]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - fs/xfs/libxfs/xfs_ialloc.c
xfs: only free allocated regions of inode chunks
[mirror_ubuntu-bionic-kernel.git] / fs / xfs / libxfs / xfs_ialloc.c
CommitLineData
1da177e4 1/*
7b718769
NS
2 * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
1da177e4 4 *
7b718769
NS
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
1da177e4
LT
7 * published by the Free Software Foundation.
8 *
7b718769
NS
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
1da177e4 13 *
7b718769
NS
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
1da177e4 17 */
1da177e4 18#include "xfs.h"
a844f451 19#include "xfs_fs.h"
70a9883c 20#include "xfs_shared.h"
239880ef
DC
21#include "xfs_format.h"
22#include "xfs_log_format.h"
23#include "xfs_trans_resv.h"
a844f451 24#include "xfs_bit.h"
1da177e4 25#include "xfs_sb.h"
1da177e4 26#include "xfs_mount.h"
1da177e4 27#include "xfs_inode.h"
a844f451
NS
28#include "xfs_btree.h"
29#include "xfs_ialloc.h"
a4fbe6ab 30#include "xfs_ialloc_btree.h"
1da177e4 31#include "xfs_alloc.h"
1da177e4
LT
32#include "xfs_rtalloc.h"
33#include "xfs_error.h"
34#include "xfs_bmap.h"
983d09ff 35#include "xfs_cksum.h"
239880ef 36#include "xfs_trans.h"
983d09ff 37#include "xfs_buf_item.h"
ddf6ad01 38#include "xfs_icreate_item.h"
7bb85ef3 39#include "xfs_icache.h"
d123031a 40#include "xfs_trace.h"
1da177e4 41
1da177e4
LT
42
43/*
44 * Allocation group level functions.
45 */
75de2a91
DC
46static inline int
47xfs_ialloc_cluster_alignment(
7a1df156 48 struct xfs_mount *mp)
75de2a91 49{
7a1df156
DC
50 if (xfs_sb_version_hasalign(&mp->m_sb) &&
51 mp->m_sb.sb_inoalignmt >=
52 XFS_B_TO_FSBT(mp, mp->m_inode_cluster_size))
53 return mp->m_sb.sb_inoalignmt;
75de2a91
DC
54 return 1;
55}
1da177e4 56
fe033cc8 57/*
21875505 58 * Lookup a record by ino in the btree given by cur.
fe033cc8 59 */
81e25176 60int /* error */
21875505 61xfs_inobt_lookup(
fe033cc8
CH
62 struct xfs_btree_cur *cur, /* btree cursor */
63 xfs_agino_t ino, /* starting inode of chunk */
21875505 64 xfs_lookup_t dir, /* <=, >=, == */
fe033cc8
CH
65 int *stat) /* success/failure */
66{
67 cur->bc_rec.i.ir_startino = ino;
5419040f
BF
68 cur->bc_rec.i.ir_holemask = 0;
69 cur->bc_rec.i.ir_count = 0;
21875505
CH
70 cur->bc_rec.i.ir_freecount = 0;
71 cur->bc_rec.i.ir_free = 0;
72 return xfs_btree_lookup(cur, dir, stat);
fe033cc8
CH
73}
74
278d0ca1 75/*
afabc24a 76 * Update the record referred to by cur to the value given.
278d0ca1
CH
77 * This either works (return 0) or gets an EFSCORRUPTED error.
78 */
79STATIC int /* error */
80xfs_inobt_update(
81 struct xfs_btree_cur *cur, /* btree cursor */
afabc24a 82 xfs_inobt_rec_incore_t *irec) /* btree record */
278d0ca1
CH
83{
84 union xfs_btree_rec rec;
85
afabc24a 86 rec.inobt.ir_startino = cpu_to_be32(irec->ir_startino);
5419040f
BF
87 if (xfs_sb_version_hassparseinodes(&cur->bc_mp->m_sb)) {
88 rec.inobt.ir_u.sp.ir_holemask = cpu_to_be16(irec->ir_holemask);
89 rec.inobt.ir_u.sp.ir_count = irec->ir_count;
90 rec.inobt.ir_u.sp.ir_freecount = irec->ir_freecount;
91 } else {
92 /* ir_holemask/ir_count not supported on-disk */
93 rec.inobt.ir_u.f.ir_freecount = cpu_to_be32(irec->ir_freecount);
94 }
afabc24a 95 rec.inobt.ir_free = cpu_to_be64(irec->ir_free);
278d0ca1
CH
96 return xfs_btree_update(cur, &rec);
97}
98
8cc938fe
CH
99/*
100 * Get the data from the pointed-to record.
101 */
102int /* error */
103xfs_inobt_get_rec(
104 struct xfs_btree_cur *cur, /* btree cursor */
2e287a73 105 xfs_inobt_rec_incore_t *irec, /* btree record */
8cc938fe
CH
106 int *stat) /* output: success/failure */
107{
108 union xfs_btree_rec *rec;
109 int error;
110
111 error = xfs_btree_get_rec(cur, &rec, stat);
5419040f
BF
112 if (error || *stat == 0)
113 return error;
114
115 irec->ir_startino = be32_to_cpu(rec->inobt.ir_startino);
116 if (xfs_sb_version_hassparseinodes(&cur->bc_mp->m_sb)) {
117 irec->ir_holemask = be16_to_cpu(rec->inobt.ir_u.sp.ir_holemask);
118 irec->ir_count = rec->inobt.ir_u.sp.ir_count;
119 irec->ir_freecount = rec->inobt.ir_u.sp.ir_freecount;
120 } else {
121 /*
122 * ir_holemask/ir_count not supported on-disk. Fill in hardcoded
123 * values for full inode chunks.
124 */
125 irec->ir_holemask = XFS_INOBT_HOLEMASK_FULL;
126 irec->ir_count = XFS_INODES_PER_CHUNK;
127 irec->ir_freecount =
128 be32_to_cpu(rec->inobt.ir_u.f.ir_freecount);
8cc938fe 129 }
5419040f
BF
130 irec->ir_free = be64_to_cpu(rec->inobt.ir_free);
131
132 return 0;
8cc938fe
CH
133}
134
0aa0a756
BF
135/*
136 * Insert a single inobt record. Cursor must already point to desired location.
137 */
138STATIC int
139xfs_inobt_insert_rec(
140 struct xfs_btree_cur *cur,
5419040f
BF
141 __uint16_t holemask,
142 __uint8_t count,
0aa0a756
BF
143 __int32_t freecount,
144 xfs_inofree_t free,
145 int *stat)
146{
5419040f
BF
147 cur->bc_rec.i.ir_holemask = holemask;
148 cur->bc_rec.i.ir_count = count;
0aa0a756
BF
149 cur->bc_rec.i.ir_freecount = freecount;
150 cur->bc_rec.i.ir_free = free;
151 return xfs_btree_insert(cur, stat);
152}
153
154/*
155 * Insert records describing a newly allocated inode chunk into the inobt.
156 */
157STATIC int
158xfs_inobt_insert(
159 struct xfs_mount *mp,
160 struct xfs_trans *tp,
161 struct xfs_buf *agbp,
162 xfs_agino_t newino,
163 xfs_agino_t newlen,
164 xfs_btnum_t btnum)
165{
166 struct xfs_btree_cur *cur;
167 struct xfs_agi *agi = XFS_BUF_TO_AGI(agbp);
168 xfs_agnumber_t agno = be32_to_cpu(agi->agi_seqno);
169 xfs_agino_t thisino;
170 int i;
171 int error;
172
173 cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, btnum);
174
175 for (thisino = newino;
176 thisino < newino + newlen;
177 thisino += XFS_INODES_PER_CHUNK) {
178 error = xfs_inobt_lookup(cur, thisino, XFS_LOOKUP_EQ, &i);
179 if (error) {
180 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
181 return error;
182 }
183 ASSERT(i == 0);
184
5419040f
BF
185 error = xfs_inobt_insert_rec(cur, XFS_INOBT_HOLEMASK_FULL,
186 XFS_INODES_PER_CHUNK,
187 XFS_INODES_PER_CHUNK,
0aa0a756
BF
188 XFS_INOBT_ALL_FREE, &i);
189 if (error) {
190 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
191 return error;
192 }
193 ASSERT(i == 1);
194 }
195
196 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
197
198 return 0;
199}
200
0b48db80
DC
201/*
202 * Verify that the number of free inodes in the AGI is correct.
203 */
204#ifdef DEBUG
205STATIC int
206xfs_check_agi_freecount(
207 struct xfs_btree_cur *cur,
208 struct xfs_agi *agi)
209{
210 if (cur->bc_nlevels == 1) {
211 xfs_inobt_rec_incore_t rec;
212 int freecount = 0;
213 int error;
214 int i;
215
21875505 216 error = xfs_inobt_lookup(cur, 0, XFS_LOOKUP_GE, &i);
0b48db80
DC
217 if (error)
218 return error;
219
220 do {
221 error = xfs_inobt_get_rec(cur, &rec, &i);
222 if (error)
223 return error;
224
225 if (i) {
226 freecount += rec.ir_freecount;
227 error = xfs_btree_increment(cur, 0, &i);
228 if (error)
229 return error;
230 }
231 } while (i == 1);
232
233 if (!XFS_FORCED_SHUTDOWN(cur->bc_mp))
234 ASSERT(freecount == be32_to_cpu(agi->agi_freecount));
235 }
236 return 0;
237}
238#else
239#define xfs_check_agi_freecount(cur, agi) 0
240#endif
241
85c0b2ab 242/*
28c8e41a
DC
243 * Initialise a new set of inodes. When called without a transaction context
244 * (e.g. from recovery) we initiate a delayed write of the inode buffers rather
245 * than logging them (which in a transaction context puts them into the AIL
246 * for writeback rather than the xfsbufd queue).
85c0b2ab 247 */
ddf6ad01 248int
85c0b2ab
DC
249xfs_ialloc_inode_init(
250 struct xfs_mount *mp,
251 struct xfs_trans *tp,
28c8e41a 252 struct list_head *buffer_list,
463958af 253 int icount,
85c0b2ab
DC
254 xfs_agnumber_t agno,
255 xfs_agblock_t agbno,
256 xfs_agblock_t length,
257 unsigned int gen)
258{
259 struct xfs_buf *fbuf;
260 struct xfs_dinode *free;
6e0c7b8c 261 int nbufs, blks_per_cluster, inodes_per_cluster;
85c0b2ab
DC
262 int version;
263 int i, j;
264 xfs_daddr_t d;
93848a99 265 xfs_ino_t ino = 0;
85c0b2ab
DC
266
267 /*
6e0c7b8c
JL
268 * Loop over the new block(s), filling in the inodes. For small block
269 * sizes, manipulate the inodes in buffers which are multiples of the
270 * blocks size.
85c0b2ab 271 */
6e0c7b8c
JL
272 blks_per_cluster = xfs_icluster_size_fsb(mp);
273 inodes_per_cluster = blks_per_cluster << mp->m_sb.sb_inopblog;
274 nbufs = length / blks_per_cluster;
85c0b2ab
DC
275
276 /*
93848a99
CH
277 * Figure out what version number to use in the inodes we create. If
278 * the superblock version has caught up to the one that supports the new
279 * inode format, then use the new inode version. Otherwise use the old
280 * version so that old kernels will continue to be able to use the file
281 * system.
282 *
283 * For v3 inodes, we also need to write the inode number into the inode,
284 * so calculate the first inode number of the chunk here as
285 * XFS_OFFBNO_TO_AGINO() only works within a filesystem block, not
286 * across multiple filesystem blocks (such as a cluster) and so cannot
287 * be used in the cluster buffer loop below.
288 *
289 * Further, because we are writing the inode directly into the buffer
290 * and calculating a CRC on the entire inode, we have ot log the entire
291 * inode so that the entire range the CRC covers is present in the log.
292 * That means for v3 inode we log the entire buffer rather than just the
293 * inode cores.
85c0b2ab 294 */
93848a99
CH
295 if (xfs_sb_version_hascrc(&mp->m_sb)) {
296 version = 3;
297 ino = XFS_AGINO_TO_INO(mp, agno,
298 XFS_OFFBNO_TO_AGINO(mp, agbno, 0));
ddf6ad01
DC
299
300 /*
301 * log the initialisation that is about to take place as an
302 * logical operation. This means the transaction does not
303 * need to log the physical changes to the inode buffers as log
304 * recovery will know what initialisation is actually needed.
305 * Hence we only need to log the buffers as "ordered" buffers so
306 * they track in the AIL as if they were physically logged.
307 */
308 if (tp)
463958af 309 xfs_icreate_log(tp, agno, agbno, icount,
ddf6ad01 310 mp->m_sb.sb_inodesize, length, gen);
263997a6 311 } else
85c0b2ab 312 version = 2;
85c0b2ab
DC
313
314 for (j = 0; j < nbufs; j++) {
315 /*
316 * Get the block.
317 */
318 d = XFS_AGB_TO_DADDR(mp, agno, agbno + (j * blks_per_cluster));
319 fbuf = xfs_trans_get_buf(tp, mp->m_ddev_targp, d,
7c4cebe8
DC
320 mp->m_bsize * blks_per_cluster,
321 XBF_UNMAPPED);
2a30f36d 322 if (!fbuf)
2451337d 323 return -ENOMEM;
ddf6ad01
DC
324
325 /* Initialize the inode buffers and log them appropriately. */
1813dd64 326 fbuf->b_ops = &xfs_inode_buf_ops;
93848a99 327 xfs_buf_zero(fbuf, 0, BBTOB(fbuf->b_length));
6e0c7b8c 328 for (i = 0; i < inodes_per_cluster; i++) {
85c0b2ab 329 int ioffset = i << mp->m_sb.sb_inodelog;
93848a99 330 uint isize = xfs_dinode_size(version);
85c0b2ab
DC
331
332 free = xfs_make_iptr(mp, fbuf, i);
333 free->di_magic = cpu_to_be16(XFS_DINODE_MAGIC);
334 free->di_version = version;
335 free->di_gen = cpu_to_be32(gen);
336 free->di_next_unlinked = cpu_to_be32(NULLAGINO);
93848a99
CH
337
338 if (version == 3) {
339 free->di_ino = cpu_to_be64(ino);
340 ino++;
341 uuid_copy(&free->di_uuid, &mp->m_sb.sb_uuid);
342 xfs_dinode_calc_crc(mp, free);
28c8e41a 343 } else if (tp) {
93848a99
CH
344 /* just log the inode core */
345 xfs_trans_log_buf(tp, fbuf, ioffset,
346 ioffset + isize - 1);
347 }
348 }
28c8e41a
DC
349
350 if (tp) {
351 /*
352 * Mark the buffer as an inode allocation buffer so it
353 * sticks in AIL at the point of this allocation
354 * transaction. This ensures the they are on disk before
355 * the tail of the log can be moved past this
356 * transaction (i.e. by preventing relogging from moving
357 * it forward in the log).
