]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - fs/xfs/linux-2.6/xfs_aops.c
[XFS] Fix regression introduced by remount fixup
[mirror_ubuntu-bionic-kernel.git] / fs / xfs / linux-2.6 / xfs_aops.c
CommitLineData
1da177e4 1/*
7b718769
NS
2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
1da177e4 4 *
7b718769
NS
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
1da177e4
LT
7 * published by the Free Software Foundation.
8 *
7b718769
NS
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
1da177e4 13 *
7b718769
NS
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
1da177e4 17 */
1da177e4 18#include "xfs.h"
a844f451 19#include "xfs_bit.h"
1da177e4 20#include "xfs_log.h"
a844f451 21#include "xfs_inum.h"
1da177e4 22#include "xfs_sb.h"
a844f451 23#include "xfs_ag.h"
1da177e4
LT
24#include "xfs_dir2.h"
25#include "xfs_trans.h"
26#include "xfs_dmapi.h"
27#include "xfs_mount.h"
28#include "xfs_bmap_btree.h"
29#include "xfs_alloc_btree.h"
30#include "xfs_ialloc_btree.h"
1da177e4 31#include "xfs_dir2_sf.h"
a844f451 32#include "xfs_attr_sf.h"
1da177e4
LT
33#include "xfs_dinode.h"
34#include "xfs_inode.h"
a844f451
NS
35#include "xfs_alloc.h"
36#include "xfs_btree.h"
1da177e4
LT
37#include "xfs_error.h"
38#include "xfs_rw.h"
39#include "xfs_iomap.h"
739bfb2a 40#include "xfs_vnodeops.h"
1da177e4 41#include <linux/mpage.h>
10ce4444 42#include <linux/pagevec.h>
1da177e4
LT
43#include <linux/writeback.h>
44
f51623b2
NS
45STATIC void
46xfs_count_page_state(
47 struct page *page,
48 int *delalloc,
49 int *unmapped,
50 int *unwritten)
51{
52 struct buffer_head *bh, *head;
53
54 *delalloc = *unmapped = *unwritten = 0;
55
56 bh = head = page_buffers(page);
57 do {
58 if (buffer_uptodate(bh) && !buffer_mapped(bh))
59 (*unmapped) = 1;
f51623b2
NS
60 else if (buffer_unwritten(bh))
61 (*unwritten) = 1;
62 else if (buffer_delay(bh))
63 (*delalloc) = 1;
64 } while ((bh = bh->b_this_page) != head);
65}
66
1da177e4
LT
67#if defined(XFS_RW_TRACE)
68void
69xfs_page_trace(
70 int tag,
71 struct inode *inode,
72 struct page *page,
ed9d88f7 73 unsigned long pgoff)
1da177e4
LT
74{
75 xfs_inode_t *ip;
1da177e4 76 loff_t isize = i_size_read(inode);
f6d6d4fc 77 loff_t offset = page_offset(page);
1da177e4
LT
78 int delalloc = -1, unmapped = -1, unwritten = -1;
79
80 if (page_has_buffers(page))
81 xfs_count_page_state(page, &delalloc, &unmapped, &unwritten);
82
e6064d30 83 ip = XFS_I(inode);
1da177e4
LT
84 if (!ip->i_rwtrace)
85 return;
86
87 ktrace_enter(ip->i_rwtrace,
88 (void *)((unsigned long)tag),
89 (void *)ip,
90 (void *)inode,
91 (void *)page,
ed9d88f7 92 (void *)pgoff,
1da177e4
LT
93 (void *)((unsigned long)((ip->i_d.di_size >> 32) & 0xffffffff)),
94 (void *)((unsigned long)(ip->i_d.di_size & 0xffffffff)),
95 (void *)((unsigned long)((isize >> 32) & 0xffffffff)),
96 (void *)((unsigned long)(isize & 0xffffffff)),
97 (void *)((unsigned long)((offset >> 32) & 0xffffffff)),
98 (void *)((unsigned long)(offset & 0xffffffff)),
99 (void *)((unsigned long)delalloc),
100 (void *)((unsigned long)unmapped),
101 (void *)((unsigned long)unwritten),
f1fdc848 102 (void *)((unsigned long)current_pid()),
1da177e4
LT
103 (void *)NULL);
104}
105#else
ed9d88f7 106#define xfs_page_trace(tag, inode, page, pgoff)
1da177e4
LT
107#endif
108
6214ed44
CH
109STATIC struct block_device *
110xfs_find_bdev_for_inode(
111 struct xfs_inode *ip)
112{
113 struct xfs_mount *mp = ip->i_mount;
114
71ddabb9 115 if (XFS_IS_REALTIME_INODE(ip))
6214ed44
CH
116 return mp->m_rtdev_targp->bt_bdev;
117 else
118 return mp->m_ddev_targp->bt_bdev;
119}
120
0829c360
CH
121/*
122 * Schedule IO completion handling on a xfsdatad if this was
e927af90
DC
123 * the final hold on this ioend. If we are asked to wait,
124 * flush the workqueue.
0829c360
CH
125 */
126STATIC void
127xfs_finish_ioend(
e927af90
DC
128 xfs_ioend_t *ioend,
129 int wait)
0829c360 130{
e927af90 131 if (atomic_dec_and_test(&ioend->io_remaining)) {
0829c360 132 queue_work(xfsdatad_workqueue, &ioend->io_work);
e927af90
DC
133 if (wait)
134 flush_workqueue(xfsdatad_workqueue);
135 }
0829c360
CH
136}
137
f6d6d4fc
CH
138/*
139 * We're now finished for good with this ioend structure.
140 * Update the page state via the associated buffer_heads,
141 * release holds on the inode and bio, and finally free
142 * up memory. Do not use the ioend after this.
143 */
0829c360
CH
144STATIC void
145xfs_destroy_ioend(
146 xfs_ioend_t *ioend)
147{
f6d6d4fc
CH
148 struct buffer_head *bh, *next;
149
150 for (bh = ioend->io_buffer_head; bh; bh = next) {
151 next = bh->b_private;
7d04a335 152 bh->b_end_io(bh, !ioend->io_error);
f6d6d4fc 153 }
b677c210
CH
154 if (unlikely(ioend->io_error)) {
155 vn_ioerror(XFS_I(ioend->io_inode), ioend->io_error,
156 __FILE__,__LINE__);
157 }
158 vn_iowake(XFS_I(ioend->io_inode));
0829c360
CH
159 mempool_free(ioend, xfs_ioend_pool);
160}
161
ba87ea69
LM
162/*
163 * Update on-disk file size now that data has been written to disk.
164 * The current in-memory file size is i_size. If a write is beyond
613d7043 165 * eof i_new_size will be the intended file size until i_size is
ba87ea69
LM
166 * updated. If this write does not extend all the way to the valid
167 * file size then restrict this update to the end of the write.
168 */
169STATIC void
170xfs_setfilesize(
171 xfs_ioend_t *ioend)
172{
b677c210 173 xfs_inode_t *ip = XFS_I(ioend->io_inode);
ba87ea69
LM
174 xfs_fsize_t isize;
175 xfs_fsize_t bsize;
176
ba87ea69
LM
177 ASSERT((ip->i_d.di_mode & S_IFMT) == S_IFREG);
178 ASSERT(ioend->io_type != IOMAP_READ);
179
180 if (unlikely(ioend->io_error))
181 return;
182
183 bsize = ioend->io_offset + ioend->io_size;
184
185 xfs_ilock(ip, XFS_ILOCK_EXCL);
186
613d7043 187 isize = MAX(ip->i_size, ip->i_new_size);
ba87ea69
LM
188 isize = MIN(isize, bsize);
189
190 if (ip->i_d.di_size < isize) {
191 ip->i_d.di_size = isize;
192 ip->i_update_core = 1;
193 ip->i_update_size = 1;
150f29ef 194 mark_inode_dirty_sync(ioend->io_inode);
ba87ea69
LM
195 }
196
197 xfs_iunlock(ip, XFS_ILOCK_EXCL);
198}
199
0829c360 200/*
f6d6d4fc 201 * Buffered IO write completion for delayed allocate extents.
f6d6d4fc
CH
202 */
203STATIC void
204xfs_end_bio_delalloc(
c4028958 205 struct work_struct *work)
f6d6d4fc 206{
c4028958
DH
207 xfs_ioend_t *ioend =
208 container_of(work, xfs_ioend_t, io_work);
f6d6d4fc 209
ba87ea69 210 xfs_setfilesize(ioend);
f6d6d4fc
CH
211 xfs_destroy_ioend(ioend);
212}
213
214/*
215 * Buffered IO write completion for regular, written extents.
