]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - fs/xfs/libxfs/xfs_btree.c
UBUNTU: Ubuntu-4.15.0-96.97
[mirror_ubuntu-bionic-kernel.git] / fs / xfs / libxfs / xfs_btree.c
CommitLineData
1da177e4 1/*
7b718769
NS
2 * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
1da177e4 4 *
7b718769
NS
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
1da177e4
LT
7 * published by the Free Software Foundation.
8 *
7b718769
NS
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
1da177e4 13 *
7b718769
NS
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
1da177e4 17 */
1da177e4 18#include "xfs.h"
a844f451 19#include "xfs_fs.h"
70a9883c 20#include "xfs_shared.h"
a4fbe6ab 21#include "xfs_format.h"
239880ef
DC
22#include "xfs_log_format.h"
23#include "xfs_trans_resv.h"
a844f451 24#include "xfs_bit.h"
1da177e4 25#include "xfs_mount.h"
3ab78df2 26#include "xfs_defer.h"
1da177e4 27#include "xfs_inode.h"
239880ef 28#include "xfs_trans.h"
38bb7423 29#include "xfs_inode_item.h"
ee1a47ab 30#include "xfs_buf_item.h"
a844f451 31#include "xfs_btree.h"
e9e899a2 32#include "xfs_errortag.h"
1da177e4 33#include "xfs_error.h"
0b1b213f 34#include "xfs_trace.h"
ee1a47ab 35#include "xfs_cksum.h"
cf11da9c 36#include "xfs_alloc.h"
a45086e2 37#include "xfs_log.h"
1da177e4
LT
38
39/*
40 * Cursor allocation zone.
41 */
42kmem_zone_t *xfs_btree_cur_zone;
43
44/*
45 * Btree magic numbers.
46 */
c8ce540d 47static const uint32_t xfs_magics[2][XFS_BTNUM_MAX] = {
b8704944 48 { XFS_ABTB_MAGIC, XFS_ABTC_MAGIC, 0, XFS_BMAP_MAGIC, XFS_IBT_MAGIC,
46eeb521 49 XFS_FIBT_MAGIC, 0 },
b8704944 50 { XFS_ABTB_CRC_MAGIC, XFS_ABTC_CRC_MAGIC, XFS_RMAP_CRC_MAGIC,
46eeb521
DW
51 XFS_BMAP_CRC_MAGIC, XFS_IBT_CRC_MAGIC, XFS_FIBT_CRC_MAGIC,
52 XFS_REFC_CRC_MAGIC }
1da177e4 53};
af7d20fd 54
c8ce540d 55uint32_t
af7d20fd
ES
56xfs_btree_magic(
57 int crc,
58 xfs_btnum_t btnum)
59{
c8ce540d 60 uint32_t magic = xfs_magics[crc][btnum];
af7d20fd
ES
61
62 /* Ensure we asked for crc for crc-only magics. */
63 ASSERT(magic != 0);
64 return magic;
65}
1da177e4 66
52c732ee
DW
67/*
68 * Check a long btree block header. Return the address of the failing check,
69 * or NULL if everything is ok.
70 */
71xfs_failaddr_t
72__xfs_btree_check_lblock(
73 struct xfs_btree_cur *cur,
74 struct xfs_btree_block *block,
75 int level,
76 struct xfs_buf *bp)
a23f6ef8 77{
52c732ee 78 struct xfs_mount *mp = cur->bc_mp;
af7d20fd 79 xfs_btnum_t btnum = cur->bc_btnum;
52c732ee 80 int crc = xfs_sb_version_hascrc(&mp->m_sb);
ee1a47ab 81
af7d20fd 82 if (crc) {
52c732ee
DW
83 if (!uuid_equal(&block->bb_u.l.bb_uuid, &mp->m_sb.sb_meta_uuid))
84 return __this_address;
85 if (block->bb_u.l.bb_blkno !=
86 cpu_to_be64(bp ? bp->b_bn : XFS_BUF_DADDR_NULL))
87 return __this_address;
88 if (block->bb_u.l.bb_pad != cpu_to_be32(0))
89 return __this_address;
ee1a47ab
CH
90 }
91
52c732ee
DW
92 if (be32_to_cpu(block->bb_magic) != xfs_btree_magic(crc, btnum))
93 return __this_address;
94 if (be16_to_cpu(block->bb_level) != level)
95 return __this_address;
96 if (be16_to_cpu(block->bb_numrecs) >
97 cur->bc_ops->get_maxrecs(cur, level))
98 return __this_address;
99 if (block->bb_u.l.bb_leftsib != cpu_to_be64(NULLFSBLOCK) &&
100 !xfs_btree_check_lptr(cur, be64_to_cpu(block->bb_u.l.bb_leftsib),
101 level + 1))
102 return __this_address;
103 if (block->bb_u.l.bb_rightsib != cpu_to_be64(NULLFSBLOCK) &&
104 !xfs_btree_check_lptr(cur, be64_to_cpu(block->bb_u.l.bb_rightsib),
105 level + 1))
106 return __this_address;
107
108 return NULL;
109}
110
111/* Check a long btree block header. */
4483eb56 112static int
52c732ee
DW
113xfs_btree_check_lblock(
114 struct xfs_btree_cur *cur,
115 struct xfs_btree_block *block,
116 int level,
117 struct xfs_buf *bp)
118{
119 struct xfs_mount *mp = cur->bc_mp;
120 xfs_failaddr_t fa;
121
122 fa = __xfs_btree_check_lblock(cur, block, level, bp);
123 if (unlikely(XFS_TEST_ERROR(fa != NULL, mp,
9e24cfd0 124 XFS_ERRTAG_BTREE_CHECK_LBLOCK))) {
a23f6ef8 125 if (bp)
0b1b213f 126 trace_xfs_btree_corrupt(bp, _RET_IP_);
ee1a47ab 127 XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_LOW, mp);
2451337d 128 return -EFSCORRUPTED;
a23f6ef8
CH
129 }
130 return 0;
131}
132
52c732ee
DW
133/*
134 * Check a short btree block header. Return the address of the failing check,
135 * or NULL if everything is ok.
136 */
137xfs_failaddr_t
138__xfs_btree_check_sblock(
139 struct xfs_btree_cur *cur,
140 struct xfs_btree_block *block,
141 int level,
142 struct xfs_buf *bp)
1da177e4 143{
52c732ee 144 struct xfs_mount *mp = cur->bc_mp;
af7d20fd 145 xfs_btnum_t btnum = cur->bc_btnum;
52c732ee 146 int crc = xfs_sb_version_hascrc(&mp->m_sb);
ee1a47ab 147
af7d20fd 148 if (crc) {
52c732ee
DW
149 if (!uuid_equal(&block->bb_u.s.bb_uuid, &mp->m_sb.sb_meta_uuid))
150 return __this_address;
151 if (block->bb_u.s.bb_blkno !=
152 cpu_to_be64(bp ? bp->b_bn : XFS_BUF_DADDR_NULL))
153 return __this_address;
ee1a47ab
CH
154 }
155
52c732ee
DW
156 if (be32_to_cpu(block->bb_magic) != xfs_btree_magic(crc, btnum))
157 return __this_address;
158 if (be16_to_cpu(block->bb_level) != level)
159 return __this_address;
160 if (be16_to_cpu(block->bb_numrecs) >
161 cur->bc_ops->get_maxrecs(cur, level))
162 return __this_address;
163 if (block->bb_u.s.bb_leftsib != cpu_to_be32(NULLAGBLOCK) &&
164 !xfs_btree_check_sptr(cur, be32_to_cpu(block->bb_u.s.bb_leftsib),
165 level + 1))
166 return __this_address;
167 if (block->bb_u.s.bb_rightsib != cpu_to_be32(NULLAGBLOCK) &&
168 !xfs_btree_check_sptr(cur, be32_to_cpu(block->bb_u.s.bb_rightsib),
169 level + 1))
170 return __this_address;
171
172 return NULL;
173}
174
175/* Check a short btree block header. */
176STATIC int
177xfs_btree_check_sblock(
178 struct xfs_btree_cur *cur,
179 struct xfs_btree_block *block,
180 int level,
181 struct xfs_buf *bp)
182{
183 struct xfs_mount *mp = cur->bc_mp;
184 xfs_failaddr_t fa;
185
186 fa = __xfs_btree_check_sblock(cur, block, level, bp);
187 if (unlikely(XFS_TEST_ERROR(fa != NULL, mp,
9e24cfd0 188 XFS_ERRTAG_BTREE_CHECK_SBLOCK))) {
1da177e4 189 if (bp)
0b1b213f 190 trace_xfs_btree_corrupt(bp, _RET_IP_);
ee1a47ab 191 XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_LOW, mp);
2451337d 192 return -EFSCORRUPTED;
1da177e4
LT
193 }
194 return 0;
195}
196
197/*
a23f6ef8
CH
198 * Debug routine: check that block header is ok.
199 */
200int
201xfs_btree_check_block(
202 struct xfs_btree_cur *cur, /* btree cursor */
203 struct xfs_btree_block *block, /* generic btree block pointer */
204 int level, /* level of the btree block */
205 struct xfs_buf *bp) /* buffer containing block, if any */
206{
7cc95a82
CH
207 if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
208 return xfs_btree_check_lblock(cur, block, level, bp);
209 else
210 return xfs_btree_check_sblock(cur, block, level, bp);
a23f6ef8
CH
211}
212
f135761a
DW
213/* Check that this long pointer is valid and points within the fs. */
214bool
a23f6ef8 215xfs_btree_check_lptr(
f135761a
DW
216 struct xfs_btree_cur *cur,
217 xfs_fsblock_t fsbno,
218 int level)
a23f6ef8 219{
f135761a
DW
220 if (level <= 0)
221 return false;
222 return xfs_verify_fsbno(cur->bc_mp, fsbno);
a23f6ef8
CH
223}
224
f135761a
DW
225/* Check that this short pointer is valid and points within the AG. */
226bool
1da177e4 227xfs_btree_check_sptr(
f135761a
DW
228 struct xfs_btree_cur *cur,
229 xfs_agblock_t agbno,
230 int level)
1da177e4 231{
f135761a
DW
232 if (level <= 0)
233 return false;
234 return xfs_verify_agbno(cur->bc_mp, cur->bc_private.a.agno, agbno);
1da177e4
LT
235}
236
f135761a 237#ifdef DEBUG
a23f6ef8 238/*
f135761a
DW
239 * Check that a given (indexed) btree pointer at a certain level of a
240 * btree is valid and doesn't point past where it should.
a23f6ef8 241 */
4483eb56 242static int
a23f6ef8 243xfs_btree_check_ptr(
f135761a
DW
244 struct xfs_btree_cur *cur,
245 union xfs_btree_ptr *ptr,
246 int index,
247 int level)
a23f6ef8
CH
248{
249 if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
f135761a
DW
250 XFS_WANT_CORRUPTED_RETURN(cur->bc_mp,
251 xfs_btree_check_lptr(cur,
252 be64_to_cpu((&ptr->l)[index]), level));
a23f6ef8 253 } else {
f135761a
DW
254 XFS_WANT_CORRUPTED_RETURN(cur->bc_mp,
255 xfs_btree_check_sptr(cur,
256 be32_to_cpu((&ptr->s)[index]), level));
a23f6ef8 257 }
f135761a
DW
258
259 return 0;
a23f6ef8 260}
24ee0e49 261#endif
a23f6ef8 262
ee1a47ab
CH
263/*
264 * Calculate CRC on the whole btree block and stuff it into the
265 * long-form btree header.
266 *
267 * Prior to calculting the CRC, pull the LSN out of the buffer log item and put
fef4ded8 268 * it into the buffer so recovery knows what the last modification was that made
ee1a47ab
CH
269 * it to disk.
270 */
271void
272xfs_btree_lblock_calc_crc(
273 struct xfs_buf *bp)
274{
275 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp);
276 struct xfs_buf_log_item *bip = bp->b_fspriv;
277
278 if (!xfs_sb_version_hascrc(&bp->b_target->bt_mount->m_sb))
279 return;
280 if (bip)
281 block->bb_u.l.bb_lsn = cpu_to_be64(bip->bli_item.li_lsn);
f1dbcd7e 282 xfs_buf_update_cksum(bp, XFS_BTREE_LBLOCK_CRC_OFF);
ee1a47ab
CH
283}
284
285bool
286xfs_btree_lblock_verify_crc(
287 struct xfs_buf *bp)
288{
a45086e2
BF
289 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp);
290 struct xfs_mount *mp = bp->b_target->bt_mount;
291
292 if (xfs_sb_version_hascrc(&mp->m_sb)) {
293 if (!xfs_log_check_lsn(mp, be64_to_cpu(block->bb_u.l.bb_lsn)))
294 return false;
51582170 295 return xfs_buf_verify_cksum(bp, XFS_BTREE_LBLOCK_CRC_OFF);
a45086e2 296 }
51582170 297
ee1a47ab
CH
298 return true;
299}
300
301/*
302 * Calculate CRC on the whole btree block and stuff it into the
303 * short-form btree header.
304 *
305 * Prior to calculting the CRC, pull the LSN out of the buffer log item and put
fef4ded8 306 * it into the buffer so recovery knows what the last modification was that made
ee1a47ab
CH
307 * it to disk.
308 */
309void
310xfs_btree_sblock_calc_crc(
311 struct xfs_buf *bp)
312{
313 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp);
314 struct xfs_buf_log_item *bip = bp->b_fspriv;
315
316 if (!xfs_sb_version_hascrc(&bp->b_target->bt_mount->m_sb))
317 return;
318 if (bip)
319 block->bb_u.s.bb_lsn = cpu_to_be64(bip->bli_item.li_lsn);
f1dbcd7e 320 xfs_buf_update_cksum(bp, XFS_BTREE_SBLOCK_CRC_OFF);
ee1a47ab
CH
321}
322
323bool
324xfs_btree_sblock_verify_crc(
325 struct xfs_buf *bp)
326{
a45086e2
BF
327 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp);
328 struct xfs_mount *mp = bp->b_target->bt_mount;
329
330 if (xfs_sb_version_hascrc(&mp->m_sb)) {
331 if (!xfs_log_check_lsn(mp, be64_to_cpu(block->bb_u.s.bb_lsn)))
332 return false;
51582170 333 return xfs_buf_verify_cksum(bp, XFS_BTREE_SBLOCK_CRC_OFF);
a45086e2 334 }
51582170 335
ee1a47ab
CH
336 return true;
337}
338
c46ee8ad
CH
339static int
340xfs_btree_free_block(
341 struct xfs_btree_cur *cur,
342 struct xfs_buf *bp)
343{
344 int error;
345
346 error = cur->bc_ops->free_block(cur, bp);
edfd9dd5
CH
347 if (!error) {
348 xfs_trans_binval(cur->bc_tp, bp);
c46ee8ad 349 XFS_BTREE_STATS_INC(cur, free);
edfd9dd5 350 }
c46ee8ad
CH
351 return error;
352}
353
1da177e4
LT
354/*
355 * Delete the btree cursor.
356 */
357void
358xfs_btree_del_cursor(
359 xfs_btree_cur_t *cur, /* btree cursor */
360 int error) /* del because of error */
361{
362 int i; /* btree level */
363
364 /*
365 * Clear the buffer pointers, and release the buffers.
366 * If we're doing this in the face of an error, we
367 * need to make sure to inspect all of the entries
368 * in the bc_bufs array for buffers to be unlocked.
369 * This is because some of the btree code works from
370 * level n down to 0, and if we get an error along
371 * the way we won't have initialized all the entries
372 * down to 0.
373 */
374 for (i = 0; i < cur->bc_nlevels; i++) {
375 if (cur->bc_bufs[i])
c0e59e1a 376 xfs_trans_brelse(cur->bc_tp, cur->bc_bufs[i]);
1da177e4
LT
377 else if (!error)
378 break;
379 }
380 /*
381 * Can't free a bmap cursor without having dealt with the
382 * allocated indirect blocks' accounting.
383 */
384 ASSERT(cur->bc_btnum != XFS_BTNUM_BMAP ||
385 cur->bc_private.b.allocated == 0);
386 /*
387 * Free the cursor.
388 */
389 kmem_zone_free(xfs_btree_cur_zone, cur);
390}
391
392/*
393 * Duplicate the btree cursor.
394 * Allocate a new one, copy the record, re-get the buffers.
395 */
396int /* error */
397xfs_btree_dup_cursor(
398 xfs_btree_cur_t *cur, /* input cursor */
399 xfs_btree_cur_t **ncur) /* output cursor */
400{
401 xfs_buf_t *bp; /* btree block's buffer pointer */
402 int error; /* error return value */
403 int i; /* level number of btree block */
404 xfs_mount_t *mp; /* mount structure for filesystem */
405 xfs_btree_cur_t *new; /* new cursor value */
406 xfs_trans_t *tp; /* transaction pointer, can be NULL */
407
408 tp = cur->bc_tp;
409 mp = cur->bc_mp;
561f7d17 410
1da177e4
LT
411 /*
412 * Allocate a new cursor like the old one.
413 */
561f7d17
CH
414 new = cur->bc_ops->dup_cursor(cur);
415
1da177e4
LT
416 /*
417 * Copy the record currently in the cursor.
418 */
419 new->bc_rec = cur->bc_rec;
561f7d17 420
1da177e4
LT
421 /*
422 * For each level current, re-get the buffer and copy the ptr value.
423 */
424 for (i = 0; i < new->bc_nlevels; i++) {
425 new->bc_ptrs[i] = cur->bc_ptrs[i];
426 new->bc_ra[i] = cur->bc_ra[i];
c3f8fc73
DC
427 bp = cur->bc_bufs[i];
428 if (bp) {
429 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp,
430 XFS_BUF_ADDR(bp), mp->m_bsize,
3d3e6f64 431 0, &bp,
1813dd64 432 cur->bc_ops->buf_ops);
c3f8fc73 433 if (error) {
1da177e4
LT
434 xfs_btree_del_cursor(new, error);
435 *ncur = NULL;
436 return error;
437 }
ee1a47ab
CH
438 }
439 new->bc_bufs[i] = bp;
1da177e4 440 }
1da177e4
LT
441 *ncur = new;
442 return 0;
443}
444
65f1eaea
CH
445/*
446 * XFS btree block layout and addressing:
447 *
448 * There are two types of blocks in the btree: leaf and non-leaf blocks.
449 *
450 * The leaf record start with a header then followed by records containing
451 * the values. A non-leaf block also starts with the same header, and
452 * then first contains lookup keys followed by an equal number of pointers
453 * to the btree blocks at the previous level.
454 *
455 * +--------+-------+-------+-------+-------+-------+-------+
456 * Leaf: | header | rec 1 | rec 2 | rec 3 | rec 4 | rec 5 | rec N |
457 * +--------+-------+-------+-------+-------+-------+-------+
458 *
459 * +--------+-------+-------+-------+-------+-------+-------+
460 * Non-Leaf: | header | key 1 | key 2 | key N | ptr 1 | ptr 2 | ptr N |
461 * +--------+-------+-------+-------+-------+-------+-------+
462 *
463 * The header is called struct xfs_btree_block for reasons better left unknown
464 * and comes in different versions for short (32bit) and long (64bit) block
465 * pointers. The record and key structures are defined by the btree instances
466 * and opaque to the btree core. The block pointers are simple disk endian
467 * integers, available in a short (32bit) and long (64bit) variant.
468 *
469 * The helpers below calculate the offset of a given record, key or pointer
470 * into a btree block (xfs_btree_*_offset) or return a pointer to the given
471 * record, key or pointer (xfs_btree_*_addr). Note that all addressing
472 * inside the btree block is done using indices starting at one, not zero!
2c813ad6
DW
473 *
474 * If XFS_BTREE_OVERLAPPING is set, then this btree supports keys containing
475 * overlapping intervals. In such a tree, records are still sorted lowest to
476 * highest and indexed by the smallest key value that refers to the record.
477 * However, nodes are different: each pointer has two associated keys -- one
478 * indexing the lowest key available in the block(s) below (the same behavior
479 * as the key in a regular btree) and another indexing the highest key
480 * available in the block(s) below. Because records are /not/ sorted by the
481 * highest key, all leaf block updates require us to compute the highest key
482 * that matches any record in the leaf and to recursively update the high keys
483 * in the nodes going further up in the tree, if necessary. Nodes look like
484 * this:
485 *
486 * +--------+-----+-----+-----+-----+-----+-------+-------+-----+
487 * Non-Leaf: | header | lo1 | hi1 | lo2 | hi2 | ... | ptr 1 | ptr 2 | ... |
488 * +--------+-----+-----+-----+-----+-----+-------+-------+-----+
489 *
490 * To perform an interval query on an overlapped tree, perform the usual
491 * depth-first search and use the low and high keys to decide if we can skip
492 * that particular node. If a leaf node is reached, return the records that
493 * intersect the interval. Note that an interval query may return numerous
494 * entries. For a non-overlapped tree, simply search for the record associated
495 * with the lowest key and iterate forward until a non-matching record is
496 * found. Section 14.3 ("Interval Trees") of _Introduction to Algorithms_ by
497 * Cormen, Leiserson, Rivest, and Stein (2nd or 3rd ed. only) discuss this in
498 * more detail.
499 *
500 * Why do we care about overlapping intervals? Let's say you have a bunch of
501 * reverse mapping records on a reflink filesystem:
502 *
503 * 1: +- file A startblock B offset C length D -----------+
504 * 2: +- file E startblock F offset G length H --------------+
505 * 3: +- file I startblock F offset J length K --+
506 * 4: +- file L... --+
507 *
508 * Now say we want to map block (B+D) into file A at offset (C+D). Ideally,
509 * we'd simply increment the length of record 1. But how do we find the record
510 * that ends at (B+D-1) (i.e. record 1)? A LE lookup of (B+D-1) would return
511 * record 3 because the keys are ordered first by startblock. An interval
512 * query would return records 1 and 2 because they both overlap (B+D-1), and
513 * from that we can pick out record 1 as the appropriate left neighbor.
514 *
515 * In the non-overlapped case you can do a LE lookup and decrement the cursor
516 * because a record's interval must end before the next record.
65f1eaea
CH
517 */
518
519/*
520 * Return size of the btree block header for this btree instance.
521 */
522static inline size_t xfs_btree_block_len(struct xfs_btree_cur *cur)
523{
ee1a47ab
CH
524 if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
525 if (cur->bc_flags & XFS_BTREE_CRC_BLOCKS)
526 return XFS_BTREE_LBLOCK_CRC_LEN;
527 return XFS_BTREE_LBLOCK_LEN;
528 }
529 if (cur->bc_flags & XFS_BTREE_CRC_BLOCKS)
530 return XFS_BTREE_SBLOCK_CRC_LEN;
531 return XFS_BTREE_SBLOCK_LEN;
65f1eaea
CH
532}
533
534/*
535 * Return size of btree block pointers for this btree instance.
536 */
537static inline size_t xfs_btree_ptr_len(struct xfs_btree_cur *cur)
538{
539 return (cur->bc_flags & XFS_BTREE_LONG_PTRS) ?
540 sizeof(__be64) : sizeof(__be32);
541}
542
543/*
544 * Calculate offset of the n-th record in a btree block.
545 */
546STATIC size_t
547xfs_btree_rec_offset(
548 struct xfs_btree_cur *cur,
549 int n)
550{
551 return xfs_btree_block_len(cur) +
552 (n - 1) * cur->bc_ops->rec_len;
553}
554
555/*
556 * Calculate offset of the n-th key in a btree block.
557 */
558STATIC size_t
559xfs_btree_key_offset(
560 struct xfs_btree_cur *cur,
561 int n)
562{
563 return xfs_btree_block_len(cur) +
564 (n - 1) * cur->bc_ops->key_len;
565}
566
2c813ad6
DW
567/*
568 * Calculate offset of the n-th high key in a btree block.
569 */
570STATIC size_t
571xfs_btree_high_key_offset(
572 struct xfs_btree_cur *cur,
573 int n)
574{
575 return xfs_btree_block_len(cur) +
576 (n - 1) * cur->bc_ops->key_len + (cur->bc_ops->key_len / 2);
577}
578
65f1eaea
CH
579/*
580 * Calculate offset of the n-th block pointer in a btree block.
581 */
582STATIC size_t
583xfs_btree_ptr_offset(
584 struct xfs_btree_cur *cur,
585 int n,
586 int level)
587{
588 return xfs_btree_block_len(cur) +
589 cur->bc_ops->get_maxrecs(cur, level) * cur->bc_ops->key_len +
590 (n - 1) * xfs_btree_ptr_len(cur);
591}
592
593/*
594 * Return a pointer to the n-th record in the btree block.
595 */
26788097 596union xfs_btree_rec *
65f1eaea
CH
597xfs_btree_rec_addr(
598 struct xfs_btree_cur *cur,
599 int n,
600 struct xfs_btree_block *block)
601{
602 return (union xfs_btree_rec *)
603 ((char *)block + xfs_btree_rec_offset(cur, n));
604}
605
606/*
607 * Return a pointer to the n-th key in the btree block.
