]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - fs/xfs/libxfs/xfs_ialloc.c
xfs: add fs geometry bit for sparse inode chunks
[mirror_ubuntu-bionic-kernel.git] / fs / xfs / libxfs / xfs_ialloc.c
CommitLineData
1da177e4 1/*
7b718769
NS
2 * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
1da177e4 4 *
7b718769
NS
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
1da177e4
LT
7 * published by the Free Software Foundation.
8 *
7b718769
NS
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
1da177e4 13 *
7b718769
NS
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
1da177e4 17 */
1da177e4 18#include "xfs.h"
a844f451 19#include "xfs_fs.h"
70a9883c 20#include "xfs_shared.h"
239880ef
DC
21#include "xfs_format.h"
22#include "xfs_log_format.h"
23#include "xfs_trans_resv.h"
a844f451 24#include "xfs_bit.h"
1da177e4 25#include "xfs_sb.h"
1da177e4 26#include "xfs_mount.h"
1da177e4 27#include "xfs_inode.h"
a844f451
NS
28#include "xfs_btree.h"
29#include "xfs_ialloc.h"
a4fbe6ab 30#include "xfs_ialloc_btree.h"
1da177e4 31#include "xfs_alloc.h"
1da177e4
LT
32#include "xfs_rtalloc.h"
33#include "xfs_error.h"
34#include "xfs_bmap.h"
983d09ff 35#include "xfs_cksum.h"
239880ef 36#include "xfs_trans.h"
983d09ff 37#include "xfs_buf_item.h"
ddf6ad01 38#include "xfs_icreate_item.h"
7bb85ef3 39#include "xfs_icache.h"
d123031a 40#include "xfs_trace.h"
1da177e4 41
1da177e4
LT
42
43/*
44 * Allocation group level functions.
45 */
75de2a91
DC
46static inline int
47xfs_ialloc_cluster_alignment(
7a1df156 48 struct xfs_mount *mp)
75de2a91 49{
7a1df156
DC
50 if (xfs_sb_version_hasalign(&mp->m_sb) &&
51 mp->m_sb.sb_inoalignmt >=
52 XFS_B_TO_FSBT(mp, mp->m_inode_cluster_size))
53 return mp->m_sb.sb_inoalignmt;
75de2a91
DC
54 return 1;
55}
1da177e4 56
fe033cc8 57/*
21875505 58 * Lookup a record by ino in the btree given by cur.
fe033cc8 59 */
81e25176 60int /* error */
21875505 61xfs_inobt_lookup(
fe033cc8
CH
62 struct xfs_btree_cur *cur, /* btree cursor */
63 xfs_agino_t ino, /* starting inode of chunk */
21875505 64 xfs_lookup_t dir, /* <=, >=, == */
fe033cc8
CH
65 int *stat) /* success/failure */
66{
67 cur->bc_rec.i.ir_startino = ino;
21875505
CH
68 cur->bc_rec.i.ir_freecount = 0;
69 cur->bc_rec.i.ir_free = 0;
70 return xfs_btree_lookup(cur, dir, stat);
fe033cc8
CH
71}
72
278d0ca1 73/*
afabc24a 74 * Update the record referred to by cur to the value given.
278d0ca1
CH
75 * This either works (return 0) or gets an EFSCORRUPTED error.
76 */
77STATIC int /* error */
78xfs_inobt_update(
79 struct xfs_btree_cur *cur, /* btree cursor */
afabc24a 80 xfs_inobt_rec_incore_t *irec) /* btree record */
278d0ca1
CH
81{
82 union xfs_btree_rec rec;
83
afabc24a
CH
84 rec.inobt.ir_startino = cpu_to_be32(irec->ir_startino);
85 rec.inobt.ir_freecount = cpu_to_be32(irec->ir_freecount);
86 rec.inobt.ir_free = cpu_to_be64(irec->ir_free);
278d0ca1
CH
87 return xfs_btree_update(cur, &rec);
88}
89
8cc938fe
CH
90/*
91 * Get the data from the pointed-to record.
92 */
93int /* error */
94xfs_inobt_get_rec(
95 struct xfs_btree_cur *cur, /* btree cursor */
2e287a73 96 xfs_inobt_rec_incore_t *irec, /* btree record */
8cc938fe
CH
97 int *stat) /* output: success/failure */
98{
99 union xfs_btree_rec *rec;
100 int error;
101
102 error = xfs_btree_get_rec(cur, &rec, stat);
103 if (!error && *stat == 1) {
2e287a73
CH
104 irec->ir_startino = be32_to_cpu(rec->inobt.ir_startino);
105 irec->ir_freecount = be32_to_cpu(rec->inobt.ir_freecount);
106 irec->ir_free = be64_to_cpu(rec->inobt.ir_free);
8cc938fe
CH
107 }
108 return error;
109}
110
0aa0a756
BF
111/*
112 * Insert a single inobt record. Cursor must already point to desired location.
113 */
114STATIC int
115xfs_inobt_insert_rec(
116 struct xfs_btree_cur *cur,
117 __int32_t freecount,
118 xfs_inofree_t free,
119 int *stat)
120{
121 cur->bc_rec.i.ir_freecount = freecount;
122 cur->bc_rec.i.ir_free = free;
123 return xfs_btree_insert(cur, stat);
124}
125
126/*
127 * Insert records describing a newly allocated inode chunk into the inobt.
128 */
129STATIC int
130xfs_inobt_insert(
131 struct xfs_mount *mp,
132 struct xfs_trans *tp,
133 struct xfs_buf *agbp,
134 xfs_agino_t newino,
135 xfs_agino_t newlen,
136 xfs_btnum_t btnum)
137{
138 struct xfs_btree_cur *cur;
139 struct xfs_agi *agi = XFS_BUF_TO_AGI(agbp);
140 xfs_agnumber_t agno = be32_to_cpu(agi->agi_seqno);
141 xfs_agino_t thisino;
142 int i;
143 int error;
144
145 cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, btnum);
146
147 for (thisino = newino;
148 thisino < newino + newlen;
149 thisino += XFS_INODES_PER_CHUNK) {
150 error = xfs_inobt_lookup(cur, thisino, XFS_LOOKUP_EQ, &i);
151 if (error) {
152 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
153 return error;
154 }
155 ASSERT(i == 0);
156
157 error = xfs_inobt_insert_rec(cur, XFS_INODES_PER_CHUNK,
158 XFS_INOBT_ALL_FREE, &i);
159 if (error) {
160 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
161 return error;
162 }
163 ASSERT(i == 1);
164 }
165
166 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
167
168 return 0;
169}
170
0b48db80
DC
171/*
172 * Verify that the number of free inodes in the AGI is correct.
173 */
174#ifdef DEBUG
175STATIC int
176xfs_check_agi_freecount(
177 struct xfs_btree_cur *cur,
178 struct xfs_agi *agi)
179{
180 if (cur->bc_nlevels == 1) {
181 xfs_inobt_rec_incore_t rec;
182 int freecount = 0;
183 int error;
184 int i;
185
21875505 186 error = xfs_inobt_lookup(cur, 0, XFS_LOOKUP_GE, &i);
0b48db80
DC
187 if (error)
188 return error;
189
190 do {
191 error = xfs_inobt_get_rec(cur, &rec, &i);
192 if (error)
193 return error;
194
195 if (i) {
196 freecount += rec.ir_freecount;
197 error = xfs_btree_increment(cur, 0, &i);
198 if (error)
199 return error;
200 }
201 } while (i == 1);
202
203 if (!XFS_FORCED_SHUTDOWN(cur->bc_mp))
204 ASSERT(freecount == be32_to_cpu(agi->agi_freecount));
205 }
206 return 0;
207}
208#else
209#define xfs_check_agi_freecount(cur, agi) 0
210#endif
211
85c0b2ab 212/*
28c8e41a
DC
213 * Initialise a new set of inodes. When called without a transaction context
214 * (e.g. from recovery) we initiate a delayed write of the inode buffers rather
215 * than logging them (which in a transaction context puts them into the AIL
216 * for writeback rather than the xfsbufd queue).
85c0b2ab 217 */
ddf6ad01 218int
85c0b2ab
DC
219xfs_ialloc_inode_init(
220 struct xfs_mount *mp,
221 struct xfs_trans *tp,
28c8e41a 222 struct list_head *buffer_list,
85c0b2ab
DC
223 xfs_agnumber_t agno,
224 xfs_agblock_t agbno,
225 xfs_agblock_t length,
226 unsigned int gen)
227{
228 struct xfs_buf *fbuf;
229 struct xfs_dinode *free;
6e0c7b8c 230 int nbufs, blks_per_cluster, inodes_per_cluster;
85c0b2ab
DC
231 int version;
232 int i, j;
233 xfs_daddr_t d;
93848a99 234 xfs_ino_t ino = 0;
85c0b2ab
DC
235
236 /*
6e0c7b8c
JL
237 * Loop over the new block(s), filling in the inodes. For small block
238 * sizes, manipulate the inodes in buffers which are multiples of the
239 * blocks size.
85c0b2ab 240 */
6e0c7b8c
JL
241 blks_per_cluster = xfs_icluster_size_fsb(mp);
242 inodes_per_cluster = blks_per_cluster << mp->m_sb.sb_inopblog;
243 nbufs = length / blks_per_cluster;
85c0b2ab
DC
244
245 /*
93848a99
CH
246 * Figure out what version number to use in the inodes we create. If
247 * the superblock version has caught up to the one that supports the new
248 * inode format, then use the new inode version. Otherwise use the old
249 * version so that old kernels will continue to be able to use the file
250 * system.
251 *
252 * For v3 inodes, we also need to write the inode number into the inode,
253 * so calculate the first inode number of the chunk here as
254 * XFS_OFFBNO_TO_AGINO() only works within a filesystem block, not
255 * across multiple filesystem blocks (such as a cluster) and so cannot
256 * be used in the cluster buffer loop below.
257 *
258 * Further, because we are writing the inode directly into the buffer
259 * and calculating a CRC on the entire inode, we have ot log the entire
260 * inode so that the entire range the CRC covers is present in the log.
261 * That means for v3 inode we log the entire buffer rather than just the
262 * inode cores.
85c0b2ab 263 */
93848a99
CH
264 if (xfs_sb_version_hascrc(&mp->m_sb)) {
265 version = 3;
266 ino = XFS_AGINO_TO_INO(mp, agno,
267 XFS_OFFBNO_TO_AGINO(mp, agbno, 0));
ddf6ad01
DC
268
269 /*
270 * log the initialisation that is about to take place as an
271 * logical operation. This means the transaction does not
272 * need to log the physical changes to the inode buffers as log
273 * recovery will know what initialisation is actually needed.
274 * Hence we only need to log the buffers as "ordered" buffers so
275 * they track in the AIL as if they were physically logged.
276 */
277 if (tp)
71783438 278 xfs_icreate_log(tp, agno, agbno, mp->m_ialloc_inos,
ddf6ad01 279 mp->m_sb.sb_inodesize, length, gen);
263997a6 280 } else
85c0b2ab 281 version = 2;
85c0b2ab
DC
282
283 for (j = 0; j < nbufs; j++) {
284 /*
285 * Get the block.
