm_userfaultfd_ctx.ctx;
836
837 if (!ctx || !(ctx->features & UFFD_FEATURE_EVENT_UNMAP) ||
838 has_unmap_ctx(ctx, unmaps, start, end))
839 continue;
840
841 unmap_ctx = kzalloc(sizeof(*unmap_ctx), GFP_KERNEL);
842 if (!unmap_ctx)
843 return -ENOMEM;
844
845 userfaultfd_ctx_get(ctx);
df2cc96e 846 WRITE_ONCE(ctx->mmap_changing, true);
897ab3e0
MR
847 unmap_ctx->ctx = ctx;
848 unmap_ctx->start = start;
849 unmap_ctx->end = end;
850 list_add_tail(&unmap_ctx->list, unmaps);
851 }
852
853 return 0;
854}
855
856void userfaultfd_unmap_complete(struct mm_struct *mm, struct list_head *uf)
857{
858 struct userfaultfd_unmap_ctx *ctx, *n;
859 struct userfaultfd_wait_queue ewq;
860
861 list_for_each_entry_safe(ctx, n, uf, list) {
862 msg_init(&ewq.msg);
863
864 ewq.msg.event = UFFD_EVENT_UNMAP;
865 ewq.msg.arg.remove.start = ctx->start;
866 ewq.msg.arg.remove.end = ctx->end;
867
868 userfaultfd_event_wait_completion(ctx->ctx, &ewq);
869
870 list_del(&ctx->list);
871 kfree(ctx);
872 }
873}
874
86039bd3
AA
875static int userfaultfd_release(struct inode *inode, struct file *file)
876{
877 struct userfaultfd_ctx *ctx = file->private_data;
878 struct mm_struct *mm = ctx->mm;
879 struct vm_area_struct *vma, *prev;
880 /* len == 0 means wake all */
881 struct userfaultfd_wake_range range = { .len = 0, };
882 unsigned long new_flags;
46d0b24c 883 bool still_valid;
86039bd3 884
6aa7de05 885 WRITE_ONCE(ctx->released, true);
86039bd3 886
d2005e3f
ON
887 if (!mmget_not_zero(mm))
888 goto wakeup;
889
86039bd3
AA
890 /*
891 * Flush page faults out of all CPUs. NOTE: all page faults
892 * must be retried without returning VM_FAULT_SIGBUS if
893 * userfaultfd_ctx_get() succeeds but vma->vma_userfault_ctx
894 * changes while handle_userfault released the mmap_sem. So
895 * it's critical that released is set to true (above), before
896 * taking the mmap_sem for writing.
897 */
898 down_write(&mm->mmap_sem);
46d0b24c 899 still_valid = mmget_still_valid(mm);
86039bd3
AA
900 prev = NULL;
901 for (vma = mm->mmap; vma; vma = vma->vm_next) {
902 cond_resched();
903 BUG_ON(!!vma->vm_userfaultfd_ctx.ctx ^
904 !!(vma->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP)));
905 if (vma->vm_userfaultfd_ctx.ctx != ctx) {
906 prev = vma;
907 continue;
908 }
909 new_flags = vma->vm_flags & ~(VM_UFFD_MISSING | VM_UFFD_WP);
46d0b24c
ON
910 if (still_valid) {
911 prev = vma_merge(mm, prev, vma->vm_start, vma->vm_end,
912 new_flags, vma->anon_vma,
913 vma->vm_file, vma->vm_pgoff,
914 vma_policy(vma),
915 NULL_VM_UFFD_CTX);
916 if (prev)
917 vma = prev;
918 else
919 prev = vma;
920 }
86039bd3
AA
921 vma->vm_flags = new_flags;
922 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
923 }
924 up_write(&mm->mmap_sem);
d2005e3f
ON
925 mmput(mm);
926wakeup:
86039bd3 927 /*
15b726ef 928 * After no new page faults can wait on this fault_*wqh, flush
86039bd3 929 * the last page faults that may have been already waiting on
15b726ef 930 * the fault_*wqh.
86039bd3 931 */
cbcfa130 932 spin_lock_irq(&ctx->fault_pending_wqh.lock);
ac5be6b4 933 __wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL, &range);
c430d1e8 934 __wake_up(&ctx->fault_wqh, TASK_NORMAL, 1, &range);
cbcfa130 935 spin_unlock_irq(&ctx->fault_pending_wqh.lock);
86039bd3 936
5a18b64e
MR
937 /* Flush pending events that may still wait on event_wqh */
938 wake_up_all(&ctx->event_wqh);
939
a9a08845 940 wake_up_poll(&ctx->fd_wqh, EPOLLHUP);
86039bd3
AA
941 userfaultfd_ctx_put(ctx);
942 return 0;
943}
944
15b726ef 945/* fault_pending_wqh.lock must be hold by the caller */
6dcc27fd
PE
946static inline struct userfaultfd_wait_queue *find_userfault_in(
947 wait_queue_head_t *wqh)
86039bd3 948{
ac6424b9 949 wait_queue_entry_t *wq;
15b726ef 950 struct userfaultfd_wait_queue *uwq;
86039bd3 951
456a7378 952 lockdep_assert_held(&wqh->lock);
86039bd3 953
15b726ef 954 uwq = NULL;
6dcc27fd 955 if (!waitqueue_active(wqh))
15b726ef
AA
956 goto out;
957 /* walk in reverse to provide FIFO behavior to read userfaults */
2055da97 958 wq = list_last_entry(&wqh->head, typeof(*wq), entry);
15b726ef
AA
959 uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
960out:
961 return uwq;
86039bd3 962}
6dcc27fd
PE
963
964static inline struct userfaultfd_wait_queue *find_userfault(
965 struct userfaultfd_ctx *ctx)
966{
967 return find_userfault_in(&ctx->fault_pending_wqh);
968}
86039bd3 969
9cd75c3c
PE
970static inline struct userfaultfd_wait_queue *find_userfault_evt(
971 struct userfaultfd_ctx *ctx)
972{
973 return find_userfault_in(&ctx->event_wqh);
974}
975
076ccb76 976static __poll_t userfaultfd_poll(struct file *file, poll_table *wait)
86039bd3
AA
977{
978 struct userfaultfd_ctx *ctx = file->private_data;
076ccb76 979 __poll_t ret;
86039bd3
AA
980
981 poll_wait(file, &ctx->fd_wqh, wait);
982
47da88c4 983 if (!userfaultfd_is_initialized(ctx))
a9a08845 984 return EPOLLERR;
47da88c4
NA
985
986 /*
987 * poll() never guarantees that read won't block.