358 */
359 xfs_trans_inode_alloc_buf(tp, fbuf);
360 if (version == 3) {
ddf6ad01
DC
361 /*
362 * Mark the buffer as ordered so that they are
363 * not physically logged in the transaction but
364 * still tracked in the AIL as part of the
365 * transaction and pin the log appropriately.
366 */
367 xfs_trans_ordered_buf(tp, fbuf);
28c8e41a
DC
368 xfs_trans_log_buf(tp, fbuf, 0,
369 BBTOB(fbuf->b_length) - 1);
370 }
371 } else {
372 fbuf->b_flags |= XBF_DONE;
373 xfs_buf_delwri_queue(fbuf, buffer_list);
374 xfs_buf_relse(fbuf);
85c0b2ab 375 }
85c0b2ab 376 }
2a30f36d 377 return 0;
85c0b2ab
DC
378}
379
56d1115c
BF
380/*
381 * Align startino and allocmask for a recently allocated sparse chunk such that
382 * they are fit for insertion (or merge) into the on-disk inode btrees.
383 *
384 * Background:
385 *
386 * When enabled, sparse inode support increases the inode alignment from cluster
387 * size to inode chunk size. This means that the minimum range between two
388 * non-adjacent inode records in the inobt is large enough for a full inode
389 * record. This allows for cluster sized, cluster aligned block allocation
390 * without need to worry about whether the resulting inode record overlaps with
391 * another record in the tree. Without this basic rule, we would have to deal
392 * with the consequences of overlap by potentially undoing recent allocations in
393 * the inode allocation codepath.
394 *
395 * Because of this alignment rule (which is enforced on mount), there are two
396 * inobt possibilities for newly allocated sparse chunks. One is that the
397 * aligned inode record for the chunk covers a range of inodes not already
398 * covered in the inobt (i.e., it is safe to insert a new sparse record). The
399 * other is that a record already exists at the aligned startino that considers
400 * the newly allocated range as sparse. In the latter case, record content is
401 * merged in hope that sparse inode chunks fill to full chunks over time.
402 */
403STATIC void
404xfs_align_sparse_ino(
405 struct xfs_mount *mp,
406 xfs_agino_t *startino,
407 uint16_t *allocmask)
408{
409 xfs_agblock_t agbno;
410 xfs_agblock_t mod;
411 int offset;
412
413 agbno = XFS_AGINO_TO_AGBNO(mp, *startino);
414 mod = agbno % mp->m_sb.sb_inoalignmt;
415 if (!mod)
416 return;
417
418 /* calculate the inode offset and align startino */
419 offset = mod << mp->m_sb.sb_inopblog;
420 *startino -= offset;
421
422 /*
423 * Since startino has been aligned down, left shift allocmask such that
424 * it continues to represent the same physical inodes relative to the
425 * new startino.
426 */
427 *allocmask <<= offset / XFS_INODES_PER_HOLEMASK_BIT;
428}
429
430/*
431 * Determine whether the source inode record can merge into the target. Both
432 * records must be sparse, the inode ranges must match and there must be no
433 * allocation overlap between the records.
434 */
435STATIC bool
436__xfs_inobt_can_merge(
437 struct xfs_inobt_rec_incore *trec, /* tgt record */
438 struct xfs_inobt_rec_incore *srec) /* src record */
439{
440 uint64_t talloc;
441 uint64_t salloc;
442
443 /* records must cover the same inode range */
444 if (trec->ir_startino != srec->ir_startino)
445 return false;
446
447 /* both records must be sparse */
448 if (!xfs_inobt_issparse(trec->ir_holemask) ||
449 !xfs_inobt_issparse(srec->ir_holemask))
450 return false;
451
452 /* both records must track some inodes */
453 if (!trec->ir_count || !srec->ir_count)
454 return false;
455
456 /* can't exceed capacity of a full record */
457 if (trec->ir_count + srec->ir_count > XFS_INODES_PER_CHUNK)
458 return false;
459
460 /* verify there is no allocation overlap */
461 talloc = xfs_inobt_irec_to_allocmask(trec);
462 salloc = xfs_inobt_irec_to_allocmask(srec);
463 if (talloc & salloc)
464 return false;
465
466 return true;
467}
468
469/*
470 * Merge the source inode record into the target. The caller must call
471 * __xfs_inobt_can_merge() to ensure the merge is valid.
472 */
473STATIC void
474__xfs_inobt_rec_merge(
475 struct xfs_inobt_rec_incore *trec, /* target */
476 struct xfs_inobt_rec_incore *srec) /* src */
477{
478 ASSERT(trec->ir_startino == srec->ir_startino);
479
480 /* combine the counts */
481 trec->ir_count += srec->ir_count;
482 trec->ir_freecount += srec->ir_freecount;
483
484 /*
485 * Merge the holemask and free mask. For both fields, 0 bits refer to
486 * allocated inodes. We combine the allocated ranges with bitwise AND.
487 */
488 trec->ir_holemask &= srec->ir_holemask;
489 trec->ir_free &= srec->ir_free;
490}
491
492/*
493 * Insert a new sparse inode chunk into the associated inode btree. The inode
494 * record for the sparse chunk is pre-aligned to a startino that should match
495 * any pre-existing sparse inode record in the tree. This allows sparse chunks
496 * to fill over time.
497 *
498 * This function supports two modes of handling preexisting records depending on
499 * the merge flag. If merge is true, the provided record is merged with the
500 * existing record and updated in place. The merged record is returned in nrec.
501 * If merge is false, an existing record is replaced with the provided record.
502 * If no preexisting record exists, the provided record is always inserted.
503 *
504 * It is considered corruption if a merge is requested and not possible. Given
505 * the sparse inode alignment constraints, this should never happen.
506 */
507STATIC int
508xfs_inobt_insert_sprec(
509 struct xfs_mount *mp,
510 struct xfs_trans *tp,
511 struct xfs_buf *agbp,
512 int btnum,
513 struct xfs_inobt_rec_incore *nrec, /* in/out: new/merged rec. */
514 bool merge) /* merge or replace */
515{
516 struct xfs_btree_cur *cur;
517 struct xfs_agi *agi = XFS_BUF_TO_AGI(agbp);
518 xfs_agnumber_t agno = be32_to_cpu(agi->agi_seqno);
519 int error;
520 int i;
521 struct xfs_inobt_rec_incore rec;
522
523 cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, btnum);
524
525 /* the new record is pre-aligned so we know where to look */
526 error = xfs_inobt_lookup(cur, nrec->ir_startino, XFS_LOOKUP_EQ, &i);
527 if (error)
528 goto error;
529 /* if nothing there, insert a new record and return */
530 if (i == 0) {
531 error = xfs_inobt_insert_rec(cur, nrec->ir_holemask,
532 nrec->ir_count, nrec->ir_freecount,
533 nrec->ir_free, &i);
534 if (error)
535 goto error;
536 XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error);
537
538 goto out;
539 }
540
541 /*
542 * A record exists at this startino. Merge or replace the record
543 * depending on what we've been asked to do.
544 */
545 if (merge) {
546 error = xfs_inobt_get_rec(cur, &rec, &i);
547 if (error)
548 goto error;
549 XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error);
550 XFS_WANT_CORRUPTED_GOTO(mp,
551 rec.ir_startino == nrec->ir_startino,
552 error);
553
554 /*
555 * This should never fail. If we have coexisting records that
556 * cannot merge, something is seriously wrong.
557 */
558 XFS_WANT_CORRUPTED_GOTO(mp, __xfs_inobt_can_merge(nrec, &rec),
559 error);
560
561 trace_xfs_irec_merge_pre(mp, agno, rec.ir_startino,
562 rec.ir_holemask, nrec->ir_startino,
563 nrec->ir_holemask);
564
565 /* merge to nrec to output the updated record */
566 __xfs_inobt_rec_merge(nrec, &rec);
567
568 trace_xfs_irec_merge_post(mp, agno, nrec->ir_startino,
569 nrec->ir_holemask);
570
571 error = xfs_inobt_rec_check_count(mp, nrec);
572 if (error)
573 goto error;
574 }
575
576 error = xfs_inobt_update(cur, nrec);
577 if (error)
578 goto error;
579
580out:
581 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
582 return 0;
583error:
584 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
585 return error;
586}
587
1da177e4
LT
588/*
589 * Allocate new inodes in the allocation group specified by agbp.
590 * Return 0 for success, else error code.
591 */
592STATIC int /* error code or 0 */
593xfs_ialloc_ag_alloc(
594 xfs_trans_t *tp, /* transaction pointer */
595 xfs_buf_t *agbp, /* alloc group buffer */
596 int *alloc)
597{
598 xfs_agi_t *agi; /* allocation group header */
599 xfs_alloc_arg_t args; /* allocation argument structure */
92821e2b 600 xfs_agnumber_t agno;
1da177e4 601 int error;
1da177e4
LT
602 xfs_agino_t newino; /* new first inode's number */
603 xfs_agino_t newlen; /* new number of inodes */
3ccb8b5f 604 int isaligned = 0; /* inode allocation at stripe unit */
1da177e4 605 /* boundary */
56d1115c
BF
606 uint16_t allocmask = (uint16_t) -1; /* init. to full chunk */
607 struct xfs_inobt_rec_incore rec;
44b56e0a 608 struct xfs_perag *pag;
1da177e4 609
1cdadee1
BF
610 int do_sparse = 0;
611
612#ifdef DEBUG
613 /* randomly do sparse inode allocations */
614 if (xfs_sb_version_hassparseinodes(&tp->t_mountp->m_sb))
615 do_sparse = prandom_u32() & 1;
616#endif
617
a0041684 618 memset(&args, 0, sizeof(args));
1da177e4
LT
619 args.tp = tp;
620 args.mp = tp->t_mountp;
1cdadee1 621 args.fsbno = NULLFSBLOCK;
1da177e4
LT
622
623 /*
624 * Locking will ensure that we don't have two callers in here
625 * at one time.
626 */
71783438 627 newlen = args.mp->m_ialloc_inos;
1da177e4 628 if (args.mp->m_maxicount &&
501ab323
DC
629 percpu_counter_read(&args.mp->m_icount) + newlen >
630 args.mp->m_maxicount)
2451337d 631 return -ENOSPC;
126cd105 632 args.minlen = args.maxlen = args.mp->m_ialloc_blks;
1da177e4 633 /*
3ccb8b5f
GO
634 * First try to allocate inodes contiguous with the last-allocated
635 * chunk of inodes. If the filesystem is striped, this will fill
636 * an entire stripe unit with inodes.
28c8e41a 637 */
1da177e4 638 agi = XFS_BUF_TO_AGI(agbp);
3ccb8b5f 639 newino = be32_to_cpu(agi->agi_newino);
85c0b2ab 640 agno = be32_to_cpu(agi->agi_seqno);
019ff2d5 641 args.agbno = XFS_AGINO_TO_AGBNO(args.mp, newino) +
126cd105 642 args.mp->m_ialloc_blks;
1cdadee1
BF
643 if (do_sparse)
644 goto sparse_alloc;
019ff2d5
NS
645 if (likely(newino != NULLAGINO &&
646 (args.agbno < be32_to_cpu(agi->agi_length)))) {
85c0b2ab 647 args.fsbno = XFS_AGB_TO_FSB(args.mp, agno, args.agbno);
3ccb8b5f 648 args.type = XFS_ALLOCTYPE_THIS_BNO;
3ccb8b5f 649 args.prod = 1;
75de2a91 650
3ccb8b5f 651 /*
75de2a91
DC
652 * We need to take into account alignment here to ensure that
653 * we don't modify the free list if we fail to have an exact
654 * block. If we don't have an exact match, and every oher
655 * attempt allocation attempt fails, we'll end up cancelling
656 * a dirty transaction and shutting down.
657 *
658 * For an exact allocation, alignment must be 1,
659 * however we need to take cluster alignment into account when
660 * fixing up the freelist. Use the minalignslop field to
661 * indicate that extra blocks might be required for alignment,
662 * but not to use them in the actual exact allocation.
3ccb8b5f 663 */
75de2a91 664 args.alignment = 1;
7a1df156 665 args.minalignslop = xfs_ialloc_cluster_alignment(args.mp) - 1;
75de2a91
DC
666
667 /* Allow space for the inode btree to split. */
0d87e656 668 args.minleft = args.mp->m_in_maxlevels - 1;
3ccb8b5f
GO
669 if ((error = xfs_alloc_vextent(&args)))
670 return error;
e480a723
BF
671
672 /*
673 * This request might have dirtied the transaction if the AG can
674 * satisfy the request, but the exact block was not available.
675 * If the allocation did fail, subsequent requests will relax
676 * the exact agbno requirement and increase the alignment
677 * instead. It is critical that the total size of the request
678 * (len + alignment + slop) does not increase from this point
679 * on, so reset minalignslop to ensure it is not included in
680 * subsequent requests.