608 */
26788097 609union xfs_btree_key *
65f1eaea
CH
610xfs_btree_key_addr(
611 struct xfs_btree_cur *cur,
612 int n,
613 struct xfs_btree_block *block)
614{
615 return (union xfs_btree_key *)
616 ((char *)block + xfs_btree_key_offset(cur, n));
617}
618
2c813ad6
DW
619/*
620 * Return a pointer to the n-th high key in the btree block.
621 */
26788097 622union xfs_btree_key *
2c813ad6
DW
623xfs_btree_high_key_addr(
624 struct xfs_btree_cur *cur,
625 int n,
626 struct xfs_btree_block *block)
627{
628 return (union xfs_btree_key *)
629 ((char *)block + xfs_btree_high_key_offset(cur, n));
630}
631
65f1eaea
CH
632/*
633 * Return a pointer to the n-th block pointer in the btree block.
634 */
26788097 635union xfs_btree_ptr *
65f1eaea
CH
636xfs_btree_ptr_addr(
637 struct xfs_btree_cur *cur,
638 int n,
639 struct xfs_btree_block *block)
640{
641 int level = xfs_btree_get_level(block);
642
643 ASSERT(block->bb_level != 0);
644
645 return (union xfs_btree_ptr *)
646 ((char *)block + xfs_btree_ptr_offset(cur, n, level));
647}
648
8186e517 649/*
1cb93863 650 * Get the root block which is stored in the inode.
8186e517
CH
651 *
652 * For now this btree implementation assumes the btree root is always
653 * stored in the if_broot field of an inode fork.
654 */
655STATIC struct xfs_btree_block *
656xfs_btree_get_iroot(
fbfb24bf 657 struct xfs_btree_cur *cur)
8186e517 658{
fbfb24bf 659 struct xfs_ifork *ifp;
8186e517 660
fbfb24bf
KN
661 ifp = XFS_IFORK_PTR(cur->bc_private.b.ip, cur->bc_private.b.whichfork);
662 return (struct xfs_btree_block *)ifp->if_broot;
8186e517
CH
663}
664
1da177e4
LT
665/*
666 * Retrieve the block pointer from the cursor at the given level.
8186e517 667 * This may be an inode btree root or from a buffer.
1da177e4 668 */
26788097 669struct xfs_btree_block * /* generic btree block pointer */
1da177e4 670xfs_btree_get_block(
8186e517 671 struct xfs_btree_cur *cur, /* btree cursor */
1da177e4 672 int level, /* level in btree */
8186e517 673 struct xfs_buf **bpp) /* buffer containing the block */
1da177e4 674{
8186e517
CH
675 if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
676 (level == cur->bc_nlevels - 1)) {
677 *bpp = NULL;
678 return xfs_btree_get_iroot(cur);
1da177e4 679 }
8186e517
CH
680
681 *bpp = cur->bc_bufs[level];
682 return XFS_BUF_TO_BLOCK(*bpp);
1da177e4
LT
683}
684
685/*
686 * Get a buffer for the block, return it with no data read.
687 * Long-form addressing.
688 */
689xfs_buf_t * /* buffer for fsbno */
690xfs_btree_get_bufl(
691 xfs_mount_t *mp, /* file system mount point */
692 xfs_trans_t *tp, /* transaction pointer */
693 xfs_fsblock_t fsbno, /* file system block number */
694 uint lock) /* lock flags for get_buf */
695{
1da177e4
LT
696 xfs_daddr_t d; /* real disk block address */
697
698 ASSERT(fsbno != NULLFSBLOCK);
699 d = XFS_FSB_TO_DADDR(mp, fsbno);
36de9556 700 return xfs_trans_get_buf(tp, mp->m_ddev_targp, d, mp->m_bsize, lock);
1da177e4
LT
701}
702
703/*
704 * Get a buffer for the block, return it with no data read.
705 * Short-form addressing.
706 */
707xfs_buf_t * /* buffer for agno/agbno */
708xfs_btree_get_bufs(
709 xfs_mount_t *mp, /* file system mount point */
710 xfs_trans_t *tp, /* transaction pointer */
711 xfs_agnumber_t agno, /* allocation group number */
712 xfs_agblock_t agbno, /* allocation group block number */
713 uint lock) /* lock flags for get_buf */
714{
1da177e4
LT
715 xfs_daddr_t d; /* real disk block address */
716
717 ASSERT(agno != NULLAGNUMBER);
718 ASSERT(agbno != NULLAGBLOCK);
719 d = XFS_AGB_TO_DADDR(mp, agno, agbno);
36de9556 720 return xfs_trans_get_buf(tp, mp->m_ddev_targp, d, mp->m_bsize, lock);
1da177e4
LT
721}
722
1da177e4
LT
723/*
724 * Check for the cursor referring to the last block at the given level.
725 */
726int /* 1=is last block, 0=not last block */
727xfs_btree_islastblock(
728 xfs_btree_cur_t *cur, /* btree cursor */
729 int level) /* level to check */
730{
7cc95a82 731 struct xfs_btree_block *block; /* generic btree block pointer */
1da177e4
LT
732 xfs_buf_t *bp; /* buffer containing block */
733
734 block = xfs_btree_get_block(cur, level, &bp);
735 xfs_btree_check_block(cur, block, level, bp);
e99ab90d 736 if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
d5cf09ba 737 return block->bb_u.l.bb_rightsib == cpu_to_be64(NULLFSBLOCK);
1da177e4 738 else
69ef921b 739 return block->bb_u.s.bb_rightsib == cpu_to_be32(NULLAGBLOCK);
1da177e4
LT
740}
741
cdcf4333
CH
742/*
743 * Change the cursor to point to the first record at the given level.
744 * Other levels are unaffected.
745 */
3cc7524c 746STATIC int /* success=1, failure=0 */
cdcf4333
CH
747xfs_btree_firstrec(
748 xfs_btree_cur_t *cur, /* btree cursor */
749 int level) /* level to change */
750{
7cc95a82 751 struct xfs_btree_block *block; /* generic btree block pointer */
cdcf4333
CH
752 xfs_buf_t *bp; /* buffer containing block */
753
754 /*
755 * Get the block pointer for this level.
756 */
757 block = xfs_btree_get_block(cur, level, &bp);
1e86eabe
DW
758 if (xfs_btree_check_block(cur, block, level, bp))
759 return 0;
cdcf4333
CH
760 /*
761 * It's empty, there is no such record.
762 */
f2277f06 763 if (!block->bb_numrecs)
cdcf4333
CH
764 return 0;
765 /*
766 * Set the ptr value to 1, that's the first record/key.
767 */
768 cur->bc_ptrs[level] = 1;
769 return 1;
770}
771
1da177e4
LT
772/*
773 * Change the cursor to point to the last record in the current block
774 * at the given level. Other levels are unaffected.
775 */
3cc7524c 776STATIC int /* success=1, failure=0 */
1da177e4
LT
777xfs_btree_lastrec(
778 xfs_btree_cur_t *cur, /* btree cursor */
779 int level) /* level to change */
780{
7cc95a82 781 struct xfs_btree_block *block; /* generic btree block pointer */
1da177e4
LT
782 xfs_buf_t *bp; /* buffer containing block */
783
784 /*
785 * Get the block pointer for this level.
786 */
787 block = xfs_btree_get_block(cur, level, &bp);
1e86eabe
DW
788 if (xfs_btree_check_block(cur, block, level, bp))
789 return 0;
1da177e4
LT
790 /*
791 * It's empty, there is no such record.
792 */
f2277f06 793 if (!block->bb_numrecs)
1da177e4
LT
794 return 0;
795 /*
796 * Set the ptr value to numrecs, that's the last record/key.
797 */
f2277f06 798 cur->bc_ptrs[level] = be16_to_cpu(block->bb_numrecs);
1da177e4
LT
799 return 1;
800}
801
802/*
803 * Compute first and last byte offsets for the fields given.
804 * Interprets the offsets table, which contains struct field offsets.
805 */
806void
807xfs_btree_offsets(
c8ce540d 808 int64_t fields, /* bitmask of fields */
1da177e4
LT
809 const short *offsets, /* table of field offsets */
810 int nbits, /* number of bits to inspect */
811 int *first, /* output: first byte offset */
812 int *last) /* output: last byte offset */
813{
814 int i; /* current bit number */
c8ce540d 815 int64_t imask; /* mask for current bit number */
1da177e4
LT
816
817 ASSERT(fields != 0);
818 /*
819 * Find the lowest bit, so the first byte offset.
820 */
821 for (i = 0, imask = 1LL; ; i++, imask <<= 1) {
822 if (imask & fields) {
823 *first = offsets[i];
824 break;
825 }
826 }
827 /*
828 * Find the highest bit, so the last byte offset.
829 */
830 for (i = nbits - 1, imask = 1LL << i; ; i--, imask >>= 1) {
831 if (imask & fields) {
832 *last = offsets[i + 1] - 1;
833 break;
834 }
835 }
836}
837
838/*
839 * Get a buffer for the block, return it read in.
840 * Long-form addressing.
841 */
3d3e6f64 842int
1da177e4 843xfs_btree_read_bufl(
3d3e6f64
DC
844 struct xfs_mount *mp, /* file system mount point */
845 struct xfs_trans *tp, /* transaction pointer */
846 xfs_fsblock_t fsbno, /* file system block number */
847 uint lock, /* lock flags for read_buf */
848 struct xfs_buf **bpp, /* buffer for fsbno */
849 int refval, /* ref count value for buffer */
1813dd64 850 const struct xfs_buf_ops *ops)
1da177e4 851{
3d3e6f64 852 struct xfs_buf *bp; /* return value */
1da177e4 853 xfs_daddr_t d; /* real disk block address */
3d3e6f64 854 int error;
1da177e4 855
d5a91bae
DW
856 if (!XFS_FSB_SANITY_CHECK(mp, fsbno))
857 return -EFSCORRUPTED;
1da177e4 858 d = XFS_FSB_TO_DADDR(mp, fsbno);
c3f8fc73 859 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, d,
1813dd64 860 mp->m_bsize, lock, &bp, ops);
c3f8fc73 861 if (error)
1da177e4 862 return error;
821eb21d 863 if (bp)
38f23232 864 xfs_buf_set_ref(bp, refval);
1da177e4
LT
865 *bpp = bp;
866 return 0;
867}
868
1da177e4
LT
869/*
870 * Read-ahead the block, don't wait for it, don't return a buffer.
871 * Long-form addressing.
872 */
873/* ARGSUSED */
874void
875xfs_btree_reada_bufl(
3d3e6f64
DC
876 struct xfs_mount *mp, /* file system mount point */
877 xfs_fsblock_t fsbno, /* file system block number */
878 xfs_extlen_t count, /* count of filesystem blocks */
1813dd64 879 const struct xfs_buf_ops *ops)
1da177e4
LT
880{
881 xfs_daddr_t d;
882
883 ASSERT(fsbno != NULLFSBLOCK);
884 d = XFS_FSB_TO_DADDR(mp, fsbno);
1813dd64 885 xfs_buf_readahead(mp->m_ddev_targp, d, mp->m_bsize * count, ops);
1da177e4
LT
886}
887
888/*
889 * Read-ahead the block, don't wait for it, don't return a buffer.
890 * Short-form addressing.
891 */
892/* ARGSUSED */
893void
894xfs_btree_reada_bufs(
3d3e6f64
DC
895 struct xfs_mount *mp, /* file system mount point */
896 xfs_agnumber_t agno, /* allocation group number */
897 xfs_agblock_t agbno, /* allocation group block number */
898 xfs_extlen_t count, /* count of filesystem blocks */
1813dd64 899 const struct xfs_buf_ops *ops)
1da177e4
LT
900{
901 xfs_daddr_t d;
902
903 ASSERT(agno != NULLAGNUMBER);
904 ASSERT(agbno != NULLAGBLOCK);
905 d = XFS_AGB_TO_DADDR(mp, agno, agbno);
1813dd64 906 xfs_buf_readahead(mp->m_ddev_targp, d, mp->m_bsize * count, ops);
1da177e4
LT
907}
908
b524bfee
CH
909STATIC int
910xfs_btree_readahead_lblock(
911 struct xfs_btree_cur *cur,
912 int lr,
913 struct xfs_btree_block *block)
914{
915 int rval = 0;
d5cf09ba
CH
916 xfs_fsblock_t left = be64_to_cpu(block->bb_u.l.bb_leftsib);
917 xfs_fsblock_t right = be64_to_cpu(block->bb_u.l.bb_rightsib);
b524bfee 918
d5cf09ba 919 if ((lr & XFS_BTCUR_LEFTRA) && left != NULLFSBLOCK) {
3d3e6f64 920 xfs_btree_reada_bufl(cur->bc_mp, left, 1,
1813dd64 921 cur->bc_ops->buf_ops);
b524bfee
CH
922 rval++;
923 }
924
d5cf09ba 925 if ((lr & XFS_BTCUR_RIGHTRA) && right != NULLFSBLOCK) {
3d3e6f64 926 xfs_btree_reada_bufl(cur->bc_mp, right, 1,
1813dd64 927 cur->bc_ops->buf_ops);
b524bfee
CH
928 rval++;
929 }
930
931 return rval;
932}
933
934STATIC int
935xfs_btree_readahead_sblock(
936 struct xfs_btree_cur *cur,
937 int lr,
938 struct xfs_btree_block *block)
939{
940 int rval = 0;
941 xfs_agblock_t left = be32_to_cpu(block->bb_u.s.bb_leftsib);
942 xfs_agblock_t right = be32_to_cpu(block->bb_u.s.bb_rightsib);
943
944
945 if ((lr & XFS_BTCUR_LEFTRA) && left != NULLAGBLOCK) {
946 xfs_btree_reada_bufs(cur->bc_mp, cur->bc_private.a.agno,
1813dd64 947 left, 1, cur->bc_ops->buf_ops);
b524bfee
CH
948 rval++;
949 }
950
951 if ((lr & XFS_BTCUR_RIGHTRA) && right != NULLAGBLOCK) {
952 xfs_btree_reada_bufs(cur->bc_mp, cur->bc_private.a.agno,
1813dd64 953 right, 1, cur->bc_ops->buf_ops);
b524bfee
CH
954 rval++;
955 }
956
957 return rval;
958}
959
1da177e4
LT
960/*
961 * Read-ahead btree blocks, at the given level.
962 * Bits in lr are set from XFS_BTCUR_{LEFT,RIGHT}RA.
963 */
3cc7524c 964STATIC int
b524bfee
CH
965xfs_btree_readahead(
966 struct xfs_btree_cur *cur, /* btree cursor */
1da177e4
LT
967 int lev, /* level in btree */
968 int lr) /* left/right bits */
969{
b524bfee
CH
970 struct xfs_btree_block *block;
971
972 /*
973 * No readahead needed if we are at the root level and the
974 * btree root is stored in the inode.
975 */
976 if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
977 (lev == cur->bc_nlevels - 1))
978 return 0;
979
980 if ((cur->bc_ra[lev] | lr) == cur->bc_ra[lev])
981 return 0;
1da177e4 982
1da177e4 983 cur->bc_ra[lev] |= lr;
b524bfee
CH
984 block = XFS_BUF_TO_BLOCK(cur->bc_bufs[lev]);
985
986 if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
987 return xfs_btree_readahead_lblock(cur, lr, block);
988 return xfs_btree_readahead_sblock(cur, lr, block);
1da177e4
LT
989}
990
21b5c978
DC
991STATIC xfs_daddr_t
992xfs_btree_ptr_to_daddr(
993 struct xfs_btree_cur *cur,
994 union xfs_btree_ptr *ptr)
995{
996 if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
d5cf09ba 997 ASSERT(ptr->l != cpu_to_be64(NULLFSBLOCK));
21b5c978
DC
998
999 return XFS_FSB_TO_DADDR(cur->bc_mp, be64_to_cpu(ptr->l));
1000 } else {
1001 ASSERT(cur->bc_private.a.agno != NULLAGNUMBER);
1002 ASSERT(ptr->s != cpu_to_be32(NULLAGBLOCK));
1003
1004 return XFS_AGB_TO_DADDR(cur->bc_mp, cur->bc_private.a.agno,
1005 be32_to_cpu(ptr->s));
1006 }
1007}
1008
1009/*
1010 * Readahead @count btree blocks at the given @ptr location.
1011 *
1012 * We don't need to care about long or short form btrees here as we have a
1013 * method of converting the ptr directly to a daddr available to us.
1014 */
1015STATIC void
1016xfs_btree_readahead_ptr(
1017 struct xfs_btree_cur *cur,
1018 union xfs_btree_ptr *ptr,
1019 xfs_extlen_t count)
1020{
1021 xfs_buf_readahead(cur->bc_mp->m_ddev_targp,
1022 xfs_btree_ptr_to_daddr(cur, ptr),
1023 cur->bc_mp->m_bsize * count, cur->bc_ops->buf_ops);
1024}
1025
1da177e4
LT
1026/*
1027 * Set the buffer for level "lev" in the cursor to bp, releasing
1028 * any previous buffer.
1029 */
c0e59e1a 1030STATIC void
1da177e4
LT
1031xfs_btree_setbuf(
1032 xfs_btree_cur_t *cur, /* btree cursor */
1033 int lev, /* level in btree */
1034 xfs_buf_t *bp) /* new buffer to set */
1035{
7cc95a82 1036 struct xfs_btree_block *b; /* btree block */
1da177e4 1037
c0e59e1a
CH
1038 if (cur->bc_bufs[lev])
1039 xfs_trans_brelse(cur->bc_tp, cur->bc_bufs[lev]);
1da177e4
LT
1040 cur->bc_bufs[lev] = bp;
1041 cur->bc_ra[lev] = 0;
c0e59e1a 1042
1da177e4 1043 b = XFS_BUF_TO_BLOCK(bp);
e99ab90d 1044 if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
d5cf09ba 1045 if (b->bb_u.l.bb_leftsib == cpu_to_be64(NULLFSBLOCK))
1da177e4 1046 cur->bc_ra[lev] |= XFS_BTCUR_LEFTRA;
d5cf09ba 1047 if (b->bb_u.l.bb_rightsib == cpu_to_be64(NULLFSBLOCK))
1da177e4
LT
1048 cur->bc_ra[lev] |= XFS_BTCUR_RIGHTRA;
1049 } else {
69ef921b 1050 if (b->bb_u.s.bb_leftsib == cpu_to_be32(NULLAGBLOCK))
1da177e4 1051 cur->bc_ra[lev] |= XFS_BTCUR_LEFTRA;
69ef921b 1052 if (b->bb_u.s.bb_rightsib == cpu_to_be32(NULLAGBLOCK))
1da177e4
LT
1053 cur->bc_ra[lev] |= XFS_BTCUR_RIGHTRA;
1054 }
1055}
637aa50f 1056
cc3e0948 1057bool
637aa50f
CH
1058xfs_btree_ptr_is_null(
1059 struct xfs_btree_cur *cur,
1060 union xfs_btree_ptr *ptr)
1061{
1062 if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
d5cf09ba 1063 return ptr->l == cpu_to_be64(NULLFSBLOCK);
637aa50f 1064 else
69ef921b 1065 return ptr->s == cpu_to_be32(NULLAGBLOCK);
637aa50f
CH
1066}
1067
4b22a571
CH
1068STATIC void
1069xfs_btree_set_ptr_null(
1070 struct xfs_btree_cur *cur,
1071 union xfs_btree_ptr *ptr)
1072{
1073 if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
d5cf09ba 1074 ptr->l = cpu_to_be64(NULLFSBLOCK);
4b22a571
CH
1075 else
1076 ptr->s = cpu_to_be32(NULLAGBLOCK);
1077}
1078
637aa50f
CH
1079/*
1080 * Get/set/init sibling pointers
1081 */
cc3e0948 1082void
637aa50f
CH
1083xfs_btree_get_sibling(
1084 struct xfs_btree_cur *cur,
1085 struct xfs_btree_block *block,
1086 union xfs_btree_ptr *ptr,
1087 int lr)
1088{
1089 ASSERT(lr == XFS_BB_LEFTSIB || lr == XFS_BB_RIGHTSIB);
1090
1091 if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
1092 if (lr == XFS_BB_RIGHTSIB)
1093 ptr->l = block->bb_u.l.bb_rightsib;
1094 else
1095 ptr->l = block->bb_u.l.bb_leftsib;
1096 } else {
1097 if (lr == XFS_BB_RIGHTSIB)
1098 ptr->s = block->bb_u.s.bb_rightsib;
1099 else
1100 ptr->s = block->bb_u.s.bb_leftsib;
1101 }
1102}
1103
f5eb8e7c
CH
1104STATIC void
1105xfs_btree_set_sibling(
1106 struct xfs_btree_cur *cur,
1107 struct xfs_btree_block *block,
1108 union xfs_btree_ptr *ptr,
1109 int lr)
1110{
1111 ASSERT(lr == XFS_BB_LEFTSIB || lr == XFS_BB_RIGHTSIB);
1112
1113 if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
1114 if (lr == XFS_BB_RIGHTSIB)
1115 block->bb_u.l.bb_rightsib = ptr->l;
1116 else
1117 block->bb_u.l.bb_leftsib = ptr->l;
1118 } else {
1119 if (lr == XFS_BB_RIGHTSIB)
1120 block->bb_u.s.bb_rightsib = ptr->s;
1121 else
1122 block->bb_u.s.bb_leftsib = ptr->s;
1123 }
1124}
1125
ee1a47ab
CH
1126void
1127xfs_btree_init_block_int(
1128 struct xfs_mount *mp,
1129 struct xfs_btree_block *buf,
1130 xfs_daddr_t blkno,
b6f41e44 1131 xfs_btnum_t btnum,
ee1a47ab
CH
1132 __u16 level,
1133 __u16 numrecs,
1134 __u64 owner,
1135 unsigned int flags)
1136{
f88ae46b 1137 int crc = xfs_sb_version_hascrc(&mp->m_sb);
b6f41e44 1138 __u32 magic = xfs_btree_magic(crc, btnum);
f88ae46b 1139
ee1a47ab
CH
1140 buf->bb_magic = cpu_to_be32(magic);
1141 buf->bb_level = cpu_to_be16(level);
1142 buf->bb_numrecs = cpu_to_be16(numrecs);
1143
1144 if (flags & XFS_BTREE_LONG_PTRS) {
d5cf09ba
CH
1145 buf->bb_u.l.bb_leftsib = cpu_to_be64(NULLFSBLOCK);
1146 buf->bb_u.l.bb_rightsib = cpu_to_be64(NULLFSBLOCK);
f88ae46b 1147 if (crc) {
ee1a47ab
CH
1148 buf->bb_u.l.bb_blkno = cpu_to_be64(blkno);
1149 buf->bb_u.l.bb_owner = cpu_to_be64(owner);
ce748eaa 1150 uuid_copy(&buf->bb_u.l.bb_uuid, &mp->m_sb.sb_meta_uuid);
ee1a47ab 1151 buf->bb_u.l.bb_pad = 0;
b58fa554 1152 buf->bb_u.l.bb_lsn = 0;
ee1a47ab
CH
1153 }
1154 } else {
1155 /* owner is a 32 bit value on short blocks */
1156 __u32 __owner = (__u32)owner;
1157
1158 buf->bb_u.s.bb_leftsib = cpu_to_be32(NULLAGBLOCK);
1159 buf->bb_u.s.bb_rightsib = cpu_to_be32(NULLAGBLOCK);
f88ae46b 1160 if (crc) {
ee1a47ab
CH
1161 buf->bb_u.s.bb_blkno = cpu_to_be64(blkno);
1162 buf->bb_u.s.bb_owner = cpu_to_be32(__owner);
ce748eaa 1163 uuid_copy(&buf->bb_u.s.bb_uuid, &mp->m_sb.sb_meta_uuid);
b58fa554 1164 buf->bb_u.s.bb_lsn = 0;
ee1a47ab
CH
1165 }
1166 }
1167}
1168
b64f3a39 1169void
f5eb8e7c 1170xfs_btree_init_block(
b64f3a39
DC
1171 struct xfs_mount *mp,
1172 struct xfs_buf *bp,
b6f41e44 1173 xfs_btnum_t btnum,
b64f3a39
DC
1174 __u16 level,
1175 __u16 numrecs,
ee1a47ab 1176 __u64 owner,
b64f3a39 1177 unsigned int flags)
f5eb8e7c 1178{
ee1a47ab 1179 xfs_btree_init_block_int(mp, XFS_BUF_TO_BLOCK(bp), bp->b_bn,
b6f41e44 1180 btnum, level, numrecs, owner, flags);
f5eb8e7c
CH
1181}
1182
b64f3a39
DC
1183STATIC void
1184xfs_btree_init_block_cur(
1185 struct xfs_btree_cur *cur,
ee1a47ab 1186 struct xfs_buf *bp,
b64f3a39 1187 int level,
ee1a47ab 1188 int numrecs)
b64f3a39 1189{
af7d20fd 1190 __u64 owner;
ee1a47ab
CH
1191
1192 /*
1193 * we can pull the owner from the cursor right now as the different
1194 * owners align directly with the pointer size of the btree. This may
1195 * change in future, but is safe for current users of the generic btree
1196 * code.