988 * userfaults can be waken before they're read().
989 */
990 if (unlikely(!(file->f_flags & O_NONBLOCK)))
a9a08845 991 return EPOLLERR;
47da88c4
NA
992 /*
993 * lockless access to see if there are pending faults
994 * __pollwait last action is the add_wait_queue but
995 * the spin_unlock would allow the waitqueue_active to
996 * pass above the actual list_add inside
997 * add_wait_queue critical section. So use a full
998 * memory barrier to serialize the list_add write of
999 * add_wait_queue() with the waitqueue_active read
1000 * below.
1001 */
1002 ret = 0;
1003 smp_mb();
1004 if (waitqueue_active(&ctx->fault_pending_wqh))
1005 ret = EPOLLIN;
1006 else if (waitqueue_active(&ctx->event_wqh))
1007 ret = EPOLLIN;
1008
1009 return ret;
86039bd3
AA
1010}
1011
893e26e6
PE
1012static const struct file_operations userfaultfd_fops;
1013
1014static int resolve_userfault_fork(struct userfaultfd_ctx *ctx,
1015 struct userfaultfd_ctx *new,
1016 struct uffd_msg *msg)
1017{
1018 int fd;
893e26e6 1019
284cd241
EB
1020 fd = anon_inode_getfd("[userfaultfd]", &userfaultfd_fops, new,
1021 O_RDWR | (new->flags & UFFD_SHARED_FCNTL_FLAGS));
893e26e6
PE
1022 if (fd < 0)
1023 return fd;
1024
893e26e6
PE
1025 msg->arg.reserved.reserved1 = 0;
1026 msg->arg.fork.ufd = fd;
893e26e6
PE
1027 return 0;
1028}
1029
86039bd3 1030static ssize_t userfaultfd_ctx_read(struct userfaultfd_ctx *ctx, int no_wait,
a9b85f94 1031 struct uffd_msg *msg)
86039bd3
AA
1032{
1033 ssize_t ret;
1034 DECLARE_WAITQUEUE(wait, current);
15b726ef 1035 struct userfaultfd_wait_queue *uwq;
893e26e6
PE
1036 /*
1037 * Handling fork event requires sleeping operations, so
1038 * we drop the event_wqh lock, then do these ops, then
1039 * lock it back and wake up the waiter. While the lock is
1040 * dropped the ewq may go away so we keep track of it
1041 * carefully.
1042 */
1043 LIST_HEAD(fork_event);
1044 struct userfaultfd_ctx *fork_nctx = NULL;
86039bd3 1045
15b726ef 1046 /* always take the fd_wqh lock before the fault_pending_wqh lock */
ae62c16e 1047 spin_lock_irq(&ctx->fd_wqh.lock);
86039bd3
AA
1048 __add_wait_queue(&ctx->fd_wqh, &wait);
1049 for (;;) {
1050 set_current_state(TASK_INTERRUPTIBLE);
15b726ef
AA
1051 spin_lock(&ctx->fault_pending_wqh.lock);
1052 uwq = find_userfault(ctx);
1053 if (uwq) {
2c5b7e1b
AA
1054 /*
1055 * Use a seqcount to repeat the lockless check
1056 * in wake_userfault() to avoid missing
1057 * wakeups because during the refile both
1058 * waitqueue could become empty if this is the
1059 * only userfault.
1060 */
1061 write_seqcount_begin(&ctx->refile_seq);
1062
86039bd3 1063 /*
15b726ef
AA
1064 * The fault_pending_wqh.lock prevents the uwq
1065 * to disappear from under us.
1066 *
1067 * Refile this userfault from
1068 * fault_pending_wqh to fault_wqh, it's not
1069 * pending anymore after we read it.
1070 *
1071 * Use list_del() by hand (as
1072 * userfaultfd_wake_function also uses
1073 * list_del_init() by hand) to be sure nobody
1074 * changes __remove_wait_queue() to use
1075 * list_del_init() in turn breaking the
1076 * !list_empty_careful() check in
2055da97 1077 * handle_userfault(). The uwq->wq.head list
15b726ef
AA
1078 * must never be empty at any time during the
1079 * refile, or the waitqueue could disappear
1080 * from under us. The "wait_queue_head_t"
1081 * parameter of __remove_wait_queue() is unused
1082 * anyway.
86039bd3 1083 */
2055da97 1084 list_del(&uwq->wq.entry);
c430d1e8 1085 add_wait_queue(&ctx->fault_wqh, &uwq->wq);
15b726ef 1086
2c5b7e1b
AA
1087 write_seqcount_end(&ctx->refile_seq);
1088
a9b85f94
AA
1089 /* careful to always initialize msg if ret == 0 */
1090 *msg = uwq->msg;
15b726ef 1091 spin_unlock(&ctx->fault_pending_wqh.lock);
86039bd3
AA
1092 ret = 0;
1093 break;
1094 }
15b726ef 1095 spin_unlock(&ctx->fault_pending_wqh.lock);
9cd75c3c
PE
1096
1097 spin_lock(&ctx->event_wqh.lock);
1098 uwq = find_userfault_evt(ctx);
1099 if (uwq) {
1100 *msg = uwq->msg;
1101
893e26e6
PE
1102 if (uwq->msg.event == UFFD_EVENT_FORK) {
1103 fork_nctx = (struct userfaultfd_ctx *)
1104 (unsigned long)
1105 uwq->msg.arg.reserved.reserved1;
2055da97 1106 list_move(&uwq->wq.entry, &fork_event);
384632e6
AA
1107 /*
1108 * fork_nctx can be freed as soon as
1109 * we drop the lock, unless we take a
1110 * reference on it.
