]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - fs/xfs/linux-2.6/xfs_aops.c
xfs: use scalable vmap API
[mirror_ubuntu-zesty-kernel.git] / fs / xfs / linux-2.6 / xfs_aops.c
CommitLineData
1da177e4 1/*
7b718769
NS
2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
1da177e4 4 *
7b718769
NS
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
1da177e4
LT
7 * published by the Free Software Foundation.
8 *
7b718769
NS
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
1da177e4 13 *
7b718769
NS
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
1da177e4 17 */
1da177e4 18#include "xfs.h"
a844f451 19#include "xfs_bit.h"
1da177e4 20#include "xfs_log.h"
a844f451 21#include "xfs_inum.h"
1da177e4 22#include "xfs_sb.h"
a844f451 23#include "xfs_ag.h"
1da177e4
LT
24#include "xfs_dir2.h"
25#include "xfs_trans.h"
26#include "xfs_dmapi.h"
27#include "xfs_mount.h"
28#include "xfs_bmap_btree.h"
29#include "xfs_alloc_btree.h"
30#include "xfs_ialloc_btree.h"
1da177e4 31#include "xfs_dir2_sf.h"
a844f451 32#include "xfs_attr_sf.h"
1da177e4
LT
33#include "xfs_dinode.h"
34#include "xfs_inode.h"
a844f451
NS
35#include "xfs_alloc.h"
36#include "xfs_btree.h"
1da177e4
LT
37#include "xfs_error.h"
38#include "xfs_rw.h"
39#include "xfs_iomap.h"
739bfb2a 40#include "xfs_vnodeops.h"
0b1b213f 41#include "xfs_trace.h"
3ed3a434 42#include "xfs_bmap.h"
1da177e4 43#include <linux/mpage.h>
10ce4444 44#include <linux/pagevec.h>
1da177e4
LT
45#include <linux/writeback.h>
46
25e41b3d
CH
47
48/*
49 * Prime number of hash buckets since address is used as the key.
50 */
51#define NVSYNC 37
52#define to_ioend_wq(v) (&xfs_ioend_wq[((unsigned long)v) % NVSYNC])
53static wait_queue_head_t xfs_ioend_wq[NVSYNC];
54
55void __init
56xfs_ioend_init(void)
57{
58 int i;
59
60 for (i = 0; i < NVSYNC; i++)
61 init_waitqueue_head(&xfs_ioend_wq[i]);
62}
63
64void
65xfs_ioend_wait(
66 xfs_inode_t *ip)
67{
68 wait_queue_head_t *wq = to_ioend_wq(ip);
69
70 wait_event(*wq, (atomic_read(&ip->i_iocount) == 0));
71}
72
73STATIC void
74xfs_ioend_wake(
75 xfs_inode_t *ip)
76{
77 if (atomic_dec_and_test(&ip->i_iocount))
78 wake_up(to_ioend_wq(ip));
79}
80
0b1b213f 81void
f51623b2
NS
82xfs_count_page_state(
83 struct page *page,
84 int *delalloc,
85 int *unmapped,
86 int *unwritten)
87{
88 struct buffer_head *bh, *head;
89
90 *delalloc = *unmapped = *unwritten = 0;
91
92 bh = head = page_buffers(page);
93 do {
94 if (buffer_uptodate(bh) && !buffer_mapped(bh))
95 (*unmapped) = 1;
f51623b2
NS
96 else if (buffer_unwritten(bh))
97 (*unwritten) = 1;
98 else if (buffer_delay(bh))
99 (*delalloc) = 1;
100 } while ((bh = bh->b_this_page) != head);
101}
102
6214ed44
CH
103STATIC struct block_device *
104xfs_find_bdev_for_inode(
105 struct xfs_inode *ip)
106{
107 struct xfs_mount *mp = ip->i_mount;
108
71ddabb9 109 if (XFS_IS_REALTIME_INODE(ip))
6214ed44
CH
110 return mp->m_rtdev_targp->bt_bdev;
111 else
112 return mp->m_ddev_targp->bt_bdev;
113}
114
f6d6d4fc
CH
115/*
116 * We're now finished for good with this ioend structure.
117 * Update the page state via the associated buffer_heads,
118 * release holds on the inode and bio, and finally free
119 * up memory. Do not use the ioend after this.
120 */
0829c360
CH
121STATIC void
122xfs_destroy_ioend(
123 xfs_ioend_t *ioend)
124{
f6d6d4fc 125 struct buffer_head *bh, *next;
583fa586 126 struct xfs_inode *ip = XFS_I(ioend->io_inode);
f6d6d4fc
CH
127
128 for (bh = ioend->io_buffer_head; bh; bh = next) {
129 next = bh->b_private;
7d04a335 130 bh->b_end_io(bh, !ioend->io_error);
f6d6d4fc 131 }
583fa586
CH
132
133 /*
134 * Volume managers supporting multiple paths can send back ENODEV
135 * when the final path disappears. In this case continuing to fill
136 * the page cache with dirty data which cannot be written out is
137 * evil, so prevent that.
138 */
139 if (unlikely(ioend->io_error == -ENODEV)) {
140 xfs_do_force_shutdown(ip->i_mount, SHUTDOWN_DEVICE_REQ,
141 __FILE__, __LINE__);
b677c210 142 }
583fa586 143
25e41b3d 144 xfs_ioend_wake(ip);
0829c360
CH
145 mempool_free(ioend, xfs_ioend_pool);
146}
147
932640e8
DC
148/*
149 * If the end of the current ioend is beyond the current EOF,
150 * return the new EOF value, otherwise zero.
151 */
152STATIC xfs_fsize_t
153xfs_ioend_new_eof(
154 xfs_ioend_t *ioend)
155{
156 xfs_inode_t *ip = XFS_I(ioend->io_inode);
157 xfs_fsize_t isize;
158 xfs_fsize_t bsize;
159
160 bsize = ioend->io_offset + ioend->io_size;
161 isize = MAX(ip->i_size, ip->i_new_size);
162 isize = MIN(isize, bsize);
163 return isize > ip->i_d.di_size ? isize : 0;
164}
165
ba87ea69 166/*
77d7a0c2
DC
167 * Update on-disk file size now that data has been written to disk. The
168 * current in-memory file size is i_size. If a write is beyond eof i_new_size
169 * will be the intended file size until i_size is updated. If this write does
170 * not extend all the way to the valid file size then restrict this update to
171 * the end of the write.
172 *
173 * This function does not block as blocking on the inode lock in IO completion
174 * can lead to IO completion order dependency deadlocks.. If it can't get the
175 * inode ilock it will return EAGAIN. Callers must handle this.
ba87ea69 176 */
77d7a0c2 177STATIC int
ba87ea69
LM
178xfs_setfilesize(
179 xfs_ioend_t *ioend)
180{
b677c210 181 xfs_inode_t *ip = XFS_I(ioend->io_inode);
ba87ea69 182 xfs_fsize_t isize;
ba87ea69 183
ba87ea69
LM
184 ASSERT((ip->i_d.di_mode & S_IFMT) == S_IFREG);
185 ASSERT(ioend->io_type != IOMAP_READ);
186
187 if (unlikely(ioend->io_error))
77d7a0c2
DC
188 return 0;
189
190 if (!xfs_ilock_nowait(ip, XFS_ILOCK_EXCL))
191 return EAGAIN;
ba87ea69 192
932640e8
DC
193 isize = xfs_ioend_new_eof(ioend);
194 if (isize) {
ba87ea69 195 ip->i_d.di_size = isize;
66d834ea 196 xfs_mark_inode_dirty(ip);
ba87ea69
LM
197 }
198
199 xfs_iunlock(ip, XFS_ILOCK_EXCL);
77d7a0c2
DC
200 return 0;
201}
202
203/*
204 * Schedule IO completion handling on a xfsdatad if this was
205 * the final hold on this ioend. If we are asked to wait,
206 * flush the workqueue.
207 */
208STATIC void
209xfs_finish_ioend(
210 xfs_ioend_t *ioend,
211 int wait)
212{
213 if (atomic_dec_and_test(&ioend->io_remaining)) {
214 struct workqueue_struct *wq;
215
216 wq = (ioend->io_type == IOMAP_UNWRITTEN) ?
217 xfsconvertd_workqueue : xfsdatad_workqueue;
218 queue_work(wq, &ioend->io_work);
219 if (wait)
220 flush_workqueue(wq);
221 }
ba87ea69
LM
222}
223
0829c360 224/*
5ec4fabb 225 * IO write completion.
f6d6d4fc
CH
226 */
227STATIC void
5ec4fabb 228xfs_end_io(
77d7a0c2 229 struct work_struct *work)
0829c360 230{
77d7a0c2
DC
231 xfs_ioend_t *ioend = container_of(work, xfs_ioend_t, io_work);
232 struct xfs_inode *ip = XFS_I(ioend->io_inode);
69418932 233 int error = 0;
ba87ea69 234
5ec4fabb
CH
235 /*
236 * For unwritten extents we need to issue transactions to convert a
237 * range to normal written extens after the data I/O has finished.
238 */
239 if (ioend->io_type == IOMAP_UNWRITTEN &&
240 likely(!ioend->io_error && !XFS_FORCED_SHUTDOWN(ip->i_mount))) {
5ec4fabb
CH
