]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blame - fs/xfs/libxfs/xfs_ialloc.c
Merge remote-tracking branches 'asoc/topic/tas6424', 'asoc/topic/tfa9879', 'asoc...
[mirror_ubuntu-focal-kernel.git] / fs / xfs / libxfs / xfs_ialloc.c
CommitLineData
1da177e4 1/*
7b718769
NS
2 * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
1da177e4 4 *
7b718769
NS
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
1da177e4
LT
7 * published by the Free Software Foundation.
8 *
7b718769
NS
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
1da177e4 13 *
7b718769
NS
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
1da177e4 17 */
1da177e4 18#include "xfs.h"
a844f451 19#include "xfs_fs.h"
70a9883c 20#include "xfs_shared.h"
239880ef
DC
21#include "xfs_format.h"
22#include "xfs_log_format.h"
23#include "xfs_trans_resv.h"
a844f451 24#include "xfs_bit.h"
1da177e4 25#include "xfs_sb.h"
1da177e4 26#include "xfs_mount.h"
3ab78df2 27#include "xfs_defer.h"
1da177e4 28#include "xfs_inode.h"
a844f451
NS
29#include "xfs_btree.h"
30#include "xfs_ialloc.h"
a4fbe6ab 31#include "xfs_ialloc_btree.h"
1da177e4 32#include "xfs_alloc.h"
1da177e4 33#include "xfs_rtalloc.h"
e9e899a2 34#include "xfs_errortag.h"
1da177e4
LT
35#include "xfs_error.h"
36#include "xfs_bmap.h"
983d09ff 37#include "xfs_cksum.h"
239880ef 38#include "xfs_trans.h"
983d09ff 39#include "xfs_buf_item.h"
ddf6ad01 40#include "xfs_icreate_item.h"
7bb85ef3 41#include "xfs_icache.h"
d123031a 42#include "xfs_trace.h"
a45086e2 43#include "xfs_log.h"
340785cc 44#include "xfs_rmap.h"
1da177e4 45
1da177e4
LT
46
47/*
48 * Allocation group level functions.
49 */
e936945e 50int
75de2a91 51xfs_ialloc_cluster_alignment(
7a1df156 52 struct xfs_mount *mp)
75de2a91 53{
7a1df156 54 if (xfs_sb_version_hasalign(&mp->m_sb) &&
8ee9fdbe 55 mp->m_sb.sb_inoalignmt >= xfs_icluster_size_fsb(mp))
7a1df156 56 return mp->m_sb.sb_inoalignmt;
75de2a91
DC
57 return 1;
58}
1da177e4 59
fe033cc8 60/*
21875505 61 * Lookup a record by ino in the btree given by cur.
fe033cc8 62 */
81e25176 63int /* error */
21875505 64xfs_inobt_lookup(
fe033cc8
CH
65 struct xfs_btree_cur *cur, /* btree cursor */
66 xfs_agino_t ino, /* starting inode of chunk */
21875505 67 xfs_lookup_t dir, /* <=, >=, == */
fe033cc8
CH
68 int *stat) /* success/failure */
69{
70 cur->bc_rec.i.ir_startino = ino;
5419040f
BF
71 cur->bc_rec.i.ir_holemask = 0;
72 cur->bc_rec.i.ir_count = 0;
21875505
CH
73 cur->bc_rec.i.ir_freecount = 0;
74 cur->bc_rec.i.ir_free = 0;
75 return xfs_btree_lookup(cur, dir, stat);
fe033cc8
CH
76}
77
278d0ca1 78/*
afabc24a 79 * Update the record referred to by cur to the value given.
278d0ca1
CH
80 * This either works (return 0) or gets an EFSCORRUPTED error.
81 */
82STATIC int /* error */
83xfs_inobt_update(
84 struct xfs_btree_cur *cur, /* btree cursor */
afabc24a 85 xfs_inobt_rec_incore_t *irec) /* btree record */
278d0ca1
CH
86{
87 union xfs_btree_rec rec;
88
afabc24a 89 rec.inobt.ir_startino = cpu_to_be32(irec->ir_startino);
5419040f
BF
90 if (xfs_sb_version_hassparseinodes(&cur->bc_mp->m_sb)) {
91 rec.inobt.ir_u.sp.ir_holemask = cpu_to_be16(irec->ir_holemask);
92 rec.inobt.ir_u.sp.ir_count = irec->ir_count;
93 rec.inobt.ir_u.sp.ir_freecount = irec->ir_freecount;
94 } else {
95 /* ir_holemask/ir_count not supported on-disk */
96 rec.inobt.ir_u.f.ir_freecount = cpu_to_be32(irec->ir_freecount);
97 }
afabc24a 98 rec.inobt.ir_free = cpu_to_be64(irec->ir_free);
278d0ca1
CH
99 return xfs_btree_update(cur, &rec);
100}
101
e936945e
DW
102/* Convert on-disk btree record to incore inobt record. */
103void
104xfs_inobt_btrec_to_irec(
105 struct xfs_mount *mp,
106 union xfs_btree_rec *rec,
107 struct xfs_inobt_rec_incore *irec)
8cc938fe 108{
5419040f 109 irec->ir_startino = be32_to_cpu(rec->inobt.ir_startino);
e936945e 110 if (xfs_sb_version_hassparseinodes(&mp->m_sb)) {
5419040f
BF
111 irec->ir_holemask = be16_to_cpu(rec->inobt.ir_u.sp.ir_holemask);
112 irec->ir_count = rec->inobt.ir_u.sp.ir_count;
113 irec->ir_freecount = rec->inobt.ir_u.sp.ir_freecount;
114 } else {
115 /*
116 * ir_holemask/ir_count not supported on-disk. Fill in hardcoded
117 * values for full inode chunks.
118 */
119 irec->ir_holemask = XFS_INOBT_HOLEMASK_FULL;
120 irec->ir_count = XFS_INODES_PER_CHUNK;
121 irec->ir_freecount =
122 be32_to_cpu(rec->inobt.ir_u.f.ir_freecount);
8cc938fe 123 }
5419040f 124 irec->ir_free = be64_to_cpu(rec->inobt.ir_free);
e936945e
DW
125}
126
127/*
128 * Get the data from the pointed-to record.
129 */
130int
131xfs_inobt_get_rec(
132 struct xfs_btree_cur *cur,
133 struct xfs_inobt_rec_incore *irec,
134 int *stat)
135{
136 union xfs_btree_rec *rec;
137 int error;
138
139 error = xfs_btree_get_rec(cur, &rec, stat);
140 if (error || *stat == 0)
141 return error;
142
143 xfs_inobt_btrec_to_irec(cur->bc_mp, rec, irec);
5419040f
BF
144
145 return 0;
8cc938fe
CH
146}
147
0aa0a756
BF
148/*
149 * Insert a single inobt record. Cursor must already point to desired location.
150 */
151STATIC int
152xfs_inobt_insert_rec(
153 struct xfs_btree_cur *cur,
c8ce540d
DW
154 uint16_t holemask,
155 uint8_t count,
156 int32_t freecount,
0aa0a756
BF
157 xfs_inofree_t free,
158 int *stat)
159{
5419040f
BF
160 cur->bc_rec.i.ir_holemask = holemask;
161 cur->bc_rec.i.ir_count = count;
0aa0a756
BF
162 cur->bc_rec.i.ir_freecount = freecount;
163 cur->bc_rec.i.ir_free = free;
164 return xfs_btree_insert(cur, stat);
165}
166
167/*
168 * Insert records describing a newly allocated inode chunk into the inobt.
169 */
170STATIC int
171xfs_inobt_insert(
172 struct xfs_mount *mp,
173 struct xfs_trans *tp,
174 struct xfs_buf *agbp,
175 xfs_agino_t newino,
176 xfs_agino_t newlen,
177 xfs_btnum_t btnum)
178{
179 struct xfs_btree_cur *cur;
180 struct xfs_agi *agi = XFS_BUF_TO_AGI(agbp);
181 xfs_agnumber_t agno = be32_to_cpu(agi->agi_seqno);
182 xfs_agino_t thisino;
183 int i;
184 int error;
185
186 cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, btnum);
187
188 for (thisino = newino;
189 thisino < newino + newlen;
190 thisino += XFS_INODES_PER_CHUNK) {
191 error = xfs_inobt_lookup(cur, thisino, XFS_LOOKUP_EQ, &i);
192 if (error) {
193 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
194 return error;
195 }
196 ASSERT(i == 0);
197
5419040f
BF
198 error = xfs_inobt_insert_rec(cur, XFS_INOBT_HOLEMASK_FULL,
199 XFS_INODES_PER_CHUNK,
200 XFS_INODES_PER_CHUNK,
0aa0a756
BF
201 XFS_INOBT_ALL_FREE, &i);
202 if (error) {
203 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
204 return error;
205 }
206 ASSERT(i == 1);
207 }
208
209 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
210
211 return 0;
212}
213
0b48db80
DC
214/*
215 * Verify that the number of free inodes in the AGI is correct.
216 */
217#ifdef DEBUG
218STATIC int
219xfs_check_agi_freecount(
220 struct xfs_btree_cur *cur,
221 struct xfs_agi *agi)
222{
223 if (cur->bc_nlevels == 1) {
224 xfs_inobt_rec_incore_t rec;
225 int freecount = 0;
226 int error;
227 int i;
228
21875505 229 error = xfs_inobt_lookup(cur, 0, XFS_LOOKUP_GE, &i);
0b48db80
DC
230 if (error)
231 return error;
232
233 do {
234 error = xfs_inobt_get_rec(cur, &rec, &i);
235 if (error)
236 return error;
237
238 if (i) {
239 freecount += rec.ir_freecount;
240 error = xfs_btree_increment(cur, 0, &i);
241 if (error)
242 return error;
243 }
244 } while (i == 1);
245
246 if (!XFS_FORCED_SHUTDOWN(cur->bc_mp))
247 ASSERT(freecount == be32_to_cpu(agi->agi_freecount));
248 }
249 return 0;
250}
251#else
252#define xfs_check_agi_freecount(cur, agi) 0
253#endif
254
85c0b2ab 255/*
28c8e41a
DC
256 * Initialise a new set of inodes. When called without a transaction context
257 * (e.g. from recovery) we initiate a delayed write of the inode buffers rather
258 * than logging them (which in a transaction context puts them into the AIL
259 * for writeback rather than the xfsbufd queue).
85c0b2ab 260 */
ddf6ad01 261int
85c0b2ab
DC
262xfs_ialloc_inode_init(
263 struct xfs_mount *mp,
264 struct xfs_trans *tp,
28c8e41a 265 struct list_head *buffer_list,
463958af 266 int icount,
85c0b2ab
DC
267 xfs_agnumber_t agno,
268 xfs_agblock_t agbno,
269 xfs_agblock_t length,
270 unsigned int gen)
271{
272 struct xfs_buf *fbuf;
273 struct xfs_dinode *free;
6e0c7b8c 274 int nbufs, blks_per_cluster, inodes_per_cluster;
85c0b2ab
DC
275 int version;
276 int i, j;
277 xfs_daddr_t d;
93848a99 278 xfs_ino_t ino = 0;
85c0b2ab
DC
279
280 /*
6e0c7b8c
JL
281 * Loop over the new block(s), filling in the inodes. For small block
282 * sizes, manipulate the inodes in buffers which are multiples of the
283 * blocks size.
85c0b2ab 284 */
6e0c7b8c
JL
285 blks_per_cluster = xfs_icluster_size_fsb(mp);
286 inodes_per_cluster = blks_per_cluster << mp->m_sb.sb_inopblog;
287 nbufs = length / blks_per_cluster;
85c0b2ab
DC
288
289 /*
93848a99
CH
290 * Figure out what version number to use in the inodes we create. If
291 * the superblock version has caught up to the one that supports the new
292 * inode format, then use the new inode version. Otherwise use the old
293 * version so that old kernels will continue to be able to use the file
294 * system.
295 *
296 * For v3 inodes, we also need to write the inode number into the inode,
297 * so calculate the first inode number of the chunk here as
298 * XFS_OFFBNO_TO_AGINO() only works within a filesystem block, not
299 * across multiple filesystem blocks (such as a cluster) and so cannot
300 * be used in the cluster buffer loop below.
301 *
302 * Further, because we are writing the inode directly into the buffer
303 * and calculating a CRC on the entire inode, we have ot log the entire
304 * inode so that the entire range the CRC covers is present in the log.
305 * That means for v3 inode we log the entire buffer rather than just the
306 * inode cores.
85c0b2ab 307 */
93848a99
CH
308 if (xfs_sb_version_hascrc(&mp->m_sb)) {
309 version = 3;
310 ino = XFS_AGINO_TO_INO(mp, agno,
311 XFS_OFFBNO_TO_AGINO(mp, agbno, 0));
ddf6ad01
DC
312
313 /*
314 * log the initialisation that is about to take place as an
315 * logical operation. This means the transaction does not
316 * need to log the physical changes to the inode buffers as log
317 * recovery will know what initialisation is actually needed.
318 * Hence we only need to log the buffers as "ordered" buffers so
319 * they track in the AIL as if they were physically logged.
320 */
321 if (tp)
463958af 322 xfs_icreate_log(tp, agno, agbno, icount,
ddf6ad01 323 mp->m_sb.sb_inodesize, length, gen);
263997a6 324 } else
85c0b2ab 325 version = 2;
85c0b2ab
DC
326
327 for (j = 0; j < nbufs; j++) {
328 /*
329 * Get the block.
330 */
331 d = XFS_AGB_TO_DADDR(mp, agno, agbno + (j * blks_per_cluster));
332 fbuf = xfs_trans_get_buf(tp, mp->m_ddev_targp, d,
7c4cebe8
DC
333 mp->m_bsize * blks_per_cluster,
334 XBF_UNMAPPED);
2a30f36d 335 if (!fbuf)
2451337d 336 return -ENOMEM;
ddf6ad01
DC
337
338 /* Initialize the inode buffers and log them appropriately. */
1813dd64 339 fbuf->b_ops = &xfs_inode_buf_ops;
93848a99 340 xfs_buf_zero(fbuf, 0, BBTOB(fbuf->b_length));
6e0c7b8c 341 for (i = 0; i < inodes_per_cluster; i++) {
85c0b2ab 342 int ioffset = i << mp->m_sb.sb_inodelog;
93848a99 343 uint isize = xfs_dinode_size(version);
85c0b2ab
DC
344
345 free = xfs_make_iptr(mp, fbuf, i);
346 free->di_magic = cpu_to_be16(XFS_DINODE_MAGIC);
347 free->di_version = version;
348 free->di_gen = cpu_to_be32(gen);
349 free->di_next_unlinked = cpu_to_be32(NULLAGINO);
93848a99
CH
350
351 if (version == 3) {
352 free->di_ino = cpu_to_be64(ino);
353 ino++;
ce748eaa
ES
354 uuid_copy(&free->di_uuid,
355 &mp->m_sb.sb_meta_uuid);
93848a99 356 xfs_dinode_calc_crc(mp, free);
28c8e41a 357 } else if (tp) {
93848a99
CH
358 /* just log the inode core */
359 xfs_trans_log_buf(tp, fbuf, ioffset,
360 ioffset + isize - 1);
361 }
362 }
28c8e41a
DC
363
364 if (tp) {
365 /*
366 * Mark the buffer as an inode allocation buffer so it
367 * sticks in AIL at the point of this allocation
368 * transaction. This ensures the they are on disk before
369 * the tail of the log can be moved past this
370 * transaction (i.e. by preventing relogging from moving
371 * it forward in the log).