681 */
682 args.minalignslop = 0;
1cdadee1 683 }
1da177e4 684
3ccb8b5f
GO
685 if (unlikely(args.fsbno == NULLFSBLOCK)) {
686 /*
687 * Set the alignment for the allocation.
688 * If stripe alignment is turned on then align at stripe unit
689 * boundary.
019ff2d5
NS
690 * If the cluster size is smaller than a filesystem block
691 * then we're doing I/O for inodes in filesystem block size
3ccb8b5f
GO
692 * pieces, so don't need alignment anyway.
693 */
694 isaligned = 0;
695 if (args.mp->m_sinoalign) {
696 ASSERT(!(args.mp->m_flags & XFS_MOUNT_NOALIGN));
697 args.alignment = args.mp->m_dalign;
698 isaligned = 1;
75de2a91 699 } else
7a1df156 700 args.alignment = xfs_ialloc_cluster_alignment(args.mp);
3ccb8b5f
GO
701 /*
702 * Need to figure out where to allocate the inode blocks.
703 * Ideally they should be spaced out through the a.g.
704 * For now, just allocate blocks up front.
705 */
706 args.agbno = be32_to_cpu(agi->agi_root);
85c0b2ab 707 args.fsbno = XFS_AGB_TO_FSB(args.mp, agno, args.agbno);
3ccb8b5f
GO
708 /*
709 * Allocate a fixed-size extent of inodes.
710 */
711 args.type = XFS_ALLOCTYPE_NEAR_BNO;
3ccb8b5f
GO
712 args.prod = 1;
713 /*
714 * Allow space for the inode btree to split.
715 */
0d87e656 716 args.minleft = args.mp->m_in_maxlevels - 1;
3ccb8b5f
GO
717 if ((error = xfs_alloc_vextent(&args)))
718 return error;
719 }
019ff2d5 720
1da177e4
LT
721 /*
722 * If stripe alignment is turned on, then try again with cluster
723 * alignment.
724 */
725 if (isaligned && args.fsbno == NULLFSBLOCK) {
726 args.type = XFS_ALLOCTYPE_NEAR_BNO;
16259e7d 727 args.agbno = be32_to_cpu(agi->agi_root);
85c0b2ab 728 args.fsbno = XFS_AGB_TO_FSB(args.mp, agno, args.agbno);
7a1df156 729 args.alignment = xfs_ialloc_cluster_alignment(args.mp);
1da177e4
LT
730 if ((error = xfs_alloc_vextent(&args)))
731 return error;
732 }
733
56d1115c
BF
734 /*
735 * Finally, try a sparse allocation if the filesystem supports it and
736 * the sparse allocation length is smaller than a full chunk.
737 */
738 if (xfs_sb_version_hassparseinodes(&args.mp->m_sb) &&
739 args.mp->m_ialloc_min_blks < args.mp->m_ialloc_blks &&
740 args.fsbno == NULLFSBLOCK) {
1cdadee1 741sparse_alloc:
56d1115c
BF
742 args.type = XFS_ALLOCTYPE_NEAR_BNO;
743 args.agbno = be32_to_cpu(agi->agi_root);
744 args.fsbno = XFS_AGB_TO_FSB(args.mp, agno, args.agbno);
745 args.alignment = args.mp->m_sb.sb_spino_align;
746 args.prod = 1;
747
748 args.minlen = args.mp->m_ialloc_min_blks;
749 args.maxlen = args.minlen;
750
751 /*
752 * The inode record will be aligned to full chunk size. We must
753 * prevent sparse allocation from AG boundaries that result in
754 * invalid inode records, such as records that start at agbno 0
755 * or extend beyond the AG.
756 *
757 * Set min agbno to the first aligned, non-zero agbno and max to
758 * the last aligned agbno that is at least one full chunk from
759 * the end of the AG.
760 */
761 args.min_agbno = args.mp->m_sb.sb_inoalignmt;
762 args.max_agbno = round_down(args.mp->m_sb.sb_agblocks,
763 args.mp->m_sb.sb_inoalignmt) -
764 args.mp->m_ialloc_blks;
765
766 error = xfs_alloc_vextent(&args);
767 if (error)
768 return error;
769
770 newlen = args.len << args.mp->m_sb.sb_inopblog;
771 allocmask = (1 << (newlen / XFS_INODES_PER_HOLEMASK_BIT)) - 1;
772 }
773
1da177e4
LT
774 if (args.fsbno == NULLFSBLOCK) {
775 *alloc = 0;
776 return 0;
777 }
778 ASSERT(args.len == args.minlen);
1da177e4 779
359346a9 780 /*
85c0b2ab
DC
781 * Stamp and write the inode buffers.
782 *
359346a9
DC
783 * Seed the new inode cluster with a random generation number. This
784 * prevents short-term reuse of generation numbers if a chunk is
785 * freed and then immediately reallocated. We use random numbers
786 * rather than a linear progression to prevent the next generation
787 * number from being easily guessable.
788 */
463958af
BF
789 error = xfs_ialloc_inode_init(args.mp, tp, NULL, newlen, agno,
790 args.agbno, args.len, prandom_u32());
d42f08f6 791
2a30f36d
CS
792 if (error)
793 return error;
85c0b2ab
DC
794 /*
795 * Convert the results.
796 */
797 newino = XFS_OFFBNO_TO_AGINO(args.mp, args.agbno, 0);
56d1115c
BF
798
799 if (xfs_inobt_issparse(~allocmask)) {
800 /*
801 * We've allocated a sparse chunk. Align the startino and mask.
802 */
803 xfs_align_sparse_ino(args.mp, &newino, &allocmask);
804
805 rec.ir_startino = newino;
806 rec.ir_holemask = ~allocmask;
807 rec.ir_count = newlen;
808 rec.ir_freecount = newlen;
809 rec.ir_free = XFS_INOBT_ALL_FREE;
810
811 /*
812 * Insert the sparse record into the inobt and allow for a merge
813 * if necessary. If a merge does occur, rec is updated to the
814 * merged record.
815 */
816 error = xfs_inobt_insert_sprec(args.mp, tp, agbp, XFS_BTNUM_INO,
817 &rec, true);
818 if (error == -EFSCORRUPTED) {
819 xfs_alert(args.mp,
820 "invalid sparse inode record: ino 0x%llx holemask 0x%x count %u",
821 XFS_AGINO_TO_INO(args.mp, agno,
822 rec.ir_startino),
823 rec.ir_holemask, rec.ir_count);
824 xfs_force_shutdown(args.mp, SHUTDOWN_CORRUPT_INCORE);
825 }
826 if (error)
827 return error;
828
829 /*
830 * We can't merge the part we've just allocated as for the inobt
831 * due to finobt semantics. The original record may or may not
832 * exist independent of whether physical inodes exist in this
833 * sparse chunk.
834 *
835 * We must update the finobt record based on the inobt record.
836 * rec contains the fully merged and up to date inobt record
837 * from the previous call. Set merge false to replace any
838 * existing record with this one.
839 */
840 if (xfs_sb_version_hasfinobt(&args.mp->m_sb)) {
841 error = xfs_inobt_insert_sprec(args.mp, tp, agbp,
842 XFS_BTNUM_FINO, &rec,
843 false);
844 if (error)
845 return error;
846 }
847 } else {
848 /* full chunk - insert new records to both btrees */
849 error = xfs_inobt_insert(args.mp, tp, agbp, newino, newlen,
850 XFS_BTNUM_INO);
851 if (error)
852 return error;
853
854 if (xfs_sb_version_hasfinobt(&args.mp->m_sb)) {
855 error = xfs_inobt_insert(args.mp, tp, agbp, newino,
856 newlen, XFS_BTNUM_FINO);
857 if (error)
858 return error;
859 }
860 }
861
862 /*
863 * Update AGI counts and newino.
864 */
413d57c9
MS
865 be32_add_cpu(&agi->agi_count, newlen);
866 be32_add_cpu(&agi->agi_freecount, newlen);
44b56e0a
DC
867 pag = xfs_perag_get(args.mp, agno);
868 pag->pagi_freecount += newlen;
869 xfs_perag_put(pag);
16259e7d 870 agi->agi_newino = cpu_to_be32(newino);
85c0b2ab 871
1da177e4
LT
872 /*
873 * Log allocation group header fields
874 */
875 xfs_ialloc_log_agi(tp, agbp,
876 XFS_AGI_COUNT | XFS_AGI_FREECOUNT | XFS_AGI_NEWINO);
877 /*
878 * Modify/log superblock values for inode count and inode free count.
879 */
880 xfs_trans_mod_sb(tp, XFS_TRANS_SB_ICOUNT, (long)newlen);
881 xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, (long)newlen);
882 *alloc = 1;
883 return 0;
884}
885
b8f82a4a 886STATIC xfs_agnumber_t
1da177e4
LT
887xfs_ialloc_next_ag(
888 xfs_mount_t *mp)
889{
890 xfs_agnumber_t agno;
891
892 spin_lock(&mp->m_agirotor_lock);
893 agno = mp->m_agirotor;
8aea3ff4 894 if (++mp->m_agirotor >= mp->m_maxagi)
1da177e4
LT
895 mp->m_agirotor = 0;
896 spin_unlock(&mp->m_agirotor_lock);
897
898 return agno;
899}
900
901/*
902 * Select an allocation group to look for a free inode in, based on the parent
2f21ff1c 903 * inode and the mode. Return the allocation group buffer.
1da177e4 904 */
55d6af64 905STATIC xfs_agnumber_t
1da177e4
LT
906xfs_ialloc_ag_select(
907 xfs_trans_t *tp, /* transaction pointer */
908 xfs_ino_t parent, /* parent directory inode number */
576b1d67 909 umode_t mode, /* bits set to indicate file type */
1da177e4
LT
910 int okalloc) /* ok to allocate more space */
911{
1da177e4
LT
912 xfs_agnumber_t agcount; /* number of ag's in the filesystem */
913 xfs_agnumber_t agno; /* current ag number */
914 int flags; /* alloc buffer locking flags */
915 xfs_extlen_t ineed; /* blocks needed for inode allocation */
916 xfs_extlen_t longest = 0; /* longest extent available */
917 xfs_mount_t *mp; /* mount point structure */
918 int needspace; /* file mode implies space allocated */
919 xfs_perag_t *pag; /* per allocation group data */
920 xfs_agnumber_t pagno; /* parent (starting) ag number */
55d6af64 921 int error;
1da177e4
LT
922
923 /*
924 * Files of these types need at least one block if length > 0
925 * (and they won't fit in the inode, but that's hard to figure out).
926 */
927 needspace = S_ISDIR(mode) || S_ISREG(mode) || S_ISLNK(mode);
928 mp = tp->t_mountp;
929 agcount = mp->m_maxagi;
930 if (S_ISDIR(mode))
931 pagno = xfs_ialloc_next_ag(mp);
932 else {
933 pagno = XFS_INO_TO_AGNO(mp, parent);
934 if (pagno >= agcount)
935 pagno = 0;
936 }
55d6af64 937
1da177e4 938 ASSERT(pagno < agcount);
55d6af64 939
1da177e4
LT
940 /*
941 * Loop through allocation groups, looking for one with a little
942 * free space in it. Note we don't look for free inodes, exactly.
943 * Instead, we include whether there is a need to allocate inodes
944 * to mean that blocks must be allocated for them,
945 * if none are currently free.
946 */
947 agno = pagno;
948 flags = XFS_ALLOC_FLAG_TRYLOCK;
1da177e4 949 for (;;) {
44b56e0a 950 pag = xfs_perag_get(mp, agno);
55d6af64
CH
951 if (!pag->pagi_inodeok) {
952 xfs_ialloc_next_ag(mp);
953 goto nextag;
954 }
955
1da177e4 956 if (!pag->pagi_init) {
55d6af64
CH
957 error = xfs_ialloc_pagi_init(mp, tp, agno);
958 if (error)
1da177e4 959 goto nextag;
55d6af64 960 }
1da177e4 961
55d6af64
CH
962 if (pag->pagi_freecount) {
963 xfs_perag_put(pag);
964 return agno;
1da177e4
LT
965 }
966
55d6af64
CH
967 if (!okalloc)
968 goto nextag;
969
970 if (!pag->pagf_init) {
971 error = xfs_alloc_pagf_init(mp, tp, agno, flags);
972 if (error)
1da177e4 973 goto nextag;
1da177e4 974 }
55d6af64
CH
975
976 /*
7a1df156
DC
977 * Check that there is enough free space for the file plus a
978 * chunk of inodes if we need to allocate some. If this is the
979 * first pass across the AGs, take into account the potential
980 * space needed for alignment of inode chunks when checking the
981 * longest contiguous free space in the AG - this prevents us
982 * from getting ENOSPC because we have free space larger than
983 * m_ialloc_blks but alignment constraints prevent us from using
984 * it.
985 *
986 * If we can't find an AG with space for full alignment slack to
987 * be taken into account, we must be near ENOSPC in all AGs.
988 * Hence we don't include alignment for the second pass and so
989 * if we fail allocation due to alignment issues then it is most
990 * likely a real ENOSPC condition.
55d6af64 991 */
066a1884 992 ineed = mp->m_ialloc_min_blks;
7a1df156
DC
993 if (flags && ineed > 1)
994 ineed += xfs_ialloc_cluster_alignment(mp);
55d6af64
CH
995 longest = pag->pagf_longest;
996 if (!longest)
997 longest = pag->pagf_flcount > 0;
998
999 if (pag->pagf_freeblks >= needspace + ineed &&
1000 longest >= ineed) {
1001 xfs_perag_put(pag);
1002 return agno;
1da177e4 1003 }
1da177e4 1004nextag:
44b56e0a 1005 xfs_perag_put(pag);
1da177e4
LT
1006 /*
1007 * No point in iterating over the rest, if we're shutting
1008 * down.