1197 */
1198 if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
1199 owner = cur->bc_private.b.ip->i_ino;
1200 else
1201 owner = cur->bc_private.a.agno;
1202
1203 xfs_btree_init_block_int(cur->bc_mp, XFS_BUF_TO_BLOCK(bp), bp->b_bn,
b6f41e44 1204 cur->bc_btnum, level, numrecs,
ee1a47ab 1205 owner, cur->bc_flags);
b64f3a39
DC
1206}
1207
278d0ca1
CH
1208/*
1209 * Return true if ptr is the last record in the btree and
ee1a47ab 1210 * we need to track updates to this record. The decision
278d0ca1
CH
1211 * will be further refined in the update_lastrec method.
1212 */
1213STATIC int
1214xfs_btree_is_lastrec(
1215 struct xfs_btree_cur *cur,
1216 struct xfs_btree_block *block,
1217 int level)
1218{
1219 union xfs_btree_ptr ptr;
1220
1221 if (level > 0)
1222 return 0;
1223 if (!(cur->bc_flags & XFS_BTREE_LASTREC_UPDATE))
1224 return 0;
1225
1226 xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_RIGHTSIB);
1227 if (!xfs_btree_ptr_is_null(cur, &ptr))
1228 return 0;
1229 return 1;
1230}
1231
f5eb8e7c
CH
1232STATIC void
1233xfs_btree_buf_to_ptr(
1234 struct xfs_btree_cur *cur,
1235 struct xfs_buf *bp,
1236 union xfs_btree_ptr *ptr)
1237{
1238 if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
1239 ptr->l = cpu_to_be64(XFS_DADDR_TO_FSB(cur->bc_mp,
1240 XFS_BUF_ADDR(bp)));
1241 else {
9d87c319 1242 ptr->s = cpu_to_be32(xfs_daddr_to_agbno(cur->bc_mp,
f5eb8e7c
CH
1243 XFS_BUF_ADDR(bp)));
1244 }
1245}
1246
637aa50f
CH
1247STATIC void
1248xfs_btree_set_refs(
1249 struct xfs_btree_cur *cur,
1250 struct xfs_buf *bp)
1251{
1252 switch (cur->bc_btnum) {
1253 case XFS_BTNUM_BNO:
1254 case XFS_BTNUM_CNT:
38f23232 1255 xfs_buf_set_ref(bp, XFS_ALLOC_BTREE_REF);
637aa50f
CH
1256 break;
1257 case XFS_BTNUM_INO:
aafc3c24 1258 case XFS_BTNUM_FINO:
38f23232 1259 xfs_buf_set_ref(bp, XFS_INO_BTREE_REF);
637aa50f
CH
1260 break;
1261 case XFS_BTNUM_BMAP:
38f23232 1262 xfs_buf_set_ref(bp, XFS_BMAP_BTREE_REF);
637aa50f 1263 break;
035e00ac
DW
1264 case XFS_BTNUM_RMAP:
1265 xfs_buf_set_ref(bp, XFS_RMAP_BTREE_REF);
1266 break;
1946b91c
DW
1267 case XFS_BTNUM_REFC:
1268 xfs_buf_set_ref(bp, XFS_REFC_BTREE_REF);
1269 break;
637aa50f
CH
1270 default:
1271 ASSERT(0);
1272 }
1273}
1274
f5eb8e7c
CH
1275STATIC int
1276xfs_btree_get_buf_block(
1277 struct xfs_btree_cur *cur,
1278 union xfs_btree_ptr *ptr,
1279 int flags,
1280 struct xfs_btree_block **block,
1281 struct xfs_buf **bpp)
1282{
1283 struct xfs_mount *mp = cur->bc_mp;
1284 xfs_daddr_t d;
1285
1286 /* need to sort out how callers deal with failures first */
0cadda1c 1287 ASSERT(!(flags & XBF_TRYLOCK));
f5eb8e7c
CH
1288
1289 d = xfs_btree_ptr_to_daddr(cur, ptr);
1290 *bpp = xfs_trans_get_buf(cur->bc_tp, mp->m_ddev_targp, d,
1291 mp->m_bsize, flags);
1292
2a30f36d 1293 if (!*bpp)
2451337d 1294 return -ENOMEM;
f5eb8e7c 1295
1813dd64 1296 (*bpp)->b_ops = cur->bc_ops->buf_ops;
f5eb8e7c
CH
1297 *block = XFS_BUF_TO_BLOCK(*bpp);
1298 return 0;
1299}
1300
637aa50f
CH
1301/*
1302 * Read in the buffer at the given ptr and return the buffer and
1303 * the block pointer within the buffer.
1304 */
1305STATIC int
1306xfs_btree_read_buf_block(
1307 struct xfs_btree_cur *cur,
1308 union xfs_btree_ptr *ptr,
637aa50f
CH
1309 int flags,
1310 struct xfs_btree_block **block,
1311 struct xfs_buf **bpp)
1312{
1313 struct xfs_mount *mp = cur->bc_mp;
1314 xfs_daddr_t d;
1315 int error;
1316
1317 /* need to sort out how callers deal with failures first */
0cadda1c 1318 ASSERT(!(flags & XBF_TRYLOCK));
637aa50f
CH
1319
1320 d = xfs_btree_ptr_to_daddr(cur, ptr);
1321 error = xfs_trans_read_buf(mp, cur->bc_tp, mp->m_ddev_targp, d,
3d3e6f64 1322 mp->m_bsize, flags, bpp,
1813dd64 1323 cur->bc_ops->buf_ops);
637aa50f
CH
1324 if (error)
1325 return error;
1326
637aa50f
CH
1327 xfs_btree_set_refs(cur, *bpp);
1328 *block = XFS_BUF_TO_BLOCK(*bpp);
3d3e6f64 1329 return 0;
637aa50f
CH
1330}
1331
38bb7423
CH
1332/*
1333 * Copy keys from one btree block to another.
1334 */
1335STATIC void
1336xfs_btree_copy_keys(
1337 struct xfs_btree_cur *cur,
1338 union xfs_btree_key *dst_key,
1339 union xfs_btree_key *src_key,
1340 int numkeys)
1341{
1342 ASSERT(numkeys >= 0);
1343 memcpy(dst_key, src_key, numkeys * cur->bc_ops->key_len);
1344}
1345
278d0ca1
CH
1346/*
1347 * Copy records from one btree block to another.
1348 */
1349STATIC void
1350xfs_btree_copy_recs(
1351 struct xfs_btree_cur *cur,
1352 union xfs_btree_rec *dst_rec,
1353 union xfs_btree_rec *src_rec,
1354 int numrecs)
1355{
1356 ASSERT(numrecs >= 0);
1357 memcpy(dst_rec, src_rec, numrecs * cur->bc_ops->rec_len);
1358}
1359
9eaead51
CH
1360/*
1361 * Copy block pointers from one btree block to another.
1362 */
1363STATIC void
1364xfs_btree_copy_ptrs(
1365 struct xfs_btree_cur *cur,
1366 union xfs_btree_ptr *dst_ptr,
1367 union xfs_btree_ptr *src_ptr,
1368 int numptrs)
1369{
1370 ASSERT(numptrs >= 0);
1371 memcpy(dst_ptr, src_ptr, numptrs * xfs_btree_ptr_len(cur));
1372}
1373
1374/*
1375 * Shift keys one index left/right inside a single btree block.
1376 */
1377STATIC void
1378xfs_btree_shift_keys(
1379 struct xfs_btree_cur *cur,
1380 union xfs_btree_key *key,
1381 int dir,
1382 int numkeys)
1383{
1384 char *dst_key;
1385
1386 ASSERT(numkeys >= 0);
1387 ASSERT(dir == 1 || dir == -1);
1388
1389 dst_key = (char *)key + (dir * cur->bc_ops->key_len);
1390 memmove(dst_key, key, numkeys * cur->bc_ops->key_len);
1391}
1392
1393/*
1394 * Shift records one index left/right inside a single btree block.
1395 */
1396STATIC void
1397xfs_btree_shift_recs(
1398 struct xfs_btree_cur *cur,
1399 union xfs_btree_rec *rec,
1400 int dir,
1401 int numrecs)
1402{
1403 char *dst_rec;
1404
1405 ASSERT(numrecs >= 0);
1406 ASSERT(dir == 1 || dir == -1);
1407
1408 dst_rec = (char *)rec + (dir * cur->bc_ops->rec_len);
1409 memmove(dst_rec, rec, numrecs * cur->bc_ops->rec_len);
1410}
1411
1412/*
1413 * Shift block pointers one index left/right inside a single btree block.
1414 */
1415STATIC void
1416xfs_btree_shift_ptrs(
1417 struct xfs_btree_cur *cur,
1418 union xfs_btree_ptr *ptr,
1419 int dir,
1420 int numptrs)
1421{
1422 char *dst_ptr;
1423
1424 ASSERT(numptrs >= 0);
1425 ASSERT(dir == 1 || dir == -1);
1426
1427 dst_ptr = (char *)ptr + (dir * xfs_btree_ptr_len(cur));
1428 memmove(dst_ptr, ptr, numptrs * xfs_btree_ptr_len(cur));
1429}
1430
38bb7423
CH
1431/*
1432 * Log key values from the btree block.
1433 */
1434STATIC void
1435xfs_btree_log_keys(
1436 struct xfs_btree_cur *cur,
1437 struct xfs_buf *bp,
1438 int first,
1439 int last)
1440{
1441 XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
1442 XFS_BTREE_TRACE_ARGBII(cur, bp, first, last);
1443
1444 if (bp) {
61fe135c 1445 xfs_trans_buf_set_type(cur->bc_tp, bp, XFS_BLFT_BTREE_BUF);
38bb7423
CH
1446 xfs_trans_log_buf(cur->bc_tp, bp,
1447 xfs_btree_key_offset(cur, first),
1448 xfs_btree_key_offset(cur, last + 1) - 1);
1449 } else {
1450 xfs_trans_log_inode(cur->bc_tp, cur->bc_private.b.ip,
1451 xfs_ilog_fbroot(cur->bc_private.b.whichfork));
1452 }
1453
1454 XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
1455}
1456
278d0ca1
CH
1457/*
1458 * Log record values from the btree block.
1459 */
fd6bcc5b 1460void
278d0ca1
CH
1461xfs_btree_log_recs(
1462 struct xfs_btree_cur *cur,
1463 struct xfs_buf *bp,
1464 int first,
1465 int last)
1466{
1467 XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
1468 XFS_BTREE_TRACE_ARGBII(cur, bp, first, last);
1469
61fe135c 1470 xfs_trans_buf_set_type(cur->bc_tp, bp, XFS_BLFT_BTREE_BUF);
278d0ca1
CH
1471 xfs_trans_log_buf(cur->bc_tp, bp,
1472 xfs_btree_rec_offset(cur, first),
1473 xfs_btree_rec_offset(cur, last + 1) - 1);
1474
1475 XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
1476}
1477
9eaead51
CH
1478/*
1479 * Log block pointer fields from a btree block (nonleaf).
1480 */
1481STATIC void
1482xfs_btree_log_ptrs(
1483 struct xfs_btree_cur *cur, /* btree cursor */
1484 struct xfs_buf *bp, /* buffer containing btree block */
1485 int first, /* index of first pointer to log */
1486 int last) /* index of last pointer to log */
1487{
1488 XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
1489 XFS_BTREE_TRACE_ARGBII(cur, bp, first, last);
1490
1491 if (bp) {
1492 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp);
1493 int level = xfs_btree_get_level(block);
1494
61fe135c 1495 xfs_trans_buf_set_type(cur->bc_tp, bp, XFS_BLFT_BTREE_BUF);
9eaead51
CH
1496 xfs_trans_log_buf(cur->bc_tp, bp,
1497 xfs_btree_ptr_offset(cur, first, level),
1498 xfs_btree_ptr_offset(cur, last + 1, level) - 1);
1499 } else {
1500 xfs_trans_log_inode(cur->bc_tp, cur->bc_private.b.ip,
1501 xfs_ilog_fbroot(cur->bc_private.b.whichfork));
1502 }
1503
1504 XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
1505}
1506
1507/*
1508 * Log fields from a btree block header.
1509 */
fd6bcc5b 1510void
9eaead51
CH
1511xfs_btree_log_block(
1512 struct xfs_btree_cur *cur, /* btree cursor */
1513 struct xfs_buf *bp, /* buffer containing btree block */
1514 int fields) /* mask of fields: XFS_BB_... */
1515{
1516 int first; /* first byte offset logged */
1517 int last; /* last byte offset logged */
1518 static const short soffsets[] = { /* table of offsets (short) */
7cc95a82
CH
1519 offsetof(struct xfs_btree_block, bb_magic),
1520 offsetof(struct xfs_btree_block, bb_level),
1521 offsetof(struct xfs_btree_block, bb_numrecs),
1522 offsetof(struct xfs_btree_block, bb_u.s.bb_leftsib),
1523 offsetof(struct xfs_btree_block, bb_u.s.bb_rightsib),
ee1a47ab
CH
1524 offsetof(struct xfs_btree_block, bb_u.s.bb_blkno),
1525 offsetof(struct xfs_btree_block, bb_u.s.bb_lsn),
1526 offsetof(struct xfs_btree_block, bb_u.s.bb_uuid),
1527 offsetof(struct xfs_btree_block, bb_u.s.bb_owner),
1528 offsetof(struct xfs_btree_block, bb_u.s.bb_crc),
1529 XFS_BTREE_SBLOCK_CRC_LEN
9eaead51
CH
1530 };
1531 static const short loffsets[] = { /* table of offsets (long) */
7cc95a82
CH
1532 offsetof(struct xfs_btree_block, bb_magic),
1533 offsetof(struct xfs_btree_block, bb_level),
1534 offsetof(struct xfs_btree_block, bb_numrecs),
1535 offsetof(struct xfs_btree_block, bb_u.l.bb_leftsib),
1536 offsetof(struct xfs_btree_block, bb_u.l.bb_rightsib),
ee1a47ab
CH
1537 offsetof(struct xfs_btree_block, bb_u.l.bb_blkno),
1538 offsetof(struct xfs_btree_block, bb_u.l.bb_lsn),
1539 offsetof(struct xfs_btree_block, bb_u.l.bb_uuid),
1540 offsetof(struct xfs_btree_block, bb_u.l.bb_owner),
1541 offsetof(struct xfs_btree_block, bb_u.l.bb_crc),
1542 offsetof(struct xfs_btree_block, bb_u.l.bb_pad),
1543 XFS_BTREE_LBLOCK_CRC_LEN
9eaead51
CH
1544 };
1545
1546 XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
1547 XFS_BTREE_TRACE_ARGBI(cur, bp, fields);
1548
1549 if (bp) {
ee1a47ab
CH
1550 int nbits;
1551
1552 if (cur->bc_flags & XFS_BTREE_CRC_BLOCKS) {
1553 /*
1554 * We don't log the CRC when updating a btree
1555 * block but instead recreate it during log
1556 * recovery. As the log buffers have checksums
1557 * of their own this is safe and avoids logging a crc
1558 * update in a lot of places.
1559 */
1560 if (fields == XFS_BB_ALL_BITS)
1561 fields = XFS_BB_ALL_BITS_CRC;
1562 nbits = XFS_BB_NUM_BITS_CRC;
1563 } else {
1564 nbits = XFS_BB_NUM_BITS;
1565 }
9eaead51
CH
1566 xfs_btree_offsets(fields,
1567 (cur->bc_flags & XFS_BTREE_LONG_PTRS) ?
1568 loffsets : soffsets,
ee1a47ab 1569 nbits, &first, &last);
61fe135c 1570 xfs_trans_buf_set_type(cur->bc_tp, bp, XFS_BLFT_BTREE_BUF);
9eaead51
CH
1571 xfs_trans_log_buf(cur->bc_tp, bp, first, last);
1572 } else {
1573 xfs_trans_log_inode(cur->bc_tp, cur->bc_private.b.ip,
1574 xfs_ilog_fbroot(cur->bc_private.b.whichfork));
1575 }
1576
1577 XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
1578}
1579
637aa50f
CH
1580/*
1581 * Increment cursor by one record at the level.
1582 * For nonzero levels the leaf-ward information is untouched.
1583 */
1584int /* error */
1585xfs_btree_increment(
1586 struct xfs_btree_cur *cur,
1587 int level,
1588 int *stat) /* success/failure */
1589{
1590 struct xfs_btree_block *block;
1591 union xfs_btree_ptr ptr;
1592 struct xfs_buf *bp;
1593 int error; /* error return value */
1594 int lev;
1595
1596 XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
1597 XFS_BTREE_TRACE_ARGI(cur, level);
1598
1599 ASSERT(level < cur->bc_nlevels);
1600
1601 /* Read-ahead to the right at this level. */
1602 xfs_btree_readahead(cur, level, XFS_BTCUR_RIGHTRA);
1603
1604 /* Get a pointer to the btree block. */
1605 block = xfs_btree_get_block(cur, level, &bp);
1606
1607#ifdef DEBUG
1608 error = xfs_btree_check_block(cur, block, level, bp);
1609 if (error)
1610 goto error0;
1611#endif
1612
1613 /* We're done if we remain in the block after the increment. */
1614 if (++cur->bc_ptrs[level] <= xfs_btree_get_numrecs(block))
1615 goto out1;
1616
1617 /* Fail if we just went off the right edge of the tree. */
1618 xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_RIGHTSIB);
1619 if (xfs_btree_ptr_is_null(cur, &ptr))
1620 goto out0;
1621
1622 XFS_BTREE_STATS_INC(cur, increment);
1623
1624 /*
1625 * March up the tree incrementing pointers.
1626 * Stop when we don't go off the right edge of a block.
1627 */
1628 for (lev = level + 1; lev < cur->bc_nlevels; lev++) {
1629 block = xfs_btree_get_block(cur, lev, &bp);
1630
1631#ifdef DEBUG
1632 error = xfs_btree_check_block(cur, block, lev, bp);
1633 if (error)
1634 goto error0;
1635#endif
1636
1637 if (++cur->bc_ptrs[lev] <= xfs_btree_get_numrecs(block))
1638 break;
1639
1640 /* Read-ahead the right block for the next loop. */
1641 xfs_btree_readahead(cur, lev, XFS_BTCUR_RIGHTRA);
1642 }
1643
1644 /*
1645 * If we went off the root then we are either seriously
1646 * confused or have the tree root in an inode.
1647 */
1648 if (lev == cur->bc_nlevels) {
1649 if (cur->bc_flags & XFS_BTREE_ROOT_IN_INODE)
1650 goto out0;
1651 ASSERT(0);
2451337d 1652 error = -EFSCORRUPTED;
637aa50f
CH
1653 goto error0;
1654 }
1655 ASSERT(lev < cur->bc_nlevels);
1656
1657 /*
1658 * Now walk back down the tree, fixing up the cursor's buffer
1659 * pointers and key numbers.
1660 */
1661 for (block = xfs_btree_get_block(cur, lev, &bp); lev > level; ) {
1662 union xfs_btree_ptr *ptrp;
1663
1664 ptrp = xfs_btree_ptr_addr(cur, cur->bc_ptrs[lev], block);
0d7409b1
ES
1665 --lev;
1666 error = xfs_btree_read_buf_block(cur, ptrp, 0, &block, &bp);
637aa50f
CH
1667 if (error)
1668 goto error0;
1669
1670 xfs_btree_setbuf(cur, lev, bp);
1671 cur->bc_ptrs[lev] = 1;
1672 }
1673out1:
1674 XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
1675 *stat = 1;
1676 return 0;
1677
1678out0:
1679 XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
1680 *stat = 0;
1681 return 0;
1682
1683error0:
1684 XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR);
1685 return error;
1686}
8df4da4a
CH
1687
1688/*
1689 * Decrement cursor by one record at the level.
1690 * For nonzero levels the leaf-ward information is untouched.
1691 */
1692int /* error */
1693xfs_btree_decrement(
1694 struct xfs_btree_cur *cur,
1695 int level,
1696 int *stat) /* success/failure */
1697{
1698 struct xfs_btree_block *block;
1699 xfs_buf_t *bp;
1700 int error; /* error return value */
1701 int lev;
1702 union xfs_btree_ptr ptr;
1703
1704 XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
1705 XFS_BTREE_TRACE_ARGI(cur, level);
1706
1707 ASSERT(level < cur->bc_nlevels);
1708
1709 /* Read-ahead to the left at this level. */
1710 xfs_btree_readahead(cur, level, XFS_BTCUR_LEFTRA);
1711
1712 /* We're done if we remain in the block after the decrement. */
1713 if (--cur->bc_ptrs[level] > 0)
1714 goto out1;
1715
1716 /* Get a pointer to the btree block. */
1717 block = xfs_btree_get_block(cur, level, &bp);
1718
1719#ifdef DEBUG
1720 error = xfs_btree_check_block(cur, block, level, bp);
1721 if (error)
1722 goto error0;
1723#endif
1724
1725 /* Fail if we just went off the left edge of the tree. */
1726 xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_LEFTSIB);
1727 if (xfs_btree_ptr_is_null(cur, &ptr))
1728 goto out0;
1729
1730 XFS_BTREE_STATS_INC(cur, decrement);
1731
1732 /*
1733 * March up the tree decrementing pointers.
1734 * Stop when we don't go off the left edge of a block.
1735 */
1736 for (lev = level + 1; lev < cur->bc_nlevels; lev++) {
1737 if (--cur->bc_ptrs[lev] > 0)
1738 break;
1739 /* Read-ahead the left block for the next loop. */
1740 xfs_btree_readahead(cur, lev, XFS_BTCUR_LEFTRA);
1741 }
1742
1743 /*
1744 * If we went off the root then we are seriously confused.
1745 * or the root of the tree is in an inode.
1746 */
1747 if (lev == cur->bc_nlevels) {
1748 if (cur->bc_flags & XFS_BTREE_ROOT_IN_INODE)
1749 goto out0;
1750 ASSERT(0);
2451337d 1751 error = -EFSCORRUPTED;
8df4da4a
CH
1752 goto error0;
1753 }
1754 ASSERT(lev < cur->bc_nlevels);
1755
1756 /*
1757 * Now walk back down the tree, fixing up the cursor's buffer
1758 * pointers and key numbers.
1759 */
1760 for (block = xfs_btree_get_block(cur, lev, &bp); lev > level; ) {
1761 union xfs_btree_ptr *ptrp;
1762
1763 ptrp = xfs_btree_ptr_addr(cur, cur->bc_ptrs[lev], block);
0d7409b1
ES
1764 --lev;
1765 error = xfs_btree_read_buf_block(cur, ptrp, 0, &block, &bp);
8df4da4a
CH
1766 if (error)
1767 goto error0;
1768 xfs_btree_setbuf(cur, lev, bp);
1769 cur->bc_ptrs[lev] = xfs_btree_get_numrecs(block);
1770 }
1771out1:
1772 XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
1773 *stat = 1;
1774 return 0;
1775
1776out0:
1777 XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
1778 *stat = 0;
1779 return 0;
1780
1781error0:
1782 XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR);
1783 return error;
1784}
1785
26788097 1786int
fe033cc8
CH
1787xfs_btree_lookup_get_block(
1788 struct xfs_btree_cur *cur, /* btree cursor */
1789 int level, /* level in the btree */
1790 union xfs_btree_ptr *pp, /* ptr to btree block */
1791 struct xfs_btree_block **blkp) /* return btree block */
1792{
1793 struct xfs_buf *bp; /* buffer pointer for btree block */
1794 int error = 0;
1795
1796 /* special case the root block if in an inode */
1797 if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
1798 (level == cur->bc_nlevels - 1)) {
1799 *blkp = xfs_btree_get_iroot(cur);
1800 return 0;
1801 }
1802
1803 /*
1804 * If the old buffer at this level for the disk address we are
1805 * looking for re-use it.
1806 *
1807 * Otherwise throw it away and get a new one.