216 */
217STATIC void
218xfs_end_bio_written(
c4028958 219 struct work_struct *work)
f6d6d4fc 220{
c4028958
DH
221 xfs_ioend_t *ioend =
222 container_of(work, xfs_ioend_t, io_work);
f6d6d4fc 223
ba87ea69 224 xfs_setfilesize(ioend);
f6d6d4fc
CH
225 xfs_destroy_ioend(ioend);
226}
227
228/*
229 * IO write completion for unwritten extents.
230 *
0829c360 231 * Issue transactions to convert a buffer range from unwritten
f0973863 232 * to written extents.
0829c360
CH
233 */
234STATIC void
235xfs_end_bio_unwritten(
c4028958 236 struct work_struct *work)
0829c360 237{
c4028958
DH
238 xfs_ioend_t *ioend =
239 container_of(work, xfs_ioend_t, io_work);
7642861b 240 struct xfs_inode *ip = XFS_I(ioend->io_inode);
0829c360
CH
241 xfs_off_t offset = ioend->io_offset;
242 size_t size = ioend->io_size;
0829c360 243
ba87ea69 244 if (likely(!ioend->io_error)) {
cc88466f
DC
245 if (!XFS_FORCED_SHUTDOWN(ip->i_mount)) {
246 int error;
247 error = xfs_iomap_write_unwritten(ip, offset, size);
248 if (error)
249 ioend->io_error = error;
250 }
ba87ea69
LM
251 xfs_setfilesize(ioend);
252 }
253 xfs_destroy_ioend(ioend);
254}
255
256/*
257 * IO read completion for regular, written extents.
258 */
259STATIC void
260xfs_end_bio_read(
261 struct work_struct *work)
262{
263 xfs_ioend_t *ioend =
264 container_of(work, xfs_ioend_t, io_work);
265
0829c360
CH
266 xfs_destroy_ioend(ioend);
267}
268
269/*
270 * Allocate and initialise an IO completion structure.
271 * We need to track unwritten extent write completion here initially.
272 * We'll need to extend this for updating the ondisk inode size later
273 * (vs. incore size).
274 */
275STATIC xfs_ioend_t *
276xfs_alloc_ioend(
f6d6d4fc
CH
277 struct inode *inode,
278 unsigned int type)
0829c360
CH
279{
280 xfs_ioend_t *ioend;
281
282 ioend = mempool_alloc(xfs_ioend_pool, GFP_NOFS);
283
284 /*
285 * Set the count to 1 initially, which will prevent an I/O
286 * completion callback from happening before we have started
287 * all the I/O from calling the completion routine too early.
288 */
289 atomic_set(&ioend->io_remaining, 1);
7d04a335 290 ioend->io_error = 0;
f6d6d4fc
CH
291 ioend->io_list = NULL;
292 ioend->io_type = type;
b677c210 293 ioend->io_inode = inode;
c1a073bd 294 ioend->io_buffer_head = NULL;
f6d6d4fc 295 ioend->io_buffer_tail = NULL;
b677c210 296 atomic_inc(&XFS_I(ioend->io_inode)->i_iocount);
0829c360
CH
297 ioend->io_offset = 0;
298 ioend->io_size = 0;
299
f6d6d4fc 300 if (type == IOMAP_UNWRITTEN)
c4028958 301 INIT_WORK(&ioend->io_work, xfs_end_bio_unwritten);
f6d6d4fc 302 else if (type == IOMAP_DELAY)
c4028958 303 INIT_WORK(&ioend->io_work, xfs_end_bio_delalloc);
ba87ea69
LM
304 else if (type == IOMAP_READ)
305 INIT_WORK(&ioend->io_work, xfs_end_bio_read);
f6d6d4fc 306 else
c4028958 307 INIT_WORK(&ioend->io_work, xfs_end_bio_written);
0829c360
CH
308
309 return ioend;
310}
311
1da177e4
LT
312STATIC int
313xfs_map_blocks(
314 struct inode *inode,
315 loff_t offset,
316 ssize_t count,
317 xfs_iomap_t *mapp,
318 int flags)
319{
b3aea4ed 320 xfs_inode_t *ip = XFS_I(inode);
1da177e4
LT
321 int error, nmaps = 1;
322
541d7d3c 323 error = xfs_iomap(ip, offset, count,
739bfb2a 324 flags, mapp, &nmaps);
1da177e4 325 if (!error && (flags & (BMAPI_WRITE|BMAPI_ALLOCATE)))
b3aea4ed 326 xfs_iflags_set(ip, XFS_IMODIFIED);
1da177e4
LT
327 return -error;
328}
329
7989cb8e 330STATIC_INLINE int
1defeac9 331xfs_iomap_valid(
1da177e4 332 xfs_iomap_t *iomapp,
1defeac9 333 loff_t offset)
1da177e4 334{
1defeac9
CH
335 return offset >= iomapp->iomap_offset &&
336 offset < iomapp->iomap_offset + iomapp->iomap_bsize;
1da177e4
LT
337}
338
f6d6d4fc
CH
339/*
340 * BIO completion handler for buffered IO.
341 */
782e3b3b 342STATIC void
f6d6d4fc
CH
343xfs_end_bio(
344 struct bio *bio,
f6d6d4fc
CH
345 int error)
346{
347 xfs_ioend_t *ioend = bio->bi_private;
348
f6d6d4fc 349 ASSERT(atomic_read(&bio->bi_cnt) >= 1);
7d04a335 350 ioend->io_error = test_bit(BIO_UPTODATE, &bio->bi_flags) ? 0 : error;
f6d6d4fc
CH
351
352 /* Toss bio and pass work off to an xfsdatad thread */
f6d6d4fc
CH
353 bio->bi_private = NULL;
354 bio->bi_end_io = NULL;
f6d6d4fc 355 bio_put(bio);
7d04a335 356
e927af90 357 xfs_finish_ioend(ioend, 0);
f6d6d4fc
CH
358}
359
360STATIC void
361xfs_submit_ioend_bio(
362 xfs_ioend_t *ioend,
363 struct bio *bio)
364{
365 atomic_inc(&ioend->io_remaining);
366
367 bio->bi_private = ioend;
368 bio->bi_end_io = xfs_end_bio;
369
370 submit_bio(WRITE, bio);
371 ASSERT(!bio_flagged(bio, BIO_EOPNOTSUPP));
372 bio_put(bio);
373}
374
375STATIC struct bio *
376xfs_alloc_ioend_bio(
377 struct buffer_head *bh)
378{
379 struct bio *bio;
380 int nvecs = bio_get_nr_vecs(bh->b_bdev);
381
382 do {
383 bio = bio_alloc(GFP_NOIO, nvecs);
384 nvecs >>= 1;
385 } while (!bio);
386
387 ASSERT(bio->bi_private == NULL);
388 bio->bi_sector = bh->b_blocknr * (bh->b_size >> 9);
389 bio->bi_bdev = bh->b_bdev;
390 bio_get(bio);
391 return bio;
392}
393
394STATIC void
395xfs_start_buffer_writeback(
396 struct buffer_head *bh)
397{
398 ASSERT(buffer_mapped(bh));
399 ASSERT(buffer_locked(bh));
400 ASSERT(!buffer_delay(bh));
401 ASSERT(!buffer_unwritten(bh));
402
403 mark_buffer_async_write(bh);
404 set_buffer_uptodate(bh);
405 clear_buffer_dirty(bh);
406}
407
408STATIC void
409xfs_start_page_writeback(
410 struct page *page,
f6d6d4fc
CH
411 int clear_dirty,
412 int buffers)
413{
414 ASSERT(PageLocked(page));
415 ASSERT(!PageWriteback(page));
f6d6d4fc 416 if (clear_dirty)
92132021
DC
417 clear_page_dirty_for_io(page);
418 set_page_writeback(page);
f6d6d4fc 419 unlock_page(page);
1f7decf6
FW
420 /* If no buffers on the page are to be written, finish it here */
421 if (!buffers)
f6d6d4fc 422 end_page_writeback(page);
f6d6d4fc
CH
423}
424
425static inline int bio_add_buffer(struct bio *bio, struct buffer_head *bh)
426{
427 return bio_add_page(bio, bh->b_page, bh->b_size, bh_offset(bh));
428}
429
430/*
d88992f6
DC
431 * Submit all of the bios for all of the ioends we have saved up, covering the
432 * initial writepage page and also any probed pages.