1111 */
1112 userfaultfd_ctx_get(fork_nctx);
893e26e6
PE
1113 spin_unlock(&ctx->event_wqh.lock);
1114 ret = 0;
1115 break;
1116 }
1117
9cd75c3c
PE
1118 userfaultfd_event_complete(ctx, uwq);
1119 spin_unlock(&ctx->event_wqh.lock);
1120 ret = 0;
1121 break;
1122 }
1123 spin_unlock(&ctx->event_wqh.lock);
1124
86039bd3
AA
1125 if (signal_pending(current)) {
1126 ret = -ERESTARTSYS;
1127 break;
1128 }
1129 if (no_wait) {
1130 ret = -EAGAIN;
1131 break;
1132 }
ae62c16e 1133 spin_unlock_irq(&ctx->fd_wqh.lock);
86039bd3 1134 schedule();
ae62c16e 1135 spin_lock_irq(&ctx->fd_wqh.lock);
86039bd3
AA
1136 }
1137 __remove_wait_queue(&ctx->fd_wqh, &wait);
1138 __set_current_state(TASK_RUNNING);
ae62c16e 1139 spin_unlock_irq(&ctx->fd_wqh.lock);
86039bd3 1140
893e26e6
PE
1141 if (!ret && msg->event == UFFD_EVENT_FORK) {
1142 ret = resolve_userfault_fork(ctx, fork_nctx, msg);
cbcfa130 1143 spin_lock_irq(&ctx->event_wqh.lock);
384632e6
AA
1144 if (!list_empty(&fork_event)) {
1145 /*
1146 * The fork thread didn't abort, so we can
1147 * drop the temporary refcount.
1148 */
1149 userfaultfd_ctx_put(fork_nctx);
1150
1151 uwq = list_first_entry(&fork_event,
1152 typeof(*uwq),
1153 wq.entry);
1154 /*
1155 * If fork_event list wasn't empty and in turn
1156 * the event wasn't already released by fork
1157 * (the event is allocated on fork kernel
1158 * stack), put the event back to its place in
1159 * the event_wq. fork_event head will be freed
1160 * as soon as we return so the event cannot
1161 * stay queued there no matter the current
1162 * "ret" value.
1163 */
1164 list_del(&uwq->wq.entry);
1165 __add_wait_queue(&ctx->event_wqh, &uwq->wq);
893e26e6 1166
384632e6
AA
1167 /*
1168 * Leave the event in the waitqueue and report
1169 * error to userland if we failed to resolve
1170 * the userfault fork.
1171 */
1172 if (likely(!ret))
893e26e6 1173 userfaultfd_event_complete(ctx, uwq);
384632e6
AA
1174 } else {
1175 /*
1176 * Here the fork thread aborted and the
1177 * refcount from the fork thread on fork_nctx
1178 * has already been released. We still hold
1179 * the reference we took before releasing the
1180 * lock above. If resolve_userfault_fork
1181 * failed we've to drop it because the
1182 * fork_nctx has to be freed in such case. If
1183 * it succeeded we'll hold it because the new
1184 * uffd references it.
1185 */
1186 if (ret)
1187 userfaultfd_ctx_put(fork_nctx);
893e26e6 1188 }
cbcfa130 1189 spin_unlock_irq(&ctx->event_wqh.lock);
893e26e6
PE
1190 }
1191
86039bd3
AA
1192 return ret;
1193}
1194
1195static ssize_t userfaultfd_read(struct file *file, char __user *buf,
1196 size_t count, loff_t *ppos)
1197{
1198 struct userfaultfd_ctx *ctx = file->private_data;
1199 ssize_t _ret, ret = 0;
a9b85f94 1200 struct uffd_msg msg;
86039bd3
AA
1201 int no_wait = file->f_flags & O_NONBLOCK;
1202
47da88c4 1203 if (!userfaultfd_is_initialized(ctx))
86039bd3 1204 return -EINVAL;
86039bd3
AA
1205
1206 for (;;) {
a9b85f94 1207 if (count < sizeof(msg))
86039bd3 1208 return ret ? ret : -EINVAL;
a9b85f94 1209 _ret = userfaultfd_ctx_read(ctx, no_wait, &msg);
86039bd3
AA
1210 if (_ret < 0)
1211 return ret ? ret : _ret;
a9b85f94 1212 if (copy_to_user((__u64 __user *) buf, &msg, sizeof(msg)))
86039bd3 1213 return ret ? ret : -EFAULT;
a9b85f94
AA
1214 ret += sizeof(msg);
1215 buf += sizeof(msg);
1216 count -= sizeof(msg);
86039bd3
AA
1217 /*
1218 * Allow to read more than one fault at time but only
1219 * block if waiting for the very first one.
1220 */
1221 no_wait = O_NONBLOCK;
1222 }
1223}
1224
1225static void __wake_userfault(struct userfaultfd_ctx *ctx,
1226 struct userfaultfd_wake_range *range)
1227{
cbcfa130 1228 spin_lock_irq(&ctx->fault_pending_wqh.lock);
86039bd3 1229 /* wake all in the range and autoremove */
15b726ef 1230 if (waitqueue_active(&ctx->fault_pending_wqh))
ac5be6b4 1231 __wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL,
15b726ef
AA
1232 range);
1233 if (waitqueue_active(&ctx->fault_wqh))
c430d1e8 1234 __wake_up(&ctx->fault_wqh, TASK_NORMAL, 1, range);
cbcfa130 1235 spin_unlock_irq(&ctx->fault_pending_wqh.lock);
86039bd3
AA
1236}
1237
1238static __always_inline void wake_userfault(struct userfaultfd_ctx *ctx,
1239 struct userfaultfd_wake_range *range)
1240{
2c5b7e1b
AA
1241 unsigned seq;
1242 bool need_wakeup;
1243
86039bd3
AA
1244 /*
1245 * To be sure waitqueue_active() is not reordered by the CPU
1246 * before the pagetable update, use an explicit SMP memory
1247 * barrier here. PT lock release or up_read(mmap_sem) still
1248 * have release semantics that can allow the
1249 * waitqueue_active() to be reordered before the pte update.