1009 */
1c1c6ebc 1010 if (XFS_FORCED_SHUTDOWN(mp))
55d6af64 1011 return NULLAGNUMBER;
1da177e4
LT
1012 agno++;
1013 if (agno >= agcount)
1014 agno = 0;
1015 if (agno == pagno) {
1c1c6ebc 1016 if (flags == 0)
55d6af64 1017 return NULLAGNUMBER;
1da177e4
LT
1018 flags = 0;
1019 }
1020 }
1021}
1022
4254b0bb
CH
1023/*
1024 * Try to retrieve the next record to the left/right from the current one.
1025 */
1026STATIC int
1027xfs_ialloc_next_rec(
1028 struct xfs_btree_cur *cur,
1029 xfs_inobt_rec_incore_t *rec,
1030 int *done,
1031 int left)
1032{
1033 int error;
1034 int i;
1035
1036 if (left)
1037 error = xfs_btree_decrement(cur, 0, &i);
1038 else
1039 error = xfs_btree_increment(cur, 0, &i);
1040
1041 if (error)
1042 return error;
1043 *done = !i;
1044 if (i) {
1045 error = xfs_inobt_get_rec(cur, rec, &i);
1046 if (error)
1047 return error;
5fb5aeee 1048 XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1);
4254b0bb
CH
1049 }
1050
1051 return 0;
1052}
1053
bd169565
DC
1054STATIC int
1055xfs_ialloc_get_rec(
1056 struct xfs_btree_cur *cur,
1057 xfs_agino_t agino,
1058 xfs_inobt_rec_incore_t *rec,
43df2ee6 1059 int *done)
bd169565
DC
1060{
1061 int error;
1062 int i;
1063
1064 error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_EQ, &i);
1065 if (error)
1066 return error;
1067 *done = !i;
1068 if (i) {
1069 error = xfs_inobt_get_rec(cur, rec, &i);
1070 if (error)
1071 return error;
5fb5aeee 1072 XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1);
bd169565
DC
1073 }
1074
1075 return 0;
1076}
0b48db80 1077
d4cc540b 1078/*
26dd5217
BF
1079 * Return the offset of the first free inode in the record. If the inode chunk
1080 * is sparsely allocated, we convert the record holemask to inode granularity
1081 * and mask off the unallocated regions from the inode free mask.
d4cc540b
BF
1082 */
1083STATIC int
1084xfs_inobt_first_free_inode(
1085 struct xfs_inobt_rec_incore *rec)
1086{
26dd5217
BF
1087 xfs_inofree_t realfree;
1088
1089 /* if there are no holes, return the first available offset */
1090 if (!xfs_inobt_issparse(rec->ir_holemask))
1091 return xfs_lowbit64(rec->ir_free);
1092
1093 realfree = xfs_inobt_irec_to_allocmask(rec);
1094 realfree &= rec->ir_free;
1095
1096 return xfs_lowbit64(realfree);
d4cc540b
BF
1097}
1098
1da177e4 1099/*
6dd8638e 1100 * Allocate an inode using the inobt-only algorithm.
1da177e4 1101 */
f2ecc5e4 1102STATIC int
6dd8638e 1103xfs_dialloc_ag_inobt(
f2ecc5e4
CH
1104 struct xfs_trans *tp,
1105 struct xfs_buf *agbp,
1106 xfs_ino_t parent,
1107 xfs_ino_t *inop)
1da177e4 1108{
f2ecc5e4
CH
1109 struct xfs_mount *mp = tp->t_mountp;
1110 struct xfs_agi *agi = XFS_BUF_TO_AGI(agbp);
1111 xfs_agnumber_t agno = be32_to_cpu(agi->agi_seqno);
1112 xfs_agnumber_t pagno = XFS_INO_TO_AGNO(mp, parent);
1113 xfs_agino_t pagino = XFS_INO_TO_AGINO(mp, parent);
1114 struct xfs_perag *pag;
1115 struct xfs_btree_cur *cur, *tcur;
1116 struct xfs_inobt_rec_incore rec, trec;
1117 xfs_ino_t ino;
1118 int error;
1119 int offset;
1120 int i, j;
1da177e4 1121
44b56e0a 1122 pag = xfs_perag_get(mp, agno);
bd169565 1123
4bb61069
CH
1124 ASSERT(pag->pagi_init);
1125 ASSERT(pag->pagi_inodeok);
1126 ASSERT(pag->pagi_freecount > 0);
1127
bd169565 1128 restart_pagno:
57bd3dbe 1129 cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_INO);
1da177e4
LT
1130 /*
1131 * If pagino is 0 (this is the root inode allocation) use newino.
1132 * This must work because we've just allocated some.
1133 */
1134 if (!pagino)
16259e7d 1135 pagino = be32_to_cpu(agi->agi_newino);
1da177e4 1136
0b48db80
DC
1137 error = xfs_check_agi_freecount(cur, agi);
1138 if (error)
1139 goto error0;
1da177e4 1140
1da177e4 1141 /*
4254b0bb 1142 * If in the same AG as the parent, try to get near the parent.
1da177e4
LT
1143 */
1144 if (pagno == agno) {
4254b0bb
CH
1145 int doneleft; /* done, to the left */
1146 int doneright; /* done, to the right */
bd169565 1147 int searchdistance = 10;
4254b0bb 1148
21875505 1149 error = xfs_inobt_lookup(cur, pagino, XFS_LOOKUP_LE, &i);
4254b0bb 1150 if (error)
1da177e4 1151 goto error0;
c29aad41 1152 XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error0);
4254b0bb
CH
1153
1154 error = xfs_inobt_get_rec(cur, &rec, &j);
1155 if (error)
1156 goto error0;
c29aad41 1157 XFS_WANT_CORRUPTED_GOTO(mp, j == 1, error0);
4254b0bb
CH
1158
1159 if (rec.ir_freecount > 0) {
1da177e4
LT
1160 /*
1161 * Found a free inode in the same chunk
4254b0bb 1162 * as the parent, done.
1da177e4 1163 */
4254b0bb 1164 goto alloc_inode;
1da177e4 1165 }
4254b0bb
CH
1166
1167
1da177e4 1168 /*
4254b0bb 1169 * In the same AG as parent, but parent's chunk is full.
1da177e4 1170 */
1da177e4 1171
4254b0bb
CH
1172 /* duplicate the cursor, search left & right simultaneously */
1173 error = xfs_btree_dup_cursor(cur, &tcur);
1174 if (error)
1175 goto error0;
1176
bd169565
DC
1177 /*
1178 * Skip to last blocks looked up if same parent inode.
1179 */
1180 if (pagino != NULLAGINO &&
1181 pag->pagl_pagino == pagino &&
1182 pag->pagl_leftrec != NULLAGINO &&
1183 pag->pagl_rightrec != NULLAGINO) {
1184 error = xfs_ialloc_get_rec(tcur, pag->pagl_leftrec,
43df2ee6 1185 &trec, &doneleft);
bd169565
DC
1186 if (error)
1187 goto error1;
4254b0bb 1188
bd169565 1189 error = xfs_ialloc_get_rec(cur, pag->pagl_rightrec,
43df2ee6 1190 &rec, &doneright);
bd169565
DC
1191 if (error)
1192 goto error1;
1193 } else {
1194 /* search left with tcur, back up 1 record */
1195 error = xfs_ialloc_next_rec(tcur, &trec, &doneleft, 1);
1196 if (error)
1197 goto error1;
1198
1199 /* search right with cur, go forward 1 record. */
1200 error = xfs_ialloc_next_rec(cur, &rec, &doneright, 0);
1201 if (error)
1202 goto error1;
1203 }
4254b0bb
CH
1204
1205 /*
1206 * Loop until we find an inode chunk with a free inode.
1207 */
1208 while (!doneleft || !doneright) {
1209 int useleft; /* using left inode chunk this time */
1210
bd169565
DC
1211 if (!--searchdistance) {
1212 /*
1213 * Not in range - save last search
1214 * location and allocate a new inode
1215 */
3b826386 1216 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
bd169565
DC
1217 pag->pagl_leftrec = trec.ir_startino;
1218 pag->pagl_rightrec = rec.ir_startino;
1219 pag->pagl_pagino = pagino;
1220 goto newino;
1221 }
1222
4254b0bb
CH
1223 /* figure out the closer block if both are valid. */
1224 if (!doneleft && !doneright) {
1225 useleft = pagino -
1226 (trec.ir_startino + XFS_INODES_PER_CHUNK - 1) <
1227 rec.ir_startino - pagino;
1228 } else {
1229 useleft = !doneleft;
1da177e4 1230 }
4254b0bb
CH
1231
1232 /* free inodes to the left? */
1233 if (useleft && trec.ir_freecount) {
1234 rec = trec;
1235 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
1236 cur = tcur;
bd169565
DC
1237
1238 pag->pagl_leftrec = trec.ir_startino;
1239 pag->pagl_rightrec = rec.ir_startino;
1240 pag->pagl_pagino = pagino;
4254b0bb 1241 goto alloc_inode;
1da177e4 1242 }
1da177e4 1243
4254b0bb
CH
1244 /* free inodes to the right? */
1245 if (!useleft && rec.ir_freecount) {
1246 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
bd169565
DC
1247
1248 pag->pagl_leftrec = trec.ir_startino;
1249 pag->pagl_rightrec = rec.ir_startino;
1250 pag->pagl_pagino = pagino;
4254b0bb 1251 goto alloc_inode;
1da177e4 1252 }
4254b0bb
CH
1253
1254 /* get next record to check */
1255 if (useleft) {
1256 error = xfs_ialloc_next_rec(tcur, &trec,
1257 &doneleft, 1);
1258 } else {
1259 error = xfs_ialloc_next_rec(cur, &rec,
1260 &doneright, 0);
1261 }
1262 if (error)
1263 goto error1;
1da177e4 1264 }
bd169565
DC
1265
1266 /*
1267 * We've reached the end of the btree. because
1268 * we are only searching a small chunk of the
1269 * btree each search, there is obviously free
1270 * inodes closer to the parent inode than we
1271 * are now. restart the search again.
1272 */
1273 pag->pagl_pagino = NULLAGINO;
1274 pag->pagl_leftrec = NULLAGINO;
1275 pag->pagl_rightrec = NULLAGINO;
1276 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
1277 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
1278 goto restart_pagno;
1da177e4 1279 }
4254b0bb 1280
1da177e4 1281 /*
4254b0bb 1282 * In a different AG from the parent.
1da177e4
LT
1283 * See if the most recently allocated block has any free.
1284 */
bd169565 1285newino:
69ef921b 1286 if (agi->agi_newino != cpu_to_be32(NULLAGINO)) {
21875505
CH
1287 error = xfs_inobt_lookup(cur, be32_to_cpu(agi->agi_newino),
1288 XFS_LOOKUP_EQ, &i);
4254b0bb 1289 if (error)
1da177e4 1290 goto error0;
4254b0bb
CH
1291
1292 if (i == 1) {
1293 error = xfs_inobt_get_rec(cur, &rec, &j);
1294 if (error)
1295 goto error0;
1296
1297 if (j == 1 && rec.ir_freecount > 0) {
1298 /*
1299 * The last chunk allocated in the group
1300 * still has a free inode.
1301 */
1302 goto alloc_inode;
1303 }
1da177e4 1304 }
bd169565 1305 }
4254b0bb 1306
bd169565
DC
1307 /*
1308 * None left in the last group, search the whole AG
1309 */
1310 error = xfs_inobt_lookup(cur, 0, XFS_LOOKUP_GE, &i);
1311 if (error)
1312 goto error0;
c29aad41 1313 XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error0);
bd169565
DC
1314
1315 for (;;) {
1316 error = xfs_inobt_get_rec(cur, &rec, &i);
1317 if (error)
1318 goto error0;
c29aad41 1319 XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error0);
bd169565
DC
1320 if (rec.ir_freecount > 0)
1321 break;
1322 error = xfs_btree_increment(cur, 0, &i);
4254b0bb
CH
1323 if (error)
1324 goto error0;
c29aad41 1325 XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error0);
1da177e4 1326 }
4254b0bb
CH
1327
1328alloc_inode:
d4cc540b 1329 offset = xfs_inobt_first_free_inode(&rec);
1da177e4
LT
1330 ASSERT(offset >= 0);
1331 ASSERT(offset < XFS_INODES_PER_CHUNK);
1332 ASSERT((XFS_AGINO_TO_OFFSET(mp, rec.ir_startino) %
1333 XFS_INODES_PER_CHUNK) == 0);
1334 ino = XFS_AGINO_TO_INO(mp, agno, rec.ir_startino + offset);
0d87e656 1335 rec.ir_free &= ~XFS_INOBT_MASK(offset);
1da177e4 1336 rec.ir_freecount--;
afabc24a
CH
1337 error = xfs_inobt_update(cur, &rec);
1338 if (error)
1da177e4 1339 goto error0;
413d57c9 1340 be32_add_cpu(&agi->agi_freecount, -1);
1da177e4 1341 xfs_ialloc_log_agi(tp, agbp, XFS_AGI_FREECOUNT);
44b56e0a 1342 pag->pagi_freecount--;
1da177e4 1343
0b48db80
DC
1344 error = xfs_check_agi_freecount(cur, agi);
1345 if (error)
1346 goto error0;
1347
1da177e4
LT
1348 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
1349 xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, -1);
44b56e0a 1350 xfs_perag_put(pag);
1da177e4
LT
1351 *inop = ino;
1352 return 0;
1353error1:
1354 xfs_btree_del_cursor(tcur, XFS_BTREE_ERROR);
1355error0:
1356 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
44b56e0a 1357 xfs_perag_put(pag);
1da177e4
LT
1358 return error;
1359}
1360
6dd8638e
BF
1361/*
1362 * Use the free inode btree to allocate an inode based on distance from the
1363 * parent. Note that the provided cursor may be deleted and replaced.