433 *
434 * Because we may have multiple ioends spanning a page, we need to start
435 * writeback on all the buffers before we submit them for I/O. If we mark the
436 * buffers as we got, then we can end up with a page that only has buffers
437 * marked async write and I/O complete on can occur before we mark the other
438 * buffers async write.
439 *
440 * The end result of this is that we trip a bug in end_page_writeback() because
441 * we call it twice for the one page as the code in end_buffer_async_write()
442 * assumes that all buffers on the page are started at the same time.
443 *
444 * The fix is two passes across the ioend list - one to start writeback on the
c41564b5 445 * buffer_heads, and then submit them for I/O on the second pass.
f6d6d4fc
CH
446 */
447STATIC void
448xfs_submit_ioend(
449 xfs_ioend_t *ioend)
450{
d88992f6 451 xfs_ioend_t *head = ioend;
f6d6d4fc
CH
452 xfs_ioend_t *next;
453 struct buffer_head *bh;
454 struct bio *bio;
455 sector_t lastblock = 0;
456
d88992f6
DC
457 /* Pass 1 - start writeback */
458 do {
459 next = ioend->io_list;
460 for (bh = ioend->io_buffer_head; bh; bh = bh->b_private) {
461 xfs_start_buffer_writeback(bh);
462 }
463 } while ((ioend = next) != NULL);
464
465 /* Pass 2 - submit I/O */
466 ioend = head;
f6d6d4fc
CH
467 do {
468 next = ioend->io_list;
469 bio = NULL;
470
471 for (bh = ioend->io_buffer_head; bh; bh = bh->b_private) {
f6d6d4fc
CH
472
473 if (!bio) {
474 retry:
475 bio = xfs_alloc_ioend_bio(bh);
476 } else if (bh->b_blocknr != lastblock + 1) {
477 xfs_submit_ioend_bio(ioend, bio);
478 goto retry;
479 }
480
481 if (bio_add_buffer(bio, bh) != bh->b_size) {
482 xfs_submit_ioend_bio(ioend, bio);
483 goto retry;
484 }
485
486 lastblock = bh->b_blocknr;
487 }
488 if (bio)
489 xfs_submit_ioend_bio(ioend, bio);
e927af90 490 xfs_finish_ioend(ioend, 0);
f6d6d4fc
CH
491 } while ((ioend = next) != NULL);
492}
493
494/*
495 * Cancel submission of all buffer_heads so far in this endio.
496 * Toss the endio too. Only ever called for the initial page
497 * in a writepage request, so only ever one page.
498 */
499STATIC void
500xfs_cancel_ioend(
501 xfs_ioend_t *ioend)
502{
503 xfs_ioend_t *next;
504 struct buffer_head *bh, *next_bh;
505
506 do {
507 next = ioend->io_list;
508 bh = ioend->io_buffer_head;
509 do {
510 next_bh = bh->b_private;
511 clear_buffer_async_write(bh);
512 unlock_buffer(bh);
513 } while ((bh = next_bh) != NULL);
514
b677c210 515 vn_iowake(XFS_I(ioend->io_inode));
f6d6d4fc
CH
516 mempool_free(ioend, xfs_ioend_pool);
517 } while ((ioend = next) != NULL);
518}
519
520/*
521 * Test to see if we've been building up a completion structure for
522 * earlier buffers -- if so, we try to append to this ioend if we
523 * can, otherwise we finish off any current ioend and start another.
524 * Return true if we've finished the given ioend.
525 */
526STATIC void
527xfs_add_to_ioend(
528 struct inode *inode,
529 struct buffer_head *bh,
7336cea8 530 xfs_off_t offset,
f6d6d4fc
CH
531 unsigned int type,
532 xfs_ioend_t **result,
533 int need_ioend)
534{
535 xfs_ioend_t *ioend = *result;
536
537 if (!ioend || need_ioend || type != ioend->io_type) {
538 xfs_ioend_t *previous = *result;
f6d6d4fc 539
f6d6d4fc
CH
540 ioend = xfs_alloc_ioend(inode, type);
541 ioend->io_offset = offset;
542 ioend->io_buffer_head = bh;
543 ioend->io_buffer_tail = bh;
544 if (previous)
545 previous->io_list = ioend;
546 *result = ioend;
547 } else {
548 ioend->io_buffer_tail->b_private = bh;
549 ioend->io_buffer_tail = bh;
550 }
551
552 bh->b_private = NULL;
553 ioend->io_size += bh->b_size;
554}
555
87cbc49c
NS
556STATIC void
557xfs_map_buffer(
558 struct buffer_head *bh,
559 xfs_iomap_t *mp,
560 xfs_off_t offset,
561 uint block_bits)
562{
563 sector_t bn;
564
565 ASSERT(mp->iomap_bn != IOMAP_DADDR_NULL);
566
567 bn = (mp->iomap_bn >> (block_bits - BBSHIFT)) +
568 ((offset - mp->iomap_offset) >> block_bits);
569
570 ASSERT(bn || (mp->iomap_flags & IOMAP_REALTIME));
571
572 bh->b_blocknr = bn;
573 set_buffer_mapped(bh);
574}
575
1da177e4
LT
576STATIC void
577xfs_map_at_offset(
1da177e4 578 struct buffer_head *bh,
1defeac9 579 loff_t offset,
1da177e4 580 int block_bits,
1defeac9 581 xfs_iomap_t *iomapp)
1da177e4 582{
1da177e4
LT
583 ASSERT(!(iomapp->iomap_flags & IOMAP_HOLE));
584 ASSERT(!(iomapp->iomap_flags & IOMAP_DELAY));
1da177e4
LT
585
586 lock_buffer(bh);
87cbc49c 587 xfs_map_buffer(bh, iomapp, offset, block_bits);
ce8e922c 588 bh->b_bdev = iomapp->iomap_target->bt_bdev;
1da177e4
LT
589 set_buffer_mapped(bh);
590 clear_buffer_delay(bh);
f6d6d4fc 591 clear_buffer_unwritten(bh);
1da177e4
LT
592}
593
594/*
6c4fe19f 595 * Look for a page at index that is suitable for clustering.