286 */
287 d = XFS_AGB_TO_DADDR(mp, agno, agbno + (j * blks_per_cluster));
288 fbuf = xfs_trans_get_buf(tp, mp->m_ddev_targp, d,
7c4cebe8
DC
289 mp->m_bsize * blks_per_cluster,
290 XBF_UNMAPPED);
2a30f36d 291 if (!fbuf)
2451337d 292 return -ENOMEM;
ddf6ad01
DC
293
294 /* Initialize the inode buffers and log them appropriately. */
1813dd64 295 fbuf->b_ops = &xfs_inode_buf_ops;
93848a99 296 xfs_buf_zero(fbuf, 0, BBTOB(fbuf->b_length));
6e0c7b8c 297 for (i = 0; i < inodes_per_cluster; i++) {
85c0b2ab 298 int ioffset = i << mp->m_sb.sb_inodelog;
93848a99 299 uint isize = xfs_dinode_size(version);
85c0b2ab
DC
300
301 free = xfs_make_iptr(mp, fbuf, i);
302 free->di_magic = cpu_to_be16(XFS_DINODE_MAGIC);
303 free->di_version = version;
304 free->di_gen = cpu_to_be32(gen);
305 free->di_next_unlinked = cpu_to_be32(NULLAGINO);
93848a99
CH
306
307 if (version == 3) {
308 free->di_ino = cpu_to_be64(ino);
309 ino++;
310 uuid_copy(&free->di_uuid, &mp->m_sb.sb_uuid);
311 xfs_dinode_calc_crc(mp, free);
28c8e41a 312 } else if (tp) {
93848a99
CH
313 /* just log the inode core */
314 xfs_trans_log_buf(tp, fbuf, ioffset,
315 ioffset + isize - 1);
316 }
317 }
28c8e41a
DC
318
319 if (tp) {
320 /*
321 * Mark the buffer as an inode allocation buffer so it
322 * sticks in AIL at the point of this allocation
323 * transaction. This ensures the they are on disk before
324 * the tail of the log can be moved past this
325 * transaction (i.e. by preventing relogging from moving
326 * it forward in the log).
327 */
328 xfs_trans_inode_alloc_buf(tp, fbuf);
329 if (version == 3) {
ddf6ad01
DC
330 /*
331 * Mark the buffer as ordered so that they are
332 * not physically logged in the transaction but
333 * still tracked in the AIL as part of the
334 * transaction and pin the log appropriately.
335 */
336 xfs_trans_ordered_buf(tp, fbuf);
28c8e41a
DC
337 xfs_trans_log_buf(tp, fbuf, 0,
338 BBTOB(fbuf->b_length) - 1);
339 }
340 } else {
341 fbuf->b_flags |= XBF_DONE;
342 xfs_buf_delwri_queue(fbuf, buffer_list);
343 xfs_buf_relse(fbuf);
85c0b2ab 344 }
85c0b2ab 345 }
2a30f36d 346 return 0;
85c0b2ab
DC
347}
348
1da177e4
LT
349/*
350 * Allocate new inodes in the allocation group specified by agbp.
351 * Return 0 for success, else error code.
352 */
353STATIC int /* error code or 0 */
354xfs_ialloc_ag_alloc(
355 xfs_trans_t *tp, /* transaction pointer */
356 xfs_buf_t *agbp, /* alloc group buffer */
357 int *alloc)
358{
359 xfs_agi_t *agi; /* allocation group header */
360 xfs_alloc_arg_t args; /* allocation argument structure */
92821e2b 361 xfs_agnumber_t agno;
1da177e4 362 int error;
1da177e4
LT
363 xfs_agino_t newino; /* new first inode's number */
364 xfs_agino_t newlen; /* new number of inodes */
3ccb8b5f 365 int isaligned = 0; /* inode allocation at stripe unit */
1da177e4 366 /* boundary */
44b56e0a 367 struct xfs_perag *pag;
1da177e4 368
a0041684 369 memset(&args, 0, sizeof(args));
1da177e4
LT
370 args.tp = tp;
371 args.mp = tp->t_mountp;
372
373 /*
374 * Locking will ensure that we don't have two callers in here
375 * at one time.
376 */
71783438 377 newlen = args.mp->m_ialloc_inos;
1da177e4 378 if (args.mp->m_maxicount &&
501ab323
DC
379 percpu_counter_read(&args.mp->m_icount) + newlen >
380 args.mp->m_maxicount)
2451337d 381 return -ENOSPC;
126cd105 382 args.minlen = args.maxlen = args.mp->m_ialloc_blks;
1da177e4 383 /*
3ccb8b5f
GO
384 * First try to allocate inodes contiguous with the last-allocated
385 * chunk of inodes. If the filesystem is striped, this will fill
386 * an entire stripe unit with inodes.
28c8e41a 387 */
1da177e4 388 agi = XFS_BUF_TO_AGI(agbp);
3ccb8b5f 389 newino = be32_to_cpu(agi->agi_newino);
85c0b2ab 390 agno = be32_to_cpu(agi->agi_seqno);
019ff2d5 391 args.agbno = XFS_AGINO_TO_AGBNO(args.mp, newino) +
126cd105 392 args.mp->m_ialloc_blks;
019ff2d5
NS
393 if (likely(newino != NULLAGINO &&
394 (args.agbno < be32_to_cpu(agi->agi_length)))) {
85c0b2ab 395 args.fsbno = XFS_AGB_TO_FSB(args.mp, agno, args.agbno);
3ccb8b5f 396 args.type = XFS_ALLOCTYPE_THIS_BNO;
3ccb8b5f 397 args.prod = 1;
75de2a91 398
3ccb8b5f 399 /*
75de2a91
DC
400 * We need to take into account alignment here to ensure that
401 * we don't modify the free list if we fail to have an exact
402 * block. If we don't have an exact match, and every oher
403 * attempt allocation attempt fails, we'll end up cancelling
404 * a dirty transaction and shutting down.
405 *
406 * For an exact allocation, alignment must be 1,
407 * however we need to take cluster alignment into account when
408 * fixing up the freelist. Use the minalignslop field to
409 * indicate that extra blocks might be required for alignment,
410 * but not to use them in the actual exact allocation.
3ccb8b5f 411 */
75de2a91 412 args.alignment = 1;
7a1df156 413 args.minalignslop = xfs_ialloc_cluster_alignment(args.mp) - 1;
75de2a91
DC
414
415 /* Allow space for the inode btree to split. */
0d87e656 416 args.minleft = args.mp->m_in_maxlevels - 1;
3ccb8b5f
GO
417 if ((error = xfs_alloc_vextent(&args)))
418 return error;
e480a723
BF
419
420 /*
421 * This request might have dirtied the transaction if the AG can
422 * satisfy the request, but the exact block was not available.
423 * If the allocation did fail, subsequent requests will relax
424 * the exact agbno requirement and increase the alignment
425 * instead. It is critical that the total size of the request
426 * (len + alignment + slop) does not increase from this point
427 * on, so reset minalignslop to ensure it is not included in
428 * subsequent requests.
429 */
430 args.minalignslop = 0;
3ccb8b5f
GO
431 } else
432 args.fsbno = NULLFSBLOCK;
1da177e4 433
3ccb8b5f
GO
434 if (unlikely(args.fsbno == NULLFSBLOCK)) {
435 /*
436 * Set the alignment for the allocation.
437 * If stripe alignment is turned on then align at stripe unit
438 * boundary.
019ff2d5
NS
439 * If the cluster size is smaller than a filesystem block
440 * then we're doing I/O for inodes in filesystem block size
3ccb8b5f
GO
441 * pieces, so don't need alignment anyway.
442 */
443 isaligned = 0;
444 if (args.mp->m_sinoalign) {
445 ASSERT(!(args.mp->m_flags & XFS_MOUNT_NOALIGN));
446 args.alignment = args.mp->m_dalign;
447 isaligned = 1;
75de2a91 448 } else
7a1df156 449 args.alignment = xfs_ialloc_cluster_alignment(args.mp);
3ccb8b5f
GO
450 /*
451 * Need to figure out where to allocate the inode blocks.
452 * Ideally they should be spaced out through the a.g.
453 * For now, just allocate blocks up front.
454 */
455 args.agbno = be32_to_cpu(agi->agi_root);
85c0b2ab 456 args.fsbno = XFS_AGB_TO_FSB(args.mp, agno, args.agbno);
3ccb8b5f
GO
457 /*
458 * Allocate a fixed-size extent of inodes.
459 */
460 args.type = XFS_ALLOCTYPE_NEAR_BNO;
3ccb8b5f
GO
461 args.prod = 1;
462 /*
463 * Allow space for the inode btree to split.
464 */
0d87e656 465 args.minleft = args.mp->m_in_maxlevels - 1;
3ccb8b5f
GO
466 if ((error = xfs_alloc_vextent(&args)))
467 return error;
468 }
019ff2d5 469
1da177e4
LT
470 /*
471 * If stripe alignment is turned on, then try again with cluster
472 * alignment.
473 */
474 if (isaligned && args.fsbno == NULLFSBLOCK) {
475 args.type = XFS_ALLOCTYPE_NEAR_BNO;
16259e7d 476 args.agbno = be32_to_cpu(agi->agi_root);
85c0b2ab 477 args.fsbno = XFS_AGB_TO_FSB(args.mp, agno, args.agbno);
7a1df156 478 args.alignment = xfs_ialloc_cluster_alignment(args.mp);
1da177e4
LT
479 if ((error = xfs_alloc_vextent(&args)))
480 return error;
481 }
482
483 if (args.fsbno == NULLFSBLOCK) {
484 *alloc = 0;
485 return 0;
486 }
487 ASSERT(args.len == args.minlen);
1da177e4 488
359346a9 489 /*
85c0b2ab
DC
490 * Stamp and write the inode buffers.
491 *
359346a9
DC
492 * Seed the new inode cluster with a random generation number. This
493 * prevents short-term reuse of generation numbers if a chunk is
494 * freed and then immediately reallocated. We use random numbers
495 * rather than a linear progression to prevent the next generation
496 * number from being easily guessable.
497 */
28c8e41a 498 error = xfs_ialloc_inode_init(args.mp, tp, NULL, agno, args.agbno,
ecb3403d 499 args.len, prandom_u32());
d42f08f6 500
2a30f36d
CS
501 if (error)
502 return error;
85c0b2ab
DC
503 /*
504 * Convert the results.
505 */
506 newino = XFS_OFFBNO_TO_AGINO(args.mp, args.agbno, 0);
413d57c9
MS
507 be32_add_cpu(&agi->agi_count, newlen);
508 be32_add_cpu(&agi->agi_freecount, newlen);
44b56e0a
DC
509 pag = xfs_perag_get(args.mp, agno);
510 pag->pagi_freecount += newlen;
511 xfs_perag_put(pag);
16259e7d 512 agi->agi_newino = cpu_to_be32(newino);
85c0b2ab 513
1da177e4 514 /*
0aa0a756 515 * Insert records describing the new inode chunk into the btrees.
1da177e4 516 */
0aa0a756
BF
517 error = xfs_inobt_insert(args.mp, tp, agbp, newino, newlen,
518 XFS_BTNUM_INO);
519 if (error)
520 return error;
521
522 if (xfs_sb_version_hasfinobt(&args.mp->m_sb)) {
523 error = xfs_inobt_insert(args.mp, tp, agbp, newino, newlen,
524 XFS_BTNUM_FINO);
525 if (error)
1da177e4 526 return error;
1da177e4 527 }
1da177e4
LT
528 /*
529 * Log allocation group header fields
530 */
531 xfs_ialloc_log_agi(tp, agbp,
532 XFS_AGI_COUNT | XFS_AGI_FREECOUNT | XFS_AGI_NEWINO);
533 /*
534 * Modify/log superblock values for inode count and inode free count.
535 */
536 xfs_trans_mod_sb(tp, XFS_TRANS_SB_ICOUNT, (long)newlen);
537 xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, (long)newlen);
538 *alloc = 1;
539 return 0;
540}
541
b8f82a4a 542STATIC xfs_agnumber_t
1da177e4
LT
543xfs_ialloc_next_ag(
544 xfs_mount_t *mp)
545{
546 xfs_agnumber_t agno;
547
548 spin_lock(&mp->m_agirotor_lock);
549 agno = mp->m_agirotor;
8aea3ff4 550 if (++mp->m_agirotor >= mp->m_maxagi)
1da177e4
LT
551 mp->m_agirotor = 0;
552 spin_unlock(&mp->m_agirotor_lock);
553
554 return agno;
555}
556
557/*
558 * Select an allocation group to look for a free inode in, based on the parent
2f21ff1c 559 * inode and the mode. Return the allocation group buffer.