372 */
373 xfs_trans_inode_alloc_buf(tp, fbuf);
374 if (version == 3) {
ddf6ad01
DC
375 /*
376 * Mark the buffer as ordered so that they are
377 * not physically logged in the transaction but
378 * still tracked in the AIL as part of the
379 * transaction and pin the log appropriately.
380 */
381 xfs_trans_ordered_buf(tp, fbuf);
28c8e41a
DC
382 }
383 } else {
384 fbuf->b_flags |= XBF_DONE;
385 xfs_buf_delwri_queue(fbuf, buffer_list);
386 xfs_buf_relse(fbuf);
85c0b2ab 387 }
85c0b2ab 388 }
2a30f36d 389 return 0;
85c0b2ab
DC
390}
391
56d1115c
BF
392/*
393 * Align startino and allocmask for a recently allocated sparse chunk such that
394 * they are fit for insertion (or merge) into the on-disk inode btrees.
395 *
396 * Background:
397 *
398 * When enabled, sparse inode support increases the inode alignment from cluster
399 * size to inode chunk size. This means that the minimum range between two
400 * non-adjacent inode records in the inobt is large enough for a full inode
401 * record. This allows for cluster sized, cluster aligned block allocation
402 * without need to worry about whether the resulting inode record overlaps with
403 * another record in the tree. Without this basic rule, we would have to deal
404 * with the consequences of overlap by potentially undoing recent allocations in
405 * the inode allocation codepath.
406 *
407 * Because of this alignment rule (which is enforced on mount), there are two
408 * inobt possibilities for newly allocated sparse chunks. One is that the
409 * aligned inode record for the chunk covers a range of inodes not already
410 * covered in the inobt (i.e., it is safe to insert a new sparse record). The
411 * other is that a record already exists at the aligned startino that considers
412 * the newly allocated range as sparse. In the latter case, record content is
413 * merged in hope that sparse inode chunks fill to full chunks over time.
414 */
415STATIC void
416xfs_align_sparse_ino(
417 struct xfs_mount *mp,
418 xfs_agino_t *startino,
419 uint16_t *allocmask)
420{
421 xfs_agblock_t agbno;
422 xfs_agblock_t mod;
423 int offset;
424
425 agbno = XFS_AGINO_TO_AGBNO(mp, *startino);
426 mod = agbno % mp->m_sb.sb_inoalignmt;
427 if (!mod)
428 return;
429
430 /* calculate the inode offset and align startino */
431 offset = mod << mp->m_sb.sb_inopblog;
432 *startino -= offset;
433
434 /*
435 * Since startino has been aligned down, left shift allocmask such that
436 * it continues to represent the same physical inodes relative to the
437 * new startino.
438 */
439 *allocmask <<= offset / XFS_INODES_PER_HOLEMASK_BIT;
440}
441
442/*
443 * Determine whether the source inode record can merge into the target. Both
444 * records must be sparse, the inode ranges must match and there must be no
445 * allocation overlap between the records.
446 */
447STATIC bool
448__xfs_inobt_can_merge(
449 struct xfs_inobt_rec_incore *trec, /* tgt record */
450 struct xfs_inobt_rec_incore *srec) /* src record */
451{
452 uint64_t talloc;
453 uint64_t salloc;
454
455 /* records must cover the same inode range */
456 if (trec->ir_startino != srec->ir_startino)
457 return false;
458
459 /* both records must be sparse */
460 if (!xfs_inobt_issparse(trec->ir_holemask) ||
461 !xfs_inobt_issparse(srec->ir_holemask))
462 return false;
463
464 /* both records must track some inodes */
465 if (!trec->ir_count || !srec->ir_count)
466 return false;
467
468 /* can't exceed capacity of a full record */
469 if (trec->ir_count + srec->ir_count > XFS_INODES_PER_CHUNK)
470 return false;
471
472 /* verify there is no allocation overlap */
473 talloc = xfs_inobt_irec_to_allocmask(trec);
474 salloc = xfs_inobt_irec_to_allocmask(srec);
475 if (talloc & salloc)
476 return false;
477
478 return true;
479}
480
481/*
482 * Merge the source inode record into the target. The caller must call
483 * __xfs_inobt_can_merge() to ensure the merge is valid.
484 */
485STATIC void
486__xfs_inobt_rec_merge(
487 struct xfs_inobt_rec_incore *trec, /* target */
488 struct xfs_inobt_rec_incore *srec) /* src */
489{
490 ASSERT(trec->ir_startino == srec->ir_startino);
491
492 /* combine the counts */
493 trec->ir_count += srec->ir_count;
494 trec->ir_freecount += srec->ir_freecount;
495
496 /*
497 * Merge the holemask and free mask. For both fields, 0 bits refer to
498 * allocated inodes. We combine the allocated ranges with bitwise AND.
499 */
500 trec->ir_holemask &= srec->ir_holemask;
501 trec->ir_free &= srec->ir_free;
502}
503
504/*
505 * Insert a new sparse inode chunk into the associated inode btree. The inode
506 * record for the sparse chunk is pre-aligned to a startino that should match
507 * any pre-existing sparse inode record in the tree. This allows sparse chunks
508 * to fill over time.
509 *
510 * This function supports two modes of handling preexisting records depending on
511 * the merge flag. If merge is true, the provided record is merged with the
512 * existing record and updated in place. The merged record is returned in nrec.
513 * If merge is false, an existing record is replaced with the provided record.
514 * If no preexisting record exists, the provided record is always inserted.
515 *
516 * It is considered corruption if a merge is requested and not possible. Given
517 * the sparse inode alignment constraints, this should never happen.
518 */
519STATIC int
520xfs_inobt_insert_sprec(
521 struct xfs_mount *mp,
522 struct xfs_trans *tp,
523 struct xfs_buf *agbp,
524 int btnum,
525 struct xfs_inobt_rec_incore *nrec, /* in/out: new/merged rec. */
526 bool merge) /* merge or replace */
527{
528 struct xfs_btree_cur *cur;
529 struct xfs_agi *agi = XFS_BUF_TO_AGI(agbp);
530 xfs_agnumber_t agno = be32_to_cpu(agi->agi_seqno);
531 int error;
532 int i;
533 struct xfs_inobt_rec_incore rec;
534
535 cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, btnum);
536
537 /* the new record is pre-aligned so we know where to look */
538 error = xfs_inobt_lookup(cur, nrec->ir_startino, XFS_LOOKUP_EQ, &i);
539 if (error)
540 goto error;
541 /* if nothing there, insert a new record and return */
542 if (i == 0) {
543 error = xfs_inobt_insert_rec(cur, nrec->ir_holemask,
544 nrec->ir_count, nrec->ir_freecount,
545 nrec->ir_free, &i);
546 if (error)
547 goto error;
548 XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error);
549
550 goto out;
551 }
552
553 /*
554 * A record exists at this startino. Merge or replace the record
555 * depending on what we've been asked to do.
556 */
557 if (merge) {
558 error = xfs_inobt_get_rec(cur, &rec, &i);
559 if (error)
560 goto error;
561 XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error);
562 XFS_WANT_CORRUPTED_GOTO(mp,
563 rec.ir_startino == nrec->ir_startino,
564 error);
565
566 /*
567 * This should never fail. If we have coexisting records that
568 * cannot merge, something is seriously wrong.
569 */
570 XFS_WANT_CORRUPTED_GOTO(mp, __xfs_inobt_can_merge(nrec, &rec),
571 error);
572
573 trace_xfs_irec_merge_pre(mp, agno, rec.ir_startino,
574 rec.ir_holemask, nrec->ir_startino,
575 nrec->ir_holemask);
576
577 /* merge to nrec to output the updated record */
578 __xfs_inobt_rec_merge(nrec, &rec);
579
580 trace_xfs_irec_merge_post(mp, agno, nrec->ir_startino,
581 nrec->ir_holemask);
582
583 error = xfs_inobt_rec_check_count(mp, nrec);
584 if (error)
585 goto error;
586 }
587
588 error = xfs_inobt_update(cur, nrec);
589 if (error)
590 goto error;
591
592out:
593 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
594 return 0;
595error:
596 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
597 return error;
598}
599
1da177e4
LT
600/*
601 * Allocate new inodes in the allocation group specified by agbp.
602 * Return 0 for success, else error code.
603 */
604STATIC int /* error code or 0 */
605xfs_ialloc_ag_alloc(
606 xfs_trans_t *tp, /* transaction pointer */
607 xfs_buf_t *agbp, /* alloc group buffer */
608 int *alloc)
609{
610 xfs_agi_t *agi; /* allocation group header */
611 xfs_alloc_arg_t args; /* allocation argument structure */
92821e2b 612 xfs_agnumber_t agno;
1da177e4 613 int error;
1da177e4
LT
614 xfs_agino_t newino; /* new first inode's number */
615 xfs_agino_t newlen; /* new number of inodes */
3ccb8b5f 616 int isaligned = 0; /* inode allocation at stripe unit */
1da177e4 617 /* boundary */
56d1115c
BF
618 uint16_t allocmask = (uint16_t) -1; /* init. to full chunk */
619 struct xfs_inobt_rec_incore rec;
44b56e0a 620 struct xfs_perag *pag;
1cdadee1
BF
621 int do_sparse = 0;
622
a0041684 623 memset(&args, 0, sizeof(args));
1da177e4
LT
624 args.tp = tp;
625 args.mp = tp->t_mountp;
1cdadee1 626 args.fsbno = NULLFSBLOCK;
340785cc 627 xfs_rmap_ag_owner(&args.oinfo, XFS_RMAP_OWN_INODES);
1da177e4 628
46fc58da
BF
629#ifdef DEBUG
630 /* randomly do sparse inode allocations */
631 if (xfs_sb_version_hassparseinodes(&tp->t_mountp->m_sb) &&
632 args.mp->m_ialloc_min_blks < args.mp->m_ialloc_blks)
633 do_sparse = prandom_u32() & 1;
634#endif
635
1da177e4
LT
636 /*
637 * Locking will ensure that we don't have two callers in here
638 * at one time.
639 */
71783438 640 newlen = args.mp->m_ialloc_inos;
1da177e4 641 if (args.mp->m_maxicount &&
74f9ce1c 642 percpu_counter_read_positive(&args.mp->m_icount) + newlen >
501ab323 643 args.mp->m_maxicount)
2451337d 644 return -ENOSPC;
126cd105 645 args.minlen = args.maxlen = args.mp->m_ialloc_blks;
1da177e4 646 /*
3ccb8b5f
GO
647 * First try to allocate inodes contiguous with the last-allocated
648 * chunk of inodes. If the filesystem is striped, this will fill
649 * an entire stripe unit with inodes.
28c8e41a 650 */
1da177e4 651 agi = XFS_BUF_TO_AGI(agbp);
3ccb8b5f 652 newino = be32_to_cpu(agi->agi_newino);
85c0b2ab 653 agno = be32_to_cpu(agi->agi_seqno);
019ff2d5 654 args.agbno = XFS_AGINO_TO_AGBNO(args.mp, newino) +
126cd105 655 args.mp->m_ialloc_blks;
1cdadee1
BF
656 if (do_sparse)
657 goto sparse_alloc;
019ff2d5
NS
658 if (likely(newino != NULLAGINO &&
659 (args.agbno < be32_to_cpu(agi->agi_length)))) {
85c0b2ab 660 args.fsbno = XFS_AGB_TO_FSB(args.mp, agno, args.agbno);
3ccb8b5f 661 args.type = XFS_ALLOCTYPE_THIS_BNO;
3ccb8b5f 662 args.prod = 1;
75de2a91 663
3ccb8b5f 664 /*
75de2a91
DC
665 * We need to take into account alignment here to ensure that
666 * we don't modify the free list if we fail to have an exact
667 * block. If we don't have an exact match, and every oher
668 * attempt allocation attempt fails, we'll end up cancelling
669 * a dirty transaction and shutting down.
670 *
671 * For an exact allocation, alignment must be 1,
672 * however we need to take cluster alignment into account when
673 * fixing up the freelist. Use the minalignslop field to
674 * indicate that extra blocks might be required for alignment,
675 * but not to use them in the actual exact allocation.
3ccb8b5f 676 */
75de2a91 677 args.alignment = 1;
7a1df156 678 args.minalignslop = xfs_ialloc_cluster_alignment(args.mp) - 1;
75de2a91
DC
679
680 /* Allow space for the inode btree to split. */
0d87e656 681 args.minleft = args.mp->m_in_maxlevels - 1;
3ccb8b5f
GO
682 if ((error = xfs_alloc_vextent(&args)))
683 return error;
e480a723
BF
684
685 /*
686 * This request might have dirtied the transaction if the AG can
687 * satisfy the request, but the exact block was not available.
688 * If the allocation did fail, subsequent requests will relax
689 * the exact agbno requirement and increase the alignment
690 * instead. It is critical that the total size of the request
691 * (len + alignment + slop) does not increase from this point
692 * on, so reset minalignslop to ensure it is not included in
693 * subsequent requests.
694 */
695 args.minalignslop = 0;
1cdadee1 696 }
1da177e4 697
3ccb8b5f
GO
698 if (unlikely(args.fsbno == NULLFSBLOCK)) {
699 /*
700 * Set the alignment for the allocation.
701 * If stripe alignment is turned on then align at stripe unit
702 * boundary.
019ff2d5
NS
703 * If the cluster size is smaller than a filesystem block
704 * then we're doing I/O for inodes in filesystem block size
3ccb8b5f
GO
705 * pieces, so don't need alignment anyway.