1808 */
1809 bp = cur->bc_bufs[level];
1810 if (bp && XFS_BUF_ADDR(bp) == xfs_btree_ptr_to_daddr(cur, pp)) {
1811 *blkp = XFS_BUF_TO_BLOCK(bp);
1812 return 0;
1813 }
1814
0d7409b1 1815 error = xfs_btree_read_buf_block(cur, pp, 0, blkp, &bp);
fe033cc8
CH
1816 if (error)
1817 return error;
1818
bb3be7e7
DW
1819 /* Check the inode owner since the verifiers don't. */
1820 if (xfs_sb_version_hascrc(&cur->bc_mp->m_sb) &&
99c794c6 1821 !(cur->bc_private.b.flags & XFS_BTCUR_BPRV_INVALID_OWNER) &&
bb3be7e7
DW
1822 (cur->bc_flags & XFS_BTREE_LONG_PTRS) &&
1823 be64_to_cpu((*blkp)->bb_u.l.bb_owner) !=
1824 cur->bc_private.b.ip->i_ino)
1825 goto out_bad;
1826
1827 /* Did we get the level we were looking for? */
1828 if (be16_to_cpu((*blkp)->bb_level) != level)
1829 goto out_bad;
1830
1831 /* Check that internal nodes have at least one record. */
1832 if (level != 0 && be16_to_cpu((*blkp)->bb_numrecs) == 0)
1833 goto out_bad;
1834
fe033cc8
CH
1835 xfs_btree_setbuf(cur, level, bp);
1836 return 0;
bb3be7e7
DW
1837
1838out_bad:
1839 *blkp = NULL;
1840 xfs_trans_brelse(cur->bc_tp, bp);
1841 return -EFSCORRUPTED;
fe033cc8
CH
1842}
1843
1844/*
1845 * Get current search key. For level 0 we don't actually have a key
1846 * structure so we make one up from the record. For all other levels
1847 * we just return the right key.
1848 */
1849STATIC union xfs_btree_key *
1850xfs_lookup_get_search_key(
1851 struct xfs_btree_cur *cur,
1852 int level,
1853 int keyno,
1854 struct xfs_btree_block *block,
1855 union xfs_btree_key *kp)
1856{
1857 if (level == 0) {
1858 cur->bc_ops->init_key_from_rec(kp,
1859 xfs_btree_rec_addr(cur, keyno, block));
1860 return kp;
1861 }
1862
1863 return xfs_btree_key_addr(cur, keyno, block);
1864}
1865
1866/*
1867 * Lookup the record. The cursor is made to point to it, based on dir.
49d3da14 1868 * stat is set to 0 if can't find any such record, 1 for success.
fe033cc8
CH
1869 */
1870int /* error */
1871xfs_btree_lookup(
1872 struct xfs_btree_cur *cur, /* btree cursor */
1873 xfs_lookup_t dir, /* <=, ==, or >= */
1874 int *stat) /* success/failure */
1875{
1876 struct xfs_btree_block *block; /* current btree block */
c8ce540d 1877 int64_t diff; /* difference for the current key */
fe033cc8
CH
1878 int error; /* error return value */
1879 int keyno; /* current key number */
1880 int level; /* level in the btree */
1881 union xfs_btree_ptr *pp; /* ptr to btree block */
1882 union xfs_btree_ptr ptr; /* ptr to btree block */
1883
1884 XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
1885 XFS_BTREE_TRACE_ARGI(cur, dir);
1886
1887 XFS_BTREE_STATS_INC(cur, lookup);
1888
ed150e1a
DW
1889 /* No such thing as a zero-level tree. */
1890 if (cur->bc_nlevels == 0)
1891 return -EFSCORRUPTED;
1892
fe033cc8
CH
1893 block = NULL;
1894 keyno = 0;
1895
1896 /* initialise start pointer from cursor */
1897 cur->bc_ops->init_ptr_from_cur(cur, &ptr);
1898 pp = &ptr;
1899
1900 /*
1901 * Iterate over each level in the btree, starting at the root.
1902 * For each level above the leaves, find the key we need, based
1903 * on the lookup record, then follow the corresponding block
1904 * pointer down to the next level.
1905 */
1906 for (level = cur->bc_nlevels - 1, diff = 1; level >= 0; level--) {
1907 /* Get the block we need to do the lookup on. */
1908 error = xfs_btree_lookup_get_block(cur, level, pp, &block);
1909 if (error)
1910 goto error0;
1911
1912 if (diff == 0) {
1913 /*
1914 * If we already had a key match at a higher level, we
1915 * know we need to use the first entry in this block.
1916 */
1917 keyno = 1;
1918 } else {
1919 /* Otherwise search this block. Do a binary search. */
1920
1921 int high; /* high entry number */
1922 int low; /* low entry number */
1923
1924 /* Set low and high entry numbers, 1-based. */
1925 low = 1;
1926 high = xfs_btree_get_numrecs(block);
1927 if (!high) {
1928 /* Block is empty, must be an empty leaf. */
1929 ASSERT(level == 0 && cur->bc_nlevels == 1);
1930
1931 cur->bc_ptrs[0] = dir != XFS_LOOKUP_LE;
1932 XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
1933 *stat = 0;
1934 return 0;
1935 }
1936
1937 /* Binary search the block. */
1938 while (low <= high) {
1939 union xfs_btree_key key;
1940 union xfs_btree_key *kp;
1941
1942 XFS_BTREE_STATS_INC(cur, compare);
1943
1944 /* keyno is average of low and high. */
1945 keyno = (low + high) >> 1;
1946
1947 /* Get current search key */
1948 kp = xfs_lookup_get_search_key(cur, level,
1949 keyno, block, &key);
1950
1951 /*
1952 * Compute difference to get next direction:
1953 * - less than, move right
1954 * - greater than, move left
1955 * - equal, we're done
1956 */
1957 diff = cur->bc_ops->key_diff(cur, kp);
1958 if (diff < 0)
1959 low = keyno + 1;
1960 else if (diff > 0)
1961 high = keyno - 1;
1962 else
1963 break;
1964 }
1965 }
1966
1967 /*
1968 * If there are more levels, set up for the next level
1969 * by getting the block number and filling in the cursor.
1970 */
1971 if (level > 0) {
1972 /*
1973 * If we moved left, need the previous key number,
1974 * unless there isn't one.
1975 */
1976 if (diff > 0 && --keyno < 1)
1977 keyno = 1;
1978 pp = xfs_btree_ptr_addr(cur, keyno, block);
1979
1980#ifdef DEBUG
1981 error = xfs_btree_check_ptr(cur, pp, 0, level);
1982 if (error)
1983 goto error0;
1984#endif
1985 cur->bc_ptrs[level] = keyno;
1986 }
1987 }
1988
1989 /* Done with the search. See if we need to adjust the results. */
1990 if (dir != XFS_LOOKUP_LE && diff < 0) {
1991 keyno++;
1992 /*
1993 * If ge search and we went off the end of the block, but it's
1994 * not the last block, we're in the wrong block.
1995 */
1996 xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_RIGHTSIB);
1997 if (dir == XFS_LOOKUP_GE &&
1998 keyno > xfs_btree_get_numrecs(block) &&
1999 !xfs_btree_ptr_is_null(cur, &ptr)) {
2000 int i;
2001
2002 cur->bc_ptrs[0] = keyno;
2003 error = xfs_btree_increment(cur, 0, &i);
2004 if (error)
2005 goto error0;
5fb5aeee 2006 XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1);
fe033cc8
CH
2007 XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
2008 *stat = 1;
2009 return 0;
2010 }
2011 } else if (dir == XFS_LOOKUP_LE && diff > 0)
2012 keyno--;
2013 cur->bc_ptrs[0] = keyno;
2014
2015 /* Return if we succeeded or not. */
2016 if (keyno == 0 || keyno > xfs_btree_get_numrecs(block))
2017 *stat = 0;
2018 else if (dir != XFS_LOOKUP_EQ || diff == 0)
2019 *stat = 1;
2020 else
2021 *stat = 0;
2022 XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
2023 return 0;
2024
2025error0:
2026 XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR);
2027 return error;
2028}
38bb7423 2029
2c813ad6 2030/* Find the high key storage area from a regular key. */
2fdbec5c 2031union xfs_btree_key *
2c813ad6
DW
2032xfs_btree_high_key_from_key(
2033 struct xfs_btree_cur *cur,
2034 union xfs_btree_key *key)
2035{
2036 ASSERT(cur->bc_flags & XFS_BTREE_OVERLAPPING);
2037 return (union xfs_btree_key *)((char *)key +
2038 (cur->bc_ops->key_len / 2));
2039}
2040
973b8319
DW
2041/* Determine the low (and high if overlapped) keys of a leaf block */
2042STATIC void
2043xfs_btree_get_leaf_keys(
2c813ad6
DW
2044 struct xfs_btree_cur *cur,
2045 struct xfs_btree_block *block,
2046 union xfs_btree_key *key)
2047{
2c813ad6
DW
2048 union xfs_btree_key max_hkey;
2049 union xfs_btree_key hkey;
973b8319 2050 union xfs_btree_rec *rec;
2c813ad6 2051 union xfs_btree_key *high;
973b8319 2052 int n;
2c813ad6 2053
2c813ad6
DW
2054 rec = xfs_btree_rec_addr(cur, 1, block);
2055 cur->bc_ops->init_key_from_rec(key, rec);
2056
973b8319
DW
2057 if (cur->bc_flags & XFS_BTREE_OVERLAPPING) {
2058
2059 cur->bc_ops->init_high_key_from_rec(&max_hkey, rec);
2060 for (n = 2; n <= xfs_btree_get_numrecs(block); n++) {
2061 rec = xfs_btree_rec_addr(cur, n, block);
2062 cur->bc_ops->init_high_key_from_rec(&hkey, rec);
2063 if (cur->bc_ops->diff_two_keys(cur, &hkey, &max_hkey)
2064 > 0)
2065 max_hkey = hkey;
2066 }
2c813ad6 2067
973b8319
DW
2068 high = xfs_btree_high_key_from_key(cur, key);
2069 memcpy(high, &max_hkey, cur->bc_ops->key_len / 2);
2070 }
2c813ad6
DW
2071}
2072
973b8319
DW
2073/* Determine the low (and high if overlapped) keys of a node block */
2074STATIC void
2075xfs_btree_get_node_keys(
2c813ad6
DW
2076 struct xfs_btree_cur *cur,
2077 struct xfs_btree_block *block,
2078 union xfs_btree_key *key)
2079{
2c813ad6
DW
2080 union xfs_btree_key *hkey;
2081 union xfs_btree_key *max_hkey;
2082 union xfs_btree_key *high;
973b8319 2083 int n;
2c813ad6 2084
973b8319
DW
2085 if (cur->bc_flags & XFS_BTREE_OVERLAPPING) {
2086 memcpy(key, xfs_btree_key_addr(cur, 1, block),
2087 cur->bc_ops->key_len / 2);
2088
2089 max_hkey = xfs_btree_high_key_addr(cur, 1, block);
2090 for (n = 2; n <= xfs_btree_get_numrecs(block); n++) {
2091 hkey = xfs_btree_high_key_addr(cur, n, block);
2092 if (cur->bc_ops->diff_two_keys(cur, hkey, max_hkey) > 0)
2093 max_hkey = hkey;
2094 }
2c813ad6 2095
973b8319
DW
2096 high = xfs_btree_high_key_from_key(cur, key);
2097 memcpy(high, max_hkey, cur->bc_ops->key_len / 2);
2098 } else {
2099 memcpy(key, xfs_btree_key_addr(cur, 1, block),
2100 cur->bc_ops->key_len);
2c813ad6 2101 }
2c813ad6
DW
2102}
2103
70b22659 2104/* Derive the keys for any btree block. */
2fdbec5c 2105void
70b22659
DW
2106xfs_btree_get_keys(
2107 struct xfs_btree_cur *cur,
2108 struct xfs_btree_block *block,
2109 union xfs_btree_key *key)
2110{
2111 if (be16_to_cpu(block->bb_level) == 0)
973b8319 2112 xfs_btree_get_leaf_keys(cur, block, key);
70b22659 2113 else
973b8319 2114 xfs_btree_get_node_keys(cur, block, key);
70b22659
DW
2115}
2116
38bb7423 2117/*
70b22659
DW
2118 * Decide if we need to update the parent keys of a btree block. For
2119 * a standard btree this is only necessary if we're updating the first
2c813ad6
DW
2120 * record/key. For an overlapping btree, we must always update the
2121 * keys because the highest key can be in any of the records or keys
2122 * in the block.
38bb7423 2123 */
70b22659
DW
2124static inline bool
2125xfs_btree_needs_key_update(
2126 struct xfs_btree_cur *cur,
2127 int ptr)
2128{
2c813ad6
DW
2129 return (cur->bc_flags & XFS_BTREE_OVERLAPPING) || ptr == 1;
2130}
2131
2132/*
2133 * Update the low and high parent keys of the given level, progressing
2134 * towards the root. If force_all is false, stop if the keys for a given
2135 * level do not need updating.
2136 */
2137STATIC int
2138__xfs_btree_updkeys(
2139 struct xfs_btree_cur *cur,
2140 int level,
2141 struct xfs_btree_block *block,
2142 struct xfs_buf *bp0,
2143 bool force_all)
2144{
a1d46cff 2145 union xfs_btree_key key; /* keys from current level */
2c813ad6
DW
2146 union xfs_btree_key *lkey; /* keys from the next level up */
2147 union xfs_btree_key *hkey;
2148 union xfs_btree_key *nlkey; /* keys from the next level up */
2149 union xfs_btree_key *nhkey;
2150 struct xfs_buf *bp;
2151 int ptr;
2152
2153 ASSERT(cur->bc_flags & XFS_BTREE_OVERLAPPING);
2154
2155 /* Exit if there aren't any parent levels to update. */
2156 if (level + 1 >= cur->bc_nlevels)
2157 return 0;
2158
2159 trace_xfs_btree_updkeys(cur, level, bp0);
2160
a1d46cff 2161 lkey = &key;
2c813ad6
DW
2162 hkey = xfs_btree_high_key_from_key(cur, lkey);
2163 xfs_btree_get_keys(cur, block, lkey);
2164 for (level++; level < cur->bc_nlevels; level++) {
2165#ifdef DEBUG
2166 int error;
2167#endif
2168 block = xfs_btree_get_block(cur, level, &bp);
2169 trace_xfs_btree_updkeys(cur, level, bp);
2170#ifdef DEBUG
2171 error = xfs_btree_check_block(cur, block, level, bp);
2172 if (error) {
2173 XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR);
2174 return error;
2175 }
2176#endif
2177 ptr = cur->bc_ptrs[level];
2178 nlkey = xfs_btree_key_addr(cur, ptr, block);
2179 nhkey = xfs_btree_high_key_addr(cur, ptr, block);
2180 if (!force_all &&
2181 !(cur->bc_ops->diff_two_keys(cur, nlkey, lkey) != 0 ||
2182 cur->bc_ops->diff_two_keys(cur, nhkey, hkey) != 0))
2183 break;
2184 xfs_btree_copy_keys(cur, nlkey, lkey, 1);
2185 xfs_btree_log_keys(cur, bp, ptr, ptr);
2186 if (level + 1 >= cur->bc_nlevels)
2187 break;
973b8319 2188 xfs_btree_get_node_keys(cur, block, lkey);
2c813ad6
DW
2189 }
2190
2191 return 0;
2192}
2193
2c813ad6
DW
2194/* Update all the keys from some level in cursor back to the root. */
2195STATIC int
2196xfs_btree_updkeys_force(
2197 struct xfs_btree_cur *cur,
2198 int level)
2199{
2200 struct xfs_buf *bp;
2201 struct xfs_btree_block *block;
2202
2203 block = xfs_btree_get_block(cur, level, &bp);
2204 return __xfs_btree_updkeys(cur, level, block, bp, true);
70b22659
DW
2205}
2206
2207/*
2208 * Update the parent keys of the given level, progressing towards the root.
2209 */
973b8319 2210STATIC int
70b22659 2211xfs_btree_update_keys(
38bb7423 2212 struct xfs_btree_cur *cur,
38bb7423
CH
2213 int level)
2214{
2215 struct xfs_btree_block *block;
2216 struct xfs_buf *bp;
2217 union xfs_btree_key *kp;
70b22659 2218 union xfs_btree_key key;
38bb7423
CH
2219 int ptr;
2220
973b8319
DW
2221 ASSERT(level >= 0);
2222
2223 block = xfs_btree_get_block(cur, level, &bp);
2224 if (cur->bc_flags & XFS_BTREE_OVERLAPPING)
2225 return __xfs_btree_updkeys(cur, level, block, bp, false);
2c813ad6 2226
38bb7423
CH
2227 XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
2228 XFS_BTREE_TRACE_ARGIK(cur, level, keyp);
2229
38bb7423
CH
2230 /*
2231 * Go up the tree from this level toward the root.
2232 * At each level, update the key value to the value input.
2233 * Stop when we reach a level where the cursor isn't pointing
2234 * at the first entry in the block.
2235 */
70b22659
DW
2236 xfs_btree_get_keys(cur, block, &key);
2237 for (level++, ptr = 1; ptr == 1 && level < cur->bc_nlevels; level++) {
38bb7423
CH
2238#ifdef DEBUG
2239 int error;
2240#endif
2241 block = xfs_btree_get_block(cur, level, &bp);
2242#ifdef DEBUG
2243 error = xfs_btree_check_block(cur, block, level, bp);
2244 if (error) {
2245 XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR);
2246 return error;
2247 }
2248#endif
2249 ptr = cur->bc_ptrs[level];
2250 kp = xfs_btree_key_addr(cur, ptr, block);
70b22659 2251 xfs_btree_copy_keys(cur, kp, &key, 1);
38bb7423
CH
2252 xfs_btree_log_keys(cur, bp, ptr, ptr);
2253 }
2254
2255 XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
2256 return 0;
2257}
278d0ca1
CH
2258
2259/*
2260 * Update the record referred to by cur to the value in the
2261 * given record. This either works (return 0) or gets an
2262 * EFSCORRUPTED error.
2263 */
2264int
2265xfs_btree_update(
2266 struct xfs_btree_cur *cur,
2267 union xfs_btree_rec *rec)
2268{
2269 struct xfs_btree_block *block;
2270 struct xfs_buf *bp;
2271 int error;
2272 int ptr;
2273 union xfs_btree_rec *rp;
2274
2275 XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
2276 XFS_BTREE_TRACE_ARGR(cur, rec);
2277
2278 /* Pick up the current block. */
2279 block = xfs_btree_get_block(cur, 0, &bp);
2280
2281#ifdef DEBUG
2282 error = xfs_btree_check_block(cur, block, 0, bp);
2283 if (error)
2284 goto error0;
2285#endif
2286 /* Get the address of the rec to be updated. */
2287 ptr = cur->bc_ptrs[0];
2288 rp = xfs_btree_rec_addr(cur, ptr, block);
2289
2290 /* Fill in the new contents and log them. */
2291 xfs_btree_copy_recs(cur, rp, rec, 1);
2292 xfs_btree_log_recs(cur, bp, ptr, ptr);
2293
2294 /*
2295 * If we are tracking the last record in the tree and
2296 * we are at the far right edge of the tree, update it.
2297 */
2298 if (xfs_btree_is_lastrec(cur, block, 0)) {
2299 cur->bc_ops->update_lastrec(cur, block, rec,
2300 ptr, LASTREC_UPDATE);
2301 }
2302
2c813ad6 2303 /* Pass new key value up to our parent. */
70b22659 2304 if (xfs_btree_needs_key_update(cur, ptr)) {
973b8319 2305 error = xfs_btree_update_keys(cur, 0);
278d0ca1
CH
2306 if (error)
2307 goto error0;
2308 }
2309
2310 XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
2311 return 0;
2312
2313error0:
2314 XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR);
2315 return error;
2316}
2317
687b890a
CH
2318/*
2319 * Move 1 record left from cur/level if possible.
2320 * Update cur to reflect the new path.
2321 */
3cc7524c 2322STATIC int /* error */
687b890a
CH
2323xfs_btree_lshift(
2324 struct xfs_btree_cur *cur,
2325 int level,
2326 int *stat) /* success/failure */
2327{
687b890a
CH
2328 struct xfs_buf *lbp; /* left buffer pointer */
2329 struct xfs_btree_block *left; /* left btree block */
2330 int lrecs; /* left record count */
2331 struct xfs_buf *rbp; /* right buffer pointer */
2332 struct xfs_btree_block *right; /* right btree block */
2c813ad6 2333 struct xfs_btree_cur *tcur; /* temporary btree cursor */
687b890a
CH
2334 int rrecs; /* right record count */
2335 union xfs_btree_ptr lptr; /* left btree pointer */
2336 union xfs_btree_key *rkp = NULL; /* right btree key */
2337 union xfs_btree_ptr *rpp = NULL; /* right address pointer */
2338 union xfs_btree_rec *rrp = NULL; /* right record pointer */
2339 int error; /* error return value */
2c813ad6 2340 int i;
687b890a
CH
2341
2342 XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
2343 XFS_BTREE_TRACE_ARGI(cur, level);
2344
2345 if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
2346 level == cur->bc_nlevels - 1)
2347 goto out0;
2348
2349 /* Set up variables for this block as "right". */
2350 right = xfs_btree_get_block(cur, level, &rbp);
2351
2352#ifdef DEBUG
2353 error = xfs_btree_check_block(cur, right, level, rbp);
2354 if (error)
2355 goto error0;
2356#endif
2357
2358 /* If we've got no left sibling then we can't shift an entry left. */
2359 xfs_btree_get_sibling(cur, right, &lptr, XFS_BB_LEFTSIB);
2360 if (xfs_btree_ptr_is_null(cur, &lptr))
2361 goto out0;
2362
2363 /*
2364 * If the cursor entry is the one that would be moved, don't
2365 * do it... it's too complicated.
2366 */
2367 if (cur->bc_ptrs[level] <= 1)
2368 goto out0;
2369
2370 /* Set up the left neighbor as "left". */
0d7409b1 2371 error = xfs_btree_read_buf_block(cur, &lptr, 0, &left, &lbp);
687b890a
CH
2372 if (error)
2373 goto error0;
2374
2375 /* If it's full, it can't take another entry. */
2376 lrecs = xfs_btree_get_numrecs(left);
2377 if (lrecs == cur->bc_ops->get_maxrecs(cur, level))
2378 goto out0;
2379
2380 rrecs = xfs_btree_get_numrecs(right);
2381
2382 /*
2383 * We add one entry to the left side and remove one for the right side.
9da096fd 2384 * Account for it here, the changes will be updated on disk and logged
687b890a
CH
2385 * later.
2386 */
2387 lrecs++;
2388 rrecs--;
2389
2390 XFS_BTREE_STATS_INC(cur, lshift);
2391 XFS_BTREE_STATS_ADD(cur, moves, 1);
2392
2393 /*
2394 * If non-leaf, copy a key and a ptr to the left block.
2395 * Log the changes to the left block.
2396 */
2397 if (level > 0) {
2398 /* It's a non-leaf. Move keys and pointers. */
2399 union xfs_btree_key *lkp; /* left btree key */
2400 union xfs_btree_ptr *lpp; /* left address pointer */
2401
2402 lkp = xfs_btree_key_addr(cur, lrecs, left);
2403 rkp = xfs_btree_key_addr(cur, 1, right);
2404
2405 lpp = xfs_btree_ptr_addr(cur, lrecs, left);
2406 rpp = xfs_btree_ptr_addr(cur, 1, right);
2407#ifdef DEBUG
2408 error = xfs_btree_check_ptr(cur, rpp, 0, level);
2409 if (error)
2410 goto error0;
2411#endif
2412 xfs_btree_copy_keys(cur, lkp, rkp, 1);
2413 xfs_btree_copy_ptrs(cur, lpp, rpp, 1);
2414
2415 xfs_btree_log_keys(cur, lbp, lrecs, lrecs);
2416 xfs_btree_log_ptrs(cur, lbp, lrecs, lrecs);
2417
4a26e66e
CH
2418 ASSERT(cur->bc_ops->keys_inorder(cur,
2419 xfs_btree_key_addr(cur, lrecs - 1, left), lkp));
687b890a
CH
2420 } else {
2421 /* It's a leaf. Move records. */
2422 union xfs_btree_rec *lrp; /* left record pointer */
2423
2424 lrp = xfs_btree_rec_addr(cur, lrecs, left);
2425 rrp = xfs_btree_rec_addr(cur, 1, right);
2426
2427 xfs_btree_copy_recs(cur, lrp, rrp, 1);
2428 xfs_btree_log_recs(cur, lbp, lrecs, lrecs);
2429
4a26e66e
CH
2430 ASSERT(cur->bc_ops->recs_inorder(cur,
2431 xfs_btree_rec_addr(cur, lrecs - 1, left), lrp));
687b890a
CH
2432 }
2433
2434 xfs_btree_set_numrecs(left, lrecs);
2435 xfs_btree_log_block(cur, lbp, XFS_BB_NUMRECS);
2436
2437 xfs_btree_set_numrecs(right, rrecs);
2438 xfs_btree_log_block(cur, rbp, XFS_BB_NUMRECS);
2439
2440 /*
2441 * Slide the contents of right down one entry.