1250 */
1251 smp_mb();
1252
1253 /*
1254 * Use waitqueue_active because it's very frequent to
1255 * change the address space atomically even if there are no
1256 * userfaults yet. So we take the spinlock only when we're
1257 * sure we've userfaults to wake.
1258 */
2c5b7e1b
AA
1259 do {
1260 seq = read_seqcount_begin(&ctx->refile_seq);
1261 need_wakeup = waitqueue_active(&ctx->fault_pending_wqh) ||
1262 waitqueue_active(&ctx->fault_wqh);
1263 cond_resched();
1264 } while (read_seqcount_retry(&ctx->refile_seq, seq));
1265 if (need_wakeup)
86039bd3
AA
1266 __wake_userfault(ctx, range);
1267}
1268
1269static __always_inline int validate_range(struct mm_struct *mm,
aa37b515 1270 __u64 start, __u64 len)
86039bd3
AA
1271{
1272 __u64 task_size = mm->task_size;
1273
aa37b515 1274 if (start & ~PAGE_MASK)
86039bd3
AA
1275 return -EINVAL;
1276 if (len & ~PAGE_MASK)
1277 return -EINVAL;
1278 if (!len)
1279 return -EINVAL;
aa37b515 1280 if (start < mmap_min_addr)
86039bd3 1281 return -EINVAL;
aa37b515 1282 if (start >= task_size)
86039bd3 1283 return -EINVAL;
aa37b515 1284 if (len > task_size - start)
86039bd3
AA
1285 return -EINVAL;
1286 return 0;
1287}
1288
ba6907db
MR
1289static inline bool vma_can_userfault(struct vm_area_struct *vma)
1290{
cac67329
MR
1291 return vma_is_anonymous(vma) || is_vm_hugetlb_page(vma) ||
1292 vma_is_shmem(vma);
ba6907db
MR
1293}
1294
86039bd3
AA
1295static int userfaultfd_register(struct userfaultfd_ctx *ctx,
1296 unsigned long arg)
1297{
1298 struct mm_struct *mm = ctx->mm;
1299 struct vm_area_struct *vma, *prev, *cur;
1300 int ret;
1301 struct uffdio_register uffdio_register;
1302 struct uffdio_register __user *user_uffdio_register;
1303 unsigned long vm_flags, new_flags;
1304 bool found;
ce53e8e6 1305 bool basic_ioctls;
86039bd3
AA
1306 unsigned long start, end, vma_end;
1307
1308 user_uffdio_register = (struct uffdio_register __user *) arg;
1309
1310 ret = -EFAULT;
1311 if (copy_from_user(&uffdio_register, user_uffdio_register,
1312 sizeof(uffdio_register)-sizeof(__u64)))
1313 goto out;
1314
1315 ret = -EINVAL;
1316 if (!uffdio_register.mode)
1317 goto out;
1318 if (uffdio_register.mode & ~(UFFDIO_REGISTER_MODE_MISSING|
1319 UFFDIO_REGISTER_MODE_WP))
1320 goto out;
1321 vm_flags = 0;
1322 if (uffdio_register.mode & UFFDIO_REGISTER_MODE_MISSING)
1323 vm_flags |= VM_UFFD_MISSING;
1324 if (uffdio_register.mode & UFFDIO_REGISTER_MODE_WP) {
1325 vm_flags |= VM_UFFD_WP;
1326 /*
1327 * FIXME: remove the below error constraint by
1328 * implementing the wprotect tracking mode.
1329 */
1330 ret = -EINVAL;
1331 goto out;
1332 }
1333
aa37b515 1334 ret = validate_range(mm, uffdio_register.range.start,
86039bd3
AA
1335 uffdio_register.range.len);
1336 if (ret)
1337 goto out;
1338
1339 start = uffdio_register.range.start;
1340 end = start + uffdio_register.range.len;
1341
d2005e3f
ON
1342 ret = -ENOMEM;
1343 if (!mmget_not_zero(mm))
1344 goto out;
1345
86039bd3 1346 down_write(&mm->mmap_sem);
04f5866e
AA
1347 if (!mmget_still_valid(mm))
1348 goto out_unlock;
86039bd3 1349 vma = find_vma_prev(mm, start, &prev);
86039bd3
AA
1350 if (!vma)
1351 goto out_unlock;
1352
1353 /* check that there's at least one vma in the range */
1354 ret = -EINVAL;
1355 if (vma->vm_start >= end)
1356 goto out_unlock;
1357
cab350af
MK
1358 /*
1359 * If the first vma contains huge pages, make sure start address
1360 * is aligned to huge page size.
1361 */
1362 if (is_vm_hugetlb_page(vma)) {
1363 unsigned long vma_hpagesize = vma_kernel_pagesize(vma);
1364
1365 if (start & (vma_hpagesize - 1))
1366 goto out_unlock;
1367 }
1368
86039bd3
AA
1369 /*
1370 * Search for not compatible vmas.
86039bd3
AA
1371 */
1372 found = false;
ce53e8e6 1373 basic_ioctls = false;
86039bd3
AA
1374 for (cur = vma; cur && cur->vm_start < end; cur = cur->vm_next) {
1375 cond_resched();
1376
1377 BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^
1378 !!(cur->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP)));
1379
1380 /* check not compatible vmas */
1381 ret = -EINVAL;
ba6907db 1382 if (!vma_can_userfault(cur))
86039bd3 1383 goto out_unlock;
29ec9066
AA
1384
1385 /*
1386 * UFFDIO_COPY will fill file holes even without
1387 * PROT_WRITE. This check enforces that if this is a
1388 * MAP_SHARED, the process has write permission to the backing
1389 * file. If VM_MAYWRITE is set it also enforces that on a
1390 * MAP_SHARED vma: there is no F_WRITE_SEAL and no further
1391 * F_WRITE_SEAL can be taken until the vma is destroyed.
1392 */
1393 ret = -EPERM;
1394 if (unlikely(!(cur->vm_flags & VM_MAYWRITE)))
1395 goto out_unlock;
1396
cab350af
MK
1397 /*
1398 * If this vma contains ending address, and huge pages
1399 * check alignment.