706 */
707 isaligned = 0;
708 if (args.mp->m_sinoalign) {
709 ASSERT(!(args.mp->m_flags & XFS_MOUNT_NOALIGN));
710 args.alignment = args.mp->m_dalign;
711 isaligned = 1;
75de2a91 712 } else
7a1df156 713 args.alignment = xfs_ialloc_cluster_alignment(args.mp);
3ccb8b5f
GO
714 /*
715 * Need to figure out where to allocate the inode blocks.
716 * Ideally they should be spaced out through the a.g.
717 * For now, just allocate blocks up front.
718 */
719 args.agbno = be32_to_cpu(agi->agi_root);
85c0b2ab 720 args.fsbno = XFS_AGB_TO_FSB(args.mp, agno, args.agbno);
3ccb8b5f
GO
721 /*
722 * Allocate a fixed-size extent of inodes.
723 */
724 args.type = XFS_ALLOCTYPE_NEAR_BNO;
3ccb8b5f
GO
725 args.prod = 1;
726 /*
727 * Allow space for the inode btree to split.
728 */
0d87e656 729 args.minleft = args.mp->m_in_maxlevels - 1;
3ccb8b5f
GO
730 if ((error = xfs_alloc_vextent(&args)))
731 return error;
732 }
019ff2d5 733
1da177e4
LT
734 /*
735 * If stripe alignment is turned on, then try again with cluster
736 * alignment.
737 */
738 if (isaligned && args.fsbno == NULLFSBLOCK) {
739 args.type = XFS_ALLOCTYPE_NEAR_BNO;
16259e7d 740 args.agbno = be32_to_cpu(agi->agi_root);
85c0b2ab 741 args.fsbno = XFS_AGB_TO_FSB(args.mp, agno, args.agbno);
7a1df156 742 args.alignment = xfs_ialloc_cluster_alignment(args.mp);
1da177e4
LT
743 if ((error = xfs_alloc_vextent(&args)))
744 return error;
745 }
746
56d1115c
BF
747 /*
748 * Finally, try a sparse allocation if the filesystem supports it and
749 * the sparse allocation length is smaller than a full chunk.
750 */
751 if (xfs_sb_version_hassparseinodes(&args.mp->m_sb) &&
752 args.mp->m_ialloc_min_blks < args.mp->m_ialloc_blks &&
753 args.fsbno == NULLFSBLOCK) {
1cdadee1 754sparse_alloc:
56d1115c
BF
755 args.type = XFS_ALLOCTYPE_NEAR_BNO;
756 args.agbno = be32_to_cpu(agi->agi_root);
757 args.fsbno = XFS_AGB_TO_FSB(args.mp, agno, args.agbno);
758 args.alignment = args.mp->m_sb.sb_spino_align;
759 args.prod = 1;
760
761 args.minlen = args.mp->m_ialloc_min_blks;
762 args.maxlen = args.minlen;
763
764 /*
765 * The inode record will be aligned to full chunk size. We must
766 * prevent sparse allocation from AG boundaries that result in
767 * invalid inode records, such as records that start at agbno 0
768 * or extend beyond the AG.
769 *
770 * Set min agbno to the first aligned, non-zero agbno and max to
771 * the last aligned agbno that is at least one full chunk from
772 * the end of the AG.
773 */
774 args.min_agbno = args.mp->m_sb.sb_inoalignmt;
775 args.max_agbno = round_down(args.mp->m_sb.sb_agblocks,
776 args.mp->m_sb.sb_inoalignmt) -
777 args.mp->m_ialloc_blks;
778
779 error = xfs_alloc_vextent(&args);
780 if (error)
781 return error;
782
783 newlen = args.len << args.mp->m_sb.sb_inopblog;
46fc58da 784 ASSERT(newlen <= XFS_INODES_PER_CHUNK);
56d1115c
BF
785 allocmask = (1 << (newlen / XFS_INODES_PER_HOLEMASK_BIT)) - 1;
786 }
787
1da177e4
LT
788 if (args.fsbno == NULLFSBLOCK) {
789 *alloc = 0;
790 return 0;
791 }
792 ASSERT(args.len == args.minlen);
1da177e4 793
359346a9 794 /*
85c0b2ab
DC
795 * Stamp and write the inode buffers.
796 *
359346a9
DC
797 * Seed the new inode cluster with a random generation number. This
798 * prevents short-term reuse of generation numbers if a chunk is
799 * freed and then immediately reallocated. We use random numbers
800 * rather than a linear progression to prevent the next generation
801 * number from being easily guessable.
802 */
463958af
BF
803 error = xfs_ialloc_inode_init(args.mp, tp, NULL, newlen, agno,
804 args.agbno, args.len, prandom_u32());
d42f08f6 805
2a30f36d
CS
806 if (error)
807 return error;
85c0b2ab
DC
808 /*
809 * Convert the results.
810 */
811 newino = XFS_OFFBNO_TO_AGINO(args.mp, args.agbno, 0);
56d1115c
BF
812
813 if (xfs_inobt_issparse(~allocmask)) {
814 /*
815 * We've allocated a sparse chunk. Align the startino and mask.
816 */
817 xfs_align_sparse_ino(args.mp, &newino, &allocmask);
818
819 rec.ir_startino = newino;
820 rec.ir_holemask = ~allocmask;
821 rec.ir_count = newlen;
822 rec.ir_freecount = newlen;
823 rec.ir_free = XFS_INOBT_ALL_FREE;
824
825 /*
826 * Insert the sparse record into the inobt and allow for a merge
827 * if necessary. If a merge does occur, rec is updated to the
828 * merged record.
829 */
830 error = xfs_inobt_insert_sprec(args.mp, tp, agbp, XFS_BTNUM_INO,
831 &rec, true);
832 if (error == -EFSCORRUPTED) {
833 xfs_alert(args.mp,
834 "invalid sparse inode record: ino 0x%llx holemask 0x%x count %u",
835 XFS_AGINO_TO_INO(args.mp, agno,
836 rec.ir_startino),
837 rec.ir_holemask, rec.ir_count);
838 xfs_force_shutdown(args.mp, SHUTDOWN_CORRUPT_INCORE);
839 }
840 if (error)
841 return error;
842
843 /*
844 * We can't merge the part we've just allocated as for the inobt
845 * due to finobt semantics. The original record may or may not
846 * exist independent of whether physical inodes exist in this
847 * sparse chunk.
848 *
849 * We must update the finobt record based on the inobt record.
850 * rec contains the fully merged and up to date inobt record
851 * from the previous call. Set merge false to replace any
852 * existing record with this one.
853 */
854 if (xfs_sb_version_hasfinobt(&args.mp->m_sb)) {
855 error = xfs_inobt_insert_sprec(args.mp, tp, agbp,
856 XFS_BTNUM_FINO, &rec,
857 false);
858 if (error)
859 return error;
860 }
861 } else {
862 /* full chunk - insert new records to both btrees */
863 error = xfs_inobt_insert(args.mp, tp, agbp, newino, newlen,
864 XFS_BTNUM_INO);
865 if (error)
866 return error;
867
868 if (xfs_sb_version_hasfinobt(&args.mp->m_sb)) {
869 error = xfs_inobt_insert(args.mp, tp, agbp, newino,
870 newlen, XFS_BTNUM_FINO);
871 if (error)
872 return error;
873 }
874 }
875
876 /*
877 * Update AGI counts and newino.
878 */
413d57c9
MS
879 be32_add_cpu(&agi->agi_count, newlen);
880 be32_add_cpu(&agi->agi_freecount, newlen);
44b56e0a
DC
881 pag = xfs_perag_get(args.mp, agno);
882 pag->pagi_freecount += newlen;
883 xfs_perag_put(pag);
16259e7d 884 agi->agi_newino = cpu_to_be32(newino);
85c0b2ab 885
1da177e4
LT
886 /*
887 * Log allocation group header fields
888 */
889 xfs_ialloc_log_agi(tp, agbp,
890 XFS_AGI_COUNT | XFS_AGI_FREECOUNT | XFS_AGI_NEWINO);
891 /*
892 * Modify/log superblock values for inode count and inode free count.
893 */
894 xfs_trans_mod_sb(tp, XFS_TRANS_SB_ICOUNT, (long)newlen);
895 xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, (long)newlen);
896 *alloc = 1;
897 return 0;
898}
899
b8f82a4a 900STATIC xfs_agnumber_t
1da177e4
LT
901xfs_ialloc_next_ag(
902 xfs_mount_t *mp)
903{
904 xfs_agnumber_t agno;
905
906 spin_lock(&mp->m_agirotor_lock);
907 agno = mp->m_agirotor;
8aea3ff4 908 if (++mp->m_agirotor >= mp->m_maxagi)
1da177e4
LT
909 mp->m_agirotor = 0;
910 spin_unlock(&mp->m_agirotor_lock);
911
912 return agno;
913}
914
915/*
916 * Select an allocation group to look for a free inode in, based on the parent
2f21ff1c 917 * inode and the mode. Return the allocation group buffer.
1da177e4 918 */
55d6af64 919STATIC xfs_agnumber_t
1da177e4
LT
920xfs_ialloc_ag_select(
921 xfs_trans_t *tp, /* transaction pointer */
922 xfs_ino_t parent, /* parent directory inode number */
f59cf5c2 923 umode_t mode) /* bits set to indicate file type */
1da177e4 924{
1da177e4
LT
925 xfs_agnumber_t agcount; /* number of ag's in the filesystem */
926 xfs_agnumber_t agno; /* current ag number */
927 int flags; /* alloc buffer locking flags */
928 xfs_extlen_t ineed; /* blocks needed for inode allocation */
929 xfs_extlen_t longest = 0; /* longest extent available */
930 xfs_mount_t *mp; /* mount point structure */
931 int needspace; /* file mode implies space allocated */
932 xfs_perag_t *pag; /* per allocation group data */
933 xfs_agnumber_t pagno; /* parent (starting) ag number */
55d6af64 934 int error;
1da177e4
LT
935
936 /*
937 * Files of these types need at least one block if length > 0
938 * (and they won't fit in the inode, but that's hard to figure out).
939 */
940 needspace = S_ISDIR(mode) || S_ISREG(mode) || S_ISLNK(mode);
941 mp = tp->t_mountp;
942 agcount = mp->m_maxagi;
943 if (S_ISDIR(mode))
944 pagno = xfs_ialloc_next_ag(mp);
945 else {
946 pagno = XFS_INO_TO_AGNO(mp, parent);
947 if (pagno >= agcount)
948 pagno = 0;
949 }
55d6af64 950
1da177e4 951 ASSERT(pagno < agcount);
55d6af64 952
1da177e4
LT
953 /*
954 * Loop through allocation groups, looking for one with a little
955 * free space in it. Note we don't look for free inodes, exactly.
956 * Instead, we include whether there is a need to allocate inodes
957 * to mean that blocks must be allocated for them,
958 * if none are currently free.
959 */
960 agno = pagno;
961 flags = XFS_ALLOC_FLAG_TRYLOCK;
1da177e4 962 for (;;) {
44b56e0a 963 pag = xfs_perag_get(mp, agno);
55d6af64
CH
964 if (!pag->pagi_inodeok) {
965 xfs_ialloc_next_ag(mp);
966 goto nextag;
967 }
968
1da177e4 969 if (!pag->pagi_init) {
55d6af64
CH
970 error = xfs_ialloc_pagi_init(mp, tp, agno);
971 if (error)
1da177e4 972 goto nextag;
55d6af64 973 }
1da177e4 974
55d6af64
CH
975 if (pag->pagi_freecount) {
976 xfs_perag_put(pag);
977 return agno;
1da177e4
LT
978 }
979
55d6af64
CH
980 if (!pag->pagf_init) {
981 error = xfs_alloc_pagf_init(mp, tp, agno, flags);
982 if (error)
1da177e4 983 goto nextag;
1da177e4 984 }
55d6af64
CH
985
986 /*
7a1df156
DC
987 * Check that there is enough free space for the file plus a
988 * chunk of inodes if we need to allocate some. If this is the
989 * first pass across the AGs, take into account the potential
990 * space needed for alignment of inode chunks when checking the
991 * longest contiguous free space in the AG - this prevents us
992 * from getting ENOSPC because we have free space larger than
993 * m_ialloc_blks but alignment constraints prevent us from using
994 * it.
995 *
996 * If we can't find an AG with space for full alignment slack to
997 * be taken into account, we must be near ENOSPC in all AGs.
998 * Hence we don't include alignment for the second pass and so
999 * if we fail allocation due to alignment issues then it is most
1000 * likely a real ENOSPC condition.
55d6af64 1001 */
066a1884 1002 ineed = mp->m_ialloc_min_blks;
7a1df156
DC
1003 if (flags && ineed > 1)
1004 ineed += xfs_ialloc_cluster_alignment(mp);
55d6af64
CH
1005 longest = pag->pagf_longest;
1006 if (!longest)
1007 longest = pag->pagf_flcount > 0;
1008
1009 if (pag->pagf_freeblks >= needspace + ineed &&
1010 longest >= ineed) {
1011 xfs_perag_put(pag);
1012 return agno;
1da177e4 1013 }
1da177e4 1014nextag:
44b56e0a 1015 xfs_perag_put(pag);
1da177e4
LT
1016 /*
1017 * No point in iterating over the rest, if we're shutting
1018 * down.
1019 */
1c1c6ebc 1020 if (XFS_FORCED_SHUTDOWN(mp))
55d6af64 1021 return NULLAGNUMBER;
1da177e4
LT
1022 agno++;
1023 if (agno >= agcount)
1024 agno = 0;
1025 if (agno == pagno) {
1c1c6ebc 1026 if (flags == 0)
55d6af64 1027 return NULLAGNUMBER;
1da177e4
LT
1028 flags = 0;
1029 }
1030 }
1031}
1032
4254b0bb
CH
1033/*
1034 * Try to retrieve the next record to the left/right from the current one.