1da177e4 560 */
55d6af64 561STATIC xfs_agnumber_t
1da177e4
LT
562xfs_ialloc_ag_select(
563 xfs_trans_t *tp, /* transaction pointer */
564 xfs_ino_t parent, /* parent directory inode number */
576b1d67 565 umode_t mode, /* bits set to indicate file type */
1da177e4
LT
566 int okalloc) /* ok to allocate more space */
567{
1da177e4
LT
568 xfs_agnumber_t agcount; /* number of ag's in the filesystem */
569 xfs_agnumber_t agno; /* current ag number */
570 int flags; /* alloc buffer locking flags */
571 xfs_extlen_t ineed; /* blocks needed for inode allocation */
572 xfs_extlen_t longest = 0; /* longest extent available */
573 xfs_mount_t *mp; /* mount point structure */
574 int needspace; /* file mode implies space allocated */
575 xfs_perag_t *pag; /* per allocation group data */
576 xfs_agnumber_t pagno; /* parent (starting) ag number */
55d6af64 577 int error;
1da177e4
LT
578
579 /*
580 * Files of these types need at least one block if length > 0
581 * (and they won't fit in the inode, but that's hard to figure out).
582 */
583 needspace = S_ISDIR(mode) || S_ISREG(mode) || S_ISLNK(mode);
584 mp = tp->t_mountp;
585 agcount = mp->m_maxagi;
586 if (S_ISDIR(mode))
587 pagno = xfs_ialloc_next_ag(mp);
588 else {
589 pagno = XFS_INO_TO_AGNO(mp, parent);
590 if (pagno >= agcount)
591 pagno = 0;
592 }
55d6af64 593
1da177e4 594 ASSERT(pagno < agcount);
55d6af64 595
1da177e4
LT
596 /*
597 * Loop through allocation groups, looking for one with a little
598 * free space in it. Note we don't look for free inodes, exactly.
599 * Instead, we include whether there is a need to allocate inodes
600 * to mean that blocks must be allocated for them,
601 * if none are currently free.
602 */
603 agno = pagno;
604 flags = XFS_ALLOC_FLAG_TRYLOCK;
1da177e4 605 for (;;) {
44b56e0a 606 pag = xfs_perag_get(mp, agno);
55d6af64
CH
607 if (!pag->pagi_inodeok) {
608 xfs_ialloc_next_ag(mp);
609 goto nextag;
610 }
611
1da177e4 612 if (!pag->pagi_init) {
55d6af64
CH
613 error = xfs_ialloc_pagi_init(mp, tp, agno);
614 if (error)
1da177e4 615 goto nextag;
55d6af64 616 }
1da177e4 617
55d6af64
CH
618 if (pag->pagi_freecount) {
619 xfs_perag_put(pag);
620 return agno;
1da177e4
LT
621 }
622
55d6af64
CH
623 if (!okalloc)
624 goto nextag;
625
626 if (!pag->pagf_init) {
627 error = xfs_alloc_pagf_init(mp, tp, agno, flags);
628 if (error)
1da177e4 629 goto nextag;
1da177e4 630 }
55d6af64
CH
631
632 /*
7a1df156
DC
633 * Check that there is enough free space for the file plus a
634 * chunk of inodes if we need to allocate some. If this is the
635 * first pass across the AGs, take into account the potential
636 * space needed for alignment of inode chunks when checking the
637 * longest contiguous free space in the AG - this prevents us
638 * from getting ENOSPC because we have free space larger than
639 * m_ialloc_blks but alignment constraints prevent us from using
640 * it.
641 *
642 * If we can't find an AG with space for full alignment slack to
643 * be taken into account, we must be near ENOSPC in all AGs.
644 * Hence we don't include alignment for the second pass and so
645 * if we fail allocation due to alignment issues then it is most
646 * likely a real ENOSPC condition.
55d6af64 647 */
066a1884 648 ineed = mp->m_ialloc_min_blks;
7a1df156
DC
649 if (flags && ineed > 1)
650 ineed += xfs_ialloc_cluster_alignment(mp);
55d6af64
CH
651 longest = pag->pagf_longest;
652 if (!longest)
653 longest = pag->pagf_flcount > 0;
654
655 if (pag->pagf_freeblks >= needspace + ineed &&
656 longest >= ineed) {
657 xfs_perag_put(pag);
658 return agno;
1da177e4 659 }
1da177e4 660nextag:
44b56e0a 661 xfs_perag_put(pag);
1da177e4
LT
662 /*
663 * No point in iterating over the rest, if we're shutting
664 * down.
665 */
1c1c6ebc 666 if (XFS_FORCED_SHUTDOWN(mp))
55d6af64 667 return NULLAGNUMBER;
1da177e4
LT
668 agno++;
669 if (agno >= agcount)
670 agno = 0;
671 if (agno == pagno) {
1c1c6ebc 672 if (flags == 0)
55d6af64 673 return NULLAGNUMBER;
1da177e4
LT
674 flags = 0;
675 }
676 }
677}
678
4254b0bb
CH
679/*
680 * Try to retrieve the next record to the left/right from the current one.
681 */
682STATIC int
683xfs_ialloc_next_rec(
684 struct xfs_btree_cur *cur,
685 xfs_inobt_rec_incore_t *rec,
686 int *done,
687 int left)
688{
689 int error;
690 int i;
691
692 if (left)
693 error = xfs_btree_decrement(cur, 0, &i);
694 else
695 error = xfs_btree_increment(cur, 0, &i);
696
697 if (error)
698 return error;
699 *done = !i;
700 if (i) {
701 error = xfs_inobt_get_rec(cur, rec, &i);
702 if (error)
703 return error;
5fb5aeee 704 XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1);
4254b0bb
CH
705 }
706
707 return 0;
708}
709
bd169565
DC
710STATIC int
711xfs_ialloc_get_rec(
712 struct xfs_btree_cur *cur,
713 xfs_agino_t agino,
714 xfs_inobt_rec_incore_t *rec,
43df2ee6 715 int *done)
bd169565
DC
716{
717 int error;
718 int i;
719
720 error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_EQ, &i);
721 if (error)
722 return error;
723 *done = !i;
724 if (i) {
725 error = xfs_inobt_get_rec(cur, rec, &i);
726 if (error)
727 return error;
5fb5aeee 728 XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1);
bd169565
DC
729 }
730
731 return 0;
732}
0b48db80 733
d4cc540b
BF
734/*
735 * Return the offset of the first free inode in the record.
736 */
737STATIC int
738xfs_inobt_first_free_inode(
739 struct xfs_inobt_rec_incore *rec)
740{
741 return xfs_lowbit64(rec->ir_free);
742}
743
1da177e4 744/*
6dd8638e 745 * Allocate an inode using the inobt-only algorithm.
1da177e4 746 */
f2ecc5e4 747STATIC int
6dd8638e 748xfs_dialloc_ag_inobt(
f2ecc5e4
CH
749 struct xfs_trans *tp,
750 struct xfs_buf *agbp,
751 xfs_ino_t parent,
752 xfs_ino_t *inop)
1da177e4 753{
f2ecc5e4
CH
754 struct xfs_mount *mp = tp->t_mountp;
755 struct xfs_agi *agi = XFS_BUF_TO_AGI(agbp);
756 xfs_agnumber_t agno = be32_to_cpu(agi->agi_seqno);
757 xfs_agnumber_t pagno = XFS_INO_TO_AGNO(mp, parent);
758 xfs_agino_t pagino = XFS_INO_TO_AGINO(mp, parent);
759 struct xfs_perag *pag;
760 struct xfs_btree_cur *cur, *tcur;
761 struct xfs_inobt_rec_incore rec, trec;
762 xfs_ino_t ino;
763 int error;
764 int offset;
765 int i, j;
1da177e4 766
44b56e0a 767 pag = xfs_perag_get(mp, agno);
bd169565 768
4bb61069
CH
769 ASSERT(pag->pagi_init);
770 ASSERT(pag->pagi_inodeok);
771 ASSERT(pag->pagi_freecount > 0);
772
bd169565 773 restart_pagno:
57bd3dbe 774 cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_INO);
1da177e4
LT
775 /*
776 * If pagino is 0 (this is the root inode allocation) use newino.
777 * This must work because we've just allocated some.
778 */
779 if (!pagino)
16259e7d 780 pagino = be32_to_cpu(agi->agi_newino);
1da177e4 781
0b48db80
DC
782 error = xfs_check_agi_freecount(cur, agi);
783 if (error)
784 goto error0;
1da177e4 785
1da177e4 786 /*
4254b0bb 787 * If in the same AG as the parent, try to get near the parent.
1da177e4
LT
788 */
789 if (pagno == agno) {
4254b0bb
CH
790 int doneleft; /* done, to the left */
791 int doneright; /* done, to the right */
bd169565 792 int searchdistance = 10;
4254b0bb 793
21875505 794 error = xfs_inobt_lookup(cur, pagino, XFS_LOOKUP_LE, &i);
4254b0bb 795 if (error)
1da177e4 796 goto error0;
c29aad41 797 XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error0);
4254b0bb
CH
798
799 error = xfs_inobt_get_rec(cur, &rec, &j);
800 if (error)
801 goto error0;
c29aad41 802 XFS_WANT_CORRUPTED_GOTO(mp, j == 1, error0);
4254b0bb
CH
803
804 if (rec.ir_freecount > 0) {
1da177e4
LT
805 /*
806 * Found a free inode in the same chunk
4254b0bb 807 * as the parent, done.
1da177e4 808 */
4254b0bb 809 goto alloc_inode;
1da177e4 810 }
4254b0bb
CH
811
812
1da177e4 813 /*
4254b0bb 814 * In the same AG as parent, but parent's chunk is full.
1da177e4 815 */
1da177e4 816
4254b0bb
CH
817 /* duplicate the cursor, search left & right simultaneously */
818 error = xfs_btree_dup_cursor(cur, &tcur);
819 if (error)
820 goto error0;
821
bd169565
DC
822 /*
823 * Skip to last blocks looked up if same parent inode.
824 */
825 if (pagino != NULLAGINO &&
826 pag->pagl_pagino == pagino &&
827 pag->pagl_leftrec != NULLAGINO &&
828 pag->pagl_rightrec != NULLAGINO) {
829 error = xfs_ialloc_get_rec(tcur, pag->pagl_leftrec,
43df2ee6 830 &trec, &doneleft);
bd169565
DC
831 if (error)
832 goto error1;
4254b0bb 833
bd169565 834 error = xfs_ialloc_get_rec(cur, pag->pagl_rightrec,
43df2ee6 835 &rec, &doneright);
bd169565
DC
836 if (error)
837 goto error1;
838 } else {
839 /* search left with tcur, back up 1 record */
840 error = xfs_ialloc_next_rec(tcur, &trec, &doneleft, 1);
841 if (error)
842 goto error1;
843
844 /* search right with cur, go forward 1 record. */
845 error = xfs_ialloc_next_rec(cur, &rec, &doneright, 0);
846 if (error)
847 goto error1;
848 }
4254b0bb
CH
849
850 /*
851 * Loop until we find an inode chunk with a free inode.