1400 */
1401 if (is_vm_hugetlb_page(cur) && end <= cur->vm_end &&
1402 end > cur->vm_start) {
1403 unsigned long vma_hpagesize = vma_kernel_pagesize(cur);
1404
1405 ret = -EINVAL;
1406
1407 if (end & (vma_hpagesize - 1))
1408 goto out_unlock;
1409 }
86039bd3
AA
1410
1411 /*
1412 * Check that this vma isn't already owned by a
1413 * different userfaultfd. We can't allow more than one
1414 * userfaultfd to own a single vma simultaneously or we
1415 * wouldn't know which one to deliver the userfaults to.
1416 */
1417 ret = -EBUSY;
1418 if (cur->vm_userfaultfd_ctx.ctx &&
1419 cur->vm_userfaultfd_ctx.ctx != ctx)
1420 goto out_unlock;
1421
cab350af
MK
1422 /*
1423 * Note vmas containing huge pages
1424 */
ce53e8e6
MR
1425 if (is_vm_hugetlb_page(cur))
1426 basic_ioctls = true;
cab350af 1427
86039bd3
AA
1428 found = true;
1429 }
1430 BUG_ON(!found);
1431
1432 if (vma->vm_start < start)
1433 prev = vma;
1434
1435 ret = 0;
1436 do {
1437 cond_resched();
1438
ba6907db 1439 BUG_ON(!vma_can_userfault(vma));
86039bd3
AA
1440 BUG_ON(vma->vm_userfaultfd_ctx.ctx &&
1441 vma->vm_userfaultfd_ctx.ctx != ctx);
29ec9066 1442 WARN_ON(!(vma->vm_flags & VM_MAYWRITE));
86039bd3
AA
1443
1444 /*
1445 * Nothing to do: this vma is already registered into this
1446 * userfaultfd and with the right tracking mode too.
1447 */
1448 if (vma->vm_userfaultfd_ctx.ctx == ctx &&
1449 (vma->vm_flags & vm_flags) == vm_flags)
1450 goto skip;
1451
1452 if (vma->vm_start > start)
1453 start = vma->vm_start;
1454 vma_end = min(end, vma->vm_end);
1455
1456 new_flags = (vma->vm_flags & ~vm_flags) | vm_flags;
1457 prev = vma_merge(mm, prev, start, vma_end, new_flags,
1458 vma->anon_vma, vma->vm_file, vma->vm_pgoff,
1459 vma_policy(vma),
1460 ((struct vm_userfaultfd_ctx){ ctx }));
1461 if (prev) {
1462 vma = prev;
1463 goto next;
1464 }
1465 if (vma->vm_start < start) {
1466 ret = split_vma(mm, vma, start, 1);
1467 if (ret)
1468 break;
1469 }
1470 if (vma->vm_end > end) {
1471 ret = split_vma(mm, vma, end, 0);
1472 if (ret)
1473 break;
1474 }
1475 next:
1476 /*
1477 * In the vma_merge() successful mprotect-like case 8:
1478 * the next vma was merged into the current one and
1479 * the current one has not been updated yet.
1480 */
1481 vma->vm_flags = new_flags;
1482 vma->vm_userfaultfd_ctx.ctx = ctx;
1483
1484 skip:
1485 prev = vma;
1486 start = vma->vm_end;
1487 vma = vma->vm_next;
1488 } while (vma && vma->vm_start < end);
1489out_unlock:
1490 up_write(&mm->mmap_sem);
d2005e3f 1491 mmput(mm);
86039bd3
AA
1492 if (!ret) {
1493 /*
1494 * Now that we scanned all vmas we can already tell
1495 * userland which ioctls methods are guaranteed to
1496 * succeed on this range.
1497 */
ce53e8e6 1498 if (put_user(basic_ioctls ? UFFD_API_RANGE_IOCTLS_BASIC :
cab350af 1499 UFFD_API_RANGE_IOCTLS,
86039bd3
AA
1500 &user_uffdio_register->ioctls))
1501 ret = -EFAULT;
1502 }
1503out:
1504 return ret;
1505}
1506
1507static int userfaultfd_unregister(struct userfaultfd_ctx *ctx,
1508 unsigned long arg)
1509{
1510 struct mm_struct *mm = ctx->mm;
1511 struct vm_area_struct *vma, *prev, *cur;
1512 int ret;
1513 struct uffdio_range uffdio_unregister;
1514 unsigned long new_flags;
1515 bool found;
1516 unsigned long start, end, vma_end;
1517 const void __user *buf = (void __user *)arg;
1518
1519 ret = -EFAULT;
1520 if (copy_from_user(&uffdio_unregister, buf, sizeof(uffdio_unregister)))
1521 goto out;
1522
aa37b515 1523 ret = validate_range(mm, uffdio_unregister.start,
86039bd3
AA
1524 uffdio_unregister.len);
1525 if (ret)
1526 goto out;
1527
1528 start = uffdio_unregister.start;
1529 end = start + uffdio_unregister.len;
1530
d2005e3f
ON
1531 ret = -ENOMEM;
1532 if (!mmget_not_zero(mm))
1533 goto out;
1534
86039bd3 1535 down_write(&mm->mmap_sem);
04f5866e
AA
1536 if (!mmget_still_valid(mm))
1537 goto out_unlock;
86039bd3 1538 vma = find_vma_prev(mm, start, &prev);
86039bd3
AA
1539 if (!vma)
1540 goto out_unlock;
1541
1542 /* check that there's at least one vma in the range */
1543 ret = -EINVAL;
1544 if (vma->vm_start >= end)
1545 goto out_unlock;
1546
cab350af
MK
1547 /*
1548 * If the first vma contains huge pages, make sure start address
1549 * is aligned to huge page size.
1550 */
1551 if (is_vm_hugetlb_page(vma)) {
1552 unsigned long vma_hpagesize = vma_kernel_pagesize(vma);
1553
1554 if (start & (vma_hpagesize - 1))
1555 goto out_unlock;
1556 }
1557
86039bd3
AA
1558 /*
1559 * Search for not compatible vmas.