1035 */
1036STATIC int
1037xfs_ialloc_next_rec(
1038 struct xfs_btree_cur *cur,
1039 xfs_inobt_rec_incore_t *rec,
1040 int *done,
1041 int left)
1042{
1043 int error;
1044 int i;
1045
1046 if (left)
1047 error = xfs_btree_decrement(cur, 0, &i);
1048 else
1049 error = xfs_btree_increment(cur, 0, &i);
1050
1051 if (error)
1052 return error;
1053 *done = !i;
1054 if (i) {
1055 error = xfs_inobt_get_rec(cur, rec, &i);
1056 if (error)
1057 return error;
5fb5aeee 1058 XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1);
4254b0bb
CH
1059 }
1060
1061 return 0;
1062}
1063
bd169565
DC
1064STATIC int
1065xfs_ialloc_get_rec(
1066 struct xfs_btree_cur *cur,
1067 xfs_agino_t agino,
1068 xfs_inobt_rec_incore_t *rec,
43df2ee6 1069 int *done)
bd169565
DC
1070{
1071 int error;
1072 int i;
1073
1074 error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_EQ, &i);
1075 if (error)
1076 return error;
1077 *done = !i;
1078 if (i) {
1079 error = xfs_inobt_get_rec(cur, rec, &i);
1080 if (error)
1081 return error;
5fb5aeee 1082 XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1);
bd169565
DC
1083 }
1084
1085 return 0;
1086}
0b48db80 1087
d4cc540b 1088/*
26dd5217
BF
1089 * Return the offset of the first free inode in the record. If the inode chunk
1090 * is sparsely allocated, we convert the record holemask to inode granularity
1091 * and mask off the unallocated regions from the inode free mask.
d4cc540b
BF
1092 */
1093STATIC int
1094xfs_inobt_first_free_inode(
1095 struct xfs_inobt_rec_incore *rec)
1096{
26dd5217
BF
1097 xfs_inofree_t realfree;
1098
1099 /* if there are no holes, return the first available offset */
1100 if (!xfs_inobt_issparse(rec->ir_holemask))
1101 return xfs_lowbit64(rec->ir_free);
1102
1103 realfree = xfs_inobt_irec_to_allocmask(rec);
1104 realfree &= rec->ir_free;
1105
1106 return xfs_lowbit64(realfree);
d4cc540b
BF
1107}
1108
1da177e4 1109/*
6dd8638e 1110 * Allocate an inode using the inobt-only algorithm.
1da177e4 1111 */
f2ecc5e4 1112STATIC int
6dd8638e 1113xfs_dialloc_ag_inobt(
f2ecc5e4
CH
1114 struct xfs_trans *tp,
1115 struct xfs_buf *agbp,
1116 xfs_ino_t parent,
1117 xfs_ino_t *inop)
1da177e4 1118{
f2ecc5e4
CH
1119 struct xfs_mount *mp = tp->t_mountp;
1120 struct xfs_agi *agi = XFS_BUF_TO_AGI(agbp);
1121 xfs_agnumber_t agno = be32_to_cpu(agi->agi_seqno);
1122 xfs_agnumber_t pagno = XFS_INO_TO_AGNO(mp, parent);
1123 xfs_agino_t pagino = XFS_INO_TO_AGINO(mp, parent);
1124 struct xfs_perag *pag;
1125 struct xfs_btree_cur *cur, *tcur;
1126 struct xfs_inobt_rec_incore rec, trec;
1127 xfs_ino_t ino;
1128 int error;
1129 int offset;
1130 int i, j;
2d32311c 1131 int searchdistance = 10;
1da177e4 1132
44b56e0a 1133 pag = xfs_perag_get(mp, agno);
bd169565 1134
4bb61069
CH
1135 ASSERT(pag->pagi_init);
1136 ASSERT(pag->pagi_inodeok);
1137 ASSERT(pag->pagi_freecount > 0);
1138
bd169565 1139 restart_pagno:
57bd3dbe 1140 cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_INO);
1da177e4
LT
1141 /*
1142 * If pagino is 0 (this is the root inode allocation) use newino.
1143 * This must work because we've just allocated some.
1144 */
1145 if (!pagino)
16259e7d 1146 pagino = be32_to_cpu(agi->agi_newino);
1da177e4 1147
0b48db80
DC
1148 error = xfs_check_agi_freecount(cur, agi);
1149 if (error)
1150 goto error0;
1da177e4 1151
1da177e4 1152 /*
4254b0bb 1153 * If in the same AG as the parent, try to get near the parent.
1da177e4
LT
1154 */
1155 if (pagno == agno) {
4254b0bb
CH
1156 int doneleft; /* done, to the left */
1157 int doneright; /* done, to the right */
1158
21875505 1159 error = xfs_inobt_lookup(cur, pagino, XFS_LOOKUP_LE, &i);
4254b0bb 1160 if (error)
1da177e4 1161 goto error0;
c29aad41 1162 XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error0);
4254b0bb
CH
1163
1164 error = xfs_inobt_get_rec(cur, &rec, &j);
1165 if (error)
1166 goto error0;
c29aad41 1167 XFS_WANT_CORRUPTED_GOTO(mp, j == 1, error0);
4254b0bb
CH
1168
1169 if (rec.ir_freecount > 0) {
1da177e4
LT
1170 /*
1171 * Found a free inode in the same chunk
4254b0bb 1172 * as the parent, done.
1da177e4 1173 */
4254b0bb 1174 goto alloc_inode;
1da177e4 1175 }
4254b0bb
CH
1176
1177
1da177e4 1178 /*
4254b0bb 1179 * In the same AG as parent, but parent's chunk is full.
1da177e4 1180 */
1da177e4 1181
4254b0bb
CH
1182 /* duplicate the cursor, search left & right simultaneously */
1183 error = xfs_btree_dup_cursor(cur, &tcur);
1184 if (error)
1185 goto error0;
1186
bd169565
DC
1187 /*
1188 * Skip to last blocks looked up if same parent inode.
1189 */
1190 if (pagino != NULLAGINO &&
1191 pag->pagl_pagino == pagino &&
1192 pag->pagl_leftrec != NULLAGINO &&
1193 pag->pagl_rightrec != NULLAGINO) {
1194 error = xfs_ialloc_get_rec(tcur, pag->pagl_leftrec,
43df2ee6 1195 &trec, &doneleft);
bd169565
DC
1196 if (error)
1197 goto error1;
4254b0bb 1198
bd169565 1199 error = xfs_ialloc_get_rec(cur, pag->pagl_rightrec,
43df2ee6 1200 &rec, &doneright);
bd169565
DC
1201 if (error)
1202 goto error1;
1203 } else {
1204 /* search left with tcur, back up 1 record */
1205 error = xfs_ialloc_next_rec(tcur, &trec, &doneleft, 1);
1206 if (error)
1207 goto error1;
1208
1209 /* search right with cur, go forward 1 record. */
1210 error = xfs_ialloc_next_rec(cur, &rec, &doneright, 0);
1211 if (error)
1212 goto error1;
1213 }
4254b0bb
CH
1214
1215 /*
1216 * Loop until we find an inode chunk with a free inode.
1217 */
2d32311c 1218 while (--searchdistance > 0 && (!doneleft || !doneright)) {
4254b0bb
CH
1219 int useleft; /* using left inode chunk this time */
1220
1221 /* figure out the closer block if both are valid. */
1222 if (!doneleft && !doneright) {
1223 useleft = pagino -
1224 (trec.ir_startino + XFS_INODES_PER_CHUNK - 1) <
1225 rec.ir_startino - pagino;
1226 } else {
1227 useleft = !doneleft;
1da177e4 1228 }
4254b0bb
CH
1229
1230 /* free inodes to the left? */
1231 if (useleft && trec.ir_freecount) {
4254b0bb
CH
1232 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
1233 cur = tcur;
bd169565
DC
1234
1235 pag->pagl_leftrec = trec.ir_startino;
1236 pag->pagl_rightrec = rec.ir_startino;
1237 pag->pagl_pagino = pagino;
c44245b3 1238 rec = trec;
4254b0bb 1239 goto alloc_inode;
1da177e4 1240 }
1da177e4 1241
4254b0bb
CH
1242 /* free inodes to the right? */
1243 if (!useleft && rec.ir_freecount) {
1244 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
bd169565
DC
1245
1246 pag->pagl_leftrec = trec.ir_startino;
1247 pag->pagl_rightrec = rec.ir_startino;
1248 pag->pagl_pagino = pagino;
4254b0bb 1249 goto alloc_inode;
1da177e4 1250 }
4254b0bb
CH
1251
1252 /* get next record to check */
1253 if (useleft) {
1254 error = xfs_ialloc_next_rec(tcur, &trec,
1255 &doneleft, 1);
1256 } else {
1257 error = xfs_ialloc_next_rec(cur, &rec,
1258 &doneright, 0);
1259 }
1260 if (error)
1261 goto error1;
1da177e4 1262 }
bd169565 1263
2d32311c
CM
1264 if (searchdistance <= 0) {
1265 /*
1266 * Not in range - save last search
1267 * location and allocate a new inode
1268 */
1269 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
1270 pag->pagl_leftrec = trec.ir_startino;
1271 pag->pagl_rightrec = rec.ir_startino;
1272 pag->pagl_pagino = pagino;
1273
1274 } else {
1275 /*
1276 * We've reached the end of the btree. because
1277 * we are only searching a small chunk of the
1278 * btree each search, there is obviously free
1279 * inodes closer to the parent inode than we
1280 * are now. restart the search again.
1281 */
1282 pag->pagl_pagino = NULLAGINO;
1283 pag->pagl_leftrec = NULLAGINO;
1284 pag->pagl_rightrec = NULLAGINO;
1285 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
1286 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
1287 goto restart_pagno;
1288 }
1da177e4 1289 }
4254b0bb 1290
1da177e4 1291 /*
4254b0bb 1292 * In a different AG from the parent.
1da177e4
LT
1293 * See if the most recently allocated block has any free.
1294 */
69ef921b 1295 if (agi->agi_newino != cpu_to_be32(NULLAGINO)) {
21875505
CH
1296 error = xfs_inobt_lookup(cur, be32_to_cpu(agi->agi_newino),
1297 XFS_LOOKUP_EQ, &i);
4254b0bb 1298 if (error)
1da177e4 1299 goto error0;
4254b0bb
CH
1300
1301 if (i == 1) {
1302 error = xfs_inobt_get_rec(cur, &rec, &j);
1303 if (error)
1304 goto error0;
1305
1306 if (j == 1 && rec.ir_freecount > 0) {
1307 /*
1308 * The last chunk allocated in the group
1309 * still has a free inode.
1310 */
1311 goto alloc_inode;
1312 }
1da177e4 1313 }
bd169565 1314 }
4254b0bb 1315
bd169565
DC
1316 /*
1317 * None left in the last group, search the whole AG
1318 */
1319 error = xfs_inobt_lookup(cur, 0, XFS_LOOKUP_GE, &i);
1320 if (error)
1321 goto error0;
c29aad41 1322 XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error0);
bd169565
DC
1323
1324 for (;;) {
1325 error = xfs_inobt_get_rec(cur, &rec, &i);
1326 if (error)
1327 goto error0;
c29aad41 1328 XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error0);
bd169565
DC
1329 if (rec.ir_freecount > 0)
1330 break;
1331 error = xfs_btree_increment(cur, 0, &i);
4254b0bb
CH
1332 if (error)
1333 goto error0;
c29aad41 1334 XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error0);
1da177e4 1335 }
4254b0bb
CH
1336
1337alloc_inode:
d4cc540b 1338 offset = xfs_inobt_first_free_inode(&rec);
1da177e4
LT
1339 ASSERT(offset >= 0);
1340 ASSERT(offset < XFS_INODES_PER_CHUNK);
1341 ASSERT((XFS_AGINO_TO_OFFSET(mp, rec.ir_startino) %
1342 XFS_INODES_PER_CHUNK) == 0);
1343 ino = XFS_AGINO_TO_INO(mp, agno, rec.ir_startino + offset);
0d87e656 1344 rec.ir_free &= ~XFS_INOBT_MASK(offset);
1da177e4 1345 rec.ir_freecount--;
afabc24a
CH
1346 error = xfs_inobt_update(cur, &rec);
1347 if (error)
1da177e4 1348 goto error0;
413d57c9 1349 be32_add_cpu(&agi->agi_freecount, -1);
1da177e4 1350 xfs_ialloc_log_agi(tp, agbp, XFS_AGI_FREECOUNT);
44b56e0a 1351 pag->pagi_freecount--;
1da177e4 1352
0b48db80
DC
1353 error = xfs_check_agi_freecount(cur, agi);
1354 if (error)
1355 goto error0;
1356
1da177e4
LT
1357 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
1358 xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, -1);
44b56e0a 1359 xfs_perag_put(pag);
1da177e4
LT
1360 *inop = ino;
1361 return 0;
1362error1:
1363 xfs_btree_del_cursor(tcur, XFS_BTREE_ERROR);
1364error0:
1365 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
44b56e0a 1366 xfs_perag_put(pag);
1da177e4
LT
1367 return error;
1368}
1369
6dd8638e
BF
1370/*
1371 * Use the free inode btree to allocate an inode based on distance from the
1372 * parent. Note that the provided cursor may be deleted and replaced.
1373 */
1374STATIC int
1375xfs_dialloc_ag_finobt_near(
1376 xfs_agino_t pagino,
1377 struct xfs_btree_cur **ocur,
1378 struct xfs_inobt_rec_incore *rec)
1379{
1380 struct xfs_btree_cur *lcur = *ocur; /* left search cursor */
1381 struct xfs_btree_cur *rcur; /* right search cursor */
1382 struct xfs_inobt_rec_incore rrec;
1383 int error;
1384 int i, j;
1385
1386 error = xfs_inobt_lookup(lcur, pagino, XFS_LOOKUP_LE, &i);
1387 if (error)
1388 return error;
1389
1390 if (i == 1) {
1391 error = xfs_inobt_get_rec(lcur, rec, &i);
1392 if (error)
1393 return error;
5fb5aeee 1394 XFS_WANT_CORRUPTED_RETURN(lcur->bc_mp, i == 1);
6dd8638e
BF
1395
1396 /*
1397 * See if we've landed in the parent inode record. The finobt
1398 * only tracks chunks with at least one free inode, so record
1399 * existence is enough.
1400 */
1401 if (pagino >= rec->ir_startino &&
1402 pagino < (rec->ir_startino + XFS_INODES_PER_CHUNK))
1403 return 0;
1404 }
1405
1406 error = xfs_btree_dup_cursor(lcur, &rcur);
1407 if (error)
1408 return error;
1409
1410 error = xfs_inobt_lookup(rcur, pagino, XFS_LOOKUP_GE, &j);
1411 if (error)
1412 goto error_rcur;
1413 if (j == 1) {
1414 error = xfs_inobt_get_rec(rcur, &rrec, &j);
1415 if (error)
1416 goto error_rcur;
c29aad41 1417 XFS_WANT_CORRUPTED_GOTO(lcur->bc_mp, j == 1, error_rcur);
6dd8638e
BF
1418 }
1419
c29aad41 1420 XFS_WANT_CORRUPTED_GOTO(lcur->bc_mp, i == 1 || j == 1, error_rcur);
6dd8638e
BF
1421 if (i == 1 && j == 1) {
1422 /*
1423 * Both the left and right records are valid. Choose the closer
1424 * inode chunk to the target.