1364 */
1365STATIC int
1366xfs_dialloc_ag_finobt_near(
1367 xfs_agino_t pagino,
1368 struct xfs_btree_cur **ocur,
1369 struct xfs_inobt_rec_incore *rec)
1370{
1371 struct xfs_btree_cur *lcur = *ocur; /* left search cursor */
1372 struct xfs_btree_cur *rcur; /* right search cursor */
1373 struct xfs_inobt_rec_incore rrec;
1374 int error;
1375 int i, j;
1376
1377 error = xfs_inobt_lookup(lcur, pagino, XFS_LOOKUP_LE, &i);
1378 if (error)
1379 return error;
1380
1381 if (i == 1) {
1382 error = xfs_inobt_get_rec(lcur, rec, &i);
1383 if (error)
1384 return error;
5fb5aeee 1385 XFS_WANT_CORRUPTED_RETURN(lcur->bc_mp, i == 1);
6dd8638e
BF
1386
1387 /*
1388 * See if we've landed in the parent inode record. The finobt
1389 * only tracks chunks with at least one free inode, so record
1390 * existence is enough.
1391 */
1392 if (pagino >= rec->ir_startino &&
1393 pagino < (rec->ir_startino + XFS_INODES_PER_CHUNK))
1394 return 0;
1395 }
1396
1397 error = xfs_btree_dup_cursor(lcur, &rcur);
1398 if (error)
1399 return error;
1400
1401 error = xfs_inobt_lookup(rcur, pagino, XFS_LOOKUP_GE, &j);
1402 if (error)
1403 goto error_rcur;
1404 if (j == 1) {
1405 error = xfs_inobt_get_rec(rcur, &rrec, &j);
1406 if (error)
1407 goto error_rcur;
c29aad41 1408 XFS_WANT_CORRUPTED_GOTO(lcur->bc_mp, j == 1, error_rcur);
6dd8638e
BF
1409 }
1410
c29aad41 1411 XFS_WANT_CORRUPTED_GOTO(lcur->bc_mp, i == 1 || j == 1, error_rcur);
6dd8638e
BF
1412 if (i == 1 && j == 1) {
1413 /*
1414 * Both the left and right records are valid. Choose the closer
1415 * inode chunk to the target.
1416 */
1417 if ((pagino - rec->ir_startino + XFS_INODES_PER_CHUNK - 1) >
1418 (rrec.ir_startino - pagino)) {
1419 *rec = rrec;
1420 xfs_btree_del_cursor(lcur, XFS_BTREE_NOERROR);
1421 *ocur = rcur;
1422 } else {
1423 xfs_btree_del_cursor(rcur, XFS_BTREE_NOERROR);
1424 }
1425 } else if (j == 1) {
1426 /* only the right record is valid */
1427 *rec = rrec;
1428 xfs_btree_del_cursor(lcur, XFS_BTREE_NOERROR);
1429 *ocur = rcur;
1430 } else if (i == 1) {
1431 /* only the left record is valid */
1432 xfs_btree_del_cursor(rcur, XFS_BTREE_NOERROR);
1433 }
1434
1435 return 0;
1436
1437error_rcur:
1438 xfs_btree_del_cursor(rcur, XFS_BTREE_ERROR);
1439 return error;
1440}
1441
1442/*
1443 * Use the free inode btree to find a free inode based on a newino hint. If
1444 * the hint is NULL, find the first free inode in the AG.
1445 */
1446STATIC int
1447xfs_dialloc_ag_finobt_newino(
1448 struct xfs_agi *agi,
1449 struct xfs_btree_cur *cur,
1450 struct xfs_inobt_rec_incore *rec)
1451{
1452 int error;
1453 int i;
1454
1455 if (agi->agi_newino != cpu_to_be32(NULLAGINO)) {
e68ed775
DC
1456 error = xfs_inobt_lookup(cur, be32_to_cpu(agi->agi_newino),
1457 XFS_LOOKUP_EQ, &i);
6dd8638e
BF
1458 if (error)
1459 return error;
1460 if (i == 1) {
1461 error = xfs_inobt_get_rec(cur, rec, &i);
1462 if (error)
1463 return error;
5fb5aeee 1464 XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1);
6dd8638e
BF
1465 return 0;
1466 }
1467 }
1468
1469 /*
1470 * Find the first inode available in the AG.
1471 */
1472 error = xfs_inobt_lookup(cur, 0, XFS_LOOKUP_GE, &i);
1473 if (error)
1474 return error;
5fb5aeee 1475 XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1);
6dd8638e
BF
1476
1477 error = xfs_inobt_get_rec(cur, rec, &i);
1478 if (error)
1479 return error;
5fb5aeee 1480 XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1);
6dd8638e
BF
1481
1482 return 0;
1483}
1484
1485/*
1486 * Update the inobt based on a modification made to the finobt. Also ensure that
1487 * the records from both trees are equivalent post-modification.
1488 */
1489STATIC int
1490xfs_dialloc_ag_update_inobt(
1491 struct xfs_btree_cur *cur, /* inobt cursor */
1492 struct xfs_inobt_rec_incore *frec, /* finobt record */
1493 int offset) /* inode offset */
1494{
1495 struct xfs_inobt_rec_incore rec;
1496 int error;
1497 int i;
1498
1499 error = xfs_inobt_lookup(cur, frec->ir_startino, XFS_LOOKUP_EQ, &i);
1500 if (error)
1501 return error;
5fb5aeee 1502 XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1);
6dd8638e
BF
1503
1504 error = xfs_inobt_get_rec(cur, &rec, &i);
1505 if (error)
1506 return error;
5fb5aeee 1507 XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1);
6dd8638e
BF
1508 ASSERT((XFS_AGINO_TO_OFFSET(cur->bc_mp, rec.ir_startino) %
1509 XFS_INODES_PER_CHUNK) == 0);
1510
1511 rec.ir_free &= ~XFS_INOBT_MASK(offset);
1512 rec.ir_freecount--;
1513
5fb5aeee 1514 XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, (rec.ir_free == frec->ir_free) &&
6dd8638e
BF
1515 (rec.ir_freecount == frec->ir_freecount));
1516
b72091f2 1517 return xfs_inobt_update(cur, &rec);
6dd8638e
BF
1518}
1519
1520/*
1521 * Allocate an inode using the free inode btree, if available. Otherwise, fall
1522 * back to the inobt search algorithm.
1523 *
1524 * The caller selected an AG for us, and made sure that free inodes are
1525 * available.
1526 */
1527STATIC int
1528xfs_dialloc_ag(
1529 struct xfs_trans *tp,
1530 struct xfs_buf *agbp,
1531 xfs_ino_t parent,
1532 xfs_ino_t *inop)
1533{
1534 struct xfs_mount *mp = tp->t_mountp;
1535 struct xfs_agi *agi = XFS_BUF_TO_AGI(agbp);
1536 xfs_agnumber_t agno = be32_to_cpu(agi->agi_seqno);
1537 xfs_agnumber_t pagno = XFS_INO_TO_AGNO(mp, parent);
1538 xfs_agino_t pagino = XFS_INO_TO_AGINO(mp, parent);
1539 struct xfs_perag *pag;
1540 struct xfs_btree_cur *cur; /* finobt cursor */
1541 struct xfs_btree_cur *icur; /* inobt cursor */
1542 struct xfs_inobt_rec_incore rec;
1543 xfs_ino_t ino;
1544 int error;
1545 int offset;
1546 int i;
1547
1548 if (!xfs_sb_version_hasfinobt(&mp->m_sb))
1549 return xfs_dialloc_ag_inobt(tp, agbp, parent, inop);
1550
1551 pag = xfs_perag_get(mp, agno);
1552
1553 /*
1554 * If pagino is 0 (this is the root inode allocation) use newino.
1555 * This must work because we've just allocated some.
1556 */
1557 if (!pagino)
1558 pagino = be32_to_cpu(agi->agi_newino);
1559
1560 cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_FINO);
1561
1562 error = xfs_check_agi_freecount(cur, agi);
1563 if (error)
1564 goto error_cur;
1565
1566 /*
1567 * The search algorithm depends on whether we're in the same AG as the
1568 * parent. If so, find the closest available inode to the parent. If
1569 * not, consider the agi hint or find the first free inode in the AG.
1570 */
1571 if (agno == pagno)
1572 error = xfs_dialloc_ag_finobt_near(pagino, &cur, &rec);
1573 else
1574 error = xfs_dialloc_ag_finobt_newino(agi, cur, &rec);
1575 if (error)
1576 goto error_cur;
1577
d4cc540b 1578 offset = xfs_inobt_first_free_inode(&rec);
6dd8638e
BF
1579 ASSERT(offset >= 0);
1580 ASSERT(offset < XFS_INODES_PER_CHUNK);
1581 ASSERT((XFS_AGINO_TO_OFFSET(mp, rec.ir_startino) %
1582 XFS_INODES_PER_CHUNK) == 0);
1583 ino = XFS_AGINO_TO_INO(mp, agno, rec.ir_startino + offset);
1584
1585 /*
1586 * Modify or remove the finobt record.
1587 */
1588 rec.ir_free &= ~XFS_INOBT_MASK(offset);
1589 rec.ir_freecount--;
1590 if (rec.ir_freecount)
1591 error = xfs_inobt_update(cur, &rec);
1592 else
1593 error = xfs_btree_delete(cur, &i);
1594 if (error)
1595 goto error_cur;
1596
1597 /*
1598 * The finobt has now been updated appropriately. We haven't updated the
1599 * agi and superblock yet, so we can create an inobt cursor and validate
1600 * the original freecount. If all is well, make the equivalent update to
1601 * the inobt using the finobt record and offset information.
1602 */
1603 icur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_INO);
1604
1605 error = xfs_check_agi_freecount(icur, agi);
1606 if (error)
1607 goto error_icur;
1608
1609 error = xfs_dialloc_ag_update_inobt(icur, &rec, offset);
1610 if (error)
1611 goto error_icur;
1612
1613 /*
1614 * Both trees have now been updated. We must update the perag and
1615 * superblock before we can check the freecount for each btree.
1616 */
1617 be32_add_cpu(&agi->agi_freecount, -1);
1618 xfs_ialloc_log_agi(tp, agbp, XFS_AGI_FREECOUNT);
1619 pag->pagi_freecount--;
1620
1621 xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, -1);
1622
1623 error = xfs_check_agi_freecount(icur, agi);
1624 if (error)
1625 goto error_icur;
1626 error = xfs_check_agi_freecount(cur, agi);
1627 if (error)
1628 goto error_icur;
1629
1630 xfs_btree_del_cursor(icur, XFS_BTREE_NOERROR);
1631 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
1632 xfs_perag_put(pag);
1633 *inop = ino;
1634 return 0;
1635
1636error_icur:
1637 xfs_btree_del_cursor(icur, XFS_BTREE_ERROR);
1638error_cur:
1639 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
1640 xfs_perag_put(pag);
1641 return error;
1642}
1643
f2ecc5e4
CH
1644/*
1645 * Allocate an inode on disk.
1646 *
1647 * Mode is used to tell whether the new inode will need space, and whether it
1648 * is a directory.
1649 *
1650 * This function is designed to be called twice if it has to do an allocation
1651 * to make more free inodes. On the first call, *IO_agbp should be set to NULL.
1652 * If an inode is available without having to performn an allocation, an inode
cd856db6
CM
1653 * number is returned. In this case, *IO_agbp is set to NULL. If an allocation
1654 * needs to be done, xfs_dialloc returns the current AGI buffer in *IO_agbp.
1655 * The caller should then commit the current transaction, allocate a
f2ecc5e4
CH
1656 * new transaction, and call xfs_dialloc() again, passing in the previous value
1657 * of *IO_agbp. IO_agbp should be held across the transactions. Since the AGI
1658 * buffer is locked across the two calls, the second call is guaranteed to have
1659 * a free inode available.
1660 *
1661 * Once we successfully pick an inode its number is returned and the on-disk
1662 * data structures are updated. The inode itself is not read in, since doing so
1663 * would break ordering constraints with xfs_reclaim.
1664 */
1665int
1666xfs_dialloc(
1667 struct xfs_trans *tp,
1668 xfs_ino_t parent,
1669 umode_t mode,
1670 int okalloc,
1671 struct xfs_buf **IO_agbp,
f2ecc5e4
CH
1672 xfs_ino_t *inop)
1673{
55d6af64 1674 struct xfs_mount *mp = tp->t_mountp;
f2ecc5e4
CH
1675 struct xfs_buf *agbp;
1676 xfs_agnumber_t agno;
f2ecc5e4
CH
1677 int error;
1678 int ialloced;
1679 int noroom = 0;
be60fe54 1680 xfs_agnumber_t start_agno;
f2ecc5e4
CH
1681 struct xfs_perag *pag;
1682
4bb61069 1683 if (*IO_agbp) {
f2ecc5e4 1684 /*
4bb61069
CH
1685 * If the caller passes in a pointer to the AGI buffer,
1686 * continue where we left off before. In this case, we
f2ecc5e4
CH
1687 * know that the allocation group has free inodes.
1688 */
1689 agbp = *IO_agbp;
4bb61069 1690 goto out_alloc;
f2ecc5e4 1691 }
4bb61069
CH
1692
1693 /*
1694 * We do not have an agbp, so select an initial allocation
1695 * group for inode allocation.
1696 */
be60fe54
CH
1697 start_agno = xfs_ialloc_ag_select(tp, parent, mode, okalloc);
1698 if (start_agno == NULLAGNUMBER) {
4bb61069
CH
1699 *inop = NULLFSINO;
1700 return 0;
1701 }
55d6af64 1702
f2ecc5e4
CH
1703 /*
1704 * If we have already hit the ceiling of inode blocks then clear
1705 * okalloc so we scan all available agi structures for a free
1706 * inode.
1707 */
f2ecc5e4 1708 if (mp->m_maxicount &&
501ab323
DC
1709 percpu_counter_read(&mp->m_icount) + mp->m_ialloc_inos >
1710 mp->m_maxicount) {
f2ecc5e4
CH
1711 noroom = 1;
1712 okalloc = 0;
1713 }
1714
1715 /*
1716 * Loop until we find an allocation group that either has free inodes
1717 * or in which we can allocate some inodes. Iterate through the
1718 * allocation groups upward, wrapping at the end.