86039bd3
AA
1560 */
1561 found = false;
1562 ret = -EINVAL;
1563 for (cur = vma; cur && cur->vm_start < end; cur = cur->vm_next) {
1564 cond_resched();
1565
1566 BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^
1567 !!(cur->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP)));
1568
1569 /*
1570 * Check not compatible vmas, not strictly required
1571 * here as not compatible vmas cannot have an
1572 * userfaultfd_ctx registered on them, but this
1573 * provides for more strict behavior to notice
1574 * unregistration errors.
1575 */
ba6907db 1576 if (!vma_can_userfault(cur))
86039bd3
AA
1577 goto out_unlock;
1578
1579 found = true;
1580 }
1581 BUG_ON(!found);
1582
1583 if (vma->vm_start < start)
1584 prev = vma;
1585
1586 ret = 0;
1587 do {
1588 cond_resched();
1589
ba6907db 1590 BUG_ON(!vma_can_userfault(vma));
86039bd3
AA
1591
1592 /*
1593 * Nothing to do: this vma is already registered into this
1594 * userfaultfd and with the right tracking mode too.
1595 */
1596 if (!vma->vm_userfaultfd_ctx.ctx)
1597 goto skip;
1598
01e881f5
AA
1599 WARN_ON(!(vma->vm_flags & VM_MAYWRITE));
1600
86039bd3
AA
1601 if (vma->vm_start > start)
1602 start = vma->vm_start;
1603 vma_end = min(end, vma->vm_end);
1604
09fa5296
AA
1605 if (userfaultfd_missing(vma)) {
1606 /*
1607 * Wake any concurrent pending userfault while
1608 * we unregister, so they will not hang
1609 * permanently and it avoids userland to call
1610 * UFFDIO_WAKE explicitly.
1611 */
1612 struct userfaultfd_wake_range range;
1613 range.start = start;
1614 range.len = vma_end - start;
1615 wake_userfault(vma->vm_userfaultfd_ctx.ctx, &range);
1616 }
1617
86039bd3
AA
1618 new_flags = vma->vm_flags & ~(VM_UFFD_MISSING | VM_UFFD_WP);
1619 prev = vma_merge(mm, prev, start, vma_end, new_flags,
1620 vma->anon_vma, vma->vm_file, vma->vm_pgoff,
1621 vma_policy(vma),
1622 NULL_VM_UFFD_CTX);
1623 if (prev) {
1624 vma = prev;
1625 goto next;
1626 }
1627 if (vma->vm_start < start) {
1628 ret = split_vma(mm, vma, start, 1);
1629 if (ret)
1630 break;
1631 }
1632 if (vma->vm_end > end) {
1633 ret = split_vma(mm, vma, end, 0);
1634 if (ret)
1635 break;
1636 }
1637 next:
1638 /*
1639 * In the vma_merge() successful mprotect-like case 8:
1640 * the next vma was merged into the current one and
1641 * the current one has not been updated yet.
1642 */
1643 vma->vm_flags = new_flags;
1644 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
1645
1646 skip:
1647 prev = vma;
1648 start = vma->vm_end;
1649 vma = vma->vm_next;
1650 } while (vma && vma->vm_start < end);
1651out_unlock:
1652 up_write(&mm->mmap_sem);
d2005e3f 1653 mmput(mm);
86039bd3
AA
1654out:
1655 return ret;
1656}
1657
1658/*
ba85c702
AA
1659 * userfaultfd_wake may be used in combination with the
1660 * UFFDIO_*_MODE_DONTWAKE to wakeup userfaults in batches.
86039bd3
AA
1661 */
1662static int userfaultfd_wake(struct userfaultfd_ctx *ctx,
1663 unsigned long arg)
1664{
1665 int ret;
1666 struct uffdio_range uffdio_wake;
1667 struct userfaultfd_wake_range range;
1668 const void __user *buf = (void __user *)arg;
1669
1670 ret = -EFAULT;
1671 if (copy_from_user(&uffdio_wake, buf, sizeof(uffdio_wake)))
1672 goto out;
1673
aa37b515 1674 ret = validate_range(ctx->mm, uffdio_wake.start, uffdio_wake.len);
86039bd3
AA
1675 if (ret)
1676 goto out;
1677
1678 range.start = uffdio_wake.start;
1679 range.len = uffdio_wake.len;
1680
1681 /*
1682 * len == 0 means wake all and we don't want to wake all here,
1683 * so check it again to be sure.
1684 */
1685 VM_BUG_ON(!range.len);
1686
1687 wake_userfault(ctx, &range);
1688 ret = 0;
1689
1690out:
1691 return ret;
1692}
1693
ad465cae
AA
1694static int userfaultfd_copy(struct userfaultfd_ctx *ctx,
1695 unsigned long arg)
1696{
1697 __s64 ret;
1698 struct uffdio_copy uffdio_copy;
1699 struct uffdio_copy __user *user_uffdio_copy;
1700 struct userfaultfd_wake_range range;
1701
1702 user_uffdio_copy = (struct uffdio_copy __user *) arg;
1703
df2cc96e
MR
1704 ret = -EAGAIN;
1705 if (READ_ONCE(ctx->mmap_changing))
1706 goto out;
1707
ad465cae
AA
1708 ret = -EFAULT;
1709 if (copy_from_user(&uffdio_copy, user_uffdio_copy,
1710 /* don't copy "copy" last field */
1711 sizeof(uffdio_copy)-sizeof(__s64)))
1712 goto out;
1713
aa37b515 1714 ret = validate_range(ctx->mm, uffdio_copy.dst, uffdio_copy.len);
ad465cae
AA
1715 if (ret)
1716 goto out;
1717 /*
1718 * double check for wraparound just in case. copy_from_user()
1719 * will later check uffdio_copy.src + uffdio_copy.len to fit
1720 * in the userland range.