1da177e4
LT
596 */
597STATIC unsigned int
6c4fe19f 598xfs_probe_page(
10ce4444 599 struct page *page,
6c4fe19f
CH
600 unsigned int pg_offset,
601 int mapped)
1da177e4 602{
1da177e4
LT
603 int ret = 0;
604
1da177e4 605 if (PageWriteback(page))
10ce4444 606 return 0;
1da177e4
LT
607
608 if (page->mapping && PageDirty(page)) {
609 if (page_has_buffers(page)) {
610 struct buffer_head *bh, *head;
611
612 bh = head = page_buffers(page);
613 do {
6c4fe19f
CH
614 if (!buffer_uptodate(bh))
615 break;
616 if (mapped != buffer_mapped(bh))
1da177e4
LT
617 break;
618 ret += bh->b_size;
619 if (ret >= pg_offset)
620 break;
621 } while ((bh = bh->b_this_page) != head);
622 } else
6c4fe19f 623 ret = mapped ? 0 : PAGE_CACHE_SIZE;
1da177e4
LT
624 }
625
1da177e4
LT
626 return ret;
627}
628
f6d6d4fc 629STATIC size_t
6c4fe19f 630xfs_probe_cluster(
1da177e4
LT
631 struct inode *inode,
632 struct page *startpage,
633 struct buffer_head *bh,
6c4fe19f
CH
634 struct buffer_head *head,
635 int mapped)
1da177e4 636{
10ce4444 637 struct pagevec pvec;
1da177e4 638 pgoff_t tindex, tlast, tloff;
10ce4444
CH
639 size_t total = 0;
640 int done = 0, i;
1da177e4
LT
641
642 /* First sum forwards in this page */
643 do {
2353e8e9 644 if (!buffer_uptodate(bh) || (mapped != buffer_mapped(bh)))
10ce4444 645 return total;
1da177e4
LT
646 total += bh->b_size;
647 } while ((bh = bh->b_this_page) != head);
648
10ce4444
CH
649 /* if we reached the end of the page, sum forwards in following pages */
650 tlast = i_size_read(inode) >> PAGE_CACHE_SHIFT;
651 tindex = startpage->index + 1;
652
653 /* Prune this back to avoid pathological behavior */
654 tloff = min(tlast, startpage->index + 64);
655
656 pagevec_init(&pvec, 0);
657 while (!done && tindex <= tloff) {
658 unsigned len = min_t(pgoff_t, PAGEVEC_SIZE, tlast - tindex + 1);
659
660 if (!pagevec_lookup(&pvec, inode->i_mapping, tindex, len))
661 break;
662
663 for (i = 0; i < pagevec_count(&pvec); i++) {
664 struct page *page = pvec.pages[i];
265c1fac 665 size_t pg_offset, pg_len = 0;
10ce4444
CH
666
667 if (tindex == tlast) {
668 pg_offset =
669 i_size_read(inode) & (PAGE_CACHE_SIZE - 1);
1defeac9
CH
670 if (!pg_offset) {
671 done = 1;
10ce4444 672 break;
1defeac9 673 }
10ce4444
CH
674 } else
675 pg_offset = PAGE_CACHE_SIZE;
676
529ae9aa 677 if (page->index == tindex && trylock_page(page)) {
265c1fac 678 pg_len = xfs_probe_page(page, pg_offset, mapped);
10ce4444
CH
679 unlock_page(page);
680 }
681
265c1fac 682 if (!pg_len) {
10ce4444
CH
683 done = 1;
684 break;
685 }
686
265c1fac 687 total += pg_len;
1defeac9 688 tindex++;
1da177e4 689 }
10ce4444
CH
690
691 pagevec_release(&pvec);
692 cond_resched();
1da177e4 693 }
10ce4444 694
1da177e4
LT
695 return total;
696}
697
698/*
10ce4444
CH
699 * Test if a given page is suitable for writing as part of an unwritten
700 * or delayed allocate extent.
1da177e4 701 */
10ce4444
CH
702STATIC int
703xfs_is_delayed_page(
704 struct page *page,
f6d6d4fc 705 unsigned int type)
1da177e4 706{
1da177e4 707 if (PageWriteback(page))
10ce4444 708 return 0;
1da177e4
LT
709
710 if (page->mapping && page_has_buffers(page)) {
711 struct buffer_head *bh, *head;
712 int acceptable = 0;
713
714 bh = head = page_buffers(page);
715 do {
f6d6d4fc
CH
716 if (buffer_unwritten(bh))
717 acceptable = (type == IOMAP_UNWRITTEN);
718 else if (buffer_delay(bh))
719 acceptable = (type == IOMAP_DELAY);
2ddee844 720 else if (buffer_dirty(bh) && buffer_mapped(bh))
df3c7244 721 acceptable = (type == IOMAP_NEW);
f6d6d4fc 722 else
1da177e4 723 break;
1da177e4
LT
724 } while ((bh = bh->b_this_page) != head);
725
726 if (acceptable)
10ce4444 727 return 1;
1da177e4
LT
728 }
729
10ce4444 730 return 0;
1da177e4
LT
731}
732
1da177e4
LT
733/*
734 * Allocate & map buffers for page given the extent map. Write it out.
735 * except for the original page of a writepage, this is called on
736 * delalloc/unwritten pages only, for the original page it is possible
737 * that the page has no mapping at all.
738 */
f6d6d4fc 739STATIC int
1da177e4
LT
740xfs_convert_page(
741 struct inode *inode,
742 struct page *page,
10ce4444 743 loff_t tindex,
1defeac9 744 xfs_iomap_t *mp,
f6d6d4fc 745 xfs_ioend_t **ioendp,
1da177e4 746 struct writeback_control *wbc,
1da177e4
LT
747 int startio,
748 int all_bh)
749{
f6d6d4fc 750 struct buffer_head *bh, *head;
9260dc6b
CH
751 xfs_off_t end_offset;
752 unsigned long p_offset;
f6d6d4fc 753 unsigned int type;
1da177e4 754 int bbits = inode->i_blkbits;
24e17b5f 755 int len, page_dirty;
f6d6d4fc 756 int count = 0, done = 0, uptodate = 1;
9260dc6b 757 xfs_off_t offset = page_offset(page);
1da177e4 758
10ce4444
CH
759 if (page->index != tindex)
760 goto fail;
529ae9aa 761 if (!trylock_page(page))
10ce4444
CH
762 goto fail;
763 if (PageWriteback(page))
764 goto fail_unlock_page;
765 if (page->mapping != inode->i_mapping)
766 goto fail_unlock_page;
767 if (!xfs_is_delayed_page(page, (*ioendp)->io_type))
768 goto fail_unlock_page;
769
24e17b5f
NS
770 /*
771 * page_dirty is initially a count of buffers on the page before
c41564b5 772 * EOF and is decremented as we move each into a cleanable state.
9260dc6b
CH
773 *
774 * Derivation:
775 *
776 * End offset is the highest offset that this page should represent.
777 * If we are on the last page, (end_offset & (PAGE_CACHE_SIZE - 1))
778 * will evaluate non-zero and be less than PAGE_CACHE_SIZE and
779 * hence give us the correct page_dirty count. On any other page,
780 * it will be zero and in that case we need page_dirty to be the
781 * count of buffers on the page.
24e17b5f 782 */
9260dc6b
CH
783 end_offset = min_t(unsigned long long,
784 (xfs_off_t)(page->index + 1) << PAGE_CACHE_SHIFT,
785 i_size_read(inode));
786
24e17b5f 787 len = 1 << inode->i_blkbits;
9260dc6b
CH
788 p_offset = min_t(unsigned long, end_offset & (PAGE_CACHE_SIZE - 1),
789 PAGE_CACHE_SIZE);
790 p_offset = p_offset ? roundup(p_offset, len) : PAGE_CACHE_SIZE;
791 page_dirty = p_offset / len;
24e17b5f 792
1da177e4
LT
793 bh = head = page_buffers(page);
794 do {
9260dc6b 795 if (offset >= end_offset)
1da177e4 796 break;
f6d6d4fc
CH
797 if (!buffer_uptodate(bh))
798 uptodate = 0;
799 if (!(PageUptodate(page) || buffer_uptodate(bh))) {
800 done = 1;
1da177e4 801 continue;
f6d6d4fc
CH
802 }
803
9260dc6b
CH
804 if (buffer_unwritten(bh) || buffer_delay(bh)) {
805 if (buffer_unwritten(bh))
806 type = IOMAP_UNWRITTEN;
807 else
808 type = IOMAP_DELAY;
809
810 if (!xfs_iomap_valid(mp, offset)) {
f6d6d4fc 811 done = 1;
9260dc6b
CH
812 continue;
813 }
814
815 ASSERT(!(mp->iomap_flags & IOMAP_HOLE));
816 ASSERT(!(mp->iomap_flags & IOMAP_DELAY));
817
818 xfs_map_at_offset(bh, offset, bbits, mp);
819 if (startio) {
7336cea8 820 xfs_add_to_ioend(inode, bh, offset,
9260dc6b
CH
821 type, ioendp, done);
822 } else {
823 set_buffer_dirty(bh);
824 unlock_buffer(bh);
825 mark_buffer_dirty(bh);
826 }
827 page_dirty--;
828 count++;
829 } else {
df3c7244 830 type = IOMAP_NEW;
9260dc6b 831 if (buffer_mapped(bh) && all_bh && startio) {
1da177e4 832 lock_buffer(bh);
7336cea8 833 xfs_add_to_ioend(inode, bh, offset,
f6d6d4fc
CH
834 type, ioendp, done);
835 count++;
24e17b5f 836 page_dirty--;
9260dc6b
CH
837 } else {
838 done = 1;
1da177e4 839 }
1da177e4 840 }
7336cea8 841 } while (offset += len, (bh = bh->b_this_page) != head);
1da177e4 842
f6d6d4fc
CH
843 if (uptodate && bh == head)
844 SetPageUptodate(page);
845
846 if (startio) {
f5e596bb
CH
847 if (count) {
848 struct backing_dev_info *bdi;
849
850 bdi = inode->i_mapping->backing_dev_info;
9fddaca2 851 wbc->nr_to_write--;
f5e596bb
CH
852 if (bdi_write_congested(bdi)) {
853 wbc->encountered_congestion = 1;
854 done = 1;
9fddaca2 855 } else if (wbc->nr_to_write <= 0) {
f5e596bb
CH
856 done = 1;
857 }
858 }
b41759cf 859 xfs_start_page_writeback(page, !page_dirty, count);
1da177e4 860 }
f6d6d4fc
CH
861
862 return done;
10ce4444
CH
863 fail_unlock_page:
864 unlock_page(page);
865 fail:
866 return 1;
1da177e4
LT
867}
868
869/*
870 * Convert & write out a cluster of pages in the same extent as defined
871 * by mp and following the start page.