1425 */
1426 if ((pagino - rec->ir_startino + XFS_INODES_PER_CHUNK - 1) >
1427 (rrec.ir_startino - pagino)) {
1428 *rec = rrec;
1429 xfs_btree_del_cursor(lcur, XFS_BTREE_NOERROR);
1430 *ocur = rcur;
1431 } else {
1432 xfs_btree_del_cursor(rcur, XFS_BTREE_NOERROR);
1433 }
1434 } else if (j == 1) {
1435 /* only the right record is valid */
1436 *rec = rrec;
1437 xfs_btree_del_cursor(lcur, XFS_BTREE_NOERROR);
1438 *ocur = rcur;
1439 } else if (i == 1) {
1440 /* only the left record is valid */
1441 xfs_btree_del_cursor(rcur, XFS_BTREE_NOERROR);
1442 }
1443
1444 return 0;
1445
1446error_rcur:
1447 xfs_btree_del_cursor(rcur, XFS_BTREE_ERROR);
1448 return error;
1449}
1450
1451/*
1452 * Use the free inode btree to find a free inode based on a newino hint. If
1453 * the hint is NULL, find the first free inode in the AG.
1454 */
1455STATIC int
1456xfs_dialloc_ag_finobt_newino(
1457 struct xfs_agi *agi,
1458 struct xfs_btree_cur *cur,
1459 struct xfs_inobt_rec_incore *rec)
1460{
1461 int error;
1462 int i;
1463
1464 if (agi->agi_newino != cpu_to_be32(NULLAGINO)) {
e68ed775
DC
1465 error = xfs_inobt_lookup(cur, be32_to_cpu(agi->agi_newino),
1466 XFS_LOOKUP_EQ, &i);
6dd8638e
BF
1467 if (error)
1468 return error;
1469 if (i == 1) {
1470 error = xfs_inobt_get_rec(cur, rec, &i);
1471 if (error)
1472 return error;
5fb5aeee 1473 XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1);
6dd8638e
BF
1474 return 0;
1475 }
1476 }
1477
1478 /*
1479 * Find the first inode available in the AG.
1480 */
1481 error = xfs_inobt_lookup(cur, 0, XFS_LOOKUP_GE, &i);
1482 if (error)
1483 return error;
5fb5aeee 1484 XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1);
6dd8638e
BF
1485
1486 error = xfs_inobt_get_rec(cur, rec, &i);
1487 if (error)
1488 return error;
5fb5aeee 1489 XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1);
6dd8638e
BF
1490
1491 return 0;
1492}
1493
1494/*
1495 * Update the inobt based on a modification made to the finobt. Also ensure that
1496 * the records from both trees are equivalent post-modification.
1497 */
1498STATIC int
1499xfs_dialloc_ag_update_inobt(
1500 struct xfs_btree_cur *cur, /* inobt cursor */
1501 struct xfs_inobt_rec_incore *frec, /* finobt record */
1502 int offset) /* inode offset */
1503{
1504 struct xfs_inobt_rec_incore rec;
1505 int error;
1506 int i;
1507
1508 error = xfs_inobt_lookup(cur, frec->ir_startino, XFS_LOOKUP_EQ, &i);
1509 if (error)
1510 return error;
5fb5aeee 1511 XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1);
6dd8638e
BF
1512
1513 error = xfs_inobt_get_rec(cur, &rec, &i);
1514 if (error)
1515 return error;
5fb5aeee 1516 XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1);
6dd8638e
BF
1517 ASSERT((XFS_AGINO_TO_OFFSET(cur->bc_mp, rec.ir_startino) %
1518 XFS_INODES_PER_CHUNK) == 0);
1519
1520 rec.ir_free &= ~XFS_INOBT_MASK(offset);
1521 rec.ir_freecount--;
1522
5fb5aeee 1523 XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, (rec.ir_free == frec->ir_free) &&
6dd8638e
BF
1524 (rec.ir_freecount == frec->ir_freecount));
1525
b72091f2 1526 return xfs_inobt_update(cur, &rec);
6dd8638e
BF
1527}
1528
1529/*
1530 * Allocate an inode using the free inode btree, if available. Otherwise, fall
1531 * back to the inobt search algorithm.
1532 *
1533 * The caller selected an AG for us, and made sure that free inodes are
1534 * available.
1535 */
1536STATIC int
1537xfs_dialloc_ag(
1538 struct xfs_trans *tp,
1539 struct xfs_buf *agbp,
1540 xfs_ino_t parent,
1541 xfs_ino_t *inop)
1542{
1543 struct xfs_mount *mp = tp->t_mountp;
1544 struct xfs_agi *agi = XFS_BUF_TO_AGI(agbp);
1545 xfs_agnumber_t agno = be32_to_cpu(agi->agi_seqno);
1546 xfs_agnumber_t pagno = XFS_INO_TO_AGNO(mp, parent);
1547 xfs_agino_t pagino = XFS_INO_TO_AGINO(mp, parent);
1548 struct xfs_perag *pag;
1549 struct xfs_btree_cur *cur; /* finobt cursor */
1550 struct xfs_btree_cur *icur; /* inobt cursor */
1551 struct xfs_inobt_rec_incore rec;
1552 xfs_ino_t ino;
1553 int error;
1554 int offset;
1555 int i;
1556
1557 if (!xfs_sb_version_hasfinobt(&mp->m_sb))
1558 return xfs_dialloc_ag_inobt(tp, agbp, parent, inop);
1559
1560 pag = xfs_perag_get(mp, agno);
1561
1562 /*
1563 * If pagino is 0 (this is the root inode allocation) use newino.
1564 * This must work because we've just allocated some.
1565 */
1566 if (!pagino)
1567 pagino = be32_to_cpu(agi->agi_newino);
1568
1569 cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_FINO);
1570
1571 error = xfs_check_agi_freecount(cur, agi);
1572 if (error)
1573 goto error_cur;
1574
1575 /*
1576 * The search algorithm depends on whether we're in the same AG as the
1577 * parent. If so, find the closest available inode to the parent. If
1578 * not, consider the agi hint or find the first free inode in the AG.
1579 */
1580 if (agno == pagno)
1581 error = xfs_dialloc_ag_finobt_near(pagino, &cur, &rec);
1582 else
1583 error = xfs_dialloc_ag_finobt_newino(agi, cur, &rec);
1584 if (error)
1585 goto error_cur;
1586
d4cc540b 1587 offset = xfs_inobt_first_free_inode(&rec);
6dd8638e
BF
1588 ASSERT(offset >= 0);
1589 ASSERT(offset < XFS_INODES_PER_CHUNK);
1590 ASSERT((XFS_AGINO_TO_OFFSET(mp, rec.ir_startino) %
1591 XFS_INODES_PER_CHUNK) == 0);
1592 ino = XFS_AGINO_TO_INO(mp, agno, rec.ir_startino + offset);
1593
1594 /*
1595 * Modify or remove the finobt record.
1596 */
1597 rec.ir_free &= ~XFS_INOBT_MASK(offset);
1598 rec.ir_freecount--;
1599 if (rec.ir_freecount)
1600 error = xfs_inobt_update(cur, &rec);
1601 else
1602 error = xfs_btree_delete(cur, &i);
1603 if (error)
1604 goto error_cur;
1605
1606 /*
1607 * The finobt has now been updated appropriately. We haven't updated the
1608 * agi and superblock yet, so we can create an inobt cursor and validate
1609 * the original freecount. If all is well, make the equivalent update to
1610 * the inobt using the finobt record and offset information.
1611 */
1612 icur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_INO);
1613
1614 error = xfs_check_agi_freecount(icur, agi);
1615 if (error)
1616 goto error_icur;
1617
1618 error = xfs_dialloc_ag_update_inobt(icur, &rec, offset);
1619 if (error)
1620 goto error_icur;
1621
1622 /*
1623 * Both trees have now been updated. We must update the perag and
1624 * superblock before we can check the freecount for each btree.
1625 */
1626 be32_add_cpu(&agi->agi_freecount, -1);
1627 xfs_ialloc_log_agi(tp, agbp, XFS_AGI_FREECOUNT);
1628 pag->pagi_freecount--;
1629
1630 xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, -1);
1631
1632 error = xfs_check_agi_freecount(icur, agi);
1633 if (error)
1634 goto error_icur;
1635 error = xfs_check_agi_freecount(cur, agi);
1636 if (error)
1637 goto error_icur;
1638
1639 xfs_btree_del_cursor(icur, XFS_BTREE_NOERROR);
1640 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
1641 xfs_perag_put(pag);
1642 *inop = ino;
1643 return 0;
1644
1645error_icur:
1646 xfs_btree_del_cursor(icur, XFS_BTREE_ERROR);
1647error_cur:
1648 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
1649 xfs_perag_put(pag);
1650 return error;
1651}
1652
f2ecc5e4
CH
1653/*
1654 * Allocate an inode on disk.
1655 *
1656 * Mode is used to tell whether the new inode will need space, and whether it
1657 * is a directory.
1658 *
1659 * This function is designed to be called twice if it has to do an allocation
1660 * to make more free inodes. On the first call, *IO_agbp should be set to NULL.
1661 * If an inode is available without having to performn an allocation, an inode
cd856db6
CM
1662 * number is returned. In this case, *IO_agbp is set to NULL. If an allocation
1663 * needs to be done, xfs_dialloc returns the current AGI buffer in *IO_agbp.
1664 * The caller should then commit the current transaction, allocate a
f2ecc5e4
CH
1665 * new transaction, and call xfs_dialloc() again, passing in the previous value
1666 * of *IO_agbp. IO_agbp should be held across the transactions. Since the AGI
1667 * buffer is locked across the two calls, the second call is guaranteed to have
1668 * a free inode available.
1669 *
1670 * Once we successfully pick an inode its number is returned and the on-disk
1671 * data structures are updated. The inode itself is not read in, since doing so
1672 * would break ordering constraints with xfs_reclaim.
1673 */
1674int
1675xfs_dialloc(
1676 struct xfs_trans *tp,
1677 xfs_ino_t parent,
1678 umode_t mode,
f2ecc5e4 1679 struct xfs_buf **IO_agbp,
f2ecc5e4
CH
1680 xfs_ino_t *inop)
1681{
55d6af64 1682 struct xfs_mount *mp = tp->t_mountp;
f2ecc5e4
CH
1683 struct xfs_buf *agbp;
1684 xfs_agnumber_t agno;
f2ecc5e4
CH
1685 int error;
1686 int ialloced;
1687 int noroom = 0;
be60fe54 1688 xfs_agnumber_t start_agno;
f2ecc5e4 1689 struct xfs_perag *pag;
f59cf5c2 1690 int okalloc = 1;
f2ecc5e4 1691
4bb61069 1692 if (*IO_agbp) {
f2ecc5e4 1693 /*
4bb61069
CH
1694 * If the caller passes in a pointer to the AGI buffer,
1695 * continue where we left off before. In this case, we
f2ecc5e4
CH
1696 * know that the allocation group has free inodes.
1697 */
1698 agbp = *IO_agbp;
4bb61069 1699 goto out_alloc;
f2ecc5e4 1700 }
4bb61069
CH
1701
1702 /*
1703 * We do not have an agbp, so select an initial allocation
1704 * group for inode allocation.
1705 */
f59cf5c2 1706 start_agno = xfs_ialloc_ag_select(tp, parent, mode);
be60fe54 1707 if (start_agno == NULLAGNUMBER) {
4bb61069
CH
1708 *inop = NULLFSINO;
1709 return 0;
1710 }
55d6af64 1711
f2ecc5e4
CH
1712 /*
1713 * If we have already hit the ceiling of inode blocks then clear
1714 * okalloc so we scan all available agi structures for a free
1715 * inode.
74f9ce1c
GW
1716 *
1717 * Read rough value of mp->m_icount by percpu_counter_read_positive,
1718 * which will sacrifice the preciseness but improve the performance.
f2ecc5e4 1719 */
f2ecc5e4 1720 if (mp->m_maxicount &&
74f9ce1c
GW
1721 percpu_counter_read_positive(&mp->m_icount) + mp->m_ialloc_inos
1722 > mp->m_maxicount) {
f2ecc5e4
CH
1723 noroom = 1;
1724 okalloc = 0;
1725 }
1726
1727 /*
1728 * Loop until we find an allocation group that either has free inodes
1729 * or in which we can allocate some inodes. Iterate through the
1730 * allocation groups upward, wrapping at the end.
1731 */
be60fe54
CH
1732 agno = start_agno;
1733 for (;;) {
1734 pag = xfs_perag_get(mp, agno);
1735 if (!pag->pagi_inodeok) {
1736 xfs_ialloc_next_ag(mp);
1737 goto nextag;
1738 }
1739
1740 if (!pag->pagi_init) {
1741 error = xfs_ialloc_pagi_init(mp, tp, agno);
1742 if (error)
1743 goto out_error;
f2ecc5e4 1744 }
be60fe54 1745
f2ecc5e4 1746 /*
be60fe54 1747 * Do a first racy fast path check if this AG is usable.
f2ecc5e4 1748 */
be60fe54
CH
1749 if (!pag->pagi_freecount && !okalloc)
1750 goto nextag;
1751
c4982110
CH
1752 /*
1753 * Then read in the AGI buffer and recheck with the AGI buffer
1754 * lock held.
1755 */
be60fe54
CH
1756 error = xfs_ialloc_read_agi(mp, tp, agno, &agbp);
1757 if (error)
1758 goto out_error;
1759
be60fe54
CH
1760 if (pag->pagi_freecount) {
1761 xfs_perag_put(pag);
1762 goto out_alloc;
1763 }
1764
c4982110
CH
1765 if (!okalloc)
1766 goto nextag_relse_buffer;
1767
be60fe54
CH
1768
1769 error = xfs_ialloc_ag_alloc(tp, agbp, &ialloced);
1770 if (error) {
1771 xfs_trans_brelse(tp, agbp);
1772
2451337d 1773 if (error != -ENOSPC)
be60fe54
CH
1774 goto out_error;
1775
1776 xfs_perag_put(pag);
f2ecc5e4 1777 *inop = NULLFSINO;
be60fe54 1778 return 0;
f2ecc5e4 1779 }
be60fe54
CH
1780
1781 if (ialloced) {
1782 /*
1783 * We successfully allocated some inodes, return
1784 * the current context to the caller so that it
1785 * can commit the current transaction and call
1786 * us again where we left off.