1719 */
be60fe54
CH
1720 agno = start_agno;
1721 for (;;) {
1722 pag = xfs_perag_get(mp, agno);
1723 if (!pag->pagi_inodeok) {
1724 xfs_ialloc_next_ag(mp);
1725 goto nextag;
1726 }
1727
1728 if (!pag->pagi_init) {
1729 error = xfs_ialloc_pagi_init(mp, tp, agno);
1730 if (error)
1731 goto out_error;
f2ecc5e4 1732 }
be60fe54 1733
f2ecc5e4 1734 /*
be60fe54 1735 * Do a first racy fast path check if this AG is usable.
f2ecc5e4 1736 */
be60fe54
CH
1737 if (!pag->pagi_freecount && !okalloc)
1738 goto nextag;
1739
c4982110
CH
1740 /*
1741 * Then read in the AGI buffer and recheck with the AGI buffer
1742 * lock held.
1743 */
be60fe54
CH
1744 error = xfs_ialloc_read_agi(mp, tp, agno, &agbp);
1745 if (error)
1746 goto out_error;
1747
be60fe54
CH
1748 if (pag->pagi_freecount) {
1749 xfs_perag_put(pag);
1750 goto out_alloc;
1751 }
1752
c4982110
CH
1753 if (!okalloc)
1754 goto nextag_relse_buffer;
1755
be60fe54
CH
1756
1757 error = xfs_ialloc_ag_alloc(tp, agbp, &ialloced);
1758 if (error) {
1759 xfs_trans_brelse(tp, agbp);
1760
2451337d 1761 if (error != -ENOSPC)
be60fe54
CH
1762 goto out_error;
1763
1764 xfs_perag_put(pag);
f2ecc5e4 1765 *inop = NULLFSINO;
be60fe54 1766 return 0;
f2ecc5e4 1767 }
be60fe54
CH
1768
1769 if (ialloced) {
1770 /*
1771 * We successfully allocated some inodes, return
1772 * the current context to the caller so that it
1773 * can commit the current transaction and call
1774 * us again where we left off.
1775 */
1776 ASSERT(pag->pagi_freecount > 0);
f2ecc5e4 1777 xfs_perag_put(pag);
be60fe54
CH
1778
1779 *IO_agbp = agbp;
1780 *inop = NULLFSINO;
1781 return 0;
f2ecc5e4 1782 }
be60fe54 1783
c4982110
CH
1784nextag_relse_buffer:
1785 xfs_trans_brelse(tp, agbp);
be60fe54 1786nextag:
f2ecc5e4 1787 xfs_perag_put(pag);
be60fe54
CH
1788 if (++agno == mp->m_sb.sb_agcount)
1789 agno = 0;
1790 if (agno == start_agno) {
1791 *inop = NULLFSINO;
2451337d 1792 return noroom ? -ENOSPC : 0;
be60fe54 1793 }
f2ecc5e4
CH
1794 }
1795
4bb61069 1796out_alloc:
f2ecc5e4
CH
1797 *IO_agbp = NULL;
1798 return xfs_dialloc_ag(tp, agbp, parent, inop);
be60fe54
CH
1799out_error:
1800 xfs_perag_put(pag);
b474c7ae 1801 return error;
f2ecc5e4
CH
1802}
1803
10ae3dc7
BF
1804/*
1805 * Free the blocks of an inode chunk. We must consider that the inode chunk
1806 * might be sparse and only free the regions that are allocated as part of the
1807 * chunk.
1808 */
1809STATIC void
1810xfs_difree_inode_chunk(
1811 struct xfs_mount *mp,
1812 xfs_agnumber_t agno,
1813 struct xfs_inobt_rec_incore *rec,
1814 struct xfs_bmap_free *flist)
1815{
1816 xfs_agblock_t sagbno = XFS_AGINO_TO_AGBNO(mp, rec->ir_startino);
1817 int startidx, endidx;
1818 int nextbit;
1819 xfs_agblock_t agbno;
1820 int contigblk;
1821 DECLARE_BITMAP(holemask, XFS_INOBT_HOLEMASK_BITS);
1822
1823 if (!xfs_inobt_issparse(rec->ir_holemask)) {
1824 /* not sparse, calculate extent info directly */
1825 xfs_bmap_add_free(XFS_AGB_TO_FSB(mp, agno,
1826 XFS_AGINO_TO_AGBNO(mp, rec->ir_startino)),
1827 mp->m_ialloc_blks, flist, mp);
1828 return;
1829 }
1830
1831 /* holemask is only 16-bits (fits in an unsigned long) */
1832 ASSERT(sizeof(rec->ir_holemask) <= sizeof(holemask[0]));
1833 holemask[0] = rec->ir_holemask;
1834
1835 /*
1836 * Find contiguous ranges of zeroes (i.e., allocated regions) in the
1837 * holemask and convert the start/end index of each range to an extent.
1838 * We start with the start and end index both pointing at the first 0 in
1839 * the mask.
1840 */
1841 startidx = endidx = find_first_zero_bit(holemask,
1842 XFS_INOBT_HOLEMASK_BITS);
1843 nextbit = startidx + 1;
1844 while (startidx < XFS_INOBT_HOLEMASK_BITS) {
1845 nextbit = find_next_zero_bit(holemask, XFS_INOBT_HOLEMASK_BITS,
1846 nextbit);
1847 /*
1848 * If the next zero bit is contiguous, update the end index of
1849 * the current range and continue.
1850 */
1851 if (nextbit != XFS_INOBT_HOLEMASK_BITS &&
1852 nextbit == endidx + 1) {
1853 endidx = nextbit;
1854 goto next;
1855 }
1856
1857 /*
1858 * nextbit is not contiguous with the current end index. Convert
1859 * the current start/end to an extent and add it to the free
1860 * list.
1861 */
1862 agbno = sagbno + (startidx * XFS_INODES_PER_HOLEMASK_BIT) /
1863 mp->m_sb.sb_inopblock;
1864 contigblk = ((endidx - startidx + 1) *
1865 XFS_INODES_PER_HOLEMASK_BIT) /
1866 mp->m_sb.sb_inopblock;
1867
1868 ASSERT(agbno % mp->m_sb.sb_spino_align == 0);
1869 ASSERT(contigblk % mp->m_sb.sb_spino_align == 0);
1870 xfs_bmap_add_free(XFS_AGB_TO_FSB(mp, agno, agbno), contigblk,
1871 flist, mp);
1872
1873 /* reset range to current bit and carry on... */
1874 startidx = endidx = nextbit;
1875
1876next:
1877 nextbit++;
1878 }
1879}
1880
2b64ee5c
BF
1881STATIC int
1882xfs_difree_inobt(
1883 struct xfs_mount *mp,
1884 struct xfs_trans *tp,
1885 struct xfs_buf *agbp,
1886 xfs_agino_t agino,
1887 struct xfs_bmap_free *flist,
0d907a3b 1888 int *deleted,
2b64ee5c
BF
1889 xfs_ino_t *first_ino,
1890 struct xfs_inobt_rec_incore *orec)
1da177e4 1891{
2b64ee5c
BF
1892 struct xfs_agi *agi = XFS_BUF_TO_AGI(agbp);
1893 xfs_agnumber_t agno = be32_to_cpu(agi->agi_seqno);
1894 struct xfs_perag *pag;
1895 struct xfs_btree_cur *cur;
1896 struct xfs_inobt_rec_incore rec;
1897 int ilen;
1898 int error;
1899 int i;
1900 int off;
1da177e4 1901
69ef921b 1902 ASSERT(agi->agi_magicnum == cpu_to_be32(XFS_AGI_MAGIC));
2b64ee5c
BF
1903 ASSERT(XFS_AGINO_TO_AGBNO(mp, agino) < be32_to_cpu(agi->agi_length));
1904
1da177e4
LT
1905 /*
1906 * Initialize the cursor.
1907 */
57bd3dbe 1908 cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_INO);
1da177e4 1909
0b48db80
DC
1910 error = xfs_check_agi_freecount(cur, agi);
1911 if (error)
1912 goto error0;
1913
1da177e4
LT
1914 /*
1915 * Look for the entry describing this inode.
1916 */
21875505 1917 if ((error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_LE, &i))) {
0b932ccc
DC
1918 xfs_warn(mp, "%s: xfs_inobt_lookup() returned error %d.",
1919 __func__, error);
1da177e4
LT
1920 goto error0;
1921 }
c29aad41 1922 XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error0);
2e287a73
CH
1923 error = xfs_inobt_get_rec(cur, &rec, &i);
1924 if (error) {
0b932ccc
DC
1925 xfs_warn(mp, "%s: xfs_inobt_get_rec() returned error %d.",
1926 __func__, error);
1da177e4
LT
1927 goto error0;
1928 }
c29aad41 1929 XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error0);
1da177e4
LT
1930 /*
1931 * Get the offset in the inode chunk.
1932 */
1933 off = agino - rec.ir_startino;
1934 ASSERT(off >= 0 && off < XFS_INODES_PER_CHUNK);
0d87e656 1935 ASSERT(!(rec.ir_free & XFS_INOBT_MASK(off)));
1da177e4
LT
1936 /*
1937 * Mark the inode free & increment the count.
1938 */
0d87e656 1939 rec.ir_free |= XFS_INOBT_MASK(off);
1da177e4
LT
1940 rec.ir_freecount++;
1941
1942 /*
999633d3
BF
1943 * When an inode chunk is free, it becomes eligible for removal. Don't
1944 * remove the chunk if the block size is large enough for multiple inode
1945 * chunks (that might not be free).
1da177e4 1946 */
1bd960ee 1947 if (!(mp->m_flags & XFS_MOUNT_IKEEP) &&
999633d3
BF
1948 rec.ir_free == XFS_INOBT_ALL_FREE &&
1949 mp->m_sb.sb_inopblock <= XFS_INODES_PER_CHUNK) {
1da177e4 1950
376c2f3a 1951 *deleted = 1;
1da177e4
LT
1952 *first_ino = XFS_AGINO_TO_INO(mp, agno, rec.ir_startino);
1953
1954 /*
1955 * Remove the inode cluster from the AGI B+Tree, adjust the
1956 * AGI and Superblock inode counts, and mark the disk space
1957 * to be freed when the transaction is committed.
1958 */
999633d3 1959 ilen = rec.ir_freecount;
413d57c9
MS
1960 be32_add_cpu(&agi->agi_count, -ilen);
1961 be32_add_cpu(&agi->agi_freecount, -(ilen - 1));
1da177e4 1962 xfs_ialloc_log_agi(tp, agbp, XFS_AGI_COUNT | XFS_AGI_FREECOUNT);
44b56e0a
DC
1963 pag = xfs_perag_get(mp, agno);
1964 pag->pagi_freecount -= ilen - 1;
1965 xfs_perag_put(pag);
1da177e4
LT
1966 xfs_trans_mod_sb(tp, XFS_TRANS_SB_ICOUNT, -ilen);
1967 xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, -(ilen - 1));
1968
91cca5df 1969 if ((error = xfs_btree_delete(cur, &i))) {
0b932ccc
DC
1970 xfs_warn(mp, "%s: xfs_btree_delete returned error %d.",
1971 __func__, error);
1da177e4
LT
1972 goto error0;
1973 }
1974
10ae3dc7 1975 xfs_difree_inode_chunk(mp, agno, &rec, flist);
1da177e4 1976 } else {
376c2f3a 1977 *deleted = 0;
1da177e4 1978
afabc24a
CH
1979 error = xfs_inobt_update(cur, &rec);
1980 if (error) {
0b932ccc
DC
1981 xfs_warn(mp, "%s: xfs_inobt_update returned error %d.",
1982 __func__, error);
1da177e4
LT
1983 goto error0;
1984 }
afabc24a 1985
1da177e4
LT
1986 /*
1987 * Change the inode free counts and log the ag/sb changes.
1988 */
413d57c9 1989 be32_add_cpu(&agi->agi_freecount, 1);
1da177e4 1990 xfs_ialloc_log_agi(tp, agbp, XFS_AGI_FREECOUNT);
44b56e0a
DC
1991 pag = xfs_perag_get(mp, agno);
1992 pag->pagi_freecount++;
1993 xfs_perag_put(pag);
1da177e4
LT
1994 xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, 1);
1995 }
1996
0b48db80
DC
1997 error = xfs_check_agi_freecount(cur, agi);
1998 if (error)
1999 goto error0;
1da177e4 2000
2b64ee5c 2001 *orec = rec;
1da177e4
LT
2002 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
2003 return 0;
2004
2005error0:
2006 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
2007 return error;
2008}
2009
3efa4ffd
BF
2010/*
2011 * Free an inode in the free inode btree.
2012 */
2013STATIC int
2014xfs_difree_finobt(
2015 struct xfs_mount *mp,
2016 struct xfs_trans *tp,
2017 struct xfs_buf *agbp,
2018 xfs_agino_t agino,
2019 struct xfs_inobt_rec_incore *ibtrec) /* inobt record */
2020{
2021 struct xfs_agi *agi = XFS_BUF_TO_AGI(agbp);
2022 xfs_agnumber_t agno = be32_to_cpu(agi->agi_seqno);
2023 struct xfs_btree_cur *cur;
2024 struct xfs_inobt_rec_incore rec;
2025 int offset = agino - ibtrec->ir_startino;
2026 int error;
2027 int i;
2028
2029 cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_FINO);
2030
2031 error = xfs_inobt_lookup(cur, ibtrec->ir_startino, XFS_LOOKUP_EQ, &i);
2032 if (error)
2033 goto error;
2034 if (i == 0) {
2035 /*
2036 * If the record does not exist in the finobt, we must have just
2037 * freed an inode in a previously fully allocated chunk. If not,
2038 * something is out of sync.