2442 */
2443 XFS_BTREE_STATS_ADD(cur, moves, rrecs - 1);
2444 if (level > 0) {
2445 /* It's a nonleaf. operate on keys and ptrs */
2446#ifdef DEBUG
2447 int i; /* loop index */
2448
2449 for (i = 0; i < rrecs; i++) {
2450 error = xfs_btree_check_ptr(cur, rpp, i + 1, level);
2451 if (error)
2452 goto error0;
2453 }
2454#endif
2455 xfs_btree_shift_keys(cur,
2456 xfs_btree_key_addr(cur, 2, right),
2457 -1, rrecs);
2458 xfs_btree_shift_ptrs(cur,
2459 xfs_btree_ptr_addr(cur, 2, right),
2460 -1, rrecs);
2461
2462 xfs_btree_log_keys(cur, rbp, 1, rrecs);
2463 xfs_btree_log_ptrs(cur, rbp, 1, rrecs);
2464 } else {
2465 /* It's a leaf. operate on records */
2466 xfs_btree_shift_recs(cur,
2467 xfs_btree_rec_addr(cur, 2, right),
2468 -1, rrecs);
2469 xfs_btree_log_recs(cur, rbp, 1, rrecs);
687b890a
CH
2470 }
2471
2c813ad6
DW
2472 /*
2473 * Using a temporary cursor, update the parent key values of the
2474 * block on the left.
2475 */
c1d22ae8
DW
2476 if (cur->bc_flags & XFS_BTREE_OVERLAPPING) {
2477 error = xfs_btree_dup_cursor(cur, &tcur);
2478 if (error)
2479 goto error0;
2480 i = xfs_btree_firstrec(tcur, level);
2481 XFS_WANT_CORRUPTED_GOTO(tcur->bc_mp, i == 1, error0);
2c813ad6 2482
c1d22ae8
DW
2483 error = xfs_btree_decrement(tcur, level, &i);
2484 if (error)
2485 goto error1;
2c813ad6 2486
c1d22ae8 2487 /* Update the parent high keys of the left block, if needed. */
973b8319 2488 error = xfs_btree_update_keys(tcur, level);
2c813ad6
DW
2489 if (error)
2490 goto error1;
c1d22ae8
DW
2491
2492 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
2c813ad6
DW
2493 }
2494
c1d22ae8
DW
2495 /* Update the parent keys of the right block. */
2496 error = xfs_btree_update_keys(cur, level);
2497 if (error)
2498 goto error0;
687b890a
CH
2499
2500 /* Slide the cursor value left one. */
2501 cur->bc_ptrs[level]--;
2502
2503 XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
2504 *stat = 1;
2505 return 0;
2506
2507out0:
2508 XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
2509 *stat = 0;
2510 return 0;
2511
2512error0:
2513 XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR);
2514 return error;
2c813ad6
DW
2515
2516error1:
2517 XFS_BTREE_TRACE_CURSOR(tcur, XBT_ERROR);
2518 xfs_btree_del_cursor(tcur, XFS_BTREE_ERROR);
2519 return error;
687b890a
CH
2520}
2521
9eaead51
CH
2522/*
2523 * Move 1 record right from cur/level if possible.
2524 * Update cur to reflect the new path.
2525 */
3cc7524c 2526STATIC int /* error */
9eaead51
CH
2527xfs_btree_rshift(
2528 struct xfs_btree_cur *cur,
2529 int level,
2530 int *stat) /* success/failure */
2531{
9eaead51
CH
2532 struct xfs_buf *lbp; /* left buffer pointer */
2533 struct xfs_btree_block *left; /* left btree block */
2534 struct xfs_buf *rbp; /* right buffer pointer */
2535 struct xfs_btree_block *right; /* right btree block */
2536 struct xfs_btree_cur *tcur; /* temporary btree cursor */
2537 union xfs_btree_ptr rptr; /* right block pointer */
2538 union xfs_btree_key *rkp; /* right btree key */
2539 int rrecs; /* right record count */
2540 int lrecs; /* left record count */
2541 int error; /* error return value */
2542 int i; /* loop counter */
2543
2544 XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
2545 XFS_BTREE_TRACE_ARGI(cur, level);
2546
2547 if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
2548 (level == cur->bc_nlevels - 1))
2549 goto out0;
2550
2551 /* Set up variables for this block as "left". */
2552 left = xfs_btree_get_block(cur, level, &lbp);
2553
2554#ifdef DEBUG
2555 error = xfs_btree_check_block(cur, left, level, lbp);
2556 if (error)
2557 goto error0;
2558#endif
2559
2560 /* If we've got no right sibling then we can't shift an entry right. */
2561 xfs_btree_get_sibling(cur, left, &rptr, XFS_BB_RIGHTSIB);
2562 if (xfs_btree_ptr_is_null(cur, &rptr))
2563 goto out0;
2564
2565 /*
2566 * If the cursor entry is the one that would be moved, don't
2567 * do it... it's too complicated.
2568 */
2569 lrecs = xfs_btree_get_numrecs(left);
2570 if (cur->bc_ptrs[level] >= lrecs)
2571 goto out0;
2572
2573 /* Set up the right neighbor as "right". */
0d7409b1 2574 error = xfs_btree_read_buf_block(cur, &rptr, 0, &right, &rbp);
9eaead51
CH
2575 if (error)
2576 goto error0;
2577
2578 /* If it's full, it can't take another entry. */
2579 rrecs = xfs_btree_get_numrecs(right);
2580 if (rrecs == cur->bc_ops->get_maxrecs(cur, level))
2581 goto out0;
2582
2583 XFS_BTREE_STATS_INC(cur, rshift);
2584 XFS_BTREE_STATS_ADD(cur, moves, rrecs);
2585
2586 /*
2587 * Make a hole at the start of the right neighbor block, then
2588 * copy the last left block entry to the hole.
2589 */
2590 if (level > 0) {
2591 /* It's a nonleaf. make a hole in the keys and ptrs */
2592 union xfs_btree_key *lkp;
2593 union xfs_btree_ptr *lpp;
2594 union xfs_btree_ptr *rpp;
2595
2596 lkp = xfs_btree_key_addr(cur, lrecs, left);
2597 lpp = xfs_btree_ptr_addr(cur, lrecs, left);
2598 rkp = xfs_btree_key_addr(cur, 1, right);
2599 rpp = xfs_btree_ptr_addr(cur, 1, right);
2600
2601#ifdef DEBUG
2602 for (i = rrecs - 1; i >= 0; i--) {
2603 error = xfs_btree_check_ptr(cur, rpp, i, level);
2604 if (error)
2605 goto error0;
2606 }
2607#endif
2608
2609 xfs_btree_shift_keys(cur, rkp, 1, rrecs);
2610 xfs_btree_shift_ptrs(cur, rpp, 1, rrecs);
2611
2612#ifdef DEBUG
2613 error = xfs_btree_check_ptr(cur, lpp, 0, level);
2614 if (error)
2615 goto error0;
2616#endif
2617
2618 /* Now put the new data in, and log it. */
2619 xfs_btree_copy_keys(cur, rkp, lkp, 1);
2620 xfs_btree_copy_ptrs(cur, rpp, lpp, 1);
2621
2622 xfs_btree_log_keys(cur, rbp, 1, rrecs + 1);
2623 xfs_btree_log_ptrs(cur, rbp, 1, rrecs + 1);
2624
4a26e66e
CH
2625 ASSERT(cur->bc_ops->keys_inorder(cur, rkp,
2626 xfs_btree_key_addr(cur, 2, right)));
9eaead51
CH
2627 } else {
2628 /* It's a leaf. make a hole in the records */
2629 union xfs_btree_rec *lrp;
2630 union xfs_btree_rec *rrp;
2631
2632 lrp = xfs_btree_rec_addr(cur, lrecs, left);
2633 rrp = xfs_btree_rec_addr(cur, 1, right);
2634
2635 xfs_btree_shift_recs(cur, rrp, 1, rrecs);
2636
2637 /* Now put the new data in, and log it. */
2638 xfs_btree_copy_recs(cur, rrp, lrp, 1);
2639 xfs_btree_log_recs(cur, rbp, 1, rrecs + 1);
9eaead51
CH
2640 }
2641
2642 /*
2643 * Decrement and log left's numrecs, bump and log right's numrecs.
2644 */
2645 xfs_btree_set_numrecs(left, --lrecs);
2646 xfs_btree_log_block(cur, lbp, XFS_BB_NUMRECS);
2647
2648 xfs_btree_set_numrecs(right, ++rrecs);
2649 xfs_btree_log_block(cur, rbp, XFS_BB_NUMRECS);
2650
2651 /*
2652 * Using a temporary cursor, update the parent key values of the
2653 * block on the right.
2654 */
2655 error = xfs_btree_dup_cursor(cur, &tcur);
2656 if (error)
2657 goto error0;
2658 i = xfs_btree_lastrec(tcur, level);
c1d22ae8 2659 XFS_WANT_CORRUPTED_GOTO(tcur->bc_mp, i == 1, error0);
9eaead51
CH
2660
2661 error = xfs_btree_increment(tcur, level, &i);
2662 if (error)
2663 goto error1;
2664
2c813ad6
DW
2665 /* Update the parent high keys of the left block, if needed. */
2666 if (cur->bc_flags & XFS_BTREE_OVERLAPPING) {
973b8319 2667 error = xfs_btree_update_keys(cur, level);
2c813ad6
DW
2668 if (error)
2669 goto error1;
2670 }
2671
70b22659 2672 /* Update the parent keys of the right block. */
973b8319 2673 error = xfs_btree_update_keys(tcur, level);
9eaead51
CH
2674 if (error)
2675 goto error1;
2676
2677 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
2678
2679 XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
2680 *stat = 1;
2681 return 0;
2682
2683out0:
2684 XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
2685 *stat = 0;
2686 return 0;
2687
2688error0:
2689 XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR);
2690 return error;
2691
2692error1:
2693 XFS_BTREE_TRACE_CURSOR(tcur, XBT_ERROR);
2694 xfs_btree_del_cursor(tcur, XFS_BTREE_ERROR);
2695 return error;
2696}
f5eb8e7c
CH
2697
2698/*
2699 * Split cur/level block in half.
2700 * Return new block number and the key to its first
2701 * record (to be inserted into parent).
2702 */
3cc7524c 2703STATIC int /* error */
cf11da9c 2704__xfs_btree_split(
f5eb8e7c
CH
2705 struct xfs_btree_cur *cur,
2706 int level,
2707 union xfs_btree_ptr *ptrp,
2708 union xfs_btree_key *key,
2709 struct xfs_btree_cur **curp,
2710 int *stat) /* success/failure */
2711{
2712 union xfs_btree_ptr lptr; /* left sibling block ptr */
2713 struct xfs_buf *lbp; /* left buffer pointer */
2714 struct xfs_btree_block *left; /* left btree block */
2715 union xfs_btree_ptr rptr; /* right sibling block ptr */
2716 struct xfs_buf *rbp; /* right buffer pointer */
2717 struct xfs_btree_block *right; /* right btree block */
2718 union xfs_btree_ptr rrptr; /* right-right sibling ptr */
2719 struct xfs_buf *rrbp; /* right-right buffer pointer */
2720 struct xfs_btree_block *rrblock; /* right-right btree block */
2721 int lrecs;
2722 int rrecs;
2723 int src_index;
2724 int error; /* error return value */
2725#ifdef DEBUG
2726 int i;
2727#endif
2728
2729 XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
2730 XFS_BTREE_TRACE_ARGIPK(cur, level, *ptrp, key);
2731
2732 XFS_BTREE_STATS_INC(cur, split);
2733
2734 /* Set up left block (current one). */
2735 left = xfs_btree_get_block(cur, level, &lbp);
2736
2737#ifdef DEBUG
2738 error = xfs_btree_check_block(cur, left, level, lbp);
2739 if (error)
2740 goto error0;
2741#endif
2742
2743 xfs_btree_buf_to_ptr(cur, lbp, &lptr);
2744
2745 /* Allocate the new block. If we can't do it, we're toast. Give up. */
6f8950cd 2746 error = cur->bc_ops->alloc_block(cur, &lptr, &rptr, stat);
f5eb8e7c
CH
2747 if (error)
2748 goto error0;
2749 if (*stat == 0)
2750 goto out0;
2751 XFS_BTREE_STATS_INC(cur, alloc);
2752
2753 /* Set up the new block as "right". */
2754 error = xfs_btree_get_buf_block(cur, &rptr, 0, &right, &rbp);
2755 if (error)
2756 goto error0;
2757
2758 /* Fill in the btree header for the new right block. */
ee1a47ab 2759 xfs_btree_init_block_cur(cur, rbp, xfs_btree_get_level(left), 0);
f5eb8e7c
CH
2760
2761 /*
2762 * Split the entries between the old and the new block evenly.
2763 * Make sure that if there's an odd number of entries now, that
2764 * each new block will have the same number of entries.
2765 */
2766 lrecs = xfs_btree_get_numrecs(left);
2767 rrecs = lrecs / 2;
2768 if ((lrecs & 1) && cur->bc_ptrs[level] <= rrecs + 1)
2769 rrecs++;
2770 src_index = (lrecs - rrecs + 1);
2771
2772 XFS_BTREE_STATS_ADD(cur, moves, rrecs);
2773
70b22659
DW
2774 /* Adjust numrecs for the later get_*_keys() calls. */
2775 lrecs -= rrecs;
2776 xfs_btree_set_numrecs(left, lrecs);
2777 xfs_btree_set_numrecs(right, xfs_btree_get_numrecs(right) + rrecs);
2778
f5eb8e7c
CH
2779 /*
2780 * Copy btree block entries from the left block over to the
2781 * new block, the right. Update the right block and log the
2782 * changes.
2783 */
2784 if (level > 0) {
2785 /* It's a non-leaf. Move keys and pointers. */
2786 union xfs_btree_key *lkp; /* left btree key */
2787 union xfs_btree_ptr *lpp; /* left address pointer */
2788 union xfs_btree_key *rkp; /* right btree key */
2789 union xfs_btree_ptr *rpp; /* right address pointer */
2790
2791 lkp = xfs_btree_key_addr(cur, src_index, left);
2792 lpp = xfs_btree_ptr_addr(cur, src_index, left);
2793 rkp = xfs_btree_key_addr(cur, 1, right);
2794 rpp = xfs_btree_ptr_addr(cur, 1, right);
2795
2796#ifdef DEBUG
2797 for (i = src_index; i < rrecs; i++) {
2798 error = xfs_btree_check_ptr(cur, lpp, i, level);
2799 if (error)
2800 goto error0;
2801 }
2802#endif
2803
70b22659 2804 /* Copy the keys & pointers to the new block. */
f5eb8e7c
CH
2805 xfs_btree_copy_keys(cur, rkp, lkp, rrecs);
2806 xfs_btree_copy_ptrs(cur, rpp, lpp, rrecs);
2807
2808 xfs_btree_log_keys(cur, rbp, 1, rrecs);
2809 xfs_btree_log_ptrs(cur, rbp, 1, rrecs);
2810
70b22659 2811 /* Stash the keys of the new block for later insertion. */
973b8319 2812 xfs_btree_get_node_keys(cur, right, key);
f5eb8e7c
CH
2813 } else {
2814 /* It's a leaf. Move records. */
2815 union xfs_btree_rec *lrp; /* left record pointer */
2816 union xfs_btree_rec *rrp; /* right record pointer */
2817
2818 lrp = xfs_btree_rec_addr(cur, src_index, left);
2819 rrp = xfs_btree_rec_addr(cur, 1, right);
2820
70b22659 2821 /* Copy records to the new block. */
f5eb8e7c
CH
2822 xfs_btree_copy_recs(cur, rrp, lrp, rrecs);
2823 xfs_btree_log_recs(cur, rbp, 1, rrecs);
2824
70b22659 2825 /* Stash the keys of the new block for later insertion. */
973b8319 2826 xfs_btree_get_leaf_keys(cur, right, key);
f5eb8e7c
CH
2827 }
2828
f5eb8e7c
CH
2829 /*
2830 * Find the left block number by looking in the buffer.
70b22659 2831 * Adjust sibling pointers.
f5eb8e7c
CH
2832 */
2833 xfs_btree_get_sibling(cur, left, &rrptr, XFS_BB_RIGHTSIB);
2834 xfs_btree_set_sibling(cur, right, &rrptr, XFS_BB_RIGHTSIB);
2835 xfs_btree_set_sibling(cur, right, &lptr, XFS_BB_LEFTSIB);
2836 xfs_btree_set_sibling(cur, left, &rptr, XFS_BB_RIGHTSIB);
2837
f5eb8e7c
CH
2838 xfs_btree_log_block(cur, rbp, XFS_BB_ALL_BITS);
2839 xfs_btree_log_block(cur, lbp, XFS_BB_NUMRECS | XFS_BB_RIGHTSIB);
2840
2841 /*
2842 * If there's a block to the new block's right, make that block
2843 * point back to right instead of to left.
2844 */
2845 if (!xfs_btree_ptr_is_null(cur, &rrptr)) {
0d7409b1 2846 error = xfs_btree_read_buf_block(cur, &rrptr,
f5eb8e7c
CH
2847 0, &rrblock, &rrbp);
2848 if (error)
2849 goto error0;
2850 xfs_btree_set_sibling(cur, rrblock, &rptr, XFS_BB_LEFTSIB);
2851 xfs_btree_log_block(cur, rrbp, XFS_BB_LEFTSIB);
2852 }
2c813ad6
DW
2853
2854 /* Update the parent high keys of the left block, if needed. */
2855 if (cur->bc_flags & XFS_BTREE_OVERLAPPING) {
973b8319 2856 error = xfs_btree_update_keys(cur, level);
2c813ad6
DW
2857 if (error)
2858 goto error0;
2859 }
2860
f5eb8e7c
CH
2861 /*
2862 * If the cursor is really in the right block, move it there.
2863 * If it's just pointing past the last entry in left, then we'll
2864 * insert there, so don't change anything in that case.
2865 */
2866 if (cur->bc_ptrs[level] > lrecs + 1) {
2867 xfs_btree_setbuf(cur, level, rbp);
2868 cur->bc_ptrs[level] -= lrecs;
2869 }
2870 /*
2871 * If there are more levels, we'll need another cursor which refers
2872 * the right block, no matter where this cursor was.
2873 */
2874 if (level + 1 < cur->bc_nlevels) {
2875 error = xfs_btree_dup_cursor(cur, curp);
2876 if (error)
2877 goto error0;
2878 (*curp)->bc_ptrs[level + 1]++;
2879 }
2880 *ptrp = rptr;
2881 XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
2882 *stat = 1;
2883 return 0;
2884out0:
2885 XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
2886 *stat = 0;
2887 return 0;
2888
2889error0:
2890 XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR);
2891 return error;
2892}
344207ce 2893
cf11da9c
DC
2894struct xfs_btree_split_args {
2895 struct xfs_btree_cur *cur;
2896 int level;
2897 union xfs_btree_ptr *ptrp;
2898 union xfs_btree_key *key;
2899 struct xfs_btree_cur **curp;
2900 int *stat; /* success/failure */
2901 int result;
2902 bool kswapd; /* allocation in kswapd context */
2903 struct completion *done;
2904 struct work_struct work;
2905};
2906
2907/*
2908 * Stack switching interfaces for allocation
2909 */
2910static void
2911xfs_btree_split_worker(
2912 struct work_struct *work)
2913{
2914 struct xfs_btree_split_args *args = container_of(work,
2915 struct xfs_btree_split_args, work);
2916 unsigned long pflags;
9070733b 2917 unsigned long new_pflags = PF_MEMALLOC_NOFS;
cf11da9c
DC
2918
2919 /*
2920 * we are in a transaction context here, but may also be doing work
2921 * in kswapd context, and hence we may need to inherit that state
2922 * temporarily to ensure that we don't block waiting for memory reclaim
2923 * in any way.
2924 */
2925 if (args->kswapd)
2926 new_pflags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
2927
2928 current_set_flags_nested(&pflags, new_pflags);
2929
2930 args->result = __xfs_btree_split(args->cur, args->level, args->ptrp,
2931 args->key, args->curp, args->stat);
2932 complete(args->done);
2933
2934 current_restore_flags_nested(&pflags, new_pflags);
2935}
2936
2937/*
2938 * BMBT split requests often come in with little stack to work on. Push
2939 * them off to a worker thread so there is lots of stack to use. For the other
2940 * btree types, just call directly to avoid the context switch overhead here.
2941 */
2942STATIC int /* error */
2943xfs_btree_split(
2944 struct xfs_btree_cur *cur,
2945 int level,
2946 union xfs_btree_ptr *ptrp,
2947 union xfs_btree_key *key,
2948 struct xfs_btree_cur **curp,
2949 int *stat) /* success/failure */
2950{
2951 struct xfs_btree_split_args args;
2952 DECLARE_COMPLETION_ONSTACK(done);
2953
2954 if (cur->bc_btnum != XFS_BTNUM_BMAP)
2955 return __xfs_btree_split(cur, level, ptrp, key, curp, stat);
2956
2957 args.cur = cur;
2958 args.level = level;
2959 args.ptrp = ptrp;
2960 args.key = key;
2961 args.curp = curp;
2962 args.stat = stat;
2963 args.done = &done;
2964 args.kswapd = current_is_kswapd();
2965 INIT_WORK_ONSTACK(&args.work, xfs_btree_split_worker);
2966 queue_work(xfs_alloc_wq, &args.work);
2967 wait_for_completion(&done);
2968 destroy_work_on_stack(&args.work);
2969 return args.result;
2970}
2971
2972
ea77b0a6
CH
2973/*
2974 * Copy the old inode root contents into a real block and make the
2975 * broot point to it.
2976 */
2977int /* error */
2978xfs_btree_new_iroot(
2979 struct xfs_btree_cur *cur, /* btree cursor */
2980 int *logflags, /* logging flags for inode */
2981 int *stat) /* return status - 0 fail */
2982{
2983 struct xfs_buf *cbp; /* buffer for cblock */
2984 struct xfs_btree_block *block; /* btree block */
2985 struct xfs_btree_block *cblock; /* child btree block */
2986 union xfs_btree_key *ckp; /* child key pointer */
2987 union xfs_btree_ptr *cpp; /* child ptr pointer */
2988 union xfs_btree_key *kp; /* pointer to btree key */
2989 union xfs_btree_ptr *pp; /* pointer to block addr */
2990 union xfs_btree_ptr nptr; /* new block addr */
2991 int level; /* btree level */
2992 int error; /* error return code */
2993#ifdef DEBUG
2994 int i; /* loop counter */
2995#endif
2996
2997 XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
2998 XFS_BTREE_STATS_INC(cur, newroot);
2999
3000 ASSERT(cur->bc_flags & XFS_BTREE_ROOT_IN_INODE);
3001
3002 level = cur->bc_nlevels - 1;
3003
3004 block = xfs_btree_get_iroot(cur);
3005 pp = xfs_btree_ptr_addr(cur, 1, block);
3006
3007 /* Allocate the new block. If we can't do it, we're toast. Give up. */
6f8950cd 3008 error = cur->bc_ops->alloc_block(cur, pp, &nptr, stat);
ea77b0a6
CH
3009 if (error)
3010 goto error0;
3011 if (*stat == 0) {
3012 XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
3013 return 0;
3014 }
3015 XFS_BTREE_STATS_INC(cur, alloc);
3016
3017 /* Copy the root into a real block. */
3018 error = xfs_btree_get_buf_block(cur, &nptr, 0, &cblock, &cbp);
3019 if (error)
3020 goto error0;
3021
088c9f67
DC
3022 /*
3023 * we can't just memcpy() the root in for CRC enabled btree blocks.
3024 * In that case have to also ensure the blkno remains correct
3025 */
ea77b0a6 3026 memcpy(cblock, block, xfs_btree_block_len(cur));
088c9f67
DC
3027 if (cur->bc_flags & XFS_BTREE_CRC_BLOCKS) {
3028 if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
3029 cblock->bb_u.l.bb_blkno = cpu_to_be64(cbp->b_bn);
3030 else
3031 cblock->bb_u.s.bb_blkno = cpu_to_be64(cbp->b_bn);
3032 }
ea77b0a6
CH
3033
3034 be16_add_cpu(&block->bb_level, 1);
3035 xfs_btree_set_numrecs(block, 1);
3036 cur->bc_nlevels++;
3037 cur->bc_ptrs[level + 1] = 1;
3038
3039 kp = xfs_btree_key_addr(cur, 1, block);
3040 ckp = xfs_btree_key_addr(cur, 1, cblock);
3041 xfs_btree_copy_keys(cur, ckp, kp, xfs_btree_get_numrecs(cblock));
3042
3043 cpp = xfs_btree_ptr_addr(cur, 1, cblock);
3044#ifdef DEBUG
3045 for (i = 0; i < be16_to_cpu(cblock->bb_numrecs); i++) {
3046 error = xfs_btree_check_ptr(cur, pp, i, level);
3047 if (error)
3048 goto error0;
3049 }
3050#endif
3051 xfs_btree_copy_ptrs(cur, cpp, pp, xfs_btree_get_numrecs(cblock));
3052
3053#ifdef DEBUG
3054 error = xfs_btree_check_ptr(cur, &nptr, 0, level);
3055 if (error)
3056 goto error0;
3057#endif
3058 xfs_btree_copy_ptrs(cur, pp, &nptr, 1);
3059
3060 xfs_iroot_realloc(cur->bc_private.b.ip,
3061 1 - xfs_btree_get_numrecs(cblock),
3062 cur->bc_private.b.whichfork);
3063
3064 xfs_btree_setbuf(cur, level, cbp);
3065
3066 /*
3067 * Do all this logging at the end so that
3068 * the root is at the right level.