852 */
853 while (!doneleft || !doneright) {
854 int useleft; /* using left inode chunk this time */
855
bd169565
DC
856 if (!--searchdistance) {
857 /*
858 * Not in range - save last search
859 * location and allocate a new inode
860 */
3b826386 861 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
bd169565
DC
862 pag->pagl_leftrec = trec.ir_startino;
863 pag->pagl_rightrec = rec.ir_startino;
864 pag->pagl_pagino = pagino;
865 goto newino;
866 }
867
4254b0bb
CH
868 /* figure out the closer block if both are valid. */
869 if (!doneleft && !doneright) {
870 useleft = pagino -
871 (trec.ir_startino + XFS_INODES_PER_CHUNK - 1) <
872 rec.ir_startino - pagino;
873 } else {
874 useleft = !doneleft;
1da177e4 875 }
4254b0bb
CH
876
877 /* free inodes to the left? */
878 if (useleft && trec.ir_freecount) {
879 rec = trec;
880 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
881 cur = tcur;
bd169565
DC
882
883 pag->pagl_leftrec = trec.ir_startino;
884 pag->pagl_rightrec = rec.ir_startino;
885 pag->pagl_pagino = pagino;
4254b0bb 886 goto alloc_inode;
1da177e4 887 }
1da177e4 888
4254b0bb
CH
889 /* free inodes to the right? */
890 if (!useleft && rec.ir_freecount) {
891 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
bd169565
DC
892
893 pag->pagl_leftrec = trec.ir_startino;
894 pag->pagl_rightrec = rec.ir_startino;
895 pag->pagl_pagino = pagino;
4254b0bb 896 goto alloc_inode;
1da177e4 897 }
4254b0bb
CH
898
899 /* get next record to check */
900 if (useleft) {
901 error = xfs_ialloc_next_rec(tcur, &trec,
902 &doneleft, 1);
903 } else {
904 error = xfs_ialloc_next_rec(cur, &rec,
905 &doneright, 0);
906 }
907 if (error)
908 goto error1;
1da177e4 909 }
bd169565
DC
910
911 /*
912 * We've reached the end of the btree. because
913 * we are only searching a small chunk of the
914 * btree each search, there is obviously free
915 * inodes closer to the parent inode than we
916 * are now. restart the search again.
917 */
918 pag->pagl_pagino = NULLAGINO;
919 pag->pagl_leftrec = NULLAGINO;
920 pag->pagl_rightrec = NULLAGINO;
921 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
922 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
923 goto restart_pagno;
1da177e4 924 }
4254b0bb 925
1da177e4 926 /*
4254b0bb 927 * In a different AG from the parent.
1da177e4
LT
928 * See if the most recently allocated block has any free.
929 */
bd169565 930newino:
69ef921b 931 if (agi->agi_newino != cpu_to_be32(NULLAGINO)) {
21875505
CH
932 error = xfs_inobt_lookup(cur, be32_to_cpu(agi->agi_newino),
933 XFS_LOOKUP_EQ, &i);
4254b0bb 934 if (error)
1da177e4 935 goto error0;
4254b0bb
CH
936
937 if (i == 1) {
938 error = xfs_inobt_get_rec(cur, &rec, &j);
939 if (error)
940 goto error0;
941
942 if (j == 1 && rec.ir_freecount > 0) {
943 /*
944 * The last chunk allocated in the group
945 * still has a free inode.
946 */
947 goto alloc_inode;
948 }
1da177e4 949 }
bd169565 950 }
4254b0bb 951
bd169565
DC
952 /*
953 * None left in the last group, search the whole AG
954 */
955 error = xfs_inobt_lookup(cur, 0, XFS_LOOKUP_GE, &i);
956 if (error)
957 goto error0;
c29aad41 958 XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error0);
bd169565
DC
959
960 for (;;) {
961 error = xfs_inobt_get_rec(cur, &rec, &i);
962 if (error)
963 goto error0;
c29aad41 964 XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error0);
bd169565
DC
965 if (rec.ir_freecount > 0)
966 break;
967 error = xfs_btree_increment(cur, 0, &i);
4254b0bb
CH
968 if (error)
969 goto error0;
c29aad41 970 XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error0);
1da177e4 971 }
4254b0bb
CH
972
973alloc_inode:
d4cc540b 974 offset = xfs_inobt_first_free_inode(&rec);
1da177e4
LT
975 ASSERT(offset >= 0);
976 ASSERT(offset < XFS_INODES_PER_CHUNK);
977 ASSERT((XFS_AGINO_TO_OFFSET(mp, rec.ir_startino) %
978 XFS_INODES_PER_CHUNK) == 0);
979 ino = XFS_AGINO_TO_INO(mp, agno, rec.ir_startino + offset);
0d87e656 980 rec.ir_free &= ~XFS_INOBT_MASK(offset);
1da177e4 981 rec.ir_freecount--;
afabc24a
CH
982 error = xfs_inobt_update(cur, &rec);
983 if (error)
1da177e4 984 goto error0;
413d57c9 985 be32_add_cpu(&agi->agi_freecount, -1);
1da177e4 986 xfs_ialloc_log_agi(tp, agbp, XFS_AGI_FREECOUNT);
44b56e0a 987 pag->pagi_freecount--;
1da177e4 988
0b48db80
DC
989 error = xfs_check_agi_freecount(cur, agi);
990 if (error)
991 goto error0;
992
1da177e4
LT
993 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
994 xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, -1);
44b56e0a 995 xfs_perag_put(pag);
1da177e4
LT
996 *inop = ino;
997 return 0;
998error1:
999 xfs_btree_del_cursor(tcur, XFS_BTREE_ERROR);
1000error0:
1001 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
44b56e0a 1002 xfs_perag_put(pag);
1da177e4
LT
1003 return error;
1004}
1005
6dd8638e
BF
1006/*
1007 * Use the free inode btree to allocate an inode based on distance from the
1008 * parent. Note that the provided cursor may be deleted and replaced.
1009 */
1010STATIC int
1011xfs_dialloc_ag_finobt_near(
1012 xfs_agino_t pagino,
1013 struct xfs_btree_cur **ocur,
1014 struct xfs_inobt_rec_incore *rec)
1015{
1016 struct xfs_btree_cur *lcur = *ocur; /* left search cursor */
1017 struct xfs_btree_cur *rcur; /* right search cursor */
1018 struct xfs_inobt_rec_incore rrec;
1019 int error;
1020 int i, j;
1021
1022 error = xfs_inobt_lookup(lcur, pagino, XFS_LOOKUP_LE, &i);
1023 if (error)
1024 return error;
1025
1026 if (i == 1) {
1027 error = xfs_inobt_get_rec(lcur, rec, &i);
1028 if (error)
1029 return error;
5fb5aeee 1030 XFS_WANT_CORRUPTED_RETURN(lcur->bc_mp, i == 1);
6dd8638e
BF
1031
1032 /*
1033 * See if we've landed in the parent inode record. The finobt
1034 * only tracks chunks with at least one free inode, so record
1035 * existence is enough.
1036 */
1037 if (pagino >= rec->ir_startino &&
1038 pagino < (rec->ir_startino + XFS_INODES_PER_CHUNK))
1039 return 0;
1040 }
1041
1042 error = xfs_btree_dup_cursor(lcur, &rcur);
1043 if (error)
1044 return error;
1045
1046 error = xfs_inobt_lookup(rcur, pagino, XFS_LOOKUP_GE, &j);
1047 if (error)
1048 goto error_rcur;
1049 if (j == 1) {
1050 error = xfs_inobt_get_rec(rcur, &rrec, &j);
1051 if (error)
1052 goto error_rcur;
c29aad41 1053 XFS_WANT_CORRUPTED_GOTO(lcur->bc_mp, j == 1, error_rcur);
6dd8638e
BF
1054 }
1055
c29aad41 1056 XFS_WANT_CORRUPTED_GOTO(lcur->bc_mp, i == 1 || j == 1, error_rcur);
6dd8638e
BF
1057 if (i == 1 && j == 1) {
1058 /*
1059 * Both the left and right records are valid. Choose the closer
1060 * inode chunk to the target.
1061 */
1062 if ((pagino - rec->ir_startino + XFS_INODES_PER_CHUNK - 1) >
1063 (rrec.ir_startino - pagino)) {
1064 *rec = rrec;
1065 xfs_btree_del_cursor(lcur, XFS_BTREE_NOERROR);
1066 *ocur = rcur;
1067 } else {
1068 xfs_btree_del_cursor(rcur, XFS_BTREE_NOERROR);
1069 }
1070 } else if (j == 1) {
1071 /* only the right record is valid */
1072 *rec = rrec;
1073 xfs_btree_del_cursor(lcur, XFS_BTREE_NOERROR);
1074 *ocur = rcur;
1075 } else if (i == 1) {
1076 /* only the left record is valid */
1077 xfs_btree_del_cursor(rcur, XFS_BTREE_NOERROR);
1078 }
1079
1080 return 0;
1081
1082error_rcur:
1083 xfs_btree_del_cursor(rcur, XFS_BTREE_ERROR);
1084 return error;
1085}
1086
1087/*
1088 * Use the free inode btree to find a free inode based on a newino hint. If
1089 * the hint is NULL, find the first free inode in the AG.
1090 */
1091STATIC int
1092xfs_dialloc_ag_finobt_newino(
1093 struct xfs_agi *agi,
1094 struct xfs_btree_cur *cur,
1095 struct xfs_inobt_rec_incore *rec)
1096{
1097 int error;
1098 int i;
1099
1100 if (agi->agi_newino != cpu_to_be32(NULLAGINO)) {
e68ed775
DC
1101 error = xfs_inobt_lookup(cur, be32_to_cpu(agi->agi_newino),
1102 XFS_LOOKUP_EQ, &i);
6dd8638e
BF
1103 if (error)
1104 return error;
1105 if (i == 1) {
1106 error = xfs_inobt_get_rec(cur, rec, &i);
1107 if (error)
1108 return error;
5fb5aeee 1109 XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1);
6dd8638e
BF
1110 return 0;
1111 }
1112 }
1113
1114 /*
1115 * Find the first inode available in the AG.
1116 */
1117 error = xfs_inobt_lookup(cur, 0, XFS_LOOKUP_GE, &i);
1118 if (error)
1119 return error;
5fb5aeee 1120 XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1);
6dd8638e
BF
1121
1122 error = xfs_inobt_get_rec(cur, rec, &i);
1123 if (error)
1124 return error;
5fb5aeee 1125 XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1);
6dd8638e
BF
1126
1127 return 0;
1128}
1129
1130/*
1131 * Update the inobt based on a modification made to the finobt. Also ensure that
1132 * the records from both trees are equivalent post-modification.
1133 */
1134STATIC int
1135xfs_dialloc_ag_update_inobt(
1136 struct xfs_btree_cur *cur, /* inobt cursor */
1137 struct xfs_inobt_rec_incore *frec, /* finobt record */
1138 int offset) /* inode offset */
1139{
1140 struct xfs_inobt_rec_incore rec;
1141 int error;
1142 int i;
1143
1144 error = xfs_inobt_lookup(cur, frec->ir_startino, XFS_LOOKUP_EQ, &i);
1145 if (error)
1146 return error;
5fb5aeee 1147 XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1);
6dd8638e
BF
1148
1149 error = xfs_inobt_get_rec(cur, &rec, &i);
1150 if (error)
1151 return error;
5fb5aeee 1152 XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1);
6dd8638e
BF
1153 ASSERT((XFS_AGINO_TO_OFFSET(cur->bc_mp, rec.ir_startino) %
1154 XFS_INODES_PER_CHUNK) == 0);
1155
1156 rec.ir_free &= ~XFS_INOBT_MASK(offset);
1157 rec.ir_freecount--;
1158
5fb5aeee 1159 XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, (rec.ir_free == frec->ir_free) &&
6dd8638e
BF
1160 (rec.ir_freecount == frec->ir_freecount));
1161
b72091f2 1162 return xfs_inobt_update(cur, &rec);
6dd8638e
BF
1163}
1164
1165/*
1166 * Allocate an inode using the free inode btree, if available. Otherwise, fall
1167 * back to the inobt search algorithm.