872 */
873STATIC void
874xfs_cluster_write(
875 struct inode *inode,
876 pgoff_t tindex,
877 xfs_iomap_t *iomapp,
f6d6d4fc 878 xfs_ioend_t **ioendp,
1da177e4
LT
879 struct writeback_control *wbc,
880 int startio,
881 int all_bh,
882 pgoff_t tlast)
883{
10ce4444
CH
884 struct pagevec pvec;
885 int done = 0, i;
1da177e4 886
10ce4444
CH
887 pagevec_init(&pvec, 0);
888 while (!done && tindex <= tlast) {
889 unsigned len = min_t(pgoff_t, PAGEVEC_SIZE, tlast - tindex + 1);
890
891 if (!pagevec_lookup(&pvec, inode->i_mapping, tindex, len))
1da177e4 892 break;
10ce4444
CH
893
894 for (i = 0; i < pagevec_count(&pvec); i++) {
895 done = xfs_convert_page(inode, pvec.pages[i], tindex++,
896 iomapp, ioendp, wbc, startio, all_bh);
897 if (done)
898 break;
899 }
900
901 pagevec_release(&pvec);
902 cond_resched();
1da177e4
LT
903 }
904}
905
906/*
907 * Calling this without startio set means we are being asked to make a dirty
908 * page ready for freeing it's buffers. When called with startio set then
909 * we are coming from writepage.
910 *
911 * When called with startio set it is important that we write the WHOLE
912 * page if possible.
913 * The bh->b_state's cannot know if any of the blocks or which block for
914 * that matter are dirty due to mmap writes, and therefore bh uptodate is
c41564b5 915 * only valid if the page itself isn't completely uptodate. Some layers
1da177e4
LT
916 * may clear the page dirty flag prior to calling write page, under the
917 * assumption the entire page will be written out; by not writing out the
918 * whole page the page can be reused before all valid dirty data is
919 * written out. Note: in the case of a page that has been dirty'd by
920 * mapwrite and but partially setup by block_prepare_write the
921 * bh->b_states's will not agree and only ones setup by BPW/BCW will have
922 * valid state, thus the whole page must be written out thing.
923 */
924
925STATIC int
926xfs_page_state_convert(
927 struct inode *inode,
928 struct page *page,
929 struct writeback_control *wbc,
930 int startio,
931 int unmapped) /* also implies page uptodate */
932{
f6d6d4fc 933 struct buffer_head *bh, *head;
1defeac9 934 xfs_iomap_t iomap;
f6d6d4fc 935 xfs_ioend_t *ioend = NULL, *iohead = NULL;
1da177e4
LT
936 loff_t offset;
937 unsigned long p_offset = 0;
f6d6d4fc 938 unsigned int type;
1da177e4
LT
939 __uint64_t end_offset;
940 pgoff_t end_index, last_index, tlast;
d5cb48aa
CH
941 ssize_t size, len;
942 int flags, err, iomap_valid = 0, uptodate = 1;
8272145c
NS
943 int page_dirty, count = 0;
944 int trylock = 0;
6c4fe19f 945 int all_bh = unmapped;
1da177e4 946
8272145c
NS
947 if (startio) {
948 if (wbc->sync_mode == WB_SYNC_NONE && wbc->nonblocking)
949 trylock |= BMAPI_TRYLOCK;
950 }
3ba0815a 951
1da177e4
LT
952 /* Is this page beyond the end of the file? */
953 offset = i_size_read(inode);
954 end_index = offset >> PAGE_CACHE_SHIFT;
955 last_index = (offset - 1) >> PAGE_CACHE_SHIFT;
956 if (page->index >= end_index) {
957 if ((page->index >= end_index + 1) ||
958 !(i_size_read(inode) & (PAGE_CACHE_SIZE - 1))) {
19d5bcf3
NS
959 if (startio)
960 unlock_page(page);
961 return 0;
1da177e4
LT
962 }
963 }
964
1da177e4 965 /*
24e17b5f 966 * page_dirty is initially a count of buffers on the page before
c41564b5 967 * EOF and is decremented as we move each into a cleanable state.
f6d6d4fc
CH
968 *
969 * Derivation:
970 *
971 * End offset is the highest offset that this page should represent.
972 * If we are on the last page, (end_offset & (PAGE_CACHE_SIZE - 1))
973 * will evaluate non-zero and be less than PAGE_CACHE_SIZE and
974 * hence give us the correct page_dirty count. On any other page,
975 * it will be zero and in that case we need page_dirty to be the
976 * count of buffers on the page.
977 */
978 end_offset = min_t(unsigned long long,
979 (xfs_off_t)(page->index + 1) << PAGE_CACHE_SHIFT, offset);
24e17b5f 980 len = 1 << inode->i_blkbits;
f6d6d4fc
CH
981 p_offset = min_t(unsigned long, end_offset & (PAGE_CACHE_SIZE - 1),
982 PAGE_CACHE_SIZE);
983 p_offset = p_offset ? roundup(p_offset, len) : PAGE_CACHE_SIZE;
24e17b5f
NS
984 page_dirty = p_offset / len;
985
24e17b5f 986 bh = head = page_buffers(page);
f6d6d4fc 987 offset = page_offset(page);
df3c7244
DC
988 flags = BMAPI_READ;
989 type = IOMAP_NEW;
f6d6d4fc 990
f6d6d4fc 991 /* TODO: cleanup count and page_dirty */
1da177e4
LT
992
993 do {
994 if (offset >= end_offset)
995 break;
996 if (!buffer_uptodate(bh))
997 uptodate = 0;
f6d6d4fc 998 if (!(PageUptodate(page) || buffer_uptodate(bh)) && !startio) {
1defeac9
CH
999 /*
1000 * the iomap is actually still valid, but the ioend
1001 * isn't. shouldn't happen too often.
1002 */
1003 iomap_valid = 0;
1da177e4 1004 continue;
f6d6d4fc 1005 }
1da177e4 1006
1defeac9
CH
1007 if (iomap_valid)
1008 iomap_valid = xfs_iomap_valid(&iomap, offset);
1da177e4
LT
1009
1010 /*
1011 * First case, map an unwritten extent and prepare for
1012 * extent state conversion transaction on completion.
f6d6d4fc 1013 *
1da177e4
LT
1014 * Second case, allocate space for a delalloc buffer.