2039 */
c29aad41 2040 XFS_WANT_CORRUPTED_GOTO(mp, ibtrec->ir_freecount == 1, error);
3efa4ffd 2041
5419040f
BF
2042 error = xfs_inobt_insert_rec(cur, ibtrec->ir_holemask,
2043 ibtrec->ir_count,
2044 ibtrec->ir_freecount,
3efa4ffd
BF
2045 ibtrec->ir_free, &i);
2046 if (error)
2047 goto error;
2048 ASSERT(i == 1);
2049
2050 goto out;
2051 }
2052
2053 /*
2054 * Read and update the existing record. We could just copy the ibtrec
2055 * across here, but that would defeat the purpose of having redundant
2056 * metadata. By making the modifications independently, we can catch
2057 * corruptions that we wouldn't see if we just copied from one record
2058 * to another.
2059 */
2060 error = xfs_inobt_get_rec(cur, &rec, &i);
2061 if (error)
2062 goto error;
c29aad41 2063 XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error);
3efa4ffd
BF
2064
2065 rec.ir_free |= XFS_INOBT_MASK(offset);
2066 rec.ir_freecount++;
2067
c29aad41 2068 XFS_WANT_CORRUPTED_GOTO(mp, (rec.ir_free == ibtrec->ir_free) &&
3efa4ffd
BF
2069 (rec.ir_freecount == ibtrec->ir_freecount),
2070 error);
2071
2072 /*
2073 * The content of inobt records should always match between the inobt
2074 * and finobt. The lifecycle of records in the finobt is different from
2075 * the inobt in that the finobt only tracks records with at least one
2076 * free inode. Hence, if all of the inodes are free and we aren't
2077 * keeping inode chunks permanently on disk, remove the record.
2078 * Otherwise, update the record with the new information.
999633d3
BF
2079 *
2080 * Note that we currently can't free chunks when the block size is large
2081 * enough for multiple chunks. Leave the finobt record to remain in sync
2082 * with the inobt.
3efa4ffd 2083 */
999633d3
BF
2084 if (rec.ir_free == XFS_INOBT_ALL_FREE &&
2085 mp->m_sb.sb_inopblock <= XFS_INODES_PER_CHUNK &&
3efa4ffd
BF
2086 !(mp->m_flags & XFS_MOUNT_IKEEP)) {
2087 error = xfs_btree_delete(cur, &i);
2088 if (error)
2089 goto error;
2090 ASSERT(i == 1);
2091 } else {
2092 error = xfs_inobt_update(cur, &rec);
2093 if (error)
2094 goto error;
2095 }
2096
2097out:
2098 error = xfs_check_agi_freecount(cur, agi);
2099 if (error)
2100 goto error;
2101
2102 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
2103 return 0;
2104
2105error:
2106 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
2107 return error;
2108}
2109
2b64ee5c
BF
2110/*
2111 * Free disk inode. Carefully avoids touching the incore inode, all
2112 * manipulations incore are the caller's responsibility.
2113 * The on-disk inode is not changed by this operation, only the
2114 * btree (free inode mask) is changed.
2115 */
2116int
2117xfs_difree(
2118 struct xfs_trans *tp, /* transaction pointer */
2119 xfs_ino_t inode, /* inode to be freed */
2120 struct xfs_bmap_free *flist, /* extents to free */
0d907a3b 2121 int *deleted,/* set if inode cluster was deleted */
2b64ee5c
BF
2122 xfs_ino_t *first_ino)/* first inode in deleted cluster */
2123{
2124 /* REFERENCED */
2125 xfs_agblock_t agbno; /* block number containing inode */
2126 struct xfs_buf *agbp; /* buffer for allocation group header */
2127 xfs_agino_t agino; /* allocation group inode number */
2128 xfs_agnumber_t agno; /* allocation group number */
2129 int error; /* error return value */
2130 struct xfs_mount *mp; /* mount structure for filesystem */
2131 struct xfs_inobt_rec_incore rec;/* btree record */
2132
2133 mp = tp->t_mountp;
2134
2135 /*
2136 * Break up inode number into its components.
2137 */
2138 agno = XFS_INO_TO_AGNO(mp, inode);
2139 if (agno >= mp->m_sb.sb_agcount) {
2140 xfs_warn(mp, "%s: agno >= mp->m_sb.sb_agcount (%d >= %d).",
2141 __func__, agno, mp->m_sb.sb_agcount);
2142 ASSERT(0);
2451337d 2143 return -EINVAL;
2b64ee5c
BF
2144 }
2145 agino = XFS_INO_TO_AGINO(mp, inode);
2146 if (inode != XFS_AGINO_TO_INO(mp, agno, agino)) {
2147 xfs_warn(mp, "%s: inode != XFS_AGINO_TO_INO() (%llu != %llu).",
2148 __func__, (unsigned long long)inode,
2149 (unsigned long long)XFS_AGINO_TO_INO(mp, agno, agino));
2150 ASSERT(0);
2451337d 2151 return -EINVAL;
2b64ee5c
BF
2152 }
2153 agbno = XFS_AGINO_TO_AGBNO(mp, agino);
2154 if (agbno >= mp->m_sb.sb_agblocks) {
2155 xfs_warn(mp, "%s: agbno >= mp->m_sb.sb_agblocks (%d >= %d).",
2156 __func__, agbno, mp->m_sb.sb_agblocks);
2157 ASSERT(0);
2451337d 2158 return -EINVAL;
2b64ee5c
BF
2159 }
2160 /*
2161 * Get the allocation group header.
2162 */
2163 error = xfs_ialloc_read_agi(mp, tp, agno, &agbp);
2164 if (error) {
2165 xfs_warn(mp, "%s: xfs_ialloc_read_agi() returned error %d.",
2166 __func__, error);
2167 return error;
2168 }
2169
2170 /*
2171 * Fix up the inode allocation btree.
2172 */
0d907a3b 2173 error = xfs_difree_inobt(mp, tp, agbp, agino, flist, deleted, first_ino,
2b64ee5c
BF
2174 &rec);
2175 if (error)
2176 goto error0;
2177
3efa4ffd
BF
2178 /*
2179 * Fix up the free inode btree.
2180 */
2181 if (xfs_sb_version_hasfinobt(&mp->m_sb)) {
2182 error = xfs_difree_finobt(mp, tp, agbp, agino, &rec);
2183 if (error)
2184 goto error0;
2185 }
2186
2b64ee5c
BF
2187 return 0;
2188
2189error0:
2190 return error;
2191}
2192
7124fe0a
DC
2193STATIC int
2194xfs_imap_lookup(
2195 struct xfs_mount *mp,
2196 struct xfs_trans *tp,
2197 xfs_agnumber_t agno,
2198 xfs_agino_t agino,
2199 xfs_agblock_t agbno,
2200 xfs_agblock_t *chunk_agbno,
2201 xfs_agblock_t *offset_agbno,
2202 int flags)
2203{
2204 struct xfs_inobt_rec_incore rec;
2205 struct xfs_btree_cur *cur;
2206 struct xfs_buf *agbp;
7124fe0a
DC
2207 int error;
2208 int i;
2209
2210 error = xfs_ialloc_read_agi(mp, tp, agno, &agbp);
2211 if (error) {
53487786
DC
2212 xfs_alert(mp,
2213 "%s: xfs_ialloc_read_agi() returned error %d, agno %d",
2214 __func__, error, agno);
7124fe0a
DC
2215 return error;
2216 }
2217
2218 /*
4536f2ad
DC
2219 * Lookup the inode record for the given agino. If the record cannot be
2220 * found, then it's an invalid inode number and we should abort. Once
2221 * we have a record, we need to ensure it contains the inode number
2222 * we are looking up.
7124fe0a 2223 */
57bd3dbe 2224 cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_INO);
4536f2ad 2225 error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_LE, &i);
7124fe0a
DC
2226 if (!error) {
2227 if (i)
2228 error = xfs_inobt_get_rec(cur, &rec, &i);
2229 if (!error && i == 0)
2451337d 2230 error = -EINVAL;
7124fe0a
DC
2231 }
2232
2233 xfs_trans_brelse(tp, agbp);
2234 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
2235 if (error)
2236 return error;
2237
4536f2ad
DC
2238 /* check that the returned record contains the required inode */
2239 if (rec.ir_startino > agino ||
71783438 2240 rec.ir_startino + mp->m_ialloc_inos <= agino)
2451337d 2241 return -EINVAL;
4536f2ad 2242
7124fe0a 2243 /* for untrusted inodes check it is allocated first */
1920779e 2244 if ((flags & XFS_IGET_UNTRUSTED) &&
7124fe0a 2245 (rec.ir_free & XFS_INOBT_MASK(agino - rec.ir_startino)))
2451337d 2246 return -EINVAL;
7124fe0a
DC
2247
2248 *chunk_agbno = XFS_AGINO_TO_AGBNO(mp, rec.ir_startino);
2249 *offset_agbno = agbno - *chunk_agbno;
2250 return 0;
2251}
2252
1da177e4 2253/*
94e1b69d 2254 * Return the location of the inode in imap, for mapping it into a buffer.
1da177e4 2255 */
1da177e4 2256int
94e1b69d
CH
2257xfs_imap(
2258 xfs_mount_t *mp, /* file system mount structure */
2259 xfs_trans_t *tp, /* transaction pointer */
1da177e4 2260 xfs_ino_t ino, /* inode to locate */
94e1b69d
CH
2261 struct xfs_imap *imap, /* location map structure */
2262 uint flags) /* flags for inode btree lookup */
1da177e4
LT
2263{
2264 xfs_agblock_t agbno; /* block number of inode in the alloc group */
1da177e4
LT
2265 xfs_agino_t agino; /* inode number within alloc group */
2266 xfs_agnumber_t agno; /* allocation group number */
2267 int blks_per_cluster; /* num blocks per inode cluster */
2268 xfs_agblock_t chunk_agbno; /* first block in inode chunk */
1da177e4 2269 xfs_agblock_t cluster_agbno; /* first block in inode cluster */
1da177e4 2270 int error; /* error code */
1da177e4 2271 int offset; /* index of inode in its buffer */
836a94ad 2272 xfs_agblock_t offset_agbno; /* blks from chunk start to inode */
1da177e4
LT
2273
2274 ASSERT(ino != NULLFSINO);
94e1b69d 2275
1da177e4
LT
2276 /*
2277 * Split up the inode number into its parts.
2278 */
2279 agno = XFS_INO_TO_AGNO(mp, ino);
2280 agino = XFS_INO_TO_AGINO(mp, ino);
2281 agbno = XFS_AGINO_TO_AGBNO(mp, agino);
2282 if (agno >= mp->m_sb.sb_agcount || agbno >= mp->m_sb.sb_agblocks ||
2283 ino != XFS_AGINO_TO_INO(mp, agno, agino)) {
2284#ifdef DEBUG
1920779e
DC
2285 /*
2286 * Don't output diagnostic information for untrusted inodes
2287 * as they can be invalid without implying corruption.
2288 */
2289 if (flags & XFS_IGET_UNTRUSTED)
2451337d 2290 return -EINVAL;
1da177e4 2291 if (agno >= mp->m_sb.sb_agcount) {
53487786
DC
2292 xfs_alert(mp,
2293 "%s: agno (%d) >= mp->m_sb.sb_agcount (%d)",
2294 __func__, agno, mp->m_sb.sb_agcount);
1da177e4
LT
2295 }
2296 if (agbno >= mp->m_sb.sb_agblocks) {
53487786
DC
2297 xfs_alert(mp,
2298 "%s: agbno (0x%llx) >= mp->m_sb.sb_agblocks (0x%lx)",
2299 __func__, (unsigned long long)agbno,
2300 (unsigned long)mp->m_sb.sb_agblocks);
1da177e4
LT
2301 }
2302 if (ino != XFS_AGINO_TO_INO(mp, agno, agino)) {
53487786
DC
2303 xfs_alert(mp,
2304 "%s: ino (0x%llx) != XFS_AGINO_TO_INO() (0x%llx)",
2305 __func__, ino,
2306 XFS_AGINO_TO_INO(mp, agno, agino));
1da177e4 2307 }
745b1f47 2308 xfs_stack_trace();
1da177e4 2309#endif /* DEBUG */
2451337d 2310 return -EINVAL;
1da177e4 2311 }
94e1b69d 2312
f9e5abcf 2313 blks_per_cluster = xfs_icluster_size_fsb(mp);
7124fe0a
DC
2314
2315 /*
2316 * For bulkstat and handle lookups, we have an untrusted inode number
2317 * that we have to verify is valid. We cannot do this just by reading
2318 * the inode buffer as it may have been unlinked and removed leaving
2319 * inodes in stale state on disk. Hence we have to do a btree lookup
2320 * in all cases where an untrusted inode number is passed.
2321 */
1920779e 2322 if (flags & XFS_IGET_UNTRUSTED) {
7124fe0a
DC
2323 error = xfs_imap_lookup(mp, tp, agno, agino, agbno,
2324 &chunk_agbno, &offset_agbno, flags);
2325 if (error)
2326 return error;
2327 goto out_map;
2328 }
2329
94e1b69d
CH
2330 /*
2331 * If the inode cluster size is the same as the blocksize or
2332 * smaller we get to the buffer by simple arithmetics.
2333 */
f9e5abcf 2334 if (blks_per_cluster == 1) {
1da177e4
LT
2335 offset = XFS_INO_TO_OFFSET(mp, ino);
2336 ASSERT(offset < mp->m_sb.sb_inopblock);
94e1b69d
CH
2337
2338 imap->im_blkno = XFS_AGB_TO_DADDR(mp, agno, agbno);
2339 imap->im_len = XFS_FSB_TO_BB(mp, 1);
2340 imap->im_boffset = (ushort)(offset << mp->m_sb.sb_inodelog);
1da177e4
LT
2341 return 0;
2342 }
94e1b69d 2343
94e1b69d
CH
2344 /*
2345 * If the inode chunks are aligned then use simple maths to
2346 * find the location. Otherwise we have to do a btree
2347 * lookup to find the location.