1168 *
1169 * The caller selected an AG for us, and made sure that free inodes are
1170 * available.
1171 */
1172STATIC int
1173xfs_dialloc_ag(
1174 struct xfs_trans *tp,
1175 struct xfs_buf *agbp,
1176 xfs_ino_t parent,
1177 xfs_ino_t *inop)
1178{
1179 struct xfs_mount *mp = tp->t_mountp;
1180 struct xfs_agi *agi = XFS_BUF_TO_AGI(agbp);
1181 xfs_agnumber_t agno = be32_to_cpu(agi->agi_seqno);
1182 xfs_agnumber_t pagno = XFS_INO_TO_AGNO(mp, parent);
1183 xfs_agino_t pagino = XFS_INO_TO_AGINO(mp, parent);
1184 struct xfs_perag *pag;
1185 struct xfs_btree_cur *cur; /* finobt cursor */
1186 struct xfs_btree_cur *icur; /* inobt cursor */
1187 struct xfs_inobt_rec_incore rec;
1188 xfs_ino_t ino;
1189 int error;
1190 int offset;
1191 int i;
1192
1193 if (!xfs_sb_version_hasfinobt(&mp->m_sb))
1194 return xfs_dialloc_ag_inobt(tp, agbp, parent, inop);
1195
1196 pag = xfs_perag_get(mp, agno);
1197
1198 /*
1199 * If pagino is 0 (this is the root inode allocation) use newino.
1200 * This must work because we've just allocated some.
1201 */
1202 if (!pagino)
1203 pagino = be32_to_cpu(agi->agi_newino);
1204
1205 cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_FINO);
1206
1207 error = xfs_check_agi_freecount(cur, agi);
1208 if (error)
1209 goto error_cur;
1210
1211 /*
1212 * The search algorithm depends on whether we're in the same AG as the
1213 * parent. If so, find the closest available inode to the parent. If
1214 * not, consider the agi hint or find the first free inode in the AG.
1215 */
1216 if (agno == pagno)
1217 error = xfs_dialloc_ag_finobt_near(pagino, &cur, &rec);
1218 else
1219 error = xfs_dialloc_ag_finobt_newino(agi, cur, &rec);
1220 if (error)
1221 goto error_cur;
1222
d4cc540b 1223 offset = xfs_inobt_first_free_inode(&rec);
6dd8638e
BF
1224 ASSERT(offset >= 0);
1225 ASSERT(offset < XFS_INODES_PER_CHUNK);
1226 ASSERT((XFS_AGINO_TO_OFFSET(mp, rec.ir_startino) %
1227 XFS_INODES_PER_CHUNK) == 0);
1228 ino = XFS_AGINO_TO_INO(mp, agno, rec.ir_startino + offset);
1229
1230 /*
1231 * Modify or remove the finobt record.
1232 */
1233 rec.ir_free &= ~XFS_INOBT_MASK(offset);
1234 rec.ir_freecount--;
1235 if (rec.ir_freecount)
1236 error = xfs_inobt_update(cur, &rec);
1237 else
1238 error = xfs_btree_delete(cur, &i);
1239 if (error)
1240 goto error_cur;
1241
1242 /*
1243 * The finobt has now been updated appropriately. We haven't updated the
1244 * agi and superblock yet, so we can create an inobt cursor and validate
1245 * the original freecount. If all is well, make the equivalent update to
1246 * the inobt using the finobt record and offset information.
1247 */
1248 icur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_INO);
1249
1250 error = xfs_check_agi_freecount(icur, agi);
1251 if (error)
1252 goto error_icur;
1253
1254 error = xfs_dialloc_ag_update_inobt(icur, &rec, offset);
1255 if (error)
1256 goto error_icur;
1257
1258 /*
1259 * Both trees have now been updated. We must update the perag and
1260 * superblock before we can check the freecount for each btree.
1261 */
1262 be32_add_cpu(&agi->agi_freecount, -1);
1263 xfs_ialloc_log_agi(tp, agbp, XFS_AGI_FREECOUNT);
1264 pag->pagi_freecount--;
1265
1266 xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, -1);
1267
1268 error = xfs_check_agi_freecount(icur, agi);
1269 if (error)
1270 goto error_icur;
1271 error = xfs_check_agi_freecount(cur, agi);
1272 if (error)
1273 goto error_icur;
1274
1275 xfs_btree_del_cursor(icur, XFS_BTREE_NOERROR);
1276 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
1277 xfs_perag_put(pag);
1278 *inop = ino;
1279 return 0;
1280
1281error_icur:
1282 xfs_btree_del_cursor(icur, XFS_BTREE_ERROR);
1283error_cur:
1284 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
1285 xfs_perag_put(pag);
1286 return error;
1287}
1288
f2ecc5e4
CH
1289/*
1290 * Allocate an inode on disk.
1291 *
1292 * Mode is used to tell whether the new inode will need space, and whether it
1293 * is a directory.
1294 *
1295 * This function is designed to be called twice if it has to do an allocation
1296 * to make more free inodes. On the first call, *IO_agbp should be set to NULL.
1297 * If an inode is available without having to performn an allocation, an inode
cd856db6
CM
1298 * number is returned. In this case, *IO_agbp is set to NULL. If an allocation
1299 * needs to be done, xfs_dialloc returns the current AGI buffer in *IO_agbp.
1300 * The caller should then commit the current transaction, allocate a
f2ecc5e4
CH
1301 * new transaction, and call xfs_dialloc() again, passing in the previous value
1302 * of *IO_agbp. IO_agbp should be held across the transactions. Since the AGI
1303 * buffer is locked across the two calls, the second call is guaranteed to have
1304 * a free inode available.
1305 *
1306 * Once we successfully pick an inode its number is returned and the on-disk
1307 * data structures are updated. The inode itself is not read in, since doing so
1308 * would break ordering constraints with xfs_reclaim.
1309 */
1310int
1311xfs_dialloc(
1312 struct xfs_trans *tp,
1313 xfs_ino_t parent,
1314 umode_t mode,
1315 int okalloc,
1316 struct xfs_buf **IO_agbp,
f2ecc5e4
CH
1317 xfs_ino_t *inop)
1318{
55d6af64 1319 struct xfs_mount *mp = tp->t_mountp;
f2ecc5e4
CH
1320 struct xfs_buf *agbp;
1321 xfs_agnumber_t agno;
f2ecc5e4
CH
1322 int error;
1323 int ialloced;
1324 int noroom = 0;
be60fe54 1325 xfs_agnumber_t start_agno;
f2ecc5e4
CH
1326 struct xfs_perag *pag;
1327
4bb61069 1328 if (*IO_agbp) {
f2ecc5e4 1329 /*
4bb61069
CH
1330 * If the caller passes in a pointer to the AGI buffer,
1331 * continue where we left off before. In this case, we
f2ecc5e4
CH
1332 * know that the allocation group has free inodes.
1333 */
1334 agbp = *IO_agbp;
4bb61069 1335 goto out_alloc;
f2ecc5e4 1336 }
4bb61069
CH
1337
1338 /*
1339 * We do not have an agbp, so select an initial allocation
1340 * group for inode allocation.
1341 */
be60fe54
CH
1342 start_agno = xfs_ialloc_ag_select(tp, parent, mode, okalloc);
1343 if (start_agno == NULLAGNUMBER) {
4bb61069
CH
1344 *inop = NULLFSINO;
1345 return 0;
1346 }
55d6af64 1347
f2ecc5e4
CH
1348 /*
1349 * If we have already hit the ceiling of inode blocks then clear
1350 * okalloc so we scan all available agi structures for a free
1351 * inode.
1352 */
f2ecc5e4 1353 if (mp->m_maxicount &&
501ab323
DC
1354 percpu_counter_read(&mp->m_icount) + mp->m_ialloc_inos >
1355 mp->m_maxicount) {
f2ecc5e4
CH
1356 noroom = 1;
1357 okalloc = 0;
1358 }
1359
1360 /*
1361 * Loop until we find an allocation group that either has free inodes
1362 * or in which we can allocate some inodes. Iterate through the
1363 * allocation groups upward, wrapping at the end.
1364 */
be60fe54
CH
1365 agno = start_agno;
1366 for (;;) {
1367 pag = xfs_perag_get(mp, agno);
1368 if (!pag->pagi_inodeok) {
1369 xfs_ialloc_next_ag(mp);
1370 goto nextag;
1371 }
1372
1373 if (!pag->pagi_init) {
1374 error = xfs_ialloc_pagi_init(mp, tp, agno);
1375 if (error)
1376 goto out_error;
f2ecc5e4 1377 }
be60fe54 1378
f2ecc5e4 1379 /*
be60fe54 1380 * Do a first racy fast path check if this AG is usable.
f2ecc5e4 1381 */
be60fe54
CH
1382 if (!pag->pagi_freecount && !okalloc)
1383 goto nextag;
1384
c4982110
CH
1385 /*
1386 * Then read in the AGI buffer and recheck with the AGI buffer
1387 * lock held.
1388 */
be60fe54
CH
1389 error = xfs_ialloc_read_agi(mp, tp, agno, &agbp);
1390 if (error)
1391 goto out_error;
1392
be60fe54
CH
1393 if (pag->pagi_freecount) {
1394 xfs_perag_put(pag);
1395 goto out_alloc;
1396 }
1397
c4982110
CH
1398 if (!okalloc)
1399 goto nextag_relse_buffer;
1400
be60fe54
CH
1401
1402 error = xfs_ialloc_ag_alloc(tp, agbp, &ialloced);
1403 if (error) {
1404 xfs_trans_brelse(tp, agbp);
1405
2451337d 1406 if (error != -ENOSPC)
be60fe54
CH
1407 goto out_error;
1408
1409 xfs_perag_put(pag);
f2ecc5e4 1410 *inop = NULLFSINO;
be60fe54 1411 return 0;
f2ecc5e4 1412 }
be60fe54
CH
1413
1414 if (ialloced) {
1415 /*
1416 * We successfully allocated some inodes, return
1417 * the current context to the caller so that it
1418 * can commit the current transaction and call
1419 * us again where we left off.
1420 */
1421 ASSERT(pag->pagi_freecount > 0);
f2ecc5e4 1422 xfs_perag_put(pag);
be60fe54
CH
1423
1424 *IO_agbp = agbp;
1425 *inop = NULLFSINO;
1426 return 0;
f2ecc5e4 1427 }
be60fe54 1428
c4982110
CH
1429nextag_relse_buffer:
1430 xfs_trans_brelse(tp, agbp);
be60fe54 1431nextag:
f2ecc5e4 1432 xfs_perag_put(pag);
be60fe54
CH
1433 if (++agno == mp->m_sb.sb_agcount)
1434 agno = 0;
1435 if (agno == start_agno) {
1436 *inop = NULLFSINO;
2451337d 1437 return noroom ? -ENOSPC : 0;
be60fe54 1438 }
f2ecc5e4
CH
1439 }
1440
4bb61069 1441out_alloc:
f2ecc5e4
CH
1442 *IO_agbp = NULL;
1443 return xfs_dialloc_ag(tp, agbp, parent, inop);
be60fe54
CH
1444out_error:
1445 xfs_perag_put(pag);
b474c7ae 1446 return error;
f2ecc5e4
CH
1447}
1448
2b64ee5c
BF
1449STATIC int
1450xfs_difree_inobt(
1451 struct xfs_mount *mp,
1452 struct xfs_trans *tp,
1453 struct xfs_buf *agbp,
1454 xfs_agino_t agino,
1455 struct xfs_bmap_free *flist,
0d907a3b 1456 int *deleted,
2b64ee5c
BF
1457 xfs_ino_t *first_ino,
1458 struct xfs_inobt_rec_incore *orec)
1da177e4 1459{
2b64ee5c
BF
1460 struct xfs_agi *agi = XFS_BUF_TO_AGI(agbp);
1461 xfs_agnumber_t agno = be32_to_cpu(agi->agi_seqno);
1462 struct xfs_perag *pag;
1463 struct xfs_btree_cur *cur;
1464 struct xfs_inobt_rec_incore rec;
1465 int ilen;
1466 int error;
1467 int i;
1468 int off;
1da177e4 1469
69ef921b 1470 ASSERT(agi->agi_magicnum == cpu_to_be32(XFS_AGI_MAGIC));
2b64ee5c
BF
1471 ASSERT(XFS_AGINO_TO_AGBNO(mp, agino) < be32_to_cpu(agi->agi_length));
1472
1da177e4
LT
1473 /*
1474 * Initialize the cursor.