3069 */
3070 xfs_btree_log_block(cur, cbp, XFS_BB_ALL_BITS);
3071 xfs_btree_log_keys(cur, cbp, 1, be16_to_cpu(cblock->bb_numrecs));
3072 xfs_btree_log_ptrs(cur, cbp, 1, be16_to_cpu(cblock->bb_numrecs));
3073
3074 *logflags |=
9d87c319 3075 XFS_ILOG_CORE | xfs_ilog_fbroot(cur->bc_private.b.whichfork);
ea77b0a6
CH
3076 *stat = 1;
3077 XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
3078 return 0;
3079error0:
3080 XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR);
3081 return error;
3082}
3083
344207ce
CH
3084/*
3085 * Allocate a new root block, fill it in.
3086 */
3cc7524c 3087STATIC int /* error */
344207ce
CH
3088xfs_btree_new_root(
3089 struct xfs_btree_cur *cur, /* btree cursor */
3090 int *stat) /* success/failure */
3091{
3092 struct xfs_btree_block *block; /* one half of the old root block */
3093 struct xfs_buf *bp; /* buffer containing block */
3094 int error; /* error return value */
3095 struct xfs_buf *lbp; /* left buffer pointer */
3096 struct xfs_btree_block *left; /* left btree block */
3097 struct xfs_buf *nbp; /* new (root) buffer */
3098 struct xfs_btree_block *new; /* new (root) btree block */
3099 int nptr; /* new value for key index, 1 or 2 */
3100 struct xfs_buf *rbp; /* right buffer pointer */
3101 struct xfs_btree_block *right; /* right btree block */
3102 union xfs_btree_ptr rptr;
3103 union xfs_btree_ptr lptr;
3104
3105 XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
3106 XFS_BTREE_STATS_INC(cur, newroot);
3107
3108 /* initialise our start point from the cursor */
3109 cur->bc_ops->init_ptr_from_cur(cur, &rptr);
3110
3111 /* Allocate the new block. If we can't do it, we're toast. Give up. */
6f8950cd 3112 error = cur->bc_ops->alloc_block(cur, &rptr, &lptr, stat);
344207ce
CH
3113 if (error)
3114 goto error0;
3115 if (*stat == 0)
3116 goto out0;
3117 XFS_BTREE_STATS_INC(cur, alloc);
3118
3119 /* Set up the new block. */
3120 error = xfs_btree_get_buf_block(cur, &lptr, 0, &new, &nbp);
3121 if (error)
3122 goto error0;
3123
3124 /* Set the root in the holding structure increasing the level by 1. */
3125 cur->bc_ops->set_root(cur, &lptr, 1);
3126
3127 /*
3128 * At the previous root level there are now two blocks: the old root,
3129 * and the new block generated when it was split. We don't know which
3130 * one the cursor is pointing at, so we set up variables "left" and
3131 * "right" for each case.
3132 */
3133 block = xfs_btree_get_block(cur, cur->bc_nlevels - 1, &bp);
3134
3135#ifdef DEBUG
3136 error = xfs_btree_check_block(cur, block, cur->bc_nlevels - 1, bp);
3137 if (error)
3138 goto error0;
3139#endif
3140
3141 xfs_btree_get_sibling(cur, block, &rptr, XFS_BB_RIGHTSIB);
3142 if (!xfs_btree_ptr_is_null(cur, &rptr)) {
3143 /* Our block is left, pick up the right block. */
3144 lbp = bp;
3145 xfs_btree_buf_to_ptr(cur, lbp, &lptr);
3146 left = block;
0d7409b1 3147 error = xfs_btree_read_buf_block(cur, &rptr, 0, &right, &rbp);
344207ce
CH
3148 if (error)
3149 goto error0;
3150 bp = rbp;
3151 nptr = 1;
3152 } else {
3153 /* Our block is right, pick up the left block. */
3154 rbp = bp;
3155 xfs_btree_buf_to_ptr(cur, rbp, &rptr);
3156 right = block;
3157 xfs_btree_get_sibling(cur, right, &lptr, XFS_BB_LEFTSIB);
0d7409b1 3158 error = xfs_btree_read_buf_block(cur, &lptr, 0, &left, &lbp);
344207ce
CH
3159 if (error)
3160 goto error0;
3161 bp = lbp;
3162 nptr = 2;
3163 }
70b22659 3164
344207ce 3165 /* Fill in the new block's btree header and log it. */
ee1a47ab 3166 xfs_btree_init_block_cur(cur, nbp, cur->bc_nlevels, 2);
344207ce
CH
3167 xfs_btree_log_block(cur, nbp, XFS_BB_ALL_BITS);
3168 ASSERT(!xfs_btree_ptr_is_null(cur, &lptr) &&
3169 !xfs_btree_ptr_is_null(cur, &rptr));
3170
3171 /* Fill in the key data in the new root. */
3172 if (xfs_btree_get_level(left) > 0) {
70b22659
DW
3173 /*
3174 * Get the keys for the left block's keys and put them directly
3175 * in the parent block. Do the same for the right block.
3176 */
973b8319 3177 xfs_btree_get_node_keys(cur, left,
70b22659 3178 xfs_btree_key_addr(cur, 1, new));
973b8319 3179 xfs_btree_get_node_keys(cur, right,
70b22659 3180 xfs_btree_key_addr(cur, 2, new));
344207ce 3181 } else {
70b22659
DW
3182 /*
3183 * Get the keys for the left block's records and put them
3184 * directly in the parent block. Do the same for the right
3185 * block.
3186 */
973b8319 3187 xfs_btree_get_leaf_keys(cur, left,
70b22659 3188 xfs_btree_key_addr(cur, 1, new));
973b8319 3189 xfs_btree_get_leaf_keys(cur, right,
70b22659 3190 xfs_btree_key_addr(cur, 2, new));
344207ce
CH
3191 }
3192 xfs_btree_log_keys(cur, nbp, 1, 2);
3193
3194 /* Fill in the pointer data in the new root. */
3195 xfs_btree_copy_ptrs(cur,
3196 xfs_btree_ptr_addr(cur, 1, new), &lptr, 1);
3197 xfs_btree_copy_ptrs(cur,
3198 xfs_btree_ptr_addr(cur, 2, new), &rptr, 1);
3199 xfs_btree_log_ptrs(cur, nbp, 1, 2);
3200
3201 /* Fix up the cursor. */
3202 xfs_btree_setbuf(cur, cur->bc_nlevels, nbp);
3203 cur->bc_ptrs[cur->bc_nlevels] = nptr;
3204 cur->bc_nlevels++;
3205 XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
3206 *stat = 1;
3207 return 0;
3208error0:
3209 XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR);
3210 return error;
3211out0:
3212 XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
3213 *stat = 0;
3214 return 0;
3215}
4b22a571
CH
3216
3217STATIC int
3218xfs_btree_make_block_unfull(
3219 struct xfs_btree_cur *cur, /* btree cursor */
3220 int level, /* btree level */
3221 int numrecs,/* # of recs in block */
3222 int *oindex,/* old tree index */
3223 int *index, /* new tree index */
3224 union xfs_btree_ptr *nptr, /* new btree ptr */
3225 struct xfs_btree_cur **ncur, /* new btree cursor */
70b22659 3226 union xfs_btree_key *key, /* key of new block */
4b22a571
CH
3227 int *stat)
3228{
4b22a571
CH
3229 int error = 0;
3230
3231 if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
3232 level == cur->bc_nlevels - 1) {
3233 struct xfs_inode *ip = cur->bc_private.b.ip;
3234
3235 if (numrecs < cur->bc_ops->get_dmaxrecs(cur, level)) {
3236 /* A root block that can be made bigger. */
4b22a571 3237 xfs_iroot_realloc(ip, 1, cur->bc_private.b.whichfork);
0d309791 3238 *stat = 1;
4b22a571
CH
3239 } else {
3240 /* A root block that needs replacing */
3241 int logflags = 0;
3242
3243 error = xfs_btree_new_iroot(cur, &logflags, stat);
3244 if (error || *stat == 0)
3245 return error;
3246
3247 xfs_trans_log_inode(cur->bc_tp, ip, logflags);
3248 }
3249
3250 return 0;
3251 }
3252
3253 /* First, try shifting an entry to the right neighbor. */
3254 error = xfs_btree_rshift(cur, level, stat);
3255 if (error || *stat)
3256 return error;
3257
3258 /* Next, try shifting an entry to the left neighbor. */
3259 error = xfs_btree_lshift(cur, level, stat);
3260 if (error)
3261 return error;
3262
3263 if (*stat) {
3264 *oindex = *index = cur->bc_ptrs[level];
3265 return 0;
3266 }
3267
3268 /*
3269 * Next, try splitting the current block in half.
3270 *
3271 * If this works we have to re-set our variables because we
3272 * could be in a different block now.
3273 */
e5821e57 3274 error = xfs_btree_split(cur, level, nptr, key, ncur, stat);
4b22a571
CH
3275 if (error || *stat == 0)
3276 return error;
3277
3278
3279 *index = cur->bc_ptrs[level];
4b22a571
CH
3280 return 0;
3281}
3282
3283/*
3284 * Insert one record/level. Return information to the caller
3285 * allowing the next level up to proceed if necessary.
3286 */
3287STATIC int
3288xfs_btree_insrec(
3289 struct xfs_btree_cur *cur, /* btree cursor */
3290 int level, /* level to insert record at */
3291 union xfs_btree_ptr *ptrp, /* i/o: block number inserted */
e5821e57
DW
3292 union xfs_btree_rec *rec, /* record to insert */
3293 union xfs_btree_key *key, /* i/o: block key for ptrp */
4b22a571
CH
3294 struct xfs_btree_cur **curp, /* output: new cursor replacing cur */
3295 int *stat) /* success/failure */
3296{
3297 struct xfs_btree_block *block; /* btree block */
3298 struct xfs_buf *bp; /* buffer for block */
4b22a571
CH
3299 union xfs_btree_ptr nptr; /* new block ptr */
3300 struct xfs_btree_cur *ncur; /* new btree cursor */
a1d46cff 3301 union xfs_btree_key nkey; /* new block key */
2c813ad6 3302 union xfs_btree_key *lkey;
4b22a571
CH
3303 int optr; /* old key/record index */
3304 int ptr; /* key/record index */
3305 int numrecs;/* number of records */
3306 int error; /* error return value */
3307#ifdef DEBUG
3308 int i;
3309#endif
2c813ad6 3310 xfs_daddr_t old_bn;
4b22a571
CH
3311
3312 XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
e5821e57 3313 XFS_BTREE_TRACE_ARGIPR(cur, level, *ptrp, &rec);
4b22a571
CH
3314
3315 ncur = NULL;
a1d46cff 3316 lkey = &nkey;
4b22a571
CH
3317
3318 /*
3319 * If we have an external root pointer, and we've made it to the
3320 * root level, allocate a new root block and we're done.
3321 */
3322 if (!(cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
3323 (level >= cur->bc_nlevels)) {
3324 error = xfs_btree_new_root(cur, stat);
3325 xfs_btree_set_ptr_null(cur, ptrp);
3326
3327 XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
3328 return error;
3329 }
3330
3331 /* If we're off the left edge, return failure. */
3332 ptr = cur->bc_ptrs[level];
3333 if (ptr == 0) {
3334 XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
3335 *stat = 0;
3336 return 0;
3337 }
3338
4b22a571
CH
3339 optr = ptr;
3340
3341 XFS_BTREE_STATS_INC(cur, insrec);
3342
3343 /* Get pointers to the btree buffer and block. */
3344 block = xfs_btree_get_block(cur, level, &bp);
2c813ad6 3345 old_bn = bp ? bp->b_bn : XFS_BUF_DADDR_NULL;
4b22a571
CH
3346 numrecs = xfs_btree_get_numrecs(block);
3347
3348#ifdef DEBUG
3349 error = xfs_btree_check_block(cur, block, level, bp);
3350 if (error)
3351 goto error0;
3352
3353 /* Check that the new entry is being inserted in the right place. */
3354 if (ptr <= numrecs) {
3355 if (level == 0) {
e5821e57 3356 ASSERT(cur->bc_ops->recs_inorder(cur, rec,
4a26e66e 3357 xfs_btree_rec_addr(cur, ptr, block)));
4b22a571 3358 } else {
e5821e57 3359 ASSERT(cur->bc_ops->keys_inorder(cur, key,
4a26e66e 3360 xfs_btree_key_addr(cur, ptr, block)));
4b22a571
CH
3361 }
3362 }
3363#endif
3364
3365 /*
3366 * If the block is full, we can't insert the new entry until we
3367 * make the block un-full.
3368 */
3369 xfs_btree_set_ptr_null(cur, &nptr);
3370 if (numrecs == cur->bc_ops->get_maxrecs(cur, level)) {
3371 error = xfs_btree_make_block_unfull(cur, level, numrecs,
2c813ad6 3372 &optr, &ptr, &nptr, &ncur, lkey, stat);
4b22a571
CH
3373 if (error || *stat == 0)
3374 goto error0;
3375 }
3376
3377 /*
3378 * The current block may have changed if the block was
3379 * previously full and we have just made space in it.
3380 */
3381 block = xfs_btree_get_block(cur, level, &bp);
3382 numrecs = xfs_btree_get_numrecs(block);
3383
3384#ifdef DEBUG
3385 error = xfs_btree_check_block(cur, block, level, bp);
3386 if (error)
3387 return error;
3388#endif
3389
3390 /*
3391 * At this point we know there's room for our new entry in the block
3392 * we're pointing at.
3393 */
3394 XFS_BTREE_STATS_ADD(cur, moves, numrecs - ptr + 1);
3395
3396 if (level > 0) {
3397 /* It's a nonleaf. make a hole in the keys and ptrs */
3398 union xfs_btree_key *kp;
3399 union xfs_btree_ptr *pp;
3400
3401 kp = xfs_btree_key_addr(cur, ptr, block);
3402 pp = xfs_btree_ptr_addr(cur, ptr, block);
3403
3404#ifdef DEBUG
3405 for (i = numrecs - ptr; i >= 0; i--) {
3406 error = xfs_btree_check_ptr(cur, pp, i, level);
3407 if (error)
3408 return error;
3409 }
3410#endif
3411
3412 xfs_btree_shift_keys(cur, kp, 1, numrecs - ptr + 1);
3413 xfs_btree_shift_ptrs(cur, pp, 1, numrecs - ptr + 1);
3414
3415#ifdef DEBUG
3416 error = xfs_btree_check_ptr(cur, ptrp, 0, level);
3417 if (error)
3418 goto error0;
3419#endif
3420
3421 /* Now put the new data in, bump numrecs and log it. */
e5821e57 3422 xfs_btree_copy_keys(cur, kp, key, 1);
4b22a571
CH
3423 xfs_btree_copy_ptrs(cur, pp, ptrp, 1);
3424 numrecs++;
3425 xfs_btree_set_numrecs(block, numrecs);
3426 xfs_btree_log_ptrs(cur, bp, ptr, numrecs);
3427 xfs_btree_log_keys(cur, bp, ptr, numrecs);
3428#ifdef DEBUG
3429 if (ptr < numrecs) {
4a26e66e
CH
3430 ASSERT(cur->bc_ops->keys_inorder(cur, kp,
3431 xfs_btree_key_addr(cur, ptr + 1, block)));
4b22a571
CH
3432 }
3433#endif
3434 } else {
3435 /* It's a leaf. make a hole in the records */
3436 union xfs_btree_rec *rp;
3437
3438 rp = xfs_btree_rec_addr(cur, ptr, block);
3439
3440 xfs_btree_shift_recs(cur, rp, 1, numrecs - ptr + 1);
3441
3442 /* Now put the new data in, bump numrecs and log it. */
e5821e57 3443 xfs_btree_copy_recs(cur, rp, rec, 1);
4b22a571
CH
3444 xfs_btree_set_numrecs(block, ++numrecs);
3445 xfs_btree_log_recs(cur, bp, ptr, numrecs);
3446#ifdef DEBUG
3447 if (ptr < numrecs) {
4a26e66e
CH
3448 ASSERT(cur->bc_ops->recs_inorder(cur, rp,
3449 xfs_btree_rec_addr(cur, ptr + 1, block)));
4b22a571
CH
3450 }
3451#endif
3452 }
3453
3454 /* Log the new number of records in the btree header. */
3455 xfs_btree_log_block(cur, bp, XFS_BB_NUMRECS);
3456
2c813ad6
DW
3457 /*
3458 * If we just inserted into a new tree block, we have to
3459 * recalculate nkey here because nkey is out of date.
3460 *
3461 * Otherwise we're just updating an existing block (having shoved
3462 * some records into the new tree block), so use the regular key
3463 * update mechanism.
3464 */
3465 if (bp && bp->b_bn != old_bn) {
3466 xfs_btree_get_keys(cur, block, lkey);
3467 } else if (xfs_btree_needs_key_update(cur, optr)) {
973b8319 3468 error = xfs_btree_update_keys(cur, level);
4b22a571
CH
3469 if (error)
3470 goto error0;
3471 }
3472
3473 /*
3474 * If we are tracking the last record in the tree and
3475 * we are at the far right edge of the tree, update it.
3476 */
3477 if (xfs_btree_is_lastrec(cur, block, level)) {
e5821e57 3478 cur->bc_ops->update_lastrec(cur, block, rec,
4b22a571
CH
3479 ptr, LASTREC_INSREC);
3480 }
3481
3482 /*
3483 * Return the new block number, if any.
3484 * If there is one, give back a record value and a cursor too.
3485 */
3486 *ptrp = nptr;
3487 if (!xfs_btree_ptr_is_null(cur, &nptr)) {
2c813ad6 3488 xfs_btree_copy_keys(cur, key, lkey, 1);
4b22a571
CH
3489 *curp = ncur;
3490 }
3491
3492 XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
3493 *stat = 1;
3494 return 0;
3495
3496error0:
3497 XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR);
3498 return error;
3499}
3500
3501/*
3502 * Insert the record at the point referenced by cur.
3503 *
3504 * A multi-level split of the tree on insert will invalidate the original
3505 * cursor. All callers of this function should assume that the cursor is
3506 * no longer valid and revalidate it.
3507 */
3508int
3509xfs_btree_insert(
3510 struct xfs_btree_cur *cur,
3511 int *stat)
3512{
3513 int error; /* error return value */
3514 int i; /* result value, 0 for failure */
3515 int level; /* current level number in btree */
3516 union xfs_btree_ptr nptr; /* new block number (split result) */
3517 struct xfs_btree_cur *ncur; /* new cursor (split result) */
3518 struct xfs_btree_cur *pcur; /* previous level's cursor */
a1d46cff 3519 union xfs_btree_key bkey; /* key of block to insert */
2c813ad6 3520 union xfs_btree_key *key;
4b22a571
CH
3521 union xfs_btree_rec rec; /* record to insert */
3522
3523 level = 0;
3524 ncur = NULL;
3525 pcur = cur;
a1d46cff 3526 key = &bkey;
4b22a571
CH
3527
3528 xfs_btree_set_ptr_null(cur, &nptr);
e5821e57
DW
3529
3530 /* Make a key out of the record data to be inserted, and save it. */
4b22a571 3531 cur->bc_ops->init_rec_from_cur(cur, &rec);
2c813ad6 3532 cur->bc_ops->init_key_from_rec(key, &rec);
4b22a571
CH
3533
3534 /*
3535 * Loop going up the tree, starting at the leaf level.
3536 * Stop when we don't get a split block, that must mean that
3537 * the insert is finished with this level.
3538 */
3539 do {
3540 /*
3541 * Insert nrec/nptr into this level of the tree.
3542 * Note if we fail, nptr will be null.
3543 */
2c813ad6 3544 error = xfs_btree_insrec(pcur, level, &nptr, &rec, key,
e5821e57 3545 &ncur, &i);
4b22a571
CH
3546 if (error) {
3547 if (pcur != cur)
3548 xfs_btree_del_cursor(pcur, XFS_BTREE_ERROR);
3549 goto error0;
3550 }
3551
c29aad41 3552 XFS_WANT_CORRUPTED_GOTO(cur->bc_mp, i == 1, error0);
4b22a571
CH
3553 level++;
3554
3555 /*
3556 * See if the cursor we just used is trash.
3557 * Can't trash the caller's cursor, but otherwise we should
3558 * if ncur is a new cursor or we're about to be done.
3559 */
3560 if (pcur != cur &&
3561 (ncur || xfs_btree_ptr_is_null(cur, &nptr))) {
3562 /* Save the state from the cursor before we trash it */
3563 if (cur->bc_ops->update_cursor)
3564 cur->bc_ops->update_cursor(pcur, cur);
3565 cur->bc_nlevels = pcur->bc_nlevels;
3566 xfs_btree_del_cursor(pcur, XFS_BTREE_NOERROR);
3567 }
3568 /* If we got a new cursor, switch to it. */
3569 if (ncur) {
3570 pcur = ncur;
3571 ncur = NULL;
3572 }
3573 } while (!xfs_btree_ptr_is_null(cur, &nptr));
3574
3575 XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
3576 *stat = i;
3577 return 0;
3578error0:
3579 XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR);
3580 return error;
3581}
d4b3a4b7
CH
3582
3583/*
3584 * Try to merge a non-leaf block back into the inode root.
3585 *
3586 * Note: the killroot names comes from the fact that we're effectively
3587 * killing the old root block. But because we can't just delete the
3588 * inode we have to copy the single block it was pointing to into the
3589 * inode.
3590 */
d96f8f89 3591STATIC int
d4b3a4b7
CH
3592xfs_btree_kill_iroot(
3593 struct xfs_btree_cur *cur)
3594{
3595 int whichfork = cur->bc_private.b.whichfork;
3596 struct xfs_inode *ip = cur->bc_private.b.ip;
3597 struct xfs_ifork *ifp = XFS_IFORK_PTR(ip, whichfork);
3598 struct xfs_btree_block *block;
3599 struct xfs_btree_block *cblock;
3600 union xfs_btree_key *kp;
3601 union xfs_btree_key *ckp;
3602 union xfs_btree_ptr *pp;
3603 union xfs_btree_ptr *cpp;
3604 struct xfs_buf *cbp;
3605 int level;
3606 int index;
3607 int numrecs;
196328ec 3608 int error;
d4b3a4b7
CH
3609#ifdef DEBUG
3610 union xfs_btree_ptr ptr;
3611 int i;
3612#endif
3613
3614 XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
3615
3616 ASSERT(cur->bc_flags & XFS_BTREE_ROOT_IN_INODE);
3617 ASSERT(cur->bc_nlevels > 1);
3618
3619 /*
3620 * Don't deal with the root block needs to be a leaf case.
3621 * We're just going to turn the thing back into extents anyway.
3622 */
3623 level = cur->bc_nlevels - 1;
3624 if (level == 1)
3625 goto out0;
3626
3627 /*
3628 * Give up if the root has multiple children.
3629 */
3630 block = xfs_btree_get_iroot(cur);
3631 if (xfs_btree_get_numrecs(block) != 1)
3632 goto out0;
3633
3634 cblock = xfs_btree_get_block(cur, level - 1, &cbp);
3635 numrecs = xfs_btree_get_numrecs(cblock);
3636
3637 /*
3638 * Only do this if the next level will fit.
3639 * Then the data must be copied up to the inode,
3640 * instead of freeing the root you free the next level.