1787 */
1788 ASSERT(pag->pagi_freecount > 0);
f2ecc5e4 1789 xfs_perag_put(pag);
be60fe54
CH
1790
1791 *IO_agbp = agbp;
1792 *inop = NULLFSINO;
1793 return 0;
f2ecc5e4 1794 }
be60fe54 1795
c4982110
CH
1796nextag_relse_buffer:
1797 xfs_trans_brelse(tp, agbp);
be60fe54 1798nextag:
f2ecc5e4 1799 xfs_perag_put(pag);
be60fe54
CH
1800 if (++agno == mp->m_sb.sb_agcount)
1801 agno = 0;
1802 if (agno == start_agno) {
1803 *inop = NULLFSINO;
2451337d 1804 return noroom ? -ENOSPC : 0;
be60fe54 1805 }
f2ecc5e4
CH
1806 }
1807
4bb61069 1808out_alloc:
f2ecc5e4
CH
1809 *IO_agbp = NULL;
1810 return xfs_dialloc_ag(tp, agbp, parent, inop);
be60fe54
CH
1811out_error:
1812 xfs_perag_put(pag);
b474c7ae 1813 return error;
f2ecc5e4
CH
1814}
1815
10ae3dc7
BF
1816/*
1817 * Free the blocks of an inode chunk. We must consider that the inode chunk
1818 * might be sparse and only free the regions that are allocated as part of the
1819 * chunk.
1820 */
1821STATIC void
1822xfs_difree_inode_chunk(
1823 struct xfs_mount *mp,
1824 xfs_agnumber_t agno,
1825 struct xfs_inobt_rec_incore *rec,
2c3234d1 1826 struct xfs_defer_ops *dfops)
10ae3dc7
BF
1827{
1828 xfs_agblock_t sagbno = XFS_AGINO_TO_AGBNO(mp, rec->ir_startino);
1829 int startidx, endidx;
1830 int nextbit;
1831 xfs_agblock_t agbno;
1832 int contigblk;
340785cc 1833 struct xfs_owner_info oinfo;
10ae3dc7 1834 DECLARE_BITMAP(holemask, XFS_INOBT_HOLEMASK_BITS);
340785cc 1835 xfs_rmap_ag_owner(&oinfo, XFS_RMAP_OWN_INODES);
10ae3dc7
BF
1836
1837 if (!xfs_inobt_issparse(rec->ir_holemask)) {
1838 /* not sparse, calculate extent info directly */
2c3234d1 1839 xfs_bmap_add_free(mp, dfops, XFS_AGB_TO_FSB(mp, agno, sagbno),
340785cc 1840 mp->m_ialloc_blks, &oinfo);
10ae3dc7
BF
1841 return;
1842 }
1843
1844 /* holemask is only 16-bits (fits in an unsigned long) */
1845 ASSERT(sizeof(rec->ir_holemask) <= sizeof(holemask[0]));
1846 holemask[0] = rec->ir_holemask;
1847
1848 /*
1849 * Find contiguous ranges of zeroes (i.e., allocated regions) in the
1850 * holemask and convert the start/end index of each range to an extent.
1851 * We start with the start and end index both pointing at the first 0 in
1852 * the mask.
1853 */
1854 startidx = endidx = find_first_zero_bit(holemask,
1855 XFS_INOBT_HOLEMASK_BITS);
1856 nextbit = startidx + 1;
1857 while (startidx < XFS_INOBT_HOLEMASK_BITS) {
1858 nextbit = find_next_zero_bit(holemask, XFS_INOBT_HOLEMASK_BITS,
1859 nextbit);
1860 /*
1861 * If the next zero bit is contiguous, update the end index of
1862 * the current range and continue.
1863 */
1864 if (nextbit != XFS_INOBT_HOLEMASK_BITS &&
1865 nextbit == endidx + 1) {
1866 endidx = nextbit;
1867 goto next;
1868 }
1869
1870 /*
1871 * nextbit is not contiguous with the current end index. Convert
1872 * the current start/end to an extent and add it to the free
1873 * list.
1874 */
1875 agbno = sagbno + (startidx * XFS_INODES_PER_HOLEMASK_BIT) /
1876 mp->m_sb.sb_inopblock;
1877 contigblk = ((endidx - startidx + 1) *
1878 XFS_INODES_PER_HOLEMASK_BIT) /
1879 mp->m_sb.sb_inopblock;
1880
1881 ASSERT(agbno % mp->m_sb.sb_spino_align == 0);
1882 ASSERT(contigblk % mp->m_sb.sb_spino_align == 0);
2c3234d1 1883 xfs_bmap_add_free(mp, dfops, XFS_AGB_TO_FSB(mp, agno, agbno),
340785cc 1884 contigblk, &oinfo);
10ae3dc7
BF
1885
1886 /* reset range to current bit and carry on... */
1887 startidx = endidx = nextbit;
1888
1889next:
1890 nextbit++;
1891 }
1892}
1893
2b64ee5c
BF
1894STATIC int
1895xfs_difree_inobt(
1896 struct xfs_mount *mp,
1897 struct xfs_trans *tp,
1898 struct xfs_buf *agbp,
1899 xfs_agino_t agino,
2c3234d1 1900 struct xfs_defer_ops *dfops,
09b56604 1901 struct xfs_icluster *xic,
2b64ee5c 1902 struct xfs_inobt_rec_incore *orec)
1da177e4 1903{
2b64ee5c
BF
1904 struct xfs_agi *agi = XFS_BUF_TO_AGI(agbp);
1905 xfs_agnumber_t agno = be32_to_cpu(agi->agi_seqno);
1906 struct xfs_perag *pag;
1907 struct xfs_btree_cur *cur;
1908 struct xfs_inobt_rec_incore rec;
1909 int ilen;
1910 int error;
1911 int i;
1912 int off;
1da177e4 1913
69ef921b 1914 ASSERT(agi->agi_magicnum == cpu_to_be32(XFS_AGI_MAGIC));
2b64ee5c
BF
1915 ASSERT(XFS_AGINO_TO_AGBNO(mp, agino) < be32_to_cpu(agi->agi_length));
1916
1da177e4
LT
1917 /*
1918 * Initialize the cursor.
1919 */
57bd3dbe 1920 cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_INO);
1da177e4 1921
0b48db80
DC
1922 error = xfs_check_agi_freecount(cur, agi);
1923 if (error)
1924 goto error0;
1925
1da177e4
LT
1926 /*
1927 * Look for the entry describing this inode.
1928 */
21875505 1929 if ((error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_LE, &i))) {
0b932ccc
DC
1930 xfs_warn(mp, "%s: xfs_inobt_lookup() returned error %d.",
1931 __func__, error);
1da177e4
LT
1932 goto error0;
1933 }
c29aad41 1934 XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error0);
2e287a73
CH
1935 error = xfs_inobt_get_rec(cur, &rec, &i);
1936 if (error) {
0b932ccc
DC
1937 xfs_warn(mp, "%s: xfs_inobt_get_rec() returned error %d.",
1938 __func__, error);
1da177e4
LT
1939 goto error0;
1940 }
c29aad41 1941 XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error0);
1da177e4
LT
1942 /*
1943 * Get the offset in the inode chunk.
1944 */
1945 off = agino - rec.ir_startino;
1946 ASSERT(off >= 0 && off < XFS_INODES_PER_CHUNK);
0d87e656 1947 ASSERT(!(rec.ir_free & XFS_INOBT_MASK(off)));
1da177e4
LT
1948 /*
1949 * Mark the inode free & increment the count.
1950 */
0d87e656 1951 rec.ir_free |= XFS_INOBT_MASK(off);
1da177e4
LT
1952 rec.ir_freecount++;
1953
1954 /*
999633d3
BF
1955 * When an inode chunk is free, it becomes eligible for removal. Don't
1956 * remove the chunk if the block size is large enough for multiple inode
1957 * chunks (that might not be free).
1da177e4 1958 */
1bd960ee 1959 if (!(mp->m_flags & XFS_MOUNT_IKEEP) &&
999633d3
BF
1960 rec.ir_free == XFS_INOBT_ALL_FREE &&
1961 mp->m_sb.sb_inopblock <= XFS_INODES_PER_CHUNK) {
749f24f3 1962 xic->deleted = true;
09b56604
BF
1963 xic->first_ino = XFS_AGINO_TO_INO(mp, agno, rec.ir_startino);
1964 xic->alloc = xfs_inobt_irec_to_allocmask(&rec);
1da177e4
LT
1965
1966 /*
1967 * Remove the inode cluster from the AGI B+Tree, adjust the
1968 * AGI and Superblock inode counts, and mark the disk space
1969 * to be freed when the transaction is committed.
1970 */
999633d3 1971 ilen = rec.ir_freecount;
413d57c9
MS
1972 be32_add_cpu(&agi->agi_count, -ilen);
1973 be32_add_cpu(&agi->agi_freecount, -(ilen - 1));
1da177e4 1974 xfs_ialloc_log_agi(tp, agbp, XFS_AGI_COUNT | XFS_AGI_FREECOUNT);
44b56e0a
DC
1975 pag = xfs_perag_get(mp, agno);
1976 pag->pagi_freecount -= ilen - 1;
1977 xfs_perag_put(pag);
1da177e4
LT
1978 xfs_trans_mod_sb(tp, XFS_TRANS_SB_ICOUNT, -ilen);
1979 xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, -(ilen - 1));
1980
91cca5df 1981 if ((error = xfs_btree_delete(cur, &i))) {
0b932ccc
DC
1982 xfs_warn(mp, "%s: xfs_btree_delete returned error %d.",
1983 __func__, error);
1da177e4
LT
1984 goto error0;
1985 }
1986
2c3234d1 1987 xfs_difree_inode_chunk(mp, agno, &rec, dfops);
1da177e4 1988 } else {
749f24f3 1989 xic->deleted = false;
1da177e4 1990
afabc24a
CH
1991 error = xfs_inobt_update(cur, &rec);
1992 if (error) {
0b932ccc
DC
1993 xfs_warn(mp, "%s: xfs_inobt_update returned error %d.",
1994 __func__, error);
1da177e4
LT
1995 goto error0;
1996 }
afabc24a 1997
1da177e4
LT
1998 /*
1999 * Change the inode free counts and log the ag/sb changes.
2000 */
413d57c9 2001 be32_add_cpu(&agi->agi_freecount, 1);
1da177e4 2002 xfs_ialloc_log_agi(tp, agbp, XFS_AGI_FREECOUNT);
44b56e0a
DC
2003 pag = xfs_perag_get(mp, agno);
2004 pag->pagi_freecount++;
2005 xfs_perag_put(pag);
1da177e4
LT
2006 xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, 1);
2007 }
2008
0b48db80
DC
2009 error = xfs_check_agi_freecount(cur, agi);
2010 if (error)
2011 goto error0;
1da177e4 2012
2b64ee5c 2013 *orec = rec;
1da177e4
LT
2014 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
2015 return 0;
2016
2017error0:
2018 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
2019 return error;
2020}
2021
3efa4ffd
BF
2022/*
2023 * Free an inode in the free inode btree.
2024 */
2025STATIC int
2026xfs_difree_finobt(
2027 struct xfs_mount *mp,
2028 struct xfs_trans *tp,
2029 struct xfs_buf *agbp,
2030 xfs_agino_t agino,
2031 struct xfs_inobt_rec_incore *ibtrec) /* inobt record */
2032{
2033 struct xfs_agi *agi = XFS_BUF_TO_AGI(agbp);
2034 xfs_agnumber_t agno = be32_to_cpu(agi->agi_seqno);
2035 struct xfs_btree_cur *cur;
2036 struct xfs_inobt_rec_incore rec;
2037 int offset = agino - ibtrec->ir_startino;
2038 int error;
2039 int i;
2040
2041 cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_FINO);
2042
2043 error = xfs_inobt_lookup(cur, ibtrec->ir_startino, XFS_LOOKUP_EQ, &i);
2044 if (error)
2045 goto error;
2046 if (i == 0) {
2047 /*
2048 * If the record does not exist in the finobt, we must have just
2049 * freed an inode in a previously fully allocated chunk. If not,
2050 * something is out of sync.
2051 */
c29aad41 2052 XFS_WANT_CORRUPTED_GOTO(mp, ibtrec->ir_freecount == 1, error);
3efa4ffd 2053
5419040f
BF
2054 error = xfs_inobt_insert_rec(cur, ibtrec->ir_holemask,
2055 ibtrec->ir_count,
2056 ibtrec->ir_freecount,
3efa4ffd
BF
2057 ibtrec->ir_free, &i);
2058 if (error)
2059 goto error;
2060 ASSERT(i == 1);
2061
2062 goto out;
2063 }
2064
2065 /*
2066 * Read and update the existing record. We could just copy the ibtrec
2067 * across here, but that would defeat the purpose of having redundant
2068 * metadata. By making the modifications independently, we can catch
2069 * corruptions that we wouldn't see if we just copied from one record
2070 * to another.
2071 */
2072 error = xfs_inobt_get_rec(cur, &rec, &i);
2073 if (error)
2074 goto error;
c29aad41 2075 XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error);
3efa4ffd
BF
2076
2077 rec.ir_free |= XFS_INOBT_MASK(offset);
2078 rec.ir_freecount++;
2079
c29aad41 2080 XFS_WANT_CORRUPTED_GOTO(mp, (rec.ir_free == ibtrec->ir_free) &&
3efa4ffd
BF
2081 (rec.ir_freecount == ibtrec->ir_freecount),
2082 error);
2083
2084 /*
2085 * The content of inobt records should always match between the inobt
2086 * and finobt. The lifecycle of records in the finobt is different from
2087 * the inobt in that the finobt only tracks records with at least one
2088 * free inode. Hence, if all of the inodes are free and we aren't
2089 * keeping inode chunks permanently on disk, remove the record.
2090 * Otherwise, update the record with the new information.
999633d3
BF
2091 *
2092 * Note that we currently can't free chunks when the block size is large
2093 * enough for multiple chunks. Leave the finobt record to remain in sync
2094 * with the inobt.
3efa4ffd 2095 */
999633d3
BF
2096 if (rec.ir_free == XFS_INOBT_ALL_FREE &&
2097 mp->m_sb.sb_inopblock <= XFS_INODES_PER_CHUNK &&
3efa4ffd
BF
2098 !(mp->m_flags & XFS_MOUNT_IKEEP)) {
2099 error = xfs_btree_delete(cur, &i);
2100 if (error)
2101 goto error;
2102 ASSERT(i == 1);
2103 } else {
2104 error = xfs_inobt_update(cur, &rec);
2105 if (error)
2106 goto error;
2107 }
2108
2109out:
2110 error = xfs_check_agi_freecount(cur, agi);
2111 if (error)
2112 goto error;
2113
2114 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
2115 return 0;
2116
2117error:
2118 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
2119 return error;
2120}
2121
2b64ee5c
BF
2122/*
2123 * Free disk inode. Carefully avoids touching the incore inode, all
2124 * manipulations incore are the caller's responsibility.