1015 * We can return EAGAIN here in the release page case.
d5cb48aa
CH
1016 *
1017 * Third case, an unmapped buffer was found, and we are
1018 * in a path where we need to write the whole page out.
df3c7244 1019 */
d5cb48aa
CH
1020 if (buffer_unwritten(bh) || buffer_delay(bh) ||
1021 ((buffer_uptodate(bh) || PageUptodate(page)) &&
1022 !buffer_mapped(bh) && (unmapped || startio))) {
effd120e
DC
1023 int new_ioend = 0;
1024
df3c7244 1025 /*
6c4fe19f
CH
1026 * Make sure we don't use a read-only iomap
1027 */
df3c7244 1028 if (flags == BMAPI_READ)
6c4fe19f
CH
1029 iomap_valid = 0;
1030
f6d6d4fc
CH
1031 if (buffer_unwritten(bh)) {
1032 type = IOMAP_UNWRITTEN;
8272145c 1033 flags = BMAPI_WRITE | BMAPI_IGNSTATE;
d5cb48aa 1034 } else if (buffer_delay(bh)) {
f6d6d4fc 1035 type = IOMAP_DELAY;
8272145c 1036 flags = BMAPI_ALLOCATE | trylock;
d5cb48aa 1037 } else {
6c4fe19f 1038 type = IOMAP_NEW;
8272145c 1039 flags = BMAPI_WRITE | BMAPI_MMAP;
f6d6d4fc
CH
1040 }
1041
1defeac9 1042 if (!iomap_valid) {
effd120e
DC
1043 /*
1044 * if we didn't have a valid mapping then we
1045 * need to ensure that we put the new mapping
1046 * in a new ioend structure. This needs to be
1047 * done to ensure that the ioends correctly
1048 * reflect the block mappings at io completion
1049 * for unwritten extent conversion.
1050 */
1051 new_ioend = 1;
6c4fe19f
CH
1052 if (type == IOMAP_NEW) {
1053 size = xfs_probe_cluster(inode,
1054 page, bh, head, 0);
d5cb48aa
CH
1055 } else {
1056 size = len;
1057 }
1058
1059 err = xfs_map_blocks(inode, offset, size,
1060 &iomap, flags);
f6d6d4fc 1061 if (err)
1da177e4 1062 goto error;
1defeac9 1063 iomap_valid = xfs_iomap_valid(&iomap, offset);
1da177e4 1064 }
1defeac9
CH
1065 if (iomap_valid) {
1066 xfs_map_at_offset(bh, offset,
1067 inode->i_blkbits, &iomap);
1da177e4 1068 if (startio) {
7336cea8 1069 xfs_add_to_ioend(inode, bh, offset,
1defeac9 1070 type, &ioend,
effd120e 1071 new_ioend);
1da177e4
LT
1072 } else {
1073 set_buffer_dirty(bh);
1074 unlock_buffer(bh);
1075 mark_buffer_dirty(bh);
1076 }
1077 page_dirty--;
f6d6d4fc 1078 count++;
1da177e4 1079 }
d5cb48aa 1080 } else if (buffer_uptodate(bh) && startio) {
6c4fe19f
CH
1081 /*
1082 * we got here because the buffer is already mapped.
1083 * That means it must already have extents allocated
1084 * underneath it. Map the extent by reading it.
1085 */
df3c7244 1086 if (!iomap_valid || flags != BMAPI_READ) {
6c4fe19f
CH
1087 flags = BMAPI_READ;
1088 size = xfs_probe_cluster(inode, page, bh,
1089 head, 1);
1090 err = xfs_map_blocks(inode, offset, size,
1091 &iomap, flags);
1092 if (err)
1093 goto error;
1094 iomap_valid = xfs_iomap_valid(&iomap, offset);
1095 }
d5cb48aa 1096
df3c7244
DC
1097 /*
1098 * We set the type to IOMAP_NEW in case we are doing a
1099 * small write at EOF that is extending the file but
1100 * without needing an allocation. We need to update the
1101 * file size on I/O completion in this case so it is
1102 * the same case as having just allocated a new extent
1103 * that we are writing into for the first time.
1104 */
1105 type = IOMAP_NEW;
ca5de404 1106 if (trylock_buffer(bh)) {
d5cb48aa 1107 ASSERT(buffer_mapped(bh));
6c4fe19f
CH
1108 if (iomap_valid)
1109 all_bh = 1;
7336cea8 1110 xfs_add_to_ioend(inode, bh, offset, type,
d5cb48aa
CH
1111 &ioend, !iomap_valid);
1112 page_dirty--;
1113 count++;
f6d6d4fc 1114 } else {
1defeac9 1115 iomap_valid = 0;
1da177e4 1116 }
d5cb48aa
CH
1117 } else if ((buffer_uptodate(bh) || PageUptodate(page)) &&
1118 (unmapped || startio)) {
1119 iomap_valid = 0;
1da177e4 1120 }
f6d6d4fc
CH
1121
1122 if (!iohead)
1123 iohead = ioend;
1124
1125 } while (offset += len, ((bh = bh->b_this_page) != head));
1da177e4
LT
1126
1127 if (uptodate && bh == head)
1128 SetPageUptodate(page);
1129
f6d6d4fc 1130 if (startio)
b41759cf 1131 xfs_start_page_writeback(page, 1, count);
1da177e4 1132
1defeac9
CH
1133 if (ioend && iomap_valid) {
1134 offset = (iomap.iomap_offset + iomap.iomap_bsize - 1) >>
1da177e4 1135 PAGE_CACHE_SHIFT;
775bf6c9 1136 tlast = min_t(pgoff_t, offset, last_index);
1defeac9 1137 xfs_cluster_write(inode, page->index + 1, &iomap, &ioend,
6c4fe19f 1138 wbc, startio, all_bh, tlast);
1da177e4
LT
1139 }
1140
f6d6d4fc
CH
1141 if (iohead)
1142 xfs_submit_ioend(iohead);
1143
1da177e4
LT
1144 return page_dirty;
1145
1146error:
f6d6d4fc
CH
1147 if (iohead)
1148 xfs_cancel_ioend(iohead);
1da177e4
LT
1149
1150 /*
1151 * If it's delalloc and we have nowhere to put it,
1152 * throw it away, unless the lower layers told
1153 * us to try again.
1154 */
1155 if (err != -EAGAIN) {
f6d6d4fc 1156 if (!unmapped)
1da177e4 1157 block_invalidatepage(page, 0);
1da177e4
LT
1158 ClearPageUptodate(page);
1159 }
1160 return err;
1161}
1162
f51623b2
NS
1163/*
1164 * writepage: Called from one of two places:
1165 *
1166 * 1. we are flushing a delalloc buffer head.
1167 *
1168 * 2. we are writing out a dirty page. Typically the page dirty
1169 * state is cleared before we get here. In this case is it
1170 * conceivable we have no buffer heads.
1171 *
1172 * For delalloc space on the page we need to allocate space and
1173 * flush it. For unmapped buffer heads on the page we should
1174 * allocate space if the page is uptodate. For any other dirty
1175 * buffer heads on the page we should flush them.
1176 *
1177 * If we detect that a transaction would be required to flush
1178 * the page, we have to check the process flags first, if we
1179 * are already in a transaction or disk I/O during allocations
1180 * is off, we need to fail the writepage and redirty the page.
1181 */
1182
1183STATIC int
e4c573bb 1184xfs_vm_writepage(
f51623b2
NS
1185 struct page *page,
1186 struct writeback_control *wbc)
1187{
1188 int error;
1189 int need_trans;
1190 int delalloc, unmapped, unwritten;
1191 struct inode *inode = page->mapping->host;
1192
1193 xfs_page_trace(XFS_WRITEPAGE_ENTER, inode, page, 0);
1194
1195 /*
1196 * We need a transaction if:
1197 * 1. There are delalloc buffers on the page
1198 * 2. The page is uptodate and we have unmapped buffers
1199 * 3. The page is uptodate and we have no buffers
1200 * 4. There are unwritten buffers on the page
1201 */
1202
1203 if (!page_has_buffers(page)) {
1204 unmapped = 1;
1205 need_trans = 1;
1206 } else {
1207 xfs_count_page_state(page, &delalloc, &unmapped, &unwritten);
1208 if (!PageUptodate(page))
1209 unmapped = 0;
1210 need_trans = delalloc + unmapped + unwritten;
1211 }
1212
1213 /*
1214 * If we need a transaction and the process flags say
1215 * we are already in a transaction, or no IO is allowed
1216 * then mark the page dirty again and leave the page
1217 * as is.