2348 */
1da177e4
LT
2349 if (mp->m_inoalign_mask) {
2350 offset_agbno = agbno & mp->m_inoalign_mask;
2351 chunk_agbno = agbno - offset_agbno;
2352 } else {
7124fe0a
DC
2353 error = xfs_imap_lookup(mp, tp, agno, agino, agbno,
2354 &chunk_agbno, &offset_agbno, flags);
1da177e4
LT
2355 if (error)
2356 return error;
1da177e4 2357 }
94e1b69d 2358
7124fe0a 2359out_map:
1da177e4
LT
2360 ASSERT(agbno >= chunk_agbno);
2361 cluster_agbno = chunk_agbno +
2362 ((offset_agbno / blks_per_cluster) * blks_per_cluster);
2363 offset = ((agbno - cluster_agbno) * mp->m_sb.sb_inopblock) +
2364 XFS_INO_TO_OFFSET(mp, ino);
94e1b69d
CH
2365
2366 imap->im_blkno = XFS_AGB_TO_DADDR(mp, agno, cluster_agbno);
2367 imap->im_len = XFS_FSB_TO_BB(mp, blks_per_cluster);
2368 imap->im_boffset = (ushort)(offset << mp->m_sb.sb_inodelog);
2369
2370 /*
2371 * If the inode number maps to a block outside the bounds
2372 * of the file system then return NULL rather than calling
2373 * read_buf and panicing when we get an error from the
2374 * driver.
2375 */
2376 if ((imap->im_blkno + imap->im_len) >
2377 XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks)) {
53487786
DC
2378 xfs_alert(mp,
2379 "%s: (im_blkno (0x%llx) + im_len (0x%llx)) > sb_dblocks (0x%llx)",
2380 __func__, (unsigned long long) imap->im_blkno,
94e1b69d
CH
2381 (unsigned long long) imap->im_len,
2382 XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks));
2451337d 2383 return -EINVAL;
94e1b69d 2384 }
1da177e4 2385 return 0;
1da177e4
LT
2386}
2387
2388/*
2389 * Compute and fill in value of m_in_maxlevels.
2390 */
2391void
2392xfs_ialloc_compute_maxlevels(
2393 xfs_mount_t *mp) /* file system mount structure */
2394{
2395 int level;
2396 uint maxblocks;
2397 uint maxleafents;
2398 int minleafrecs;
2399 int minnoderecs;
2400
2401 maxleafents = (1LL << XFS_INO_AGINO_BITS(mp)) >>
2402 XFS_INODES_PER_CHUNK_LOG;
2403 minleafrecs = mp->m_alloc_mnr[0];
2404 minnoderecs = mp->m_alloc_mnr[1];
2405 maxblocks = (maxleafents + minleafrecs - 1) / minleafrecs;
2406 for (level = 1; maxblocks > 1; level++)
2407 maxblocks = (maxblocks + minnoderecs - 1) / minnoderecs;
2408 mp->m_in_maxlevels = level;
2409}
2410
2411/*
aafc3c24
BF
2412 * Log specified fields for the ag hdr (inode section). The growth of the agi
2413 * structure over time requires that we interpret the buffer as two logical
2414 * regions delineated by the end of the unlinked list. This is due to the size
2415 * of the hash table and its location in the middle of the agi.
2416 *
2417 * For example, a request to log a field before agi_unlinked and a field after
2418 * agi_unlinked could cause us to log the entire hash table and use an excessive
2419 * amount of log space. To avoid this behavior, log the region up through
2420 * agi_unlinked in one call and the region after agi_unlinked through the end of
2421 * the structure in another.
1da177e4
LT
2422 */
2423void
2424xfs_ialloc_log_agi(
2425 xfs_trans_t *tp, /* transaction pointer */
2426 xfs_buf_t *bp, /* allocation group header buffer */
2427 int fields) /* bitmask of fields to log */
2428{
2429 int first; /* first byte number */
2430 int last; /* last byte number */
2431 static const short offsets[] = { /* field starting offsets */
2432 /* keep in sync with bit definitions */
2433 offsetof(xfs_agi_t, agi_magicnum),
2434 offsetof(xfs_agi_t, agi_versionnum),
2435 offsetof(xfs_agi_t, agi_seqno),
2436 offsetof(xfs_agi_t, agi_length),
2437 offsetof(xfs_agi_t, agi_count),
2438 offsetof(xfs_agi_t, agi_root),
2439 offsetof(xfs_agi_t, agi_level),
2440 offsetof(xfs_agi_t, agi_freecount),
2441 offsetof(xfs_agi_t, agi_newino),
2442 offsetof(xfs_agi_t, agi_dirino),
2443 offsetof(xfs_agi_t, agi_unlinked),
aafc3c24
BF
2444 offsetof(xfs_agi_t, agi_free_root),
2445 offsetof(xfs_agi_t, agi_free_level),
1da177e4
LT
2446 sizeof(xfs_agi_t)
2447 };
2448#ifdef DEBUG
2449 xfs_agi_t *agi; /* allocation group header */
2450
2451 agi = XFS_BUF_TO_AGI(bp);
69ef921b 2452 ASSERT(agi->agi_magicnum == cpu_to_be32(XFS_AGI_MAGIC));
1da177e4 2453#endif
aafc3c24
BF
2454
2455 xfs_trans_buf_set_type(tp, bp, XFS_BLFT_AGI_BUF);
2456
1da177e4 2457 /*
aafc3c24
BF
2458 * Compute byte offsets for the first and last fields in the first
2459 * region and log the agi buffer. This only logs up through
2460 * agi_unlinked.
1da177e4 2461 */
aafc3c24
BF
2462 if (fields & XFS_AGI_ALL_BITS_R1) {
2463 xfs_btree_offsets(fields, offsets, XFS_AGI_NUM_BITS_R1,
2464 &first, &last);
2465 xfs_trans_log_buf(tp, bp, first, last);
2466 }
2467
1da177e4 2468 /*
aafc3c24
BF
2469 * Mask off the bits in the first region and calculate the first and
2470 * last field offsets for any bits in the second region.
1da177e4 2471 */
aafc3c24
BF
2472 fields &= ~XFS_AGI_ALL_BITS_R1;
2473 if (fields) {
2474 xfs_btree_offsets(fields, offsets, XFS_AGI_NUM_BITS_R2,
2475 &first, &last);
2476 xfs_trans_log_buf(tp, bp, first, last);
2477 }
1da177e4
LT
2478}
2479
5e1be0fb
CH
2480#ifdef DEBUG
2481STATIC void
2482xfs_check_agi_unlinked(
2483 struct xfs_agi *agi)
2484{
2485 int i;
2486
2487 for (i = 0; i < XFS_AGI_UNLINKED_BUCKETS; i++)
2488 ASSERT(agi->agi_unlinked[i]);
2489}
2490#else
2491#define xfs_check_agi_unlinked(agi)
2492#endif
2493
983d09ff 2494static bool
612cfbfe 2495xfs_agi_verify(
3702ce6e
DC
2496 struct xfs_buf *bp)
2497{
2498 struct xfs_mount *mp = bp->b_target->bt_mount;
2499 struct xfs_agi *agi = XFS_BUF_TO_AGI(bp);
3702ce6e 2500
983d09ff
DC
2501 if (xfs_sb_version_hascrc(&mp->m_sb) &&
2502 !uuid_equal(&agi->agi_uuid, &mp->m_sb.sb_uuid))
2503 return false;
3702ce6e
DC
2504 /*
2505 * Validate the magic number of the agi block.
2506 */
983d09ff
DC
2507 if (agi->agi_magicnum != cpu_to_be32(XFS_AGI_MAGIC))
2508 return false;
2509 if (!XFS_AGI_GOOD_VERSION(be32_to_cpu(agi->agi_versionnum)))
2510 return false;
3702ce6e 2511
e1b05723
ES
2512 if (be32_to_cpu(agi->agi_level) > XFS_BTREE_MAXLEVELS)
2513 return false;
3702ce6e
DC
2514 /*
2515 * during growfs operations, the perag is not fully initialised,
2516 * so we can't use it for any useful checking. growfs ensures we can't
2517 * use it by using uncached buffers that don't have the perag attached
2518 * so we can detect and avoid this problem.
2519 */
983d09ff
DC
2520 if (bp->b_pag && be32_to_cpu(agi->agi_seqno) != bp->b_pag->pag_agno)
2521 return false;
3702ce6e 2522
3702ce6e 2523 xfs_check_agi_unlinked(agi);
983d09ff 2524 return true;
612cfbfe
DC
2525}
2526
1813dd64
DC
2527static void
2528xfs_agi_read_verify(
612cfbfe
DC
2529 struct xfs_buf *bp)
2530{
983d09ff 2531 struct xfs_mount *mp = bp->b_target->bt_mount;
983d09ff 2532
ce5028cf
ES
2533 if (xfs_sb_version_hascrc(&mp->m_sb) &&
2534 !xfs_buf_verify_cksum(bp, XFS_AGI_CRC_OFF))
2451337d 2535 xfs_buf_ioerror(bp, -EFSBADCRC);
ce5028cf
ES
2536 else if (XFS_TEST_ERROR(!xfs_agi_verify(bp), mp,
2537 XFS_ERRTAG_IALLOC_READ_AGI,
2538 XFS_RANDOM_IALLOC_READ_AGI))
2451337d 2539 xfs_buf_ioerror(bp, -EFSCORRUPTED);
ce5028cf
ES
2540
2541 if (bp->b_error)
2542 xfs_verifier_error(bp);
612cfbfe
DC
2543}
2544
b0f539de 2545static void
1813dd64 2546xfs_agi_write_verify(
612cfbfe
DC
2547 struct xfs_buf *bp)
2548{
983d09ff
DC
2549 struct xfs_mount *mp = bp->b_target->bt_mount;
2550 struct xfs_buf_log_item *bip = bp->b_fspriv;
2551
2552 if (!xfs_agi_verify(bp)) {
2451337d 2553 xfs_buf_ioerror(bp, -EFSCORRUPTED);
ce5028cf 2554 xfs_verifier_error(bp);
983d09ff
DC
2555 return;
2556 }
2557
2558 if (!xfs_sb_version_hascrc(&mp->m_sb))
2559 return;
2560
2561 if (bip)
2562 XFS_BUF_TO_AGI(bp)->agi_lsn = cpu_to_be64(bip->bli_item.li_lsn);
f1dbcd7e 2563 xfs_buf_update_cksum(bp, XFS_AGI_CRC_OFF);
3702ce6e
DC
2564}
2565
1813dd64
DC
2566const struct xfs_buf_ops xfs_agi_buf_ops = {
2567 .verify_read = xfs_agi_read_verify,
2568 .verify_write = xfs_agi_write_verify,
2569};
2570
1da177e4
LT
2571/*
2572 * Read in the allocation group header (inode allocation section)
2573 */
2574int
5e1be0fb
CH
2575xfs_read_agi(
2576 struct xfs_mount *mp, /* file system mount structure */
2577 struct xfs_trans *tp, /* transaction pointer */
2578 xfs_agnumber_t agno, /* allocation group number */
2579 struct xfs_buf **bpp) /* allocation group hdr buf */
1da177e4 2580{
5e1be0fb 2581 int error;
1da177e4 2582
d123031a 2583 trace_xfs_read_agi(mp, agno);
5e1be0fb 2584
d123031a 2585 ASSERT(agno != NULLAGNUMBER);
5e1be0fb 2586 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp,
1da177e4 2587 XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp)),
1813dd64 2588 XFS_FSS_TO_BB(mp, 1), 0, bpp, &xfs_agi_buf_ops);
1da177e4
LT
2589 if (error)
2590 return error;
5e1be0fb 2591
38f23232 2592 xfs_buf_set_ref(*bpp, XFS_AGI_REF);
5e1be0fb
CH
2593 return 0;
2594}
2595
2596int
2597xfs_ialloc_read_agi(
2598 struct xfs_mount *mp, /* file system mount structure */
2599 struct xfs_trans *tp, /* transaction pointer */
2600 xfs_agnumber_t agno, /* allocation group number */
2601 struct xfs_buf **bpp) /* allocation group hdr buf */
2602{
2603 struct xfs_agi *agi; /* allocation group header */
2604 struct xfs_perag *pag; /* per allocation group data */
2605 int error;
2606
d123031a
DC
2607 trace_xfs_ialloc_read_agi(mp, agno);
2608
5e1be0fb
CH
2609 error = xfs_read_agi(mp, tp, agno, bpp);
2610 if (error)
2611 return error;
2612
2613 agi = XFS_BUF_TO_AGI(*bpp);
44b56e0a 2614 pag = xfs_perag_get(mp, agno);
1da177e4 2615 if (!pag->pagi_init) {
16259e7d 2616 pag->pagi_freecount = be32_to_cpu(agi->agi_freecount);
92821e2b 2617 pag->pagi_count = be32_to_cpu(agi->agi_count);
1da177e4 2618 pag->pagi_init = 1;
1da177e4 2619 }
1da177e4 2620
5e1be0fb
CH
2621 /*
2622 * It's possible for these to be out of sync if
2623 * we are in the middle of a forced shutdown.
2624 */
2625 ASSERT(pag->pagi_freecount == be32_to_cpu(agi->agi_freecount) ||
2626 XFS_FORCED_SHUTDOWN(mp));
44b56e0a 2627 xfs_perag_put(pag);
1da177e4
LT
2628 return 0;
2629}
92821e2b
DC
2630
2631/*
2632 * Read in the agi to initialise the per-ag data in the mount structure
2633 */
2634int
2635xfs_ialloc_pagi_init(
2636 xfs_mount_t *mp, /* file system mount structure */
2637 xfs_trans_t *tp, /* transaction pointer */
2638 xfs_agnumber_t agno) /* allocation group number */
2639{
2640 xfs_buf_t *bp = NULL;
2641 int error;
2642
2643 error = xfs_ialloc_read_agi(mp, tp, agno, &bp);
2644 if (error)
2645 return error;
2646 if (bp)
2647 xfs_trans_brelse(tp, bp);
2648 return 0;
2649}