2125 * The on-disk inode is not changed by this operation, only the
2126 * btree (free inode mask) is changed.
2127 */
2128int
2129xfs_difree(
2130 struct xfs_trans *tp, /* transaction pointer */
2131 xfs_ino_t inode, /* inode to be freed */
2c3234d1 2132 struct xfs_defer_ops *dfops, /* extents to free */
09b56604 2133 struct xfs_icluster *xic) /* cluster info if deleted */
2b64ee5c
BF
2134{
2135 /* REFERENCED */
2136 xfs_agblock_t agbno; /* block number containing inode */
2137 struct xfs_buf *agbp; /* buffer for allocation group header */
2138 xfs_agino_t agino; /* allocation group inode number */
2139 xfs_agnumber_t agno; /* allocation group number */
2140 int error; /* error return value */
2141 struct xfs_mount *mp; /* mount structure for filesystem */
2142 struct xfs_inobt_rec_incore rec;/* btree record */
2143
2144 mp = tp->t_mountp;
2145
2146 /*
2147 * Break up inode number into its components.
2148 */
2149 agno = XFS_INO_TO_AGNO(mp, inode);
2150 if (agno >= mp->m_sb.sb_agcount) {
2151 xfs_warn(mp, "%s: agno >= mp->m_sb.sb_agcount (%d >= %d).",
2152 __func__, agno, mp->m_sb.sb_agcount);
2153 ASSERT(0);
2451337d 2154 return -EINVAL;
2b64ee5c
BF
2155 }
2156 agino = XFS_INO_TO_AGINO(mp, inode);
2157 if (inode != XFS_AGINO_TO_INO(mp, agno, agino)) {
2158 xfs_warn(mp, "%s: inode != XFS_AGINO_TO_INO() (%llu != %llu).",
2159 __func__, (unsigned long long)inode,
2160 (unsigned long long)XFS_AGINO_TO_INO(mp, agno, agino));
2161 ASSERT(0);
2451337d 2162 return -EINVAL;
2b64ee5c
BF
2163 }
2164 agbno = XFS_AGINO_TO_AGBNO(mp, agino);
2165 if (agbno >= mp->m_sb.sb_agblocks) {
2166 xfs_warn(mp, "%s: agbno >= mp->m_sb.sb_agblocks (%d >= %d).",
2167 __func__, agbno, mp->m_sb.sb_agblocks);
2168 ASSERT(0);
2451337d 2169 return -EINVAL;
2b64ee5c
BF
2170 }
2171 /*
2172 * Get the allocation group header.
2173 */
2174 error = xfs_ialloc_read_agi(mp, tp, agno, &agbp);
2175 if (error) {
2176 xfs_warn(mp, "%s: xfs_ialloc_read_agi() returned error %d.",
2177 __func__, error);
2178 return error;
2179 }
2180
2181 /*
2182 * Fix up the inode allocation btree.
2183 */
2c3234d1 2184 error = xfs_difree_inobt(mp, tp, agbp, agino, dfops, xic, &rec);
2b64ee5c
BF
2185 if (error)
2186 goto error0;
2187
3efa4ffd
BF
2188 /*
2189 * Fix up the free inode btree.
2190 */
2191 if (xfs_sb_version_hasfinobt(&mp->m_sb)) {
2192 error = xfs_difree_finobt(mp, tp, agbp, agino, &rec);
2193 if (error)
2194 goto error0;
2195 }
2196
2b64ee5c
BF
2197 return 0;
2198
2199error0:
2200 return error;
2201}
2202
7124fe0a
DC
2203STATIC int
2204xfs_imap_lookup(
2205 struct xfs_mount *mp,
2206 struct xfs_trans *tp,
2207 xfs_agnumber_t agno,
2208 xfs_agino_t agino,
2209 xfs_agblock_t agbno,
2210 xfs_agblock_t *chunk_agbno,
2211 xfs_agblock_t *offset_agbno,
2212 int flags)
2213{
2214 struct xfs_inobt_rec_incore rec;
2215 struct xfs_btree_cur *cur;
2216 struct xfs_buf *agbp;
7124fe0a
DC
2217 int error;
2218 int i;
2219
2220 error = xfs_ialloc_read_agi(mp, tp, agno, &agbp);
2221 if (error) {
53487786
DC
2222 xfs_alert(mp,
2223 "%s: xfs_ialloc_read_agi() returned error %d, agno %d",
2224 __func__, error, agno);
7124fe0a
DC
2225 return error;
2226 }
2227
2228 /*
4536f2ad
DC
2229 * Lookup the inode record for the given agino. If the record cannot be
2230 * found, then it's an invalid inode number and we should abort. Once
2231 * we have a record, we need to ensure it contains the inode number
2232 * we are looking up.
7124fe0a 2233 */
57bd3dbe 2234 cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_INO);
4536f2ad 2235 error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_LE, &i);
7124fe0a
DC
2236 if (!error) {
2237 if (i)
2238 error = xfs_inobt_get_rec(cur, &rec, &i);
2239 if (!error && i == 0)
2451337d 2240 error = -EINVAL;
7124fe0a
DC
2241 }
2242
2243 xfs_trans_brelse(tp, agbp);
f307080a 2244 xfs_btree_del_cursor(cur, error ? XFS_BTREE_ERROR : XFS_BTREE_NOERROR);
7124fe0a
DC
2245 if (error)
2246 return error;
2247
4536f2ad
DC
2248 /* check that the returned record contains the required inode */
2249 if (rec.ir_startino > agino ||
71783438 2250 rec.ir_startino + mp->m_ialloc_inos <= agino)
2451337d 2251 return -EINVAL;
4536f2ad 2252
7124fe0a 2253 /* for untrusted inodes check it is allocated first */
1920779e 2254 if ((flags & XFS_IGET_UNTRUSTED) &&
7124fe0a 2255 (rec.ir_free & XFS_INOBT_MASK(agino - rec.ir_startino)))
2451337d 2256 return -EINVAL;
7124fe0a
DC
2257
2258 *chunk_agbno = XFS_AGINO_TO_AGBNO(mp, rec.ir_startino);
2259 *offset_agbno = agbno - *chunk_agbno;
2260 return 0;
2261}
2262
1da177e4 2263/*
94e1b69d 2264 * Return the location of the inode in imap, for mapping it into a buffer.
1da177e4 2265 */
1da177e4 2266int
94e1b69d
CH
2267xfs_imap(
2268 xfs_mount_t *mp, /* file system mount structure */
2269 xfs_trans_t *tp, /* transaction pointer */
1da177e4 2270 xfs_ino_t ino, /* inode to locate */
94e1b69d
CH
2271 struct xfs_imap *imap, /* location map structure */
2272 uint flags) /* flags for inode btree lookup */
1da177e4
LT
2273{
2274 xfs_agblock_t agbno; /* block number of inode in the alloc group */
1da177e4
LT
2275 xfs_agino_t agino; /* inode number within alloc group */
2276 xfs_agnumber_t agno; /* allocation group number */
2277 int blks_per_cluster; /* num blocks per inode cluster */
2278 xfs_agblock_t chunk_agbno; /* first block in inode chunk */
1da177e4 2279 xfs_agblock_t cluster_agbno; /* first block in inode cluster */
1da177e4 2280 int error; /* error code */
1da177e4 2281 int offset; /* index of inode in its buffer */
836a94ad 2282 xfs_agblock_t offset_agbno; /* blks from chunk start to inode */
1da177e4
LT
2283
2284 ASSERT(ino != NULLFSINO);
94e1b69d 2285
1da177e4
LT
2286 /*
2287 * Split up the inode number into its parts.
2288 */
2289 agno = XFS_INO_TO_AGNO(mp, ino);
2290 agino = XFS_INO_TO_AGINO(mp, ino);
2291 agbno = XFS_AGINO_TO_AGBNO(mp, agino);
2292 if (agno >= mp->m_sb.sb_agcount || agbno >= mp->m_sb.sb_agblocks ||
2293 ino != XFS_AGINO_TO_INO(mp, agno, agino)) {
2294#ifdef DEBUG
1920779e
DC
2295 /*
2296 * Don't output diagnostic information for untrusted inodes
2297 * as they can be invalid without implying corruption.
2298 */
2299 if (flags & XFS_IGET_UNTRUSTED)
2451337d 2300 return -EINVAL;
1da177e4 2301 if (agno >= mp->m_sb.sb_agcount) {
53487786
DC
2302 xfs_alert(mp,
2303 "%s: agno (%d) >= mp->m_sb.sb_agcount (%d)",
2304 __func__, agno, mp->m_sb.sb_agcount);
1da177e4
LT
2305 }
2306 if (agbno >= mp->m_sb.sb_agblocks) {
53487786
DC
2307 xfs_alert(mp,
2308 "%s: agbno (0x%llx) >= mp->m_sb.sb_agblocks (0x%lx)",
2309 __func__, (unsigned long long)agbno,
2310 (unsigned long)mp->m_sb.sb_agblocks);
1da177e4
LT
2311 }
2312 if (ino != XFS_AGINO_TO_INO(mp, agno, agino)) {
53487786
DC
2313 xfs_alert(mp,
2314 "%s: ino (0x%llx) != XFS_AGINO_TO_INO() (0x%llx)",
2315 __func__, ino,
2316 XFS_AGINO_TO_INO(mp, agno, agino));
1da177e4 2317 }
745b1f47 2318 xfs_stack_trace();
1da177e4 2319#endif /* DEBUG */
2451337d 2320 return -EINVAL;
1da177e4 2321 }
94e1b69d 2322
f9e5abcf 2323 blks_per_cluster = xfs_icluster_size_fsb(mp);
7124fe0a
DC
2324
2325 /*
2326 * For bulkstat and handle lookups, we have an untrusted inode number
2327 * that we have to verify is valid. We cannot do this just by reading
2328 * the inode buffer as it may have been unlinked and removed leaving
2329 * inodes in stale state on disk. Hence we have to do a btree lookup
2330 * in all cases where an untrusted inode number is passed.
2331 */
1920779e 2332 if (flags & XFS_IGET_UNTRUSTED) {
7124fe0a
DC
2333 error = xfs_imap_lookup(mp, tp, agno, agino, agbno,
2334 &chunk_agbno, &offset_agbno, flags);
2335 if (error)
2336 return error;
2337 goto out_map;
2338 }
2339
94e1b69d
CH
2340 /*
2341 * If the inode cluster size is the same as the blocksize or
2342 * smaller we get to the buffer by simple arithmetics.
2343 */
f9e5abcf 2344 if (blks_per_cluster == 1) {
1da177e4
LT
2345 offset = XFS_INO_TO_OFFSET(mp, ino);
2346 ASSERT(offset < mp->m_sb.sb_inopblock);
94e1b69d
CH
2347
2348 imap->im_blkno = XFS_AGB_TO_DADDR(mp, agno, agbno);
2349 imap->im_len = XFS_FSB_TO_BB(mp, 1);
755c7bf5
DW
2350 imap->im_boffset = (unsigned short)(offset <<
2351 mp->m_sb.sb_inodelog);
1da177e4
LT
2352 return 0;
2353 }
94e1b69d 2354
94e1b69d
CH
2355 /*
2356 * If the inode chunks are aligned then use simple maths to
2357 * find the location. Otherwise we have to do a btree
2358 * lookup to find the location.
2359 */
1da177e4
LT
2360 if (mp->m_inoalign_mask) {
2361 offset_agbno = agbno & mp->m_inoalign_mask;
2362 chunk_agbno = agbno - offset_agbno;
2363 } else {
7124fe0a
DC
2364 error = xfs_imap_lookup(mp, tp, agno, agino, agbno,
2365 &chunk_agbno, &offset_agbno, flags);
1da177e4
LT
2366 if (error)
2367 return error;
1da177e4 2368 }
94e1b69d 2369
7124fe0a 2370out_map:
1da177e4
LT
2371 ASSERT(agbno >= chunk_agbno);
2372 cluster_agbno = chunk_agbno +
2373 ((offset_agbno / blks_per_cluster) * blks_per_cluster);
2374 offset = ((agbno - cluster_agbno) * mp->m_sb.sb_inopblock) +
2375 XFS_INO_TO_OFFSET(mp, ino);
94e1b69d
CH
2376
2377 imap->im_blkno = XFS_AGB_TO_DADDR(mp, agno, cluster_agbno);
2378 imap->im_len = XFS_FSB_TO_BB(mp, blks_per_cluster);
755c7bf5 2379 imap->im_boffset = (unsigned short)(offset << mp->m_sb.sb_inodelog);
94e1b69d
CH
2380
2381 /*
2382 * If the inode number maps to a block outside the bounds
2383 * of the file system then return NULL rather than calling
2384 * read_buf and panicing when we get an error from the
2385 * driver.
2386 */
2387 if ((imap->im_blkno + imap->im_len) >
2388 XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks)) {
53487786
DC
2389 xfs_alert(mp,
2390 "%s: (im_blkno (0x%llx) + im_len (0x%llx)) > sb_dblocks (0x%llx)",
2391 __func__, (unsigned long long) imap->im_blkno,
94e1b69d
CH
2392 (unsigned long long) imap->im_len,
2393 XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks));
2451337d 2394 return -EINVAL;
94e1b69d 2395 }
1da177e4 2396 return 0;
1da177e4
LT
2397}
2398
2399/*
2400 * Compute and fill in value of m_in_maxlevels.
2401 */
2402void
2403xfs_ialloc_compute_maxlevels(
2404 xfs_mount_t *mp) /* file system mount structure */
2405{
19b54ee6
DW
2406 uint inodes;
2407
2408 inodes = (1LL << XFS_INO_AGINO_BITS(mp)) >> XFS_INODES_PER_CHUNK_LOG;
2409 mp->m_in_maxlevels = xfs_btree_compute_maxlevels(mp, mp->m_inobt_mnr,
2410 inodes);
1da177e4
LT
2411}
2412
2413/*
aafc3c24
BF
2414 * Log specified fields for the ag hdr (inode section). The growth of the agi
2415 * structure over time requires that we interpret the buffer as two logical
2416 * regions delineated by the end of the unlinked list. This is due to the size
2417 * of the hash table and its location in the middle of the agi.
2418 *
2419 * For example, a request to log a field before agi_unlinked and a field after
2420 * agi_unlinked could cause us to log the entire hash table and use an excessive
2421 * amount of log space. To avoid this behavior, log the region up through
2422 * agi_unlinked in one call and the region after agi_unlinked through the end of
2423 * the structure in another.