1721 */
1722 ret = -EINVAL;
1723 if (uffdio_copy.src + uffdio_copy.len <= uffdio_copy.src)
1724 goto out;
1725 if (uffdio_copy.mode & ~UFFDIO_COPY_MODE_DONTWAKE)
1726 goto out;
d2005e3f
ON
1727 if (mmget_not_zero(ctx->mm)) {
1728 ret = mcopy_atomic(ctx->mm, uffdio_copy.dst, uffdio_copy.src,
df2cc96e 1729 uffdio_copy.len, &ctx->mmap_changing);
d2005e3f 1730 mmput(ctx->mm);
96333187 1731 } else {
e86b298b 1732 return -ESRCH;
d2005e3f 1733 }
ad465cae
AA
1734 if (unlikely(put_user(ret, &user_uffdio_copy->copy)))
1735 return -EFAULT;
1736 if (ret < 0)
1737 goto out;
1738 BUG_ON(!ret);
1739 /* len == 0 would wake all */
1740 range.len = ret;
1741 if (!(uffdio_copy.mode & UFFDIO_COPY_MODE_DONTWAKE)) {
1742 range.start = uffdio_copy.dst;
1743 wake_userfault(ctx, &range);
1744 }
1745 ret = range.len == uffdio_copy.len ? 0 : -EAGAIN;
1746out:
1747 return ret;
1748}
1749
1750static int userfaultfd_zeropage(struct userfaultfd_ctx *ctx,
1751 unsigned long arg)
1752{
1753 __s64 ret;
1754 struct uffdio_zeropage uffdio_zeropage;
1755 struct uffdio_zeropage __user *user_uffdio_zeropage;
1756 struct userfaultfd_wake_range range;
1757
1758 user_uffdio_zeropage = (struct uffdio_zeropage __user *) arg;
1759
df2cc96e
MR
1760 ret = -EAGAIN;
1761 if (READ_ONCE(ctx->mmap_changing))
1762 goto out;
1763
ad465cae
AA
1764 ret = -EFAULT;
1765 if (copy_from_user(&uffdio_zeropage, user_uffdio_zeropage,
1766 /* don't copy "zeropage" last field */
1767 sizeof(uffdio_zeropage)-sizeof(__s64)))
1768 goto out;
1769
aa37b515 1770 ret = validate_range(ctx->mm, uffdio_zeropage.range.start,
ad465cae
AA
1771 uffdio_zeropage.range.len);
1772 if (ret)
1773 goto out;
1774 ret = -EINVAL;
1775 if (uffdio_zeropage.mode & ~UFFDIO_ZEROPAGE_MODE_DONTWAKE)
1776 goto out;
1777
d2005e3f
ON
1778 if (mmget_not_zero(ctx->mm)) {
1779 ret = mfill_zeropage(ctx->mm, uffdio_zeropage.range.start,
df2cc96e
MR
1780 uffdio_zeropage.range.len,
1781 &ctx->mmap_changing);
d2005e3f 1782 mmput(ctx->mm);
9d95aa4b 1783 } else {
e86b298b 1784 return -ESRCH;
d2005e3f 1785 }
ad465cae
AA
1786 if (unlikely(put_user(ret, &user_uffdio_zeropage->zeropage)))
1787 return -EFAULT;
1788 if (ret < 0)
1789 goto out;
1790 /* len == 0 would wake all */
1791 BUG_ON(!ret);
1792 range.len = ret;
1793 if (!(uffdio_zeropage.mode & UFFDIO_ZEROPAGE_MODE_DONTWAKE)) {
1794 range.start = uffdio_zeropage.range.start;
1795 wake_userfault(ctx, &range);
1796 }
1797 ret = range.len == uffdio_zeropage.range.len ? 0 : -EAGAIN;
1798out:
1799 return ret;
1800}
1801
9cd75c3c
PE
1802static inline unsigned int uffd_ctx_features(__u64 user_features)
1803{
1804 /*
47da88c4
NA
1805 * For the current set of features the bits just coincide. Set
1806 * UFFD_FEATURE_INITIALIZED to mark the features as enabled.
9cd75c3c 1807 */
47da88c4 1808 return (unsigned int)user_features | UFFD_FEATURE_INITIALIZED;
9cd75c3c
PE
1809}
1810
86039bd3
AA
1811/*
1812 * userland asks for a certain API version and we return which bits
1813 * and ioctl commands are implemented in this kernel for such API
1814 * version or -EINVAL if unknown.
1815 */
1816static int userfaultfd_api(struct userfaultfd_ctx *ctx,
1817 unsigned long arg)
1818{
1819 struct uffdio_api uffdio_api;
1820 void __user *buf = (void __user *)arg;
47da88c4 1821 unsigned int ctx_features;
86039bd3 1822 int ret;
65603144 1823 __u64 features;
86039bd3 1824
86039bd3 1825 ret = -EFAULT;
a9b85f94 1826 if (copy_from_user(&uffdio_api, buf, sizeof(uffdio_api)))
86039bd3 1827 goto out;
65603144 1828 features = uffdio_api.features;
54d6fcef
MR
1829 ret = -EINVAL;
1830 if (uffdio_api.api != UFFD_API || (features & ~UFFD_API_FEATURES))
1831 goto err_out;
1832 ret = -EPERM;
1833 if ((features & UFFD_FEATURE_EVENT_FORK) && !capable(CAP_SYS_PTRACE))
1834 goto err_out;
65603144
AA
1835 /* report all available features and ioctls to userland */
1836 uffdio_api.features = UFFD_API_FEATURES;
86039bd3
AA
1837 uffdio_api.ioctls = UFFD_API_IOCTLS;
1838 ret = -EFAULT;
1839 if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api)))
1840 goto out;
47da88c4 1841
65603144 1842 /* only enable the requested features for this uffd context */
47da88c4
NA
1843 ctx_features = uffd_ctx_features(features);
1844 ret = -EINVAL;
1845 if (cmpxchg(&ctx->features, 0, ctx_features) != 0)
1846 goto err_out;
1847
86039bd3
AA
1848 ret = 0;
1849out:
1850 return ret;
54d6fcef
MR
1851err_out:
1852 memset(&uffdio_api, 0, sizeof(uffdio_api));