1475 */
57bd3dbe 1476 cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_INO);
1da177e4 1477
0b48db80
DC
1478 error = xfs_check_agi_freecount(cur, agi);
1479 if (error)
1480 goto error0;
1481
1da177e4
LT
1482 /*
1483 * Look for the entry describing this inode.
1484 */
21875505 1485 if ((error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_LE, &i))) {
0b932ccc
DC
1486 xfs_warn(mp, "%s: xfs_inobt_lookup() returned error %d.",
1487 __func__, error);
1da177e4
LT
1488 goto error0;
1489 }
c29aad41 1490 XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error0);
2e287a73
CH
1491 error = xfs_inobt_get_rec(cur, &rec, &i);
1492 if (error) {
0b932ccc
DC
1493 xfs_warn(mp, "%s: xfs_inobt_get_rec() returned error %d.",
1494 __func__, error);
1da177e4
LT
1495 goto error0;
1496 }
c29aad41 1497 XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error0);
1da177e4
LT
1498 /*
1499 * Get the offset in the inode chunk.
1500 */
1501 off = agino - rec.ir_startino;
1502 ASSERT(off >= 0 && off < XFS_INODES_PER_CHUNK);
0d87e656 1503 ASSERT(!(rec.ir_free & XFS_INOBT_MASK(off)));
1da177e4
LT
1504 /*
1505 * Mark the inode free & increment the count.
1506 */
0d87e656 1507 rec.ir_free |= XFS_INOBT_MASK(off);
1da177e4
LT
1508 rec.ir_freecount++;
1509
1510 /*
999633d3
BF
1511 * When an inode chunk is free, it becomes eligible for removal. Don't
1512 * remove the chunk if the block size is large enough for multiple inode
1513 * chunks (that might not be free).
1da177e4 1514 */
1bd960ee 1515 if (!(mp->m_flags & XFS_MOUNT_IKEEP) &&
999633d3
BF
1516 rec.ir_free == XFS_INOBT_ALL_FREE &&
1517 mp->m_sb.sb_inopblock <= XFS_INODES_PER_CHUNK) {
1da177e4 1518
376c2f3a 1519 *deleted = 1;
1da177e4
LT
1520 *first_ino = XFS_AGINO_TO_INO(mp, agno, rec.ir_startino);
1521
1522 /*
1523 * Remove the inode cluster from the AGI B+Tree, adjust the
1524 * AGI and Superblock inode counts, and mark the disk space
1525 * to be freed when the transaction is committed.
1526 */
999633d3 1527 ilen = rec.ir_freecount;
413d57c9
MS
1528 be32_add_cpu(&agi->agi_count, -ilen);
1529 be32_add_cpu(&agi->agi_freecount, -(ilen - 1));
1da177e4 1530 xfs_ialloc_log_agi(tp, agbp, XFS_AGI_COUNT | XFS_AGI_FREECOUNT);
44b56e0a
DC
1531 pag = xfs_perag_get(mp, agno);
1532 pag->pagi_freecount -= ilen - 1;
1533 xfs_perag_put(pag);
1da177e4
LT
1534 xfs_trans_mod_sb(tp, XFS_TRANS_SB_ICOUNT, -ilen);
1535 xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, -(ilen - 1));
1536
91cca5df 1537 if ((error = xfs_btree_delete(cur, &i))) {
0b932ccc
DC
1538 xfs_warn(mp, "%s: xfs_btree_delete returned error %d.",
1539 __func__, error);
1da177e4
LT
1540 goto error0;
1541 }
1542
126cd105
JL
1543 xfs_bmap_add_free(XFS_AGB_TO_FSB(mp, agno,
1544 XFS_AGINO_TO_AGBNO(mp, rec.ir_startino)),
1545 mp->m_ialloc_blks, flist, mp);
1da177e4 1546 } else {
376c2f3a 1547 *deleted = 0;
1da177e4 1548
afabc24a
CH
1549 error = xfs_inobt_update(cur, &rec);
1550 if (error) {
0b932ccc
DC
1551 xfs_warn(mp, "%s: xfs_inobt_update returned error %d.",
1552 __func__, error);
1da177e4
LT
1553 goto error0;
1554 }
afabc24a 1555
1da177e4
LT
1556 /*
1557 * Change the inode free counts and log the ag/sb changes.
1558 */
413d57c9 1559 be32_add_cpu(&agi->agi_freecount, 1);
1da177e4 1560 xfs_ialloc_log_agi(tp, agbp, XFS_AGI_FREECOUNT);
44b56e0a
DC
1561 pag = xfs_perag_get(mp, agno);
1562 pag->pagi_freecount++;
1563 xfs_perag_put(pag);
1da177e4
LT
1564 xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, 1);
1565 }
1566
0b48db80
DC
1567 error = xfs_check_agi_freecount(cur, agi);
1568 if (error)
1569 goto error0;
1da177e4 1570
2b64ee5c 1571 *orec = rec;
1da177e4
LT
1572 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
1573 return 0;
1574
1575error0:
1576 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
1577 return error;
1578}
1579
3efa4ffd
BF
1580/*
1581 * Free an inode in the free inode btree.
1582 */
1583STATIC int
1584xfs_difree_finobt(
1585 struct xfs_mount *mp,
1586 struct xfs_trans *tp,
1587 struct xfs_buf *agbp,
1588 xfs_agino_t agino,
1589 struct xfs_inobt_rec_incore *ibtrec) /* inobt record */
1590{
1591 struct xfs_agi *agi = XFS_BUF_TO_AGI(agbp);
1592 xfs_agnumber_t agno = be32_to_cpu(agi->agi_seqno);
1593 struct xfs_btree_cur *cur;
1594 struct xfs_inobt_rec_incore rec;
1595 int offset = agino - ibtrec->ir_startino;
1596 int error;
1597 int i;
1598
1599 cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_FINO);
1600
1601 error = xfs_inobt_lookup(cur, ibtrec->ir_startino, XFS_LOOKUP_EQ, &i);
1602 if (error)
1603 goto error;
1604 if (i == 0) {
1605 /*
1606 * If the record does not exist in the finobt, we must have just
1607 * freed an inode in a previously fully allocated chunk. If not,
1608 * something is out of sync.
1609 */
c29aad41 1610 XFS_WANT_CORRUPTED_GOTO(mp, ibtrec->ir_freecount == 1, error);
3efa4ffd
BF
1611
1612 error = xfs_inobt_insert_rec(cur, ibtrec->ir_freecount,
1613 ibtrec->ir_free, &i);
1614 if (error)
1615 goto error;
1616 ASSERT(i == 1);
1617
1618 goto out;
1619 }
1620
1621 /*
1622 * Read and update the existing record. We could just copy the ibtrec
1623 * across here, but that would defeat the purpose of having redundant
1624 * metadata. By making the modifications independently, we can catch
1625 * corruptions that we wouldn't see if we just copied from one record
1626 * to another.
1627 */
1628 error = xfs_inobt_get_rec(cur, &rec, &i);
1629 if (error)
1630 goto error;
c29aad41 1631 XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error);
3efa4ffd
BF
1632
1633 rec.ir_free |= XFS_INOBT_MASK(offset);
1634 rec.ir_freecount++;
1635
c29aad41 1636 XFS_WANT_CORRUPTED_GOTO(mp, (rec.ir_free == ibtrec->ir_free) &&
3efa4ffd
BF
1637 (rec.ir_freecount == ibtrec->ir_freecount),
1638 error);
1639
1640 /*
1641 * The content of inobt records should always match between the inobt
1642 * and finobt. The lifecycle of records in the finobt is different from
1643 * the inobt in that the finobt only tracks records with at least one
1644 * free inode. Hence, if all of the inodes are free and we aren't
1645 * keeping inode chunks permanently on disk, remove the record.
1646 * Otherwise, update the record with the new information.
999633d3
BF
1647 *
1648 * Note that we currently can't free chunks when the block size is large
1649 * enough for multiple chunks. Leave the finobt record to remain in sync
1650 * with the inobt.
3efa4ffd 1651 */
999633d3
BF
1652 if (rec.ir_free == XFS_INOBT_ALL_FREE &&
1653 mp->m_sb.sb_inopblock <= XFS_INODES_PER_CHUNK &&
3efa4ffd
BF
1654 !(mp->m_flags & XFS_MOUNT_IKEEP)) {
1655 error = xfs_btree_delete(cur, &i);
1656 if (error)
1657 goto error;
1658 ASSERT(i == 1);
1659 } else {
1660 error = xfs_inobt_update(cur, &rec);
1661 if (error)
1662 goto error;
1663 }
1664
1665out:
1666 error = xfs_check_agi_freecount(cur, agi);
1667 if (error)
1668 goto error;
1669
1670 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
1671 return 0;
1672
1673error:
1674 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
1675 return error;
1676}
1677
2b64ee5c
BF
1678/*
1679 * Free disk inode. Carefully avoids touching the incore inode, all
1680 * manipulations incore are the caller's responsibility.
1681 * The on-disk inode is not changed by this operation, only the
1682 * btree (free inode mask) is changed.
1683 */
1684int
1685xfs_difree(
1686 struct xfs_trans *tp, /* transaction pointer */
1687 xfs_ino_t inode, /* inode to be freed */
1688 struct xfs_bmap_free *flist, /* extents to free */
0d907a3b 1689 int *deleted,/* set if inode cluster was deleted */
2b64ee5c
BF
1690 xfs_ino_t *first_ino)/* first inode in deleted cluster */
1691{
1692 /* REFERENCED */
1693 xfs_agblock_t agbno; /* block number containing inode */
1694 struct xfs_buf *agbp; /* buffer for allocation group header */
1695 xfs_agino_t agino; /* allocation group inode number */
1696 xfs_agnumber_t agno; /* allocation group number */
1697 int error; /* error return value */
1698 struct xfs_mount *mp; /* mount structure for filesystem */
1699 struct xfs_inobt_rec_incore rec;/* btree record */
1700
1701 mp = tp->t_mountp;
1702
1703 /*
1704 * Break up inode number into its components.
1705 */
1706 agno = XFS_INO_TO_AGNO(mp, inode);
1707 if (agno >= mp->m_sb.sb_agcount) {
1708 xfs_warn(mp, "%s: agno >= mp->m_sb.sb_agcount (%d >= %d).",
1709 __func__, agno, mp->m_sb.sb_agcount);
1710 ASSERT(0);
2451337d 1711 return -EINVAL;
2b64ee5c
BF
1712 }
1713 agino = XFS_INO_TO_AGINO(mp, inode);
1714 if (inode != XFS_AGINO_TO_INO(mp, agno, agino)) {
1715 xfs_warn(mp, "%s: inode != XFS_AGINO_TO_INO() (%llu != %llu).",
1716 __func__, (unsigned long long)inode,
1717 (unsigned long long)XFS_AGINO_TO_INO(mp, agno, agino));
1718 ASSERT(0);
2451337d 1719 return -EINVAL;
2b64ee5c
BF
1720 }
1721 agbno = XFS_AGINO_TO_AGBNO(mp, agino);
1722 if (agbno >= mp->m_sb.sb_agblocks) {
1723 xfs_warn(mp, "%s: agbno >= mp->m_sb.sb_agblocks (%d >= %d).",
1724 __func__, agbno, mp->m_sb.sb_agblocks);
1725 ASSERT(0);
2451337d 1726 return -EINVAL;
2b64ee5c
BF
1727 }
1728 /*
1729 * Get the allocation group header.