1da177e4
LT
2424 */
2425void
2426xfs_ialloc_log_agi(
2427 xfs_trans_t *tp, /* transaction pointer */
2428 xfs_buf_t *bp, /* allocation group header buffer */
2429 int fields) /* bitmask of fields to log */
2430{
2431 int first; /* first byte number */
2432 int last; /* last byte number */
2433 static const short offsets[] = { /* field starting offsets */
2434 /* keep in sync with bit definitions */
2435 offsetof(xfs_agi_t, agi_magicnum),
2436 offsetof(xfs_agi_t, agi_versionnum),
2437 offsetof(xfs_agi_t, agi_seqno),
2438 offsetof(xfs_agi_t, agi_length),
2439 offsetof(xfs_agi_t, agi_count),
2440 offsetof(xfs_agi_t, agi_root),
2441 offsetof(xfs_agi_t, agi_level),
2442 offsetof(xfs_agi_t, agi_freecount),
2443 offsetof(xfs_agi_t, agi_newino),
2444 offsetof(xfs_agi_t, agi_dirino),
2445 offsetof(xfs_agi_t, agi_unlinked),
aafc3c24
BF
2446 offsetof(xfs_agi_t, agi_free_root),
2447 offsetof(xfs_agi_t, agi_free_level),
1da177e4
LT
2448 sizeof(xfs_agi_t)
2449 };
2450#ifdef DEBUG
2451 xfs_agi_t *agi; /* allocation group header */
2452
2453 agi = XFS_BUF_TO_AGI(bp);
69ef921b 2454 ASSERT(agi->agi_magicnum == cpu_to_be32(XFS_AGI_MAGIC));
1da177e4 2455#endif
aafc3c24 2456
1da177e4 2457 /*
aafc3c24
BF
2458 * Compute byte offsets for the first and last fields in the first
2459 * region and log the agi buffer. This only logs up through
2460 * agi_unlinked.
1da177e4 2461 */
aafc3c24
BF
2462 if (fields & XFS_AGI_ALL_BITS_R1) {
2463 xfs_btree_offsets(fields, offsets, XFS_AGI_NUM_BITS_R1,
2464 &first, &last);
2465 xfs_trans_log_buf(tp, bp, first, last);
2466 }
2467
1da177e4 2468 /*
aafc3c24
BF
2469 * Mask off the bits in the first region and calculate the first and
2470 * last field offsets for any bits in the second region.
1da177e4 2471 */
aafc3c24
BF
2472 fields &= ~XFS_AGI_ALL_BITS_R1;
2473 if (fields) {
2474 xfs_btree_offsets(fields, offsets, XFS_AGI_NUM_BITS_R2,
2475 &first, &last);
2476 xfs_trans_log_buf(tp, bp, first, last);
2477 }
1da177e4
LT
2478}
2479
5e1be0fb
CH
2480#ifdef DEBUG
2481STATIC void
2482xfs_check_agi_unlinked(
2483 struct xfs_agi *agi)
2484{
2485 int i;
2486
2487 for (i = 0; i < XFS_AGI_UNLINKED_BUCKETS; i++)
2488 ASSERT(agi->agi_unlinked[i]);
2489}
2490#else
2491#define xfs_check_agi_unlinked(agi)
2492#endif
2493
983d09ff 2494static bool
612cfbfe 2495xfs_agi_verify(
3702ce6e
DC
2496 struct xfs_buf *bp)
2497{
2498 struct xfs_mount *mp = bp->b_target->bt_mount;
2499 struct xfs_agi *agi = XFS_BUF_TO_AGI(bp);
3702ce6e 2500
a45086e2
BF
2501 if (xfs_sb_version_hascrc(&mp->m_sb)) {
2502 if (!uuid_equal(&agi->agi_uuid, &mp->m_sb.sb_meta_uuid))
2503 return false;
2504 if (!xfs_log_check_lsn(mp,
2505 be64_to_cpu(XFS_BUF_TO_AGI(bp)->agi_lsn)))
983d09ff 2506 return false;
a45086e2
BF
2507 }
2508
3702ce6e
DC
2509 /*
2510 * Validate the magic number of the agi block.
2511 */
983d09ff
DC
2512 if (agi->agi_magicnum != cpu_to_be32(XFS_AGI_MAGIC))
2513 return false;
2514 if (!XFS_AGI_GOOD_VERSION(be32_to_cpu(agi->agi_versionnum)))
2515 return false;
3702ce6e 2516
d2a047f3
DW
2517 if (be32_to_cpu(agi->agi_level) < 1 ||
2518 be32_to_cpu(agi->agi_level) > XFS_BTREE_MAXLEVELS)
e1b05723 2519 return false;
d2a047f3
DW
2520
2521 if (xfs_sb_version_hasfinobt(&mp->m_sb) &&
2522 (be32_to_cpu(agi->agi_free_level) < 1 ||
2523 be32_to_cpu(agi->agi_free_level) > XFS_BTREE_MAXLEVELS))
e1b05723 2524 return false;
d2a047f3 2525
3702ce6e
DC
2526 /*
2527 * during growfs operations, the perag is not fully initialised,
2528 * so we can't use it for any useful checking. growfs ensures we can't
2529 * use it by using uncached buffers that don't have the perag attached
2530 * so we can detect and avoid this problem.
2531 */
983d09ff
DC
2532 if (bp->b_pag && be32_to_cpu(agi->agi_seqno) != bp->b_pag->pag_agno)
2533 return false;
3702ce6e 2534
3702ce6e 2535 xfs_check_agi_unlinked(agi);
983d09ff 2536 return true;
612cfbfe
DC
2537}
2538
1813dd64
DC
2539static void
2540xfs_agi_read_verify(
612cfbfe
DC
2541 struct xfs_buf *bp)
2542{
983d09ff 2543 struct xfs_mount *mp = bp->b_target->bt_mount;
983d09ff 2544
ce5028cf
ES
2545 if (xfs_sb_version_hascrc(&mp->m_sb) &&
2546 !xfs_buf_verify_cksum(bp, XFS_AGI_CRC_OFF))
2451337d 2547 xfs_buf_ioerror(bp, -EFSBADCRC);
ce5028cf 2548 else if (XFS_TEST_ERROR(!xfs_agi_verify(bp), mp,
9e24cfd0 2549 XFS_ERRTAG_IALLOC_READ_AGI))
2451337d 2550 xfs_buf_ioerror(bp, -EFSCORRUPTED);
ce5028cf
ES
2551
2552 if (bp->b_error)
2553 xfs_verifier_error(bp);
612cfbfe
DC
2554}
2555
b0f539de 2556static void
1813dd64 2557xfs_agi_write_verify(
612cfbfe
DC
2558 struct xfs_buf *bp)
2559{
983d09ff
DC
2560 struct xfs_mount *mp = bp->b_target->bt_mount;
2561 struct xfs_buf_log_item *bip = bp->b_fspriv;
2562
2563 if (!xfs_agi_verify(bp)) {
2451337d 2564 xfs_buf_ioerror(bp, -EFSCORRUPTED);
ce5028cf 2565 xfs_verifier_error(bp);
983d09ff
DC
2566 return;
2567 }
2568
2569 if (!xfs_sb_version_hascrc(&mp->m_sb))
2570 return;
2571
2572 if (bip)
2573 XFS_BUF_TO_AGI(bp)->agi_lsn = cpu_to_be64(bip->bli_item.li_lsn);
f1dbcd7e 2574 xfs_buf_update_cksum(bp, XFS_AGI_CRC_OFF);
3702ce6e
DC
2575}
2576
1813dd64 2577const struct xfs_buf_ops xfs_agi_buf_ops = {
233135b7 2578 .name = "xfs_agi",
1813dd64
DC
2579 .verify_read = xfs_agi_read_verify,
2580 .verify_write = xfs_agi_write_verify,
2581};
2582
1da177e4
LT
2583/*
2584 * Read in the allocation group header (inode allocation section)
2585 */
2586int
5e1be0fb
CH
2587xfs_read_agi(
2588 struct xfs_mount *mp, /* file system mount structure */
2589 struct xfs_trans *tp, /* transaction pointer */
2590 xfs_agnumber_t agno, /* allocation group number */
2591 struct xfs_buf **bpp) /* allocation group hdr buf */
1da177e4 2592{
5e1be0fb 2593 int error;
1da177e4 2594
d123031a 2595 trace_xfs_read_agi(mp, agno);
5e1be0fb 2596
d123031a 2597 ASSERT(agno != NULLAGNUMBER);
5e1be0fb 2598 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp,
1da177e4 2599 XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp)),
1813dd64 2600 XFS_FSS_TO_BB(mp, 1), 0, bpp, &xfs_agi_buf_ops);
1da177e4
LT
2601 if (error)
2602 return error;
200237d6
ES
2603 if (tp)
2604 xfs_trans_buf_set_type(tp, *bpp, XFS_BLFT_AGI_BUF);
5e1be0fb 2605
38f23232 2606 xfs_buf_set_ref(*bpp, XFS_AGI_REF);
5e1be0fb
CH
2607 return 0;
2608}
2609
2610int
2611xfs_ialloc_read_agi(
2612 struct xfs_mount *mp, /* file system mount structure */
2613 struct xfs_trans *tp, /* transaction pointer */
2614 xfs_agnumber_t agno, /* allocation group number */
2615 struct xfs_buf **bpp) /* allocation group hdr buf */
2616{
2617 struct xfs_agi *agi; /* allocation group header */
2618 struct xfs_perag *pag; /* per allocation group data */
2619 int error;
2620
d123031a
DC
2621 trace_xfs_ialloc_read_agi(mp, agno);
2622
5e1be0fb
CH
2623 error = xfs_read_agi(mp, tp, agno, bpp);
2624 if (error)
2625 return error;
2626
2627 agi = XFS_BUF_TO_AGI(*bpp);
44b56e0a 2628 pag = xfs_perag_get(mp, agno);
1da177e4 2629 if (!pag->pagi_init) {
16259e7d 2630 pag->pagi_freecount = be32_to_cpu(agi->agi_freecount);
92821e2b 2631 pag->pagi_count = be32_to_cpu(agi->agi_count);
1da177e4 2632 pag->pagi_init = 1;
1da177e4 2633 }
1da177e4 2634
5e1be0fb
CH
2635 /*
2636 * It's possible for these to be out of sync if
2637 * we are in the middle of a forced shutdown.
2638 */
2639 ASSERT(pag->pagi_freecount == be32_to_cpu(agi->agi_freecount) ||
2640 XFS_FORCED_SHUTDOWN(mp));
44b56e0a 2641 xfs_perag_put(pag);
1da177e4
LT
2642 return 0;
2643}
92821e2b
DC
2644
2645/*
2646 * Read in the agi to initialise the per-ag data in the mount structure
2647 */
2648int
2649xfs_ialloc_pagi_init(
2650 xfs_mount_t *mp, /* file system mount structure */
2651 xfs_trans_t *tp, /* transaction pointer */
2652 xfs_agnumber_t agno) /* allocation group number */
2653{
2654 xfs_buf_t *bp = NULL;
2655 int error;
2656
2657 error = xfs_ialloc_read_agi(mp, tp, agno, &bp);
2658 if (error)
2659 return error;
2660 if (bp)
2661 xfs_trans_brelse(tp, bp);
2662 return 0;
2663}
91fb9afc
DW
2664
2665/* Calculate the first and last possible inode number in an AG. */
2666void
2667xfs_ialloc_agino_range(
2668 struct xfs_mount *mp,
2669 xfs_agnumber_t agno,
2670 xfs_agino_t *first,
2671 xfs_agino_t *last)
2672{
2673 xfs_agblock_t bno;
2674 xfs_agblock_t eoag;
2675
2676 eoag = xfs_ag_block_count(mp, agno);
2677
2678 /*
2679 * Calculate the first inode, which will be in the first
2680 * cluster-aligned block after the AGFL.
2681 */
2682 bno = round_up(XFS_AGFL_BLOCK(mp) + 1,
2683 xfs_ialloc_cluster_alignment(mp));
2684 *first = XFS_OFFBNO_TO_AGINO(mp, bno, 0);
2685
2686 /*
2687 * Calculate the last inode, which will be at the end of the
2688 * last (aligned) cluster that can be allocated in the AG.
2689 */
2690 bno = round_down(eoag, xfs_ialloc_cluster_alignment(mp));
2691 *last = XFS_OFFBNO_TO_AGINO(mp, bno, 0) - 1;
2692}
2693
2694/*
2695 * Verify that an AG inode number pointer neither points outside the AG
2696 * nor points at static metadata.
2697 */
2698bool
2699xfs_verify_agino(
2700 struct xfs_mount *mp,
2701 xfs_agnumber_t agno,
2702 xfs_agino_t agino)
2703{
2704 xfs_agino_t first;
2705 xfs_agino_t last;
2706
2707 xfs_ialloc_agino_range(mp, agno, &first, &last);
2708 return agino >= first && agino <= last;
2709}
2710
2711/*
2712 * Verify that an FS inode number pointer neither points outside the
2713 * filesystem nor points at static AG metadata.
2714 */
2715bool
2716xfs_verify_ino(
2717 struct xfs_mount *mp,
2718 xfs_ino_t ino)
2719{
2720 xfs_agnumber_t agno = XFS_INO_TO_AGNO(mp, ino);
2721 xfs_agino_t agino = XFS_INO_TO_AGINO(mp, ino);
2722
2723 if (agno >= mp->m_sb.sb_agcount)
2724 return false;
2725 if (XFS_AGINO_TO_INO(mp, agno, agino) != ino)
2726 return false;
2727 return xfs_verify_agino(mp, agno, agino);
2728}
2729
2730/* Is this an internal inode number? */
2731bool
2732xfs_internal_inum(
2733 struct xfs_mount *mp,
2734 xfs_ino_t ino)
2735{
2736 return ino == mp->m_sb.sb_rbmino || ino == mp->m_sb.sb_rsumino ||
2737 (xfs_sb_version_hasquota(&mp->m_sb) &&
2738 xfs_is_quota_inode(&mp->m_sb, ino));
2739}
2740
2741/*
2742 * Verify that a directory entry's inode number doesn't point at an internal
2743 * inode, empty space, or static AG metadata.
2744 */
2745bool
2746xfs_verify_dir_ino(
2747 struct xfs_mount *mp,
2748 xfs_ino_t ino)
2749{
2750 if (xfs_internal_inum(mp, ino))
2751 return false;
2752 return xfs_verify_ino(mp, ino);
2753}