1853 if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api)))
1854 ret = -EFAULT;
1855 goto out;
86039bd3
AA
1856}
1857
1858static long userfaultfd_ioctl(struct file *file, unsigned cmd,
1859 unsigned long arg)
1860{
1861 int ret = -EINVAL;
1862 struct userfaultfd_ctx *ctx = file->private_data;
1863
47da88c4 1864 if (cmd != UFFDIO_API && !userfaultfd_is_initialized(ctx))
e6485a47
AA
1865 return -EINVAL;
1866
86039bd3
AA
1867 switch(cmd) {
1868 case UFFDIO_API:
1869 ret = userfaultfd_api(ctx, arg);
1870 break;
1871 case UFFDIO_REGISTER:
1872 ret = userfaultfd_register(ctx, arg);
1873 break;
1874 case UFFDIO_UNREGISTER:
1875 ret = userfaultfd_unregister(ctx, arg);
1876 break;
1877 case UFFDIO_WAKE:
1878 ret = userfaultfd_wake(ctx, arg);
1879 break;
ad465cae
AA
1880 case UFFDIO_COPY:
1881 ret = userfaultfd_copy(ctx, arg);
1882 break;
1883 case UFFDIO_ZEROPAGE:
1884 ret = userfaultfd_zeropage(ctx, arg);
1885 break;
86039bd3
AA
1886 }
1887 return ret;
1888}
1889
1890#ifdef CONFIG_PROC_FS
1891static void userfaultfd_show_fdinfo(struct seq_file *m, struct file *f)
1892{
1893 struct userfaultfd_ctx *ctx = f->private_data;
ac6424b9 1894 wait_queue_entry_t *wq;
86039bd3
AA
1895 unsigned long pending = 0, total = 0;
1896
cbcfa130 1897 spin_lock_irq(&ctx->fault_pending_wqh.lock);
2055da97 1898 list_for_each_entry(wq, &ctx->fault_pending_wqh.head, entry) {
15b726ef
AA
1899 pending++;
1900 total++;
1901 }
2055da97 1902 list_for_each_entry(wq, &ctx->fault_wqh.head, entry) {
86039bd3
AA
1903 total++;
1904 }
cbcfa130 1905 spin_unlock_irq(&ctx->fault_pending_wqh.lock);
86039bd3
AA
1906
1907 /*
1908 * If more protocols will be added, there will be all shown
1909 * separated by a space. Like this:
1910 * protocols: aa:... bb:...
1911 */
1912 seq_printf(m, "pending:\t%lu\ntotal:\t%lu\nAPI:\t%Lx:%x:%Lx\n",
045098e9 1913 pending, total, UFFD_API, ctx->features,
86039bd3
AA
1914 UFFD_API_IOCTLS|UFFD_API_RANGE_IOCTLS);
1915}
1916#endif
1917
1918static const struct file_operations userfaultfd_fops = {
1919#ifdef CONFIG_PROC_FS
1920 .show_fdinfo = userfaultfd_show_fdinfo,
1921#endif
1922 .release = userfaultfd_release,
1923 .poll = userfaultfd_poll,
1924 .read = userfaultfd_read,
1925 .unlocked_ioctl = userfaultfd_ioctl,
1926 .compat_ioctl = userfaultfd_ioctl,
1927 .llseek = noop_llseek,
1928};
1929
3004ec9c
AA
1930static void init_once_userfaultfd_ctx(void *mem)
1931{
1932 struct userfaultfd_ctx *ctx = (struct userfaultfd_ctx *) mem;
1933
1934 init_waitqueue_head(&ctx->fault_pending_wqh);
1935 init_waitqueue_head(&ctx->fault_wqh);
9cd75c3c 1936 init_waitqueue_head(&ctx->event_wqh);
3004ec9c 1937 init_waitqueue_head(&ctx->fd_wqh);
2c5b7e1b 1938 seqcount_init(&ctx->refile_seq);
3004ec9c
AA
1939}
1940
284cd241 1941SYSCALL_DEFINE1(userfaultfd, int, flags)
86039bd3 1942{
86039bd3 1943 struct userfaultfd_ctx *ctx;
284cd241 1944 int fd;
86039bd3 1945
cefdca0a
PX
1946 if (!sysctl_unprivileged_userfaultfd && !capable(CAP_SYS_PTRACE))
1947 return -EPERM;
1948
86039bd3
AA
1949 BUG_ON(!current->mm);
1950
1951 /* Check the UFFD_* constants for consistency. */
1952 BUILD_BUG_ON(UFFD_CLOEXEC != O_CLOEXEC);
1953 BUILD_BUG_ON(UFFD_NONBLOCK != O_NONBLOCK);
1954
86039bd3 1955 if (flags & ~UFFD_SHARED_FCNTL_FLAGS)
284cd241 1956 return -EINVAL;
86039bd3 1957
3004ec9c 1958 ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL);
86039bd3 1959 if (!ctx)
284cd241 1960 return -ENOMEM;
86039bd3 1961
ca880420 1962 refcount_set(&ctx->refcount, 1);
86039bd3 1963 ctx->flags = flags;
9cd75c3c 1964 ctx->features = 0;
86039bd3 1965 ctx->released = false;
df2cc96e 1966 ctx->mmap_changing = false;
86039bd3
AA
1967 ctx->mm = current->mm;
1968 /* prevent the mm struct to be freed */
f1f10076 1969 mmgrab(ctx->mm);
86039bd3 1970
284cd241
EB
1971 fd = anon_inode_getfd("[userfaultfd]", &userfaultfd_fops, ctx,
1972 O_RDWR | (flags & UFFD_SHARED_FCNTL_FLAGS));
1973 if (fd < 0) {
d2005e3f 1974 mmdrop(ctx->mm);
3004ec9c 1975 kmem_cache_free(userfaultfd_ctx_cachep, ctx);
c03e946f 1976 }
86039bd3 1977 return fd;
86039bd3 1978}
3004ec9c
AA
1979
1980static int __init userfaultfd_init(void)
1981{
1982 userfaultfd_ctx_cachep = kmem_cache_create("userfaultfd_ctx_cache",
1983 sizeof(struct userfaultfd_ctx),
1984 0,
1985 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
1986 init_once_userfaultfd_ctx);
1987 return 0;
1988}
1989__initcall(userfaultfd_init);