3641 */
3642 if (numrecs > cur->bc_ops->get_dmaxrecs(cur, level))
3643 goto out0;
3644
3645 XFS_BTREE_STATS_INC(cur, killroot);
3646
3647#ifdef DEBUG
3648 xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_LEFTSIB);
3649 ASSERT(xfs_btree_ptr_is_null(cur, &ptr));
3650 xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_RIGHTSIB);
3651 ASSERT(xfs_btree_ptr_is_null(cur, &ptr));
3652#endif
3653
3654 index = numrecs - cur->bc_ops->get_maxrecs(cur, level);
3655 if (index) {
3656 xfs_iroot_realloc(cur->bc_private.b.ip, index,
3657 cur->bc_private.b.whichfork);
7cc95a82 3658 block = ifp->if_broot;
d4b3a4b7
CH
3659 }
3660
3661 be16_add_cpu(&block->bb_numrecs, index);
3662 ASSERT(block->bb_numrecs == cblock->bb_numrecs);
3663
3664 kp = xfs_btree_key_addr(cur, 1, block);
3665 ckp = xfs_btree_key_addr(cur, 1, cblock);
3666 xfs_btree_copy_keys(cur, kp, ckp, numrecs);
3667
3668 pp = xfs_btree_ptr_addr(cur, 1, block);
3669 cpp = xfs_btree_ptr_addr(cur, 1, cblock);
3670#ifdef DEBUG
3671 for (i = 0; i < numrecs; i++) {
d4b3a4b7
CH
3672 error = xfs_btree_check_ptr(cur, cpp, i, level - 1);
3673 if (error) {
3674 XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR);
3675 return error;
3676 }
3677 }
3678#endif
3679 xfs_btree_copy_ptrs(cur, pp, cpp, numrecs);
3680
c46ee8ad 3681 error = xfs_btree_free_block(cur, cbp);
196328ec
CH
3682 if (error) {
3683 XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR);
3684 return error;
3685 }
d4b3a4b7
CH
3686
3687 cur->bc_bufs[level - 1] = NULL;
3688 be16_add_cpu(&block->bb_level, -1);
3689 xfs_trans_log_inode(cur->bc_tp, ip,
9d87c319 3690 XFS_ILOG_CORE | xfs_ilog_fbroot(cur->bc_private.b.whichfork));
d4b3a4b7
CH
3691 cur->bc_nlevels--;
3692out0:
3693 XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
3694 return 0;
3695}
91cca5df 3696
c0e59e1a
CH
3697/*
3698 * Kill the current root node, and replace it with it's only child node.
3699 */
3700STATIC int
3701xfs_btree_kill_root(
3702 struct xfs_btree_cur *cur,
3703 struct xfs_buf *bp,
3704 int level,
3705 union xfs_btree_ptr *newroot)
3706{
3707 int error;
3708
3709 XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
3710 XFS_BTREE_STATS_INC(cur, killroot);
3711
3712 /*
3713 * Update the root pointer, decreasing the level by 1 and then
3714 * free the old root.
3715 */
3716 cur->bc_ops->set_root(cur, newroot, -1);
3717
c46ee8ad 3718 error = xfs_btree_free_block(cur, bp);
c0e59e1a
CH
3719 if (error) {
3720 XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR);
3721 return error;
3722 }
3723
c0e59e1a
CH
3724 cur->bc_bufs[level] = NULL;
3725 cur->bc_ra[level] = 0;
3726 cur->bc_nlevels--;
3727
3728 XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
3729 return 0;
3730}
3731
91cca5df
CH
3732STATIC int
3733xfs_btree_dec_cursor(
3734 struct xfs_btree_cur *cur,
3735 int level,
3736 int *stat)
3737{
3738 int error;
3739 int i;
3740
3741 if (level > 0) {
3742 error = xfs_btree_decrement(cur, level, &i);
3743 if (error)
3744 return error;
3745 }
3746
3747 XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
3748 *stat = 1;
3749 return 0;
3750}
3751
3752/*
3753 * Single level of the btree record deletion routine.
3754 * Delete record pointed to by cur/level.
3755 * Remove the record from its block then rebalance the tree.
3756 * Return 0 for error, 1 for done, 2 to go on to the next level.
3757 */
3758STATIC int /* error */
3759xfs_btree_delrec(
3760 struct xfs_btree_cur *cur, /* btree cursor */
3761 int level, /* level removing record from */
3762 int *stat) /* fail/done/go-on */
3763{
3764 struct xfs_btree_block *block; /* btree block */
3765 union xfs_btree_ptr cptr; /* current block ptr */
3766 struct xfs_buf *bp; /* buffer for block */
3767 int error; /* error return value */
3768 int i; /* loop counter */
91cca5df
CH
3769 union xfs_btree_ptr lptr; /* left sibling block ptr */
3770 struct xfs_buf *lbp; /* left buffer pointer */
3771 struct xfs_btree_block *left; /* left btree block */
3772 int lrecs = 0; /* left record count */
3773 int ptr; /* key/record index */
3774 union xfs_btree_ptr rptr; /* right sibling block ptr */
3775 struct xfs_buf *rbp; /* right buffer pointer */
3776 struct xfs_btree_block *right; /* right btree block */
3777 struct xfs_btree_block *rrblock; /* right-right btree block */
3778 struct xfs_buf *rrbp; /* right-right buffer pointer */
3779 int rrecs = 0; /* right record count */
3780 struct xfs_btree_cur *tcur; /* temporary btree cursor */
3781 int numrecs; /* temporary numrec count */
3782
3783 XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
3784 XFS_BTREE_TRACE_ARGI(cur, level);
3785
3786 tcur = NULL;
3787
3788 /* Get the index of the entry being deleted, check for nothing there. */
3789 ptr = cur->bc_ptrs[level];
3790 if (ptr == 0) {
3791 XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
3792 *stat = 0;
3793 return 0;
3794 }
3795
3796 /* Get the buffer & block containing the record or key/ptr. */
3797 block = xfs_btree_get_block(cur, level, &bp);
3798 numrecs = xfs_btree_get_numrecs(block);
3799
3800#ifdef DEBUG
3801 error = xfs_btree_check_block(cur, block, level, bp);
3802 if (error)
3803 goto error0;
3804#endif
3805
3806 /* Fail if we're off the end of the block. */
3807 if (ptr > numrecs) {
3808 XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
3809 *stat = 0;
3810 return 0;
3811 }
3812
3813 XFS_BTREE_STATS_INC(cur, delrec);
3814 XFS_BTREE_STATS_ADD(cur, moves, numrecs - ptr);
3815
3816 /* Excise the entries being deleted. */
3817 if (level > 0) {
3818 /* It's a nonleaf. operate on keys and ptrs */
3819 union xfs_btree_key *lkp;
3820 union xfs_btree_ptr *lpp;
3821
3822 lkp = xfs_btree_key_addr(cur, ptr + 1, block);
3823 lpp = xfs_btree_ptr_addr(cur, ptr + 1, block);
3824
3825#ifdef DEBUG
3826 for (i = 0; i < numrecs - ptr; i++) {
3827 error = xfs_btree_check_ptr(cur, lpp, i, level);
3828 if (error)
3829 goto error0;
3830 }
3831#endif
3832
3833 if (ptr < numrecs) {
3834 xfs_btree_shift_keys(cur, lkp, -1, numrecs - ptr);
3835 xfs_btree_shift_ptrs(cur, lpp, -1, numrecs - ptr);
3836 xfs_btree_log_keys(cur, bp, ptr, numrecs - 1);
3837 xfs_btree_log_ptrs(cur, bp, ptr, numrecs - 1);
3838 }
91cca5df
CH
3839 } else {
3840 /* It's a leaf. operate on records */
3841 if (ptr < numrecs) {
3842 xfs_btree_shift_recs(cur,
3843 xfs_btree_rec_addr(cur, ptr + 1, block),
3844 -1, numrecs - ptr);
3845 xfs_btree_log_recs(cur, bp, ptr, numrecs - 1);
3846 }
91cca5df
CH
3847 }
3848
3849 /*
3850 * Decrement and log the number of entries in the block.
3851 */
3852 xfs_btree_set_numrecs(block, --numrecs);
3853 xfs_btree_log_block(cur, bp, XFS_BB_NUMRECS);
3854
3855 /*
3856 * If we are tracking the last record in the tree and
3857 * we are at the far right edge of the tree, update it.
3858 */
3859 if (xfs_btree_is_lastrec(cur, block, level)) {
3860 cur->bc_ops->update_lastrec(cur, block, NULL,
3861 ptr, LASTREC_DELREC);
3862 }
3863
3864 /*
3865 * We're at the root level. First, shrink the root block in-memory.
3866 * Try to get rid of the next level down. If we can't then there's
3867 * nothing left to do.
3868 */
3869 if (level == cur->bc_nlevels - 1) {
3870 if (cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) {
3871 xfs_iroot_realloc(cur->bc_private.b.ip, -1,
3872 cur->bc_private.b.whichfork);
3873
3874 error = xfs_btree_kill_iroot(cur);
3875 if (error)
3876 goto error0;
3877
3878 error = xfs_btree_dec_cursor(cur, level, stat);
3879 if (error)
3880 goto error0;
3881 *stat = 1;
3882 return 0;
3883 }
3884
3885 /*
3886 * If this is the root level, and there's only one entry left,
3887 * and it's NOT the leaf level, then we can get rid of this
3888 * level.
3889 */
3890 if (numrecs == 1 && level > 0) {
3891 union xfs_btree_ptr *pp;
3892 /*
3893 * pp is still set to the first pointer in the block.
3894 * Make it the new root of the btree.
3895 */
3896 pp = xfs_btree_ptr_addr(cur, 1, block);
c0e59e1a 3897 error = xfs_btree_kill_root(cur, bp, level, pp);
91cca5df
CH
3898 if (error)
3899 goto error0;
3900 } else if (level > 0) {
3901 error = xfs_btree_dec_cursor(cur, level, stat);
3902 if (error)
3903 goto error0;
3904 }
3905 *stat = 1;
3906 return 0;
3907 }
3908
3909 /*
3910 * If we deleted the leftmost entry in the block, update the
3911 * key values above us in the tree.
3912 */
70b22659 3913 if (xfs_btree_needs_key_update(cur, ptr)) {
973b8319 3914 error = xfs_btree_update_keys(cur, level);
91cca5df
CH
3915 if (error)
3916 goto error0;
3917 }
3918
3919 /*
3920 * If the number of records remaining in the block is at least
3921 * the minimum, we're done.
3922 */
3923 if (numrecs >= cur->bc_ops->get_minrecs(cur, level)) {
3924 error = xfs_btree_dec_cursor(cur, level, stat);
3925 if (error)
3926 goto error0;
3927 return 0;
3928 }
3929
3930 /*
3931 * Otherwise, we have to move some records around to keep the
3932 * tree balanced. Look at the left and right sibling blocks to
3933 * see if we can re-balance by moving only one record.
3934 */
3935 xfs_btree_get_sibling(cur, block, &rptr, XFS_BB_RIGHTSIB);
3936 xfs_btree_get_sibling(cur, block, &lptr, XFS_BB_LEFTSIB);
3937
3938 if (cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) {
3939 /*
3940 * One child of root, need to get a chance to copy its contents
3941 * into the root and delete it. Can't go up to next level,
3942 * there's nothing to delete there.
3943 */
3944 if (xfs_btree_ptr_is_null(cur, &rptr) &&
3945 xfs_btree_ptr_is_null(cur, &lptr) &&
3946 level == cur->bc_nlevels - 2) {
3947 error = xfs_btree_kill_iroot(cur);
3948 if (!error)
3949 error = xfs_btree_dec_cursor(cur, level, stat);
3950 if (error)
3951 goto error0;
3952 return 0;
3953 }
3954 }
3955
3956 ASSERT(!xfs_btree_ptr_is_null(cur, &rptr) ||
3957 !xfs_btree_ptr_is_null(cur, &lptr));
3958
3959 /*
3960 * Duplicate the cursor so our btree manipulations here won't
3961 * disrupt the next level up.
3962 */
3963 error = xfs_btree_dup_cursor(cur, &tcur);
3964 if (error)
3965 goto error0;
3966
3967 /*
3968 * If there's a right sibling, see if it's ok to shift an entry
3969 * out of it.
3970 */
3971 if (!xfs_btree_ptr_is_null(cur, &rptr)) {
3972 /*
3973 * Move the temp cursor to the last entry in the next block.
3974 * Actually any entry but the first would suffice.
3975 */
3976 i = xfs_btree_lastrec(tcur, level);
c29aad41 3977 XFS_WANT_CORRUPTED_GOTO(cur->bc_mp, i == 1, error0);
91cca5df
CH
3978
3979 error = xfs_btree_increment(tcur, level, &i);
3980 if (error)
3981 goto error0;
c29aad41 3982 XFS_WANT_CORRUPTED_GOTO(cur->bc_mp, i == 1, error0);
91cca5df
CH
3983
3984 i = xfs_btree_lastrec(tcur, level);
c29aad41 3985 XFS_WANT_CORRUPTED_GOTO(cur->bc_mp, i == 1, error0);
91cca5df
CH
3986
3987 /* Grab a pointer to the block. */
3988 right = xfs_btree_get_block(tcur, level, &rbp);
3989#ifdef DEBUG
3990 error = xfs_btree_check_block(tcur, right, level, rbp);
3991 if (error)
3992 goto error0;
3993#endif
3994 /* Grab the current block number, for future use. */
3995 xfs_btree_get_sibling(tcur, right, &cptr, XFS_BB_LEFTSIB);
3996
3997 /*
3998 * If right block is full enough so that removing one entry
3999 * won't make it too empty, and left-shifting an entry out
4000 * of right to us works, we're done.
4001 */
4002 if (xfs_btree_get_numrecs(right) - 1 >=
4003 cur->bc_ops->get_minrecs(tcur, level)) {
4004 error = xfs_btree_lshift(tcur, level, &i);
4005 if (error)
4006 goto error0;
4007 if (i) {
4008 ASSERT(xfs_btree_get_numrecs(block) >=
4009 cur->bc_ops->get_minrecs(tcur, level));
4010
4011 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
4012 tcur = NULL;
4013
4014 error = xfs_btree_dec_cursor(cur, level, stat);
4015 if (error)
4016 goto error0;
4017 return 0;
4018 }
4019 }
4020
4021 /*
4022 * Otherwise, grab the number of records in right for
4023 * future reference, and fix up the temp cursor to point
4024 * to our block again (last record).
4025 */
4026 rrecs = xfs_btree_get_numrecs(right);
4027 if (!xfs_btree_ptr_is_null(cur, &lptr)) {
4028 i = xfs_btree_firstrec(tcur, level);
c29aad41 4029 XFS_WANT_CORRUPTED_GOTO(cur->bc_mp, i == 1, error0);
91cca5df
CH
4030
4031 error = xfs_btree_decrement(tcur, level, &i);
4032 if (error)
4033 goto error0;
c29aad41 4034 XFS_WANT_CORRUPTED_GOTO(cur->bc_mp, i == 1, error0);
91cca5df
CH
4035 }
4036 }
4037
4038 /*
4039 * If there's a left sibling, see if it's ok to shift an entry
4040 * out of it.
4041 */
4042 if (!xfs_btree_ptr_is_null(cur, &lptr)) {
4043 /*
4044 * Move the temp cursor to the first entry in the
4045 * previous block.
4046 */
4047 i = xfs_btree_firstrec(tcur, level);
c29aad41 4048 XFS_WANT_CORRUPTED_GOTO(cur->bc_mp, i == 1, error0);
91cca5df
CH
4049
4050 error = xfs_btree_decrement(tcur, level, &i);
4051 if (error)
4052 goto error0;
4053 i = xfs_btree_firstrec(tcur, level);
c29aad41 4054 XFS_WANT_CORRUPTED_GOTO(cur->bc_mp, i == 1, error0);
91cca5df
CH
4055
4056 /* Grab a pointer to the block. */
4057 left = xfs_btree_get_block(tcur, level, &lbp);
4058#ifdef DEBUG
4059 error = xfs_btree_check_block(cur, left, level, lbp);
4060 if (error)
4061 goto error0;
4062#endif
4063 /* Grab the current block number, for future use. */
4064 xfs_btree_get_sibling(tcur, left, &cptr, XFS_BB_RIGHTSIB);
4065
4066 /*
4067 * If left block is full enough so that removing one entry
4068 * won't make it too empty, and right-shifting an entry out
4069 * of left to us works, we're done.
4070 */
4071 if (xfs_btree_get_numrecs(left) - 1 >=
4072 cur->bc_ops->get_minrecs(tcur, level)) {
4073 error = xfs_btree_rshift(tcur, level, &i);
4074 if (error)
4075 goto error0;
4076 if (i) {
4077 ASSERT(xfs_btree_get_numrecs(block) >=
4078 cur->bc_ops->get_minrecs(tcur, level));
4079 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
4080 tcur = NULL;
4081 if (level == 0)
4082 cur->bc_ptrs[0]++;
4083 XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
4084 *stat = 1;
4085 return 0;
4086 }
4087 }
4088
4089 /*
4090 * Otherwise, grab the number of records in right for
4091 * future reference.
4092 */
4093 lrecs = xfs_btree_get_numrecs(left);
4094 }
4095
4096 /* Delete the temp cursor, we're done with it. */
4097 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
4098 tcur = NULL;
4099
4100 /* If here, we need to do a join to keep the tree balanced. */
4101 ASSERT(!xfs_btree_ptr_is_null(cur, &cptr));
4102
4103 if (!xfs_btree_ptr_is_null(cur, &lptr) &&
4104 lrecs + xfs_btree_get_numrecs(block) <=
4105 cur->bc_ops->get_maxrecs(cur, level)) {
4106 /*
4107 * Set "right" to be the starting block,
4108 * "left" to be the left neighbor.
4109 */
4110 rptr = cptr;
4111 right = block;
4112 rbp = bp;
0d7409b1 4113 error = xfs_btree_read_buf_block(cur, &lptr, 0, &left, &lbp);
91cca5df
CH
4114 if (error)
4115 goto error0;
4116
4117 /*
4118 * If that won't work, see if we can join with the right neighbor block.
4119 */
4120 } else if (!xfs_btree_ptr_is_null(cur, &rptr) &&
4121 rrecs + xfs_btree_get_numrecs(block) <=
4122 cur->bc_ops->get_maxrecs(cur, level)) {
4123 /*
4124 * Set "left" to be the starting block,
4125 * "right" to be the right neighbor.
4126 */
4127 lptr = cptr;
4128 left = block;
4129 lbp = bp;
0d7409b1 4130 error = xfs_btree_read_buf_block(cur, &rptr, 0, &right, &rbp);
91cca5df
CH
4131 if (error)
4132 goto error0;
4133
4134 /*
4135 * Otherwise, we can't fix the imbalance.
4136 * Just return. This is probably a logic error, but it's not fatal.
4137 */
4138 } else {
4139 error = xfs_btree_dec_cursor(cur, level, stat);
4140 if (error)
4141 goto error0;
4142 return 0;
4143 }
4144
4145 rrecs = xfs_btree_get_numrecs(right);
4146 lrecs = xfs_btree_get_numrecs(left);
4147
4148 /*
4149 * We're now going to join "left" and "right" by moving all the stuff
4150 * in "right" to "left" and deleting "right".
4151 */
4152 XFS_BTREE_STATS_ADD(cur, moves, rrecs);
4153 if (level > 0) {
4154 /* It's a non-leaf. Move keys and pointers. */
4155 union xfs_btree_key *lkp; /* left btree key */
4156 union xfs_btree_ptr *lpp; /* left address pointer */
4157 union xfs_btree_key *rkp; /* right btree key */
4158 union xfs_btree_ptr *rpp; /* right address pointer */
4159
4160 lkp = xfs_btree_key_addr(cur, lrecs + 1, left);
4161 lpp = xfs_btree_ptr_addr(cur, lrecs + 1, left);
4162 rkp = xfs_btree_key_addr(cur, 1, right);
4163 rpp = xfs_btree_ptr_addr(cur, 1, right);
4164#ifdef DEBUG
4165 for (i = 1; i < rrecs; i++) {
4166 error = xfs_btree_check_ptr(cur, rpp, i, level);
4167 if (error)
4168 goto error0;
4169 }
4170#endif
4171 xfs_btree_copy_keys(cur, lkp, rkp, rrecs);
4172 xfs_btree_copy_ptrs(cur, lpp, rpp, rrecs);
4173
4174 xfs_btree_log_keys(cur, lbp, lrecs + 1, lrecs + rrecs);
4175 xfs_btree_log_ptrs(cur, lbp, lrecs + 1, lrecs + rrecs);
4176 } else {
4177 /* It's a leaf. Move records. */
4178 union xfs_btree_rec *lrp; /* left record pointer */
4179 union xfs_btree_rec *rrp; /* right record pointer */
4180
4181 lrp = xfs_btree_rec_addr(cur, lrecs + 1, left);
4182 rrp = xfs_btree_rec_addr(cur, 1, right);
4183
4184 xfs_btree_copy_recs(cur, lrp, rrp, rrecs);
4185 xfs_btree_log_recs(cur, lbp, lrecs + 1, lrecs + rrecs);
4186 }
4187
4188 XFS_BTREE_STATS_INC(cur, join);
4189
4190 /*
9da096fd 4191 * Fix up the number of records and right block pointer in the
91cca5df
CH
4192 * surviving block, and log it.
4193 */
4194 xfs_btree_set_numrecs(left, lrecs + rrecs);
4195 xfs_btree_get_sibling(cur, right, &cptr, XFS_BB_RIGHTSIB),
4196 xfs_btree_set_sibling(cur, left, &cptr, XFS_BB_RIGHTSIB);
4197 xfs_btree_log_block(cur, lbp, XFS_BB_NUMRECS | XFS_BB_RIGHTSIB);
4198
4199 /* If there is a right sibling, point it to the remaining block. */
4200 xfs_btree_get_sibling(cur, left, &cptr, XFS_BB_RIGHTSIB);
4201 if (!xfs_btree_ptr_is_null(cur, &cptr)) {
0d7409b1 4202 error = xfs_btree_read_buf_block(cur, &cptr, 0, &rrblock, &rrbp);
91cca5df
CH
4203 if (error)
4204 goto error0;
4205 xfs_btree_set_sibling(cur, rrblock, &lptr, XFS_BB_LEFTSIB);
4206 xfs_btree_log_block(cur, rrbp, XFS_BB_LEFTSIB);
4207 }
4208
4209 /* Free the deleted block. */
c46ee8ad 4210 error = xfs_btree_free_block(cur, rbp);
91cca5df
CH
4211 if (error)
4212 goto error0;
91cca5df
CH
4213
4214 /*
4215 * If we joined with the left neighbor, set the buffer in the
4216 * cursor to the left block, and fix up the index.
4217 */
4218 if (bp != lbp) {
4219 cur->bc_bufs[level] = lbp;
4220 cur->bc_ptrs[level] += lrecs;
4221 cur->bc_ra[level] = 0;
4222 }
4223 /*
4224 * If we joined with the right neighbor and there's a level above
4225 * us, increment the cursor at that level.
4226 */
4227 else if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) ||
4228 (level + 1 < cur->bc_nlevels)) {
4229 error = xfs_btree_increment(cur, level + 1, &i);
4230 if (error)
4231 goto error0;
4232 }
4233
4234 /*
4235 * Readjust the ptr at this level if it's not a leaf, since it's
4236 * still pointing at the deletion point, which makes the cursor
4237 * inconsistent. If this makes the ptr 0, the caller fixes it up.
4238 * We can't use decrement because it would change the next level up.
4239 */
4240 if (level > 0)
4241 cur->bc_ptrs[level]--;
4242
2c813ad6
DW
4243 /*
4244 * We combined blocks, so we have to update the parent keys if the
4245 * btree supports overlapped intervals. However, bc_ptrs[level + 1]
4246 * points to the old block so that the caller knows which record to
4247 * delete. Therefore, the caller must be savvy enough to call updkeys
4248 * for us if we return stat == 2. The other exit points from this
4249 * function don't require deletions further up the tree, so they can
4250 * call updkeys directly.
4251 */
4252
91cca5df
CH
4253 XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
4254 /* Return value means the next level up has something to do. */
4255 *stat = 2;
4256 return 0;
4257
4258error0:
4259 XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR);
4260 if (tcur)
4261 xfs_btree_del_cursor(tcur, XFS_BTREE_ERROR);
4262 return error;
4263}
4264
4265/*
4266 * Delete the record pointed to by cur.
4267 * The cursor refers to the place where the record was (could be inserted)
4268 * when the operation returns.
4269 */
4270int /* error */
4271xfs_btree_delete(
4272 struct xfs_btree_cur *cur,
4273 int *stat) /* success/failure */
4274{
4275 int error; /* error return value */
4276 int level;
4277 int i;
2c813ad6 4278 bool joined = false;
91cca5df
CH
4279
4280 XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
4281
4282 /*
4283 * Go up the tree, starting at leaf level.
4284 *
4285 * If 2 is returned then a join was done; go to the next level.
4286 * Otherwise we are done.
4287 */
4288 for (level = 0, i = 2; i == 2; level++) {
4289 error = xfs_btree_delrec(cur, level, &i);
4290 if (error)
4291 goto error0;
2c813ad6
DW
4292 if (i == 2)
4293 joined = true;
4294 }
4295
4296 /*
4297 * If we combined blocks as part of deleting the record, delrec won't
4298 * have updated the parent high keys so we have to do that here.