1218 */
59c1b082 1219 if (current_test_flags(PF_FSTRANS) && need_trans)
f51623b2
NS
1220 goto out_fail;
1221
1222 /*
1223 * Delay hooking up buffer heads until we have
1224 * made our go/no-go decision.
1225 */
1226 if (!page_has_buffers(page))
1227 create_empty_buffers(page, 1 << inode->i_blkbits, 0);
1228
1229 /*
1230 * Convert delayed allocate, unwritten or unmapped space
1231 * to real space and flush out to disk.
1232 */
1233 error = xfs_page_state_convert(inode, page, wbc, 1, unmapped);
1234 if (error == -EAGAIN)
1235 goto out_fail;
1236 if (unlikely(error < 0))
1237 goto out_unlock;
1238
1239 return 0;
1240
1241out_fail:
1242 redirty_page_for_writepage(wbc, page);
1243 unlock_page(page);
1244 return 0;
1245out_unlock:
1246 unlock_page(page);
1247 return error;
1248}
1249
7d4fb40a
NS
1250STATIC int
1251xfs_vm_writepages(
1252 struct address_space *mapping,
1253 struct writeback_control *wbc)
1254{
b3aea4ed 1255 xfs_iflags_clear(XFS_I(mapping->host), XFS_ITRUNCATED);
7d4fb40a
NS
1256 return generic_writepages(mapping, wbc);
1257}
1258
f51623b2
NS
1259/*
1260 * Called to move a page into cleanable state - and from there
1261 * to be released. Possibly the page is already clean. We always
1262 * have buffer heads in this call.
1263 *
1264 * Returns 0 if the page is ok to release, 1 otherwise.
1265 *
1266 * Possible scenarios are:
1267 *
1268 * 1. We are being called to release a page which has been written
1269 * to via regular I/O. buffer heads will be dirty and possibly
1270 * delalloc. If no delalloc buffer heads in this case then we
1271 * can just return zero.
1272 *
1273 * 2. We are called to release a page which has been written via
1274 * mmap, all we need to do is ensure there is no delalloc
1275 * state in the buffer heads, if not we can let the caller
1276 * free them and we should come back later via writepage.
1277 */
1278STATIC int
238f4c54 1279xfs_vm_releasepage(
f51623b2
NS
1280 struct page *page,
1281 gfp_t gfp_mask)
1282{
1283 struct inode *inode = page->mapping->host;
1284 int dirty, delalloc, unmapped, unwritten;
1285 struct writeback_control wbc = {
1286 .sync_mode = WB_SYNC_ALL,
1287 .nr_to_write = 1,
1288 };
1289
ed9d88f7 1290 xfs_page_trace(XFS_RELEASEPAGE_ENTER, inode, page, 0);
f51623b2 1291
238f4c54
NS
1292 if (!page_has_buffers(page))
1293 return 0;
1294
f51623b2
NS
1295 xfs_count_page_state(page, &delalloc, &unmapped, &unwritten);
1296 if (!delalloc && !unwritten)
1297 goto free_buffers;
1298
1299 if (!(gfp_mask & __GFP_FS))
1300 return 0;
1301
1302 /* If we are already inside a transaction or the thread cannot
1303 * do I/O, we cannot release this page.
1304 */
59c1b082 1305 if (current_test_flags(PF_FSTRANS))
f51623b2
NS
1306 return 0;
1307
1308 /*
1309 * Convert delalloc space to real space, do not flush the
1310 * data out to disk, that will be done by the caller.
1311 * Never need to allocate space here - we will always
1312 * come back to writepage in that case.
1313 */
1314 dirty = xfs_page_state_convert(inode, page, &wbc, 0, 0);
1315 if (dirty == 0 && !unwritten)
1316 goto free_buffers;
1317 return 0;
1318
1319free_buffers:
1320 return try_to_free_buffers(page);
1321}
1322
1da177e4 1323STATIC int
c2536668 1324__xfs_get_blocks(
1da177e4
LT
1325 struct inode *inode,
1326 sector_t iblock,
1da177e4
LT
1327 struct buffer_head *bh_result,
1328 int create,
1329 int direct,
1330 bmapi_flags_t flags)
1331{
1da177e4 1332 xfs_iomap_t iomap;
fdc7ed75
NS
1333 xfs_off_t offset;
1334 ssize_t size;
c2536668 1335 int niomap = 1;
1da177e4 1336 int error;
1da177e4 1337
fdc7ed75 1338 offset = (xfs_off_t)iblock << inode->i_blkbits;
c2536668
NS
1339 ASSERT(bh_result->b_size >= (1 << inode->i_blkbits));
1340 size = bh_result->b_size;
541d7d3c 1341 error = xfs_iomap(XFS_I(inode), offset, size,
67fcaa73 1342 create ? flags : BMAPI_READ, &iomap, &niomap);
1da177e4
LT
1343 if (error)
1344 return -error;
c2536668 1345 if (niomap == 0)
1da177e4
LT
1346 return 0;
1347
1348 if (iomap.iomap_bn != IOMAP_DADDR_NULL) {
87cbc49c
NS
1349 /*
1350 * For unwritten extents do not report a disk address on
1da177e4
LT
1351 * the read case (treat as if we're reading into a hole).
1352 */
1353 if (create || !(iomap.iomap_flags & IOMAP_UNWRITTEN)) {
87cbc49c
NS
1354 xfs_map_buffer(bh_result, &iomap, offset,
1355 inode->i_blkbits);
1da177e4
LT
1356 }
1357 if (create && (iomap.iomap_flags & IOMAP_UNWRITTEN)) {
1358 if (direct)
1359 bh_result->b_private = inode;
1360 set_buffer_unwritten(bh_result);
1da177e4
LT
1361 }
1362 }
1363
c2536668
NS
1364 /*
1365 * If this is a realtime file, data may be on a different device.
1366 * to that pointed to from the buffer_head b_bdev currently.
1367 */
ce8e922c 1368 bh_result->b_bdev = iomap.iomap_target->bt_bdev;
1da177e4 1369
c2536668 1370 /*
549054af
DC
1371 * If we previously allocated a block out beyond eof and we are now
1372 * coming back to use it then we will need to flag it as new even if it
1373 * has a disk address.
1374 *
1375 * With sub-block writes into unwritten extents we also need to mark
1376 * the buffer as new so that the unwritten parts of the buffer gets
1377 * correctly zeroed.
1da177e4
LT
1378 */
1379 if (create &&
1380 ((!buffer_mapped(bh_result) && !buffer_uptodate(bh_result)) ||
549054af
DC
1381 (offset >= i_size_read(inode)) ||
1382 (iomap.iomap_flags & (IOMAP_NEW|IOMAP_UNWRITTEN))))
1da177e4 1383 set_buffer_new(bh_result);
1da177e4
LT
1384
1385 if (iomap.iomap_flags & IOMAP_DELAY) {
1386 BUG_ON(direct);
1387 if (create) {
1388 set_buffer_uptodate(bh_result);
1389 set_buffer_mapped(bh_result);
1390 set_buffer_delay(bh_result);
1391 }
1392 }
1393
c2536668 1394 if (direct || size > (1 << inode->i_blkbits)) {
fdc7ed75
NS
1395 ASSERT(iomap.iomap_bsize - iomap.iomap_delta > 0);
1396 offset = min_t(xfs_off_t,
c2536668
NS
1397 iomap.iomap_bsize - iomap.iomap_delta, size);
1398 bh_result->b_size = (ssize_t)min_t(xfs_off_t, LONG_MAX, offset);
1da177e4
LT
1399 }
1400
1401 return 0;
1402}
1403
1404int
c2536668 1405xfs_get_blocks(
1da177e4
LT
1406 struct inode *inode,
1407 sector_t iblock,
1408 struct buffer_head *bh_result,
1409 int create)
1410{
c2536668 1411 return __xfs_get_blocks(inode, iblock,
fa30bd05 1412 bh_result, create, 0, BMAPI_WRITE);
1da177e4
LT
1413}
1414
1415STATIC int
e4c573bb 1416xfs_get_blocks_direct(
1da177e4
LT
1417 struct inode *inode,
1418 sector_t iblock,
1da177e4
LT
1419 struct buffer_head *bh_result,
1420 int create)
1421{
c2536668 1422 return __xfs_get_blocks(inode, iblock,
1d8fa7a2 1423 bh_result, create, 1, BMAPI_WRITE|BMAPI_DIRECT);
1da177e4
LT
1424}
1425
f0973863 1426STATIC void
e4c573bb 1427xfs_end_io_direct(
f0973863
CH
1428 struct kiocb *iocb,
1429 loff_t offset,
1430 ssize_t size,
1431 void *private)
1432{
1433 xfs_ioend_t *ioend = iocb->private;
1434
1435 /*
1436 * Non-NULL private data means we need to issue a transaction to
1437 * convert a range from unwritten to written extents. This needs
c41564b5 1438 * to happen from process context but aio+dio I/O completion
f0973863 1439 * happens from irq context so we need to defer it to a workqueue.