1730 */
1731 error = xfs_ialloc_read_agi(mp, tp, agno, &agbp);
1732 if (error) {
1733 xfs_warn(mp, "%s: xfs_ialloc_read_agi() returned error %d.",
1734 __func__, error);
1735 return error;
1736 }
1737
1738 /*
1739 * Fix up the inode allocation btree.
1740 */
0d907a3b 1741 error = xfs_difree_inobt(mp, tp, agbp, agino, flist, deleted, first_ino,
2b64ee5c
BF
1742 &rec);
1743 if (error)
1744 goto error0;
1745
3efa4ffd
BF
1746 /*
1747 * Fix up the free inode btree.
1748 */
1749 if (xfs_sb_version_hasfinobt(&mp->m_sb)) {
1750 error = xfs_difree_finobt(mp, tp, agbp, agino, &rec);
1751 if (error)
1752 goto error0;
1753 }
1754
2b64ee5c
BF
1755 return 0;
1756
1757error0:
1758 return error;
1759}
1760
7124fe0a
DC
1761STATIC int
1762xfs_imap_lookup(
1763 struct xfs_mount *mp,
1764 struct xfs_trans *tp,
1765 xfs_agnumber_t agno,
1766 xfs_agino_t agino,
1767 xfs_agblock_t agbno,
1768 xfs_agblock_t *chunk_agbno,
1769 xfs_agblock_t *offset_agbno,
1770 int flags)
1771{
1772 struct xfs_inobt_rec_incore rec;
1773 struct xfs_btree_cur *cur;
1774 struct xfs_buf *agbp;
7124fe0a
DC
1775 int error;
1776 int i;
1777
1778 error = xfs_ialloc_read_agi(mp, tp, agno, &agbp);
1779 if (error) {
53487786
DC
1780 xfs_alert(mp,
1781 "%s: xfs_ialloc_read_agi() returned error %d, agno %d",
1782 __func__, error, agno);
7124fe0a
DC
1783 return error;
1784 }
1785
1786 /*
4536f2ad
DC
1787 * Lookup the inode record for the given agino. If the record cannot be
1788 * found, then it's an invalid inode number and we should abort. Once
1789 * we have a record, we need to ensure it contains the inode number
1790 * we are looking up.
7124fe0a 1791 */
57bd3dbe 1792 cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_INO);
4536f2ad 1793 error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_LE, &i);
7124fe0a
DC
1794 if (!error) {
1795 if (i)
1796 error = xfs_inobt_get_rec(cur, &rec, &i);
1797 if (!error && i == 0)
2451337d 1798 error = -EINVAL;
7124fe0a
DC
1799 }
1800
1801 xfs_trans_brelse(tp, agbp);
1802 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
1803 if (error)
1804 return error;
1805
4536f2ad
DC
1806 /* check that the returned record contains the required inode */
1807 if (rec.ir_startino > agino ||
71783438 1808 rec.ir_startino + mp->m_ialloc_inos <= agino)
2451337d 1809 return -EINVAL;
4536f2ad 1810
7124fe0a 1811 /* for untrusted inodes check it is allocated first */
1920779e 1812 if ((flags & XFS_IGET_UNTRUSTED) &&
7124fe0a 1813 (rec.ir_free & XFS_INOBT_MASK(agino - rec.ir_startino)))
2451337d 1814 return -EINVAL;
7124fe0a
DC
1815
1816 *chunk_agbno = XFS_AGINO_TO_AGBNO(mp, rec.ir_startino);
1817 *offset_agbno = agbno - *chunk_agbno;
1818 return 0;
1819}
1820
1da177e4 1821/*
94e1b69d 1822 * Return the location of the inode in imap, for mapping it into a buffer.
1da177e4 1823 */
1da177e4 1824int
94e1b69d
CH
1825xfs_imap(
1826 xfs_mount_t *mp, /* file system mount structure */
1827 xfs_trans_t *tp, /* transaction pointer */
1da177e4 1828 xfs_ino_t ino, /* inode to locate */
94e1b69d
CH
1829 struct xfs_imap *imap, /* location map structure */
1830 uint flags) /* flags for inode btree lookup */
1da177e4
LT
1831{
1832 xfs_agblock_t agbno; /* block number of inode in the alloc group */
1da177e4
LT
1833 xfs_agino_t agino; /* inode number within alloc group */
1834 xfs_agnumber_t agno; /* allocation group number */
1835 int blks_per_cluster; /* num blocks per inode cluster */
1836 xfs_agblock_t chunk_agbno; /* first block in inode chunk */
1da177e4 1837 xfs_agblock_t cluster_agbno; /* first block in inode cluster */
1da177e4 1838 int error; /* error code */
1da177e4 1839 int offset; /* index of inode in its buffer */
836a94ad 1840 xfs_agblock_t offset_agbno; /* blks from chunk start to inode */
1da177e4
LT
1841
1842 ASSERT(ino != NULLFSINO);
94e1b69d 1843
1da177e4
LT
1844 /*
1845 * Split up the inode number into its parts.
1846 */
1847 agno = XFS_INO_TO_AGNO(mp, ino);
1848 agino = XFS_INO_TO_AGINO(mp, ino);
1849 agbno = XFS_AGINO_TO_AGBNO(mp, agino);
1850 if (agno >= mp->m_sb.sb_agcount || agbno >= mp->m_sb.sb_agblocks ||
1851 ino != XFS_AGINO_TO_INO(mp, agno, agino)) {
1852#ifdef DEBUG
1920779e
DC
1853 /*
1854 * Don't output diagnostic information for untrusted inodes
1855 * as they can be invalid without implying corruption.
1856 */
1857 if (flags & XFS_IGET_UNTRUSTED)
2451337d 1858 return -EINVAL;
1da177e4 1859 if (agno >= mp->m_sb.sb_agcount) {
53487786
DC
1860 xfs_alert(mp,
1861 "%s: agno (%d) >= mp->m_sb.sb_agcount (%d)",
1862 __func__, agno, mp->m_sb.sb_agcount);
1da177e4
LT
1863 }
1864 if (agbno >= mp->m_sb.sb_agblocks) {
53487786
DC
1865 xfs_alert(mp,
1866 "%s: agbno (0x%llx) >= mp->m_sb.sb_agblocks (0x%lx)",
1867 __func__, (unsigned long long)agbno,
1868 (unsigned long)mp->m_sb.sb_agblocks);
1da177e4
LT
1869 }
1870 if (ino != XFS_AGINO_TO_INO(mp, agno, agino)) {
53487786
DC
1871 xfs_alert(mp,
1872 "%s: ino (0x%llx) != XFS_AGINO_TO_INO() (0x%llx)",
1873 __func__, ino,
1874 XFS_AGINO_TO_INO(mp, agno, agino));
1da177e4 1875 }
745b1f47 1876 xfs_stack_trace();
1da177e4 1877#endif /* DEBUG */
2451337d 1878 return -EINVAL;
1da177e4 1879 }
94e1b69d 1880
f9e5abcf 1881 blks_per_cluster = xfs_icluster_size_fsb(mp);
7124fe0a
DC
1882
1883 /*
1884 * For bulkstat and handle lookups, we have an untrusted inode number
1885 * that we have to verify is valid. We cannot do this just by reading
1886 * the inode buffer as it may have been unlinked and removed leaving
1887 * inodes in stale state on disk. Hence we have to do a btree lookup
1888 * in all cases where an untrusted inode number is passed.
1889 */
1920779e 1890 if (flags & XFS_IGET_UNTRUSTED) {
7124fe0a
DC
1891 error = xfs_imap_lookup(mp, tp, agno, agino, agbno,
1892 &chunk_agbno, &offset_agbno, flags);
1893 if (error)
1894 return error;
1895 goto out_map;
1896 }
1897
94e1b69d
CH
1898 /*
1899 * If the inode cluster size is the same as the blocksize or
1900 * smaller we get to the buffer by simple arithmetics.
1901 */
f9e5abcf 1902 if (blks_per_cluster == 1) {
1da177e4
LT
1903 offset = XFS_INO_TO_OFFSET(mp, ino);
1904 ASSERT(offset < mp->m_sb.sb_inopblock);
94e1b69d
CH
1905
1906 imap->im_blkno = XFS_AGB_TO_DADDR(mp, agno, agbno);
1907 imap->im_len = XFS_FSB_TO_BB(mp, 1);
1908 imap->im_boffset = (ushort)(offset << mp->m_sb.sb_inodelog);
1da177e4
LT
1909 return 0;
1910 }
94e1b69d 1911
94e1b69d
CH
1912 /*
1913 * If the inode chunks are aligned then use simple maths to
1914 * find the location. Otherwise we have to do a btree
1915 * lookup to find the location.
1916 */
1da177e4
LT
1917 if (mp->m_inoalign_mask) {
1918 offset_agbno = agbno & mp->m_inoalign_mask;
1919 chunk_agbno = agbno - offset_agbno;
1920 } else {
7124fe0a
DC
1921 error = xfs_imap_lookup(mp, tp, agno, agino, agbno,
1922 &chunk_agbno, &offset_agbno, flags);
1da177e4
LT
1923 if (error)
1924 return error;
1da177e4 1925 }
94e1b69d 1926
7124fe0a 1927out_map:
1da177e4
LT
1928 ASSERT(agbno >= chunk_agbno);
1929 cluster_agbno = chunk_agbno +
1930 ((offset_agbno / blks_per_cluster) * blks_per_cluster);
1931 offset = ((agbno - cluster_agbno) * mp->m_sb.sb_inopblock) +
1932 XFS_INO_TO_OFFSET(mp, ino);
94e1b69d
CH
1933
1934 imap->im_blkno = XFS_AGB_TO_DADDR(mp, agno, cluster_agbno);
1935 imap->im_len = XFS_FSB_TO_BB(mp, blks_per_cluster);
1936 imap->im_boffset = (ushort)(offset << mp->m_sb.sb_inodelog);
1937
1938 /*
1939 * If the inode number maps to a block outside the bounds
1940 * of the file system then return NULL rather than calling
1941 * read_buf and panicing when we get an error from the
1942 * driver.
1943 */
1944 if ((imap->im_blkno + imap->im_len) >
1945 XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks)) {
53487786
DC
1946 xfs_alert(mp,
1947 "%s: (im_blkno (0x%llx) + im_len (0x%llx)) > sb_dblocks (0x%llx)",
1948 __func__, (unsigned long long) imap->im_blkno,
94e1b69d
CH
1949 (unsigned long long) imap->im_len,
1950 XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks));
2451337d 1951 return -EINVAL;
94e1b69d 1952 }
1da177e4 1953 return 0;
1da177e4
LT
1954}
1955
1956/*
1957 * Compute and fill in value of m_in_maxlevels.