4299 */
4300 if (joined && (cur->bc_flags & XFS_BTREE_OVERLAPPING)) {
4301 error = xfs_btree_updkeys_force(cur, 0);
4302 if (error)
4303 goto error0;
91cca5df
CH
4304 }
4305
4306 if (i == 0) {
4307 for (level = 1; level < cur->bc_nlevels; level++) {
4308 if (cur->bc_ptrs[level] == 0) {
4309 error = xfs_btree_decrement(cur, level, &i);
4310 if (error)
4311 goto error0;
4312 break;
4313 }
4314 }
4315 }
4316
4317 XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
4318 *stat = i;
4319 return 0;
4320error0:
4321 XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR);
4322 return error;
4323}
8cc938fe
CH
4324
4325/*
4326 * Get the data from the pointed-to record.
4327 */
4328int /* error */
4329xfs_btree_get_rec(
4330 struct xfs_btree_cur *cur, /* btree cursor */
4331 union xfs_btree_rec **recp, /* output: btree record */
4332 int *stat) /* output: success/failure */
4333{
4334 struct xfs_btree_block *block; /* btree block */
4335 struct xfs_buf *bp; /* buffer pointer */
4336 int ptr; /* record number */
4337#ifdef DEBUG
4338 int error; /* error return value */
4339#endif
4340
4341 ptr = cur->bc_ptrs[0];
4342 block = xfs_btree_get_block(cur, 0, &bp);
4343
4344#ifdef DEBUG
4345 error = xfs_btree_check_block(cur, block, 0, bp);
4346 if (error)
4347 return error;
4348#endif
4349
4350 /*
4351 * Off the right end or left end, return failure.
4352 */
4353 if (ptr > xfs_btree_get_numrecs(block) || ptr <= 0) {
4354 *stat = 0;
4355 return 0;
4356 }
4357
4358 /*
4359 * Point to the record and extract its data.
4360 */
4361 *recp = xfs_btree_rec_addr(cur, ptr, block);
4362 *stat = 1;
4363 return 0;
4364}
21b5c978 4365
28a89567
DW
4366/* Visit a block in a btree. */
4367STATIC int
4368xfs_btree_visit_block(
4369 struct xfs_btree_cur *cur,
4370 int level,
4371 xfs_btree_visit_blocks_fn fn,
4372 void *data)
4373{
4374 struct xfs_btree_block *block;
4375 struct xfs_buf *bp;
4376 union xfs_btree_ptr rptr;
4377 int error;
4378
4379 /* do right sibling readahead */
4380 xfs_btree_readahead(cur, level, XFS_BTCUR_RIGHTRA);
4381 block = xfs_btree_get_block(cur, level, &bp);
4382
4383 /* process the block */
4384 error = fn(cur, level, data);
4385 if (error)
4386 return error;
4387
4388 /* now read rh sibling block for next iteration */
4389 xfs_btree_get_sibling(cur, block, &rptr, XFS_BB_RIGHTSIB);
4390 if (xfs_btree_ptr_is_null(cur, &rptr))
4391 return -ENOENT;
4392
4393 return xfs_btree_lookup_get_block(cur, level, &rptr, &block);
4394}
4395
4396
4397/* Visit every block in a btree. */
4398int
4399xfs_btree_visit_blocks(
4400 struct xfs_btree_cur *cur,
4401 xfs_btree_visit_blocks_fn fn,
4402 void *data)
4403{
4404 union xfs_btree_ptr lptr;
4405 int level;
4406 struct xfs_btree_block *block = NULL;
4407 int error = 0;
4408
4409 cur->bc_ops->init_ptr_from_cur(cur, &lptr);
4410
4411 /* for each level */
4412 for (level = cur->bc_nlevels - 1; level >= 0; level--) {
4413 /* grab the left hand block */
4414 error = xfs_btree_lookup_get_block(cur, level, &lptr, &block);
4415 if (error)
4416 return error;
4417
4418 /* readahead the left most block for the next level down */
4419 if (level > 0) {
4420 union xfs_btree_ptr *ptr;
4421
4422 ptr = xfs_btree_ptr_addr(cur, 1, block);
4423 xfs_btree_readahead_ptr(cur, ptr, 1);
4424
4425 /* save for the next iteration of the loop */
a4d768e7 4426 xfs_btree_copy_ptrs(cur, &lptr, ptr, 1);
28a89567
DW
4427 }
4428
4429 /* for each buffer in the level */
4430 do {
4431 error = xfs_btree_visit_block(cur, level, fn, data);
4432 } while (!error);
4433
4434 if (error != -ENOENT)
4435 return error;
4436 }
4437
4438 return 0;
4439}
4440
21b5c978
DC
4441/*
4442 * Change the owner of a btree.
4443 *
4444 * The mechanism we use here is ordered buffer logging. Because we don't know
4445 * how many buffers were are going to need to modify, we don't really want to
4446 * have to make transaction reservations for the worst case of every buffer in a
4447 * full size btree as that may be more space that we can fit in the log....
4448 *
4449 * We do the btree walk in the most optimal manner possible - we have sibling
4450 * pointers so we can just walk all the blocks on each level from left to right
4451 * in a single pass, and then move to the next level and do the same. We can
4452 * also do readahead on the sibling pointers to get IO moving more quickly,
4453 * though for slow disks this is unlikely to make much difference to performance
4454 * as the amount of CPU work we have to do before moving to the next block is
4455 * relatively small.
4456 *
4457 * For each btree block that we load, modify the owner appropriately, set the
4458 * buffer as an ordered buffer and log it appropriately. We need to ensure that
4459 * we mark the region we change dirty so that if the buffer is relogged in
4460 * a subsequent transaction the changes we make here as an ordered buffer are
638f4416
DC
4461 * correctly relogged in that transaction. If we are in recovery context, then
4462 * just queue the modified buffer as delayed write buffer so the transaction
4463 * recovery completion writes the changes to disk.
21b5c978 4464 */
28a89567 4465struct xfs_btree_block_change_owner_info {
c8ce540d 4466 uint64_t new_owner;
28a89567
DW
4467 struct list_head *buffer_list;
4468};
4469
21b5c978
DC
4470static int
4471xfs_btree_block_change_owner(
4472 struct xfs_btree_cur *cur,
4473 int level,
28a89567 4474 void *data)
21b5c978 4475{
28a89567 4476 struct xfs_btree_block_change_owner_info *bbcoi = data;
21b5c978
DC
4477 struct xfs_btree_block *block;
4478 struct xfs_buf *bp;
21b5c978
DC
4479
4480 /* modify the owner */
4481 block = xfs_btree_get_block(cur, level, &bp);
2dd3d709
BF
4482 if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
4483 if (block->bb_u.l.bb_owner == cpu_to_be64(bbcoi->new_owner))
4484 return 0;
28a89567 4485 block->bb_u.l.bb_owner = cpu_to_be64(bbcoi->new_owner);
2dd3d709
BF
4486 } else {
4487 if (block->bb_u.s.bb_owner == cpu_to_be32(bbcoi->new_owner))
4488 return 0;
28a89567 4489 block->bb_u.s.bb_owner = cpu_to_be32(bbcoi->new_owner);
2dd3d709 4490 }
21b5c978
DC
4491
4492 /*
638f4416
DC
4493 * If the block is a root block hosted in an inode, we might not have a
4494 * buffer pointer here and we shouldn't attempt to log the change as the
4495 * information is already held in the inode and discarded when the root
4496 * block is formatted into the on-disk inode fork. We still change it,
4497 * though, so everything is consistent in memory.
21b5c978 4498 */
2dd3d709 4499 if (!bp) {
21b5c978
DC
4500 ASSERT(cur->bc_flags & XFS_BTREE_ROOT_IN_INODE);
4501 ASSERT(level == cur->bc_nlevels - 1);
2dd3d709
BF
4502 return 0;
4503 }
4504
4505 if (cur->bc_tp) {
4506 if (!xfs_trans_ordered_buf(cur->bc_tp, bp)) {
4507 xfs_btree_log_block(cur, bp, XFS_BB_OWNER);
4508 return -EAGAIN;
4509 }
4510 } else {
4511 xfs_buf_delwri_queue(bp, bbcoi->buffer_list);
21b5c978
DC
4512 }
4513
28a89567 4514 return 0;
21b5c978
DC
4515}
4516
4517int
4518xfs_btree_change_owner(
4519 struct xfs_btree_cur *cur,
c8ce540d 4520 uint64_t new_owner,
638f4416 4521 struct list_head *buffer_list)
21b5c978 4522{
28a89567 4523 struct xfs_btree_block_change_owner_info bbcoi;
21b5c978 4524
28a89567
DW
4525 bbcoi.new_owner = new_owner;
4526 bbcoi.buffer_list = buffer_list;
21b5c978 4527
28a89567
DW
4528 return xfs_btree_visit_blocks(cur, xfs_btree_block_change_owner,
4529 &bbcoi);
21b5c978 4530}
c5ab131b
DW
4531
4532/**
4533 * xfs_btree_sblock_v5hdr_verify() -- verify the v5 fields of a short-format
4534 * btree block
4535 *
4536 * @bp: buffer containing the btree block
4537 * @max_recs: pointer to the m_*_mxr max records field in the xfs mount
4538 * @pag_max_level: pointer to the per-ag max level field
4539 */
4540bool
4541xfs_btree_sblock_v5hdr_verify(
4542 struct xfs_buf *bp)
4543{
4544 struct xfs_mount *mp = bp->b_target->bt_mount;
4545 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp);
4546 struct xfs_perag *pag = bp->b_pag;
4547
4548 if (!xfs_sb_version_hascrc(&mp->m_sb))
4549 return false;
4550 if (!uuid_equal(&block->bb_u.s.bb_uuid, &mp->m_sb.sb_meta_uuid))
4551 return false;
4552 if (block->bb_u.s.bb_blkno != cpu_to_be64(bp->b_bn))
4553 return false;
4554 if (pag && be32_to_cpu(block->bb_u.s.bb_owner) != pag->pag_agno)
4555 return false;
4556 return true;
4557}
4558
4559/**
4560 * xfs_btree_sblock_verify() -- verify a short-format btree block
4561 *
4562 * @bp: buffer containing the btree block
4563 * @max_recs: maximum records allowed in this btree node
4564 */
4565bool
4566xfs_btree_sblock_verify(
4567 struct xfs_buf *bp,
4568 unsigned int max_recs)
4569{
4570 struct xfs_mount *mp = bp->b_target->bt_mount;
4571 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp);
4572
4573 /* numrecs verification */
4574 if (be16_to_cpu(block->bb_numrecs) > max_recs)
4575 return false;
4576
4577 /* sibling pointer verification */
4578 if (!block->bb_u.s.bb_leftsib ||
4579 (be32_to_cpu(block->bb_u.s.bb_leftsib) >= mp->m_sb.sb_agblocks &&
4580 block->bb_u.s.bb_leftsib != cpu_to_be32(NULLAGBLOCK)))
4581 return false;
4582 if (!block->bb_u.s.bb_rightsib ||
4583 (be32_to_cpu(block->bb_u.s.bb_rightsib) >= mp->m_sb.sb_agblocks &&
4584 block->bb_u.s.bb_rightsib != cpu_to_be32(NULLAGBLOCK)))
4585 return false;
4586
4587 return true;
4588}
19b54ee6
DW
4589
4590/*
4591 * Calculate the number of btree levels needed to store a given number of
4592 * records in a short-format btree.
4593 */
4594uint
4595xfs_btree_compute_maxlevels(
4596 struct xfs_mount *mp,
4597 uint *limits,
4598 unsigned long len)
4599{
4600 uint level;
4601 unsigned long maxblocks;
4602
4603 maxblocks = (len + limits[0] - 1) / limits[0];
4604 for (level = 1; maxblocks > 1; level++)
4605 maxblocks = (maxblocks + limits[1] - 1) / limits[1];
4606 return level;
4607}
105f7d83
DW
4608
4609/*
4610 * Query a regular btree for all records overlapping a given interval.
4611 * Start with a LE lookup of the key of low_rec and return all records
4612 * until we find a record with a key greater than the key of high_rec.
4613 */
4614STATIC int
4615xfs_btree_simple_query_range(
4616 struct xfs_btree_cur *cur,
4617 union xfs_btree_key *low_key,
4618 union xfs_btree_key *high_key,
4619 xfs_btree_query_range_fn fn,
4620 void *priv)
4621{
4622 union xfs_btree_rec *recp;
4623 union xfs_btree_key rec_key;
c8ce540d 4624 int64_t diff;
105f7d83
DW
4625 int stat;
4626 bool firstrec = true;
4627 int error;
4628
4629 ASSERT(cur->bc_ops->init_high_key_from_rec);
4630 ASSERT(cur->bc_ops->diff_two_keys);
4631
4632 /*
4633 * Find the leftmost record. The btree cursor must be set
4634 * to the low record used to generate low_key.
4635 */
4636 stat = 0;
4637 error = xfs_btree_lookup(cur, XFS_LOOKUP_LE, &stat);
4638 if (error)
4639 goto out;
4640
5b5c2dbd
DW
4641 /* Nothing? See if there's anything to the right. */
4642 if (!stat) {
4643 error = xfs_btree_increment(cur, 0, &stat);
4644 if (error)
4645 goto out;
4646 }
4647
105f7d83
DW
4648 while (stat) {
4649 /* Find the record. */
4650 error = xfs_btree_get_rec(cur, &recp, &stat);
4651 if (error || !stat)
4652 break;
105f7d83
DW
4653
4654 /* Skip if high_key(rec) < low_key. */
4655 if (firstrec) {
72227899 4656 cur->bc_ops->init_high_key_from_rec(&rec_key, recp);
105f7d83
DW
4657 firstrec = false;
4658 diff = cur->bc_ops->diff_two_keys(cur, low_key,
4659 &rec_key);
4660 if (diff > 0)
4661 goto advloop;
4662 }
4663
4664 /* Stop if high_key < low_key(rec). */
72227899 4665 cur->bc_ops->init_key_from_rec(&rec_key, recp);
105f7d83
DW
4666 diff = cur->bc_ops->diff_two_keys(cur, &rec_key, high_key);
4667 if (diff > 0)
4668 break;
4669
4670 /* Callback */
4671 error = fn(cur, recp, priv);
4672 if (error < 0 || error == XFS_BTREE_QUERY_RANGE_ABORT)
4673 break;
4674
4675advloop:
4676 /* Move on to the next record. */
4677 error = xfs_btree_increment(cur, 0, &stat);
4678 if (error)
4679 break;
4680 }
4681
4682out:
4683 return error;
4684}
4685
4686/*
4687 * Query an overlapped interval btree for all records overlapping a given
4688 * interval. This function roughly follows the algorithm given in
4689 * "Interval Trees" of _Introduction to Algorithms_, which is section
4690 * 14.3 in the 2nd and 3rd editions.
4691 *
4692 * First, generate keys for the low and high records passed in.
4693 *
4694 * For any leaf node, generate the high and low keys for the record.
4695 * If the record keys overlap with the query low/high keys, pass the
4696 * record to the function iterator.
4697 *
4698 * For any internal node, compare the low and high keys of each
4699 * pointer against the query low/high keys. If there's an overlap,
4700 * follow the pointer.
4701 *
4702 * As an optimization, we stop scanning a block when we find a low key
4703 * that is greater than the query's high key.
4704 */
4705STATIC int
4706xfs_btree_overlapped_query_range(
4707 struct xfs_btree_cur *cur,
4708 union xfs_btree_key *low_key,
4709 union xfs_btree_key *high_key,
4710 xfs_btree_query_range_fn fn,
4711 void *priv)
4712{
4713 union xfs_btree_ptr ptr;
4714 union xfs_btree_ptr *pp;
4715 union xfs_btree_key rec_key;
4716 union xfs_btree_key rec_hkey;
4717 union xfs_btree_key *lkp;
4718 union xfs_btree_key *hkp;
4719 union xfs_btree_rec *recp;
4720 struct xfs_btree_block *block;
c8ce540d
DW
4721 int64_t ldiff;
4722 int64_t hdiff;
105f7d83
DW
4723 int level;
4724 struct xfs_buf *bp;
4725 int i;
4726 int error;
4727
4728 /* Load the root of the btree. */
4729 level = cur->bc_nlevels - 1;
4730 cur->bc_ops->init_ptr_from_cur(cur, &ptr);
4731 error = xfs_btree_lookup_get_block(cur, level, &ptr, &block);
4732 if (error)
4733 return error;
4734 xfs_btree_get_block(cur, level, &bp);
4735 trace_xfs_btree_overlapped_query_range(cur, level, bp);
4736#ifdef DEBUG
4737 error = xfs_btree_check_block(cur, block, level, bp);
4738 if (error)
4739 goto out;
4740#endif
4741 cur->bc_ptrs[level] = 1;
4742
4743 while (level < cur->bc_nlevels) {
4744 block = xfs_btree_get_block(cur, level, &bp);
4745
4746 /* End of node, pop back towards the root. */
4747 if (cur->bc_ptrs[level] > be16_to_cpu(block->bb_numrecs)) {
4748pop_up:
4749 if (level < cur->bc_nlevels - 1)
4750 cur->bc_ptrs[level + 1]++;
4751 level++;
4752 continue;
4753 }
4754
4755 if (level == 0) {
4756 /* Handle a leaf node. */
4757 recp = xfs_btree_rec_addr(cur, cur->bc_ptrs[0], block);
4758
4759 cur->bc_ops->init_high_key_from_rec(&rec_hkey, recp);
4760 ldiff = cur->bc_ops->diff_two_keys(cur, &rec_hkey,
4761 low_key);
4762
4763 cur->bc_ops->init_key_from_rec(&rec_key, recp);
4764 hdiff = cur->bc_ops->diff_two_keys(cur, high_key,
4765 &rec_key);
4766
4767 /*
4768 * If (record's high key >= query's low key) and
4769 * (query's high key >= record's low key), then
4770 * this record overlaps the query range; callback.
4771 */
4772 if (ldiff >= 0 && hdiff >= 0) {
4773 error = fn(cur, recp, priv);
4774 if (error < 0 ||
4775 error == XFS_BTREE_QUERY_RANGE_ABORT)
4776 break;
4777 } else if (hdiff < 0) {
4778 /* Record is larger than high key; pop. */
4779 goto pop_up;
4780 }
4781 cur->bc_ptrs[level]++;
4782 continue;
4783 }
4784
4785 /* Handle an internal node. */
4786 lkp = xfs_btree_key_addr(cur, cur->bc_ptrs[level], block);
4787 hkp = xfs_btree_high_key_addr(cur, cur->bc_ptrs[level], block);
4788 pp = xfs_btree_ptr_addr(cur, cur->bc_ptrs[level], block);
4789
4790 ldiff = cur->bc_ops->diff_two_keys(cur, hkp, low_key);
4791 hdiff = cur->bc_ops->diff_two_keys(cur, high_key, lkp);
4792
4793 /*
4794 * If (pointer's high key >= query's low key) and
4795 * (query's high key >= pointer's low key), then
4796 * this record overlaps the query range; follow pointer.
4797 */
4798 if (ldiff >= 0 && hdiff >= 0) {
4799 level--;
4800 error = xfs_btree_lookup_get_block(cur, level, pp,
4801 &block);
4802 if (error)
4803 goto out;
4804 xfs_btree_get_block(cur, level, &bp);
4805 trace_xfs_btree_overlapped_query_range(cur, level, bp);
4806#ifdef DEBUG
4807 error = xfs_btree_check_block(cur, block, level, bp);
4808 if (error)
4809 goto out;
4810#endif
4811 cur->bc_ptrs[level] = 1;
4812 continue;
4813 } else if (hdiff < 0) {
4814 /* The low key is larger than the upper range; pop. */
4815 goto pop_up;
4816 }
4817 cur->bc_ptrs[level]++;
4818 }
4819
4820out:
4821 /*
4822 * If we don't end this function with the cursor pointing at a record
4823 * block, a subsequent non-error cursor deletion will not release
4824 * node-level buffers, causing a buffer leak. This is quite possible
4825 * with a zero-results range query, so release the buffers if we
4826 * failed to return any results.
4827 */
4828 if (cur->bc_bufs[0] == NULL) {
4829 for (i = 0; i < cur->bc_nlevels; i++) {
4830 if (cur->bc_bufs[i]) {
4831 xfs_trans_brelse(cur->bc_tp, cur->bc_bufs[i]);
4832 cur->bc_bufs[i] = NULL;
4833 cur->bc_ptrs[i] = 0;
4834 cur->bc_ra[i] = 0;
4835 }
4836 }
4837 }
4838
4839 return error;
4840}
4841
4842/*
4843 * Query a btree for all records overlapping a given interval of keys. The
4844 * supplied function will be called with each record found; return one of the
4845 * XFS_BTREE_QUERY_RANGE_{CONTINUE,ABORT} values or the usual negative error
4846 * code. This function returns XFS_BTREE_QUERY_RANGE_ABORT, zero, or a
4847 * negative error code.
4848 */
4849int
4850xfs_btree_query_range(
4851 struct xfs_btree_cur *cur,
4852 union xfs_btree_irec *low_rec,
4853 union xfs_btree_irec *high_rec,
4854 xfs_btree_query_range_fn fn,
4855 void *priv)
4856{
4857 union xfs_btree_rec rec;
4858 union xfs_btree_key low_key;
4859 union xfs_btree_key high_key;
4860
4861 /* Find the keys of both ends of the interval. */
4862 cur->bc_rec = *high_rec;
4863 cur->bc_ops->init_rec_from_cur(cur, &rec);
4864 cur->bc_ops->init_key_from_rec(&high_key, &rec);
4865
4866 cur->bc_rec = *low_rec;
4867 cur->bc_ops->init_rec_from_cur(cur, &rec);
4868 cur->bc_ops->init_key_from_rec(&low_key, &rec);
4869
4870 /* Enforce low key < high key. */
4871 if (cur->bc_ops->diff_two_keys(cur, &low_key, &high_key) > 0)
4872 return -EINVAL;
4873
4874 if (!(cur->bc_flags & XFS_BTREE_OVERLAPPING))
4875 return xfs_btree_simple_query_range(cur, &low_key,
4876 &high_key, fn, priv);
4877 return xfs_btree_overlapped_query_range(cur, &low_key, &high_key,
4878 fn, priv);
4879}
4ed3f687 4880
e9a2599a
DW
4881/* Query a btree for all records. */
4882int
4883xfs_btree_query_all(
4884 struct xfs_btree_cur *cur,
4885 xfs_btree_query_range_fn fn,
4886 void *priv)
4887{
5a4c7334
DW
4888 union xfs_btree_key low_key;
4889 union xfs_btree_key high_key;
4890
4891 memset(&cur->bc_rec, 0, sizeof(cur->bc_rec));
4892 memset(&low_key, 0, sizeof(low_key));
4893 memset(&high_key, 0xFF, sizeof(high_key));
e9a2599a 4894
5a4c7334 4895 return xfs_btree_simple_query_range(cur, &low_key, &high_key, fn, priv);
e9a2599a
DW
4896}
4897
4ed3f687
DW
4898/*
4899 * Calculate the number of blocks needed to store a given number of records
4900 * in a short-format (per-AG metadata) btree.
4901 */
4902xfs_extlen_t
4903xfs_btree_calc_size(
4904 struct xfs_mount *mp,
4905 uint *limits,
4906 unsigned long long len)
4907{
4908 int level;
4909 int maxrecs;
4910 xfs_extlen_t rval;
4911
4912 maxrecs = limits[0];
4913 for (level = 0, rval = 0; len > 1; level++) {
4914 len += maxrecs - 1;
4915 do_div(len, maxrecs);
4916 maxrecs = limits[1];
4917 rval += len;
4918 }
4919 return rval;
4920}
c611cc03 4921
f1b8243c 4922static int
c611cc03
DW
4923xfs_btree_count_blocks_helper(
4924 struct xfs_btree_cur *cur,
4925 int level,
4926 void *data)
4927{
4928 xfs_extlen_t *blocks = data;
4929 (*blocks)++;
4930
4931 return 0;
4932}
4933
4934/* Count the blocks in a btree and return the result in *blocks. */
4935int
4936xfs_btree_count_blocks(
4937 struct xfs_btree_cur *cur,
4938 xfs_extlen_t *blocks)
4939{
4940 *blocks = 0;
4941 return xfs_btree_visit_blocks(cur, xfs_btree_count_blocks_helper,
4942 blocks);
4943}
cc3e0948
DW
4944
4945/* Compare two btree pointers. */
4946int64_t
4947xfs_btree_diff_two_ptrs(
4948 struct xfs_btree_cur *cur,
4949 const union xfs_btree_ptr *a,
4950 const union xfs_btree_ptr *b)
4951{
4952 if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
4953 return (int64_t)be64_to_cpu(a->l) - be64_to_cpu(b->l);
4954 return (int64_t)be32_to_cpu(a->s) - be32_to_cpu(b->s);
4955}