c41564b5 1440 * This is not necessary for synchronous direct I/O, but we do
f0973863
CH
1441 * it anyway to keep the code uniform and simpler.
1442 *
e927af90
DC
1443 * Well, if only it were that simple. Because synchronous direct I/O
1444 * requires extent conversion to occur *before* we return to userspace,
1445 * we have to wait for extent conversion to complete. Look at the
1446 * iocb that has been passed to us to determine if this is AIO or
1447 * not. If it is synchronous, tell xfs_finish_ioend() to kick the
1448 * workqueue and wait for it to complete.
1449 *
f0973863
CH
1450 * The core direct I/O code might be changed to always call the
1451 * completion handler in the future, in which case all this can
1452 * go away.
1453 */
ba87ea69
LM
1454 ioend->io_offset = offset;
1455 ioend->io_size = size;
1456 if (ioend->io_type == IOMAP_READ) {
e927af90 1457 xfs_finish_ioend(ioend, 0);
ba87ea69 1458 } else if (private && size > 0) {
e927af90 1459 xfs_finish_ioend(ioend, is_sync_kiocb(iocb));
f0973863 1460 } else {
ba87ea69
LM
1461 /*
1462 * A direct I/O write ioend starts it's life in unwritten
1463 * state in case they map an unwritten extent. This write
1464 * didn't map an unwritten extent so switch it's completion
1465 * handler.
1466 */
1467 INIT_WORK(&ioend->io_work, xfs_end_bio_written);
e927af90 1468 xfs_finish_ioend(ioend, 0);
f0973863
CH
1469 }
1470
1471 /*
c41564b5 1472 * blockdev_direct_IO can return an error even after the I/O
f0973863
CH
1473 * completion handler was called. Thus we need to protect
1474 * against double-freeing.
1475 */
1476 iocb->private = NULL;
1477}
1478
1da177e4 1479STATIC ssize_t
e4c573bb 1480xfs_vm_direct_IO(
1da177e4
LT
1481 int rw,
1482 struct kiocb *iocb,
1483 const struct iovec *iov,
1484 loff_t offset,
1485 unsigned long nr_segs)
1486{
1487 struct file *file = iocb->ki_filp;
1488 struct inode *inode = file->f_mapping->host;
6214ed44 1489 struct block_device *bdev;
f0973863 1490 ssize_t ret;
1da177e4 1491
6214ed44 1492 bdev = xfs_find_bdev_for_inode(XFS_I(inode));
1da177e4 1493
721259bc 1494 if (rw == WRITE) {
ba87ea69 1495 iocb->private = xfs_alloc_ioend(inode, IOMAP_UNWRITTEN);
721259bc 1496 ret = blockdev_direct_IO_own_locking(rw, iocb, inode,
6214ed44 1497 bdev, iov, offset, nr_segs,
721259bc
LM
1498 xfs_get_blocks_direct,
1499 xfs_end_io_direct);
1500 } else {
ba87ea69 1501 iocb->private = xfs_alloc_ioend(inode, IOMAP_READ);
721259bc 1502 ret = blockdev_direct_IO_no_locking(rw, iocb, inode,
6214ed44 1503 bdev, iov, offset, nr_segs,
721259bc
LM
1504 xfs_get_blocks_direct,
1505 xfs_end_io_direct);
1506 }
f0973863 1507
8459d86a 1508 if (unlikely(ret != -EIOCBQUEUED && iocb->private))
f0973863
CH
1509 xfs_destroy_ioend(iocb->private);
1510 return ret;
1da177e4
LT
1511}
1512
f51623b2 1513STATIC int
d79689c7 1514xfs_vm_write_begin(
f51623b2 1515 struct file *file,
d79689c7
NP
1516 struct address_space *mapping,
1517 loff_t pos,
1518 unsigned len,
1519 unsigned flags,
1520 struct page **pagep,
1521 void **fsdata)
f51623b2 1522{
d79689c7
NP
1523 *pagep = NULL;
1524 return block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
1525 xfs_get_blocks);
f51623b2 1526}
1da177e4
LT
1527
1528STATIC sector_t
e4c573bb 1529xfs_vm_bmap(
1da177e4
LT
1530 struct address_space *mapping,
1531 sector_t block)
1532{
1533 struct inode *inode = (struct inode *)mapping->host;
739bfb2a 1534 struct xfs_inode *ip = XFS_I(inode);
1da177e4 1535
cf441eeb 1536 xfs_itrace_entry(XFS_I(inode));
126468b1 1537 xfs_ilock(ip, XFS_IOLOCK_SHARED);
739bfb2a 1538 xfs_flush_pages(ip, (xfs_off_t)0, -1, 0, FI_REMAPF);
126468b1 1539 xfs_iunlock(ip, XFS_IOLOCK_SHARED);
c2536668 1540 return generic_block_bmap(mapping, block, xfs_get_blocks);
1da177e4
LT
1541}
1542
1543STATIC int
e4c573bb 1544xfs_vm_readpage(
1da177e4
LT
1545 struct file *unused,
1546 struct page *page)
1547{
c2536668 1548 return mpage_readpage(page, xfs_get_blocks);
1da177e4
LT
1549}
1550
1551STATIC int
e4c573bb 1552xfs_vm_readpages(
1da177e4
LT
1553 struct file *unused,
1554 struct address_space *mapping,
1555 struct list_head *pages,
1556 unsigned nr_pages)
1557{
c2536668 1558 return mpage_readpages(mapping, pages, nr_pages, xfs_get_blocks);
1da177e4
LT
1559}
1560
2ff28e22 1561STATIC void
238f4c54 1562xfs_vm_invalidatepage(
bcec2b7f
NS
1563 struct page *page,
1564 unsigned long offset)
1565{
1566 xfs_page_trace(XFS_INVALIDPAGE_ENTER,
1567 page->mapping->host, page, offset);
2ff28e22 1568 block_invalidatepage(page, offset);
bcec2b7f
NS
1569}
1570
f5e54d6e 1571const struct address_space_operations xfs_address_space_operations = {
e4c573bb
NS
1572 .readpage = xfs_vm_readpage,
1573 .readpages = xfs_vm_readpages,
1574 .writepage = xfs_vm_writepage,
7d4fb40a 1575 .writepages = xfs_vm_writepages,
1da177e4 1576 .sync_page = block_sync_page,
238f4c54
NS
1577 .releasepage = xfs_vm_releasepage,
1578 .invalidatepage = xfs_vm_invalidatepage,
d79689c7
NP
1579 .write_begin = xfs_vm_write_begin,
1580 .write_end = generic_write_end,
e4c573bb
NS
1581 .bmap = xfs_vm_bmap,
1582 .direct_IO = xfs_vm_direct_IO,
e965f963 1583 .migratepage = buffer_migrate_page,
1da177e4 1584};