1958 */
1959void
1960xfs_ialloc_compute_maxlevels(
1961 xfs_mount_t *mp) /* file system mount structure */
1962{
1963 int level;
1964 uint maxblocks;
1965 uint maxleafents;
1966 int minleafrecs;
1967 int minnoderecs;
1968
1969 maxleafents = (1LL << XFS_INO_AGINO_BITS(mp)) >>
1970 XFS_INODES_PER_CHUNK_LOG;
1971 minleafrecs = mp->m_alloc_mnr[0];
1972 minnoderecs = mp->m_alloc_mnr[1];
1973 maxblocks = (maxleafents + minleafrecs - 1) / minleafrecs;
1974 for (level = 1; maxblocks > 1; level++)
1975 maxblocks = (maxblocks + minnoderecs - 1) / minnoderecs;
1976 mp->m_in_maxlevels = level;
1977}
1978
1979/*
aafc3c24
BF
1980 * Log specified fields for the ag hdr (inode section). The growth of the agi
1981 * structure over time requires that we interpret the buffer as two logical
1982 * regions delineated by the end of the unlinked list. This is due to the size
1983 * of the hash table and its location in the middle of the agi.
1984 *
1985 * For example, a request to log a field before agi_unlinked and a field after
1986 * agi_unlinked could cause us to log the entire hash table and use an excessive
1987 * amount of log space. To avoid this behavior, log the region up through
1988 * agi_unlinked in one call and the region after agi_unlinked through the end of
1989 * the structure in another.
1da177e4
LT
1990 */
1991void
1992xfs_ialloc_log_agi(
1993 xfs_trans_t *tp, /* transaction pointer */
1994 xfs_buf_t *bp, /* allocation group header buffer */
1995 int fields) /* bitmask of fields to log */
1996{
1997 int first; /* first byte number */
1998 int last; /* last byte number */
1999 static const short offsets[] = { /* field starting offsets */
2000 /* keep in sync with bit definitions */
2001 offsetof(xfs_agi_t, agi_magicnum),
2002 offsetof(xfs_agi_t, agi_versionnum),
2003 offsetof(xfs_agi_t, agi_seqno),
2004 offsetof(xfs_agi_t, agi_length),
2005 offsetof(xfs_agi_t, agi_count),
2006 offsetof(xfs_agi_t, agi_root),
2007 offsetof(xfs_agi_t, agi_level),
2008 offsetof(xfs_agi_t, agi_freecount),
2009 offsetof(xfs_agi_t, agi_newino),
2010 offsetof(xfs_agi_t, agi_dirino),
2011 offsetof(xfs_agi_t, agi_unlinked),
aafc3c24
BF
2012 offsetof(xfs_agi_t, agi_free_root),
2013 offsetof(xfs_agi_t, agi_free_level),
1da177e4
LT
2014 sizeof(xfs_agi_t)
2015 };
2016#ifdef DEBUG
2017 xfs_agi_t *agi; /* allocation group header */
2018
2019 agi = XFS_BUF_TO_AGI(bp);
69ef921b 2020 ASSERT(agi->agi_magicnum == cpu_to_be32(XFS_AGI_MAGIC));
1da177e4 2021#endif
aafc3c24
BF
2022
2023 xfs_trans_buf_set_type(tp, bp, XFS_BLFT_AGI_BUF);
2024
1da177e4 2025 /*
aafc3c24
BF
2026 * Compute byte offsets for the first and last fields in the first
2027 * region and log the agi buffer. This only logs up through
2028 * agi_unlinked.
1da177e4 2029 */
aafc3c24
BF
2030 if (fields & XFS_AGI_ALL_BITS_R1) {
2031 xfs_btree_offsets(fields, offsets, XFS_AGI_NUM_BITS_R1,
2032 &first, &last);
2033 xfs_trans_log_buf(tp, bp, first, last);
2034 }
2035
1da177e4 2036 /*
aafc3c24
BF
2037 * Mask off the bits in the first region and calculate the first and
2038 * last field offsets for any bits in the second region.
1da177e4 2039 */
aafc3c24
BF
2040 fields &= ~XFS_AGI_ALL_BITS_R1;
2041 if (fields) {
2042 xfs_btree_offsets(fields, offsets, XFS_AGI_NUM_BITS_R2,
2043 &first, &last);
2044 xfs_trans_log_buf(tp, bp, first, last);
2045 }
1da177e4
LT
2046}
2047
5e1be0fb
CH
2048#ifdef DEBUG
2049STATIC void
2050xfs_check_agi_unlinked(
2051 struct xfs_agi *agi)
2052{
2053 int i;
2054
2055 for (i = 0; i < XFS_AGI_UNLINKED_BUCKETS; i++)
2056 ASSERT(agi->agi_unlinked[i]);
2057}
2058#else
2059#define xfs_check_agi_unlinked(agi)
2060#endif
2061
983d09ff 2062static bool
612cfbfe 2063xfs_agi_verify(
3702ce6e
DC
2064 struct xfs_buf *bp)
2065{
2066 struct xfs_mount *mp = bp->b_target->bt_mount;
2067 struct xfs_agi *agi = XFS_BUF_TO_AGI(bp);
3702ce6e 2068
983d09ff
DC
2069 if (xfs_sb_version_hascrc(&mp->m_sb) &&
2070 !uuid_equal(&agi->agi_uuid, &mp->m_sb.sb_uuid))
2071 return false;
3702ce6e
DC
2072 /*
2073 * Validate the magic number of the agi block.
2074 */
983d09ff
DC
2075 if (agi->agi_magicnum != cpu_to_be32(XFS_AGI_MAGIC))
2076 return false;
2077 if (!XFS_AGI_GOOD_VERSION(be32_to_cpu(agi->agi_versionnum)))
2078 return false;
3702ce6e 2079
e1b05723
ES
2080 if (be32_to_cpu(agi->agi_level) > XFS_BTREE_MAXLEVELS)
2081 return false;
3702ce6e
DC
2082 /*
2083 * during growfs operations, the perag is not fully initialised,
2084 * so we can't use it for any useful checking. growfs ensures we can't
2085 * use it by using uncached buffers that don't have the perag attached
2086 * so we can detect and avoid this problem.
2087 */
983d09ff
DC
2088 if (bp->b_pag && be32_to_cpu(agi->agi_seqno) != bp->b_pag->pag_agno)
2089 return false;
3702ce6e 2090
3702ce6e 2091 xfs_check_agi_unlinked(agi);
983d09ff 2092 return true;
612cfbfe
DC
2093}
2094
1813dd64
DC
2095static void
2096xfs_agi_read_verify(
612cfbfe
DC
2097 struct xfs_buf *bp)
2098{
983d09ff 2099 struct xfs_mount *mp = bp->b_target->bt_mount;
983d09ff 2100
ce5028cf
ES
2101 if (xfs_sb_version_hascrc(&mp->m_sb) &&
2102 !xfs_buf_verify_cksum(bp, XFS_AGI_CRC_OFF))
2451337d 2103 xfs_buf_ioerror(bp, -EFSBADCRC);
ce5028cf
ES
2104 else if (XFS_TEST_ERROR(!xfs_agi_verify(bp), mp,
2105 XFS_ERRTAG_IALLOC_READ_AGI,
2106 XFS_RANDOM_IALLOC_READ_AGI))
2451337d 2107 xfs_buf_ioerror(bp, -EFSCORRUPTED);
ce5028cf
ES
2108
2109 if (bp->b_error)
2110 xfs_verifier_error(bp);
612cfbfe
DC
2111}
2112
b0f539de 2113static void
1813dd64 2114xfs_agi_write_verify(
612cfbfe
DC
2115 struct xfs_buf *bp)
2116{
983d09ff
DC
2117 struct xfs_mount *mp = bp->b_target->bt_mount;
2118 struct xfs_buf_log_item *bip = bp->b_fspriv;
2119
2120 if (!xfs_agi_verify(bp)) {
2451337d 2121 xfs_buf_ioerror(bp, -EFSCORRUPTED);
ce5028cf 2122 xfs_verifier_error(bp);
983d09ff
DC
2123 return;
2124 }
2125
2126 if (!xfs_sb_version_hascrc(&mp->m_sb))
2127 return;
2128
2129 if (bip)
2130 XFS_BUF_TO_AGI(bp)->agi_lsn = cpu_to_be64(bip->bli_item.li_lsn);
f1dbcd7e 2131 xfs_buf_update_cksum(bp, XFS_AGI_CRC_OFF);
3702ce6e
DC
2132}
2133
1813dd64
DC
2134const struct xfs_buf_ops xfs_agi_buf_ops = {
2135 .verify_read = xfs_agi_read_verify,
2136 .verify_write = xfs_agi_write_verify,
2137};
2138
1da177e4
LT
2139/*
2140 * Read in the allocation group header (inode allocation section)
2141 */
2142int
5e1be0fb
CH
2143xfs_read_agi(
2144 struct xfs_mount *mp, /* file system mount structure */
2145 struct xfs_trans *tp, /* transaction pointer */
2146 xfs_agnumber_t agno, /* allocation group number */
2147 struct xfs_buf **bpp) /* allocation group hdr buf */
1da177e4 2148{
5e1be0fb 2149 int error;
1da177e4 2150
d123031a 2151 trace_xfs_read_agi(mp, agno);
5e1be0fb 2152
d123031a 2153 ASSERT(agno != NULLAGNUMBER);
5e1be0fb 2154 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp,
1da177e4 2155 XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp)),
1813dd64 2156 XFS_FSS_TO_BB(mp, 1), 0, bpp, &xfs_agi_buf_ops);
1da177e4
LT
2157 if (error)
2158 return error;
5e1be0fb 2159
38f23232 2160 xfs_buf_set_ref(*bpp, XFS_AGI_REF);
5e1be0fb
CH
2161 return 0;
2162}
2163
2164int
2165xfs_ialloc_read_agi(
2166 struct xfs_mount *mp, /* file system mount structure */
2167 struct xfs_trans *tp, /* transaction pointer */
2168 xfs_agnumber_t agno, /* allocation group number */
2169 struct xfs_buf **bpp) /* allocation group hdr buf */
2170{
2171 struct xfs_agi *agi; /* allocation group header */
2172 struct xfs_perag *pag; /* per allocation group data */
2173 int error;
2174
d123031a
DC
2175 trace_xfs_ialloc_read_agi(mp, agno);
2176
5e1be0fb
CH
2177 error = xfs_read_agi(mp, tp, agno, bpp);
2178 if (error)
2179 return error;
2180
2181 agi = XFS_BUF_TO_AGI(*bpp);
44b56e0a 2182 pag = xfs_perag_get(mp, agno);
1da177e4 2183 if (!pag->pagi_init) {
16259e7d 2184 pag->pagi_freecount = be32_to_cpu(agi->agi_freecount);
92821e2b 2185 pag->pagi_count = be32_to_cpu(agi->agi_count);
1da177e4 2186 pag->pagi_init = 1;
1da177e4 2187 }
1da177e4 2188
5e1be0fb
CH
2189 /*
2190 * It's possible for these to be out of sync if
2191 * we are in the middle of a forced shutdown.
2192 */
2193 ASSERT(pag->pagi_freecount == be32_to_cpu(agi->agi_freecount) ||
2194 XFS_FORCED_SHUTDOWN(mp));
44b56e0a 2195 xfs_perag_put(pag);
1da177e4
LT
2196 return 0;
2197}
92821e2b
DC
2198
2199/*
2200 * Read in the agi to initialise the per-ag data in the mount structure
2201 */
2202int
2203xfs_ialloc_pagi_init(
2204 xfs_mount_t *mp, /* file system mount structure */
2205 xfs_trans_t *tp, /* transaction pointer */
2206 xfs_agnumber_t agno) /* allocation group number */
2207{
2208 xfs_buf_t *bp = NULL;
2209 int error;
2210
2211 error = xfs_ialloc_read_agi(mp, tp, agno, &bp);
2212 if (error)
2213 return error;
2214 if (bp)
2215 xfs_trans_brelse(tp, bp);
2216 return 0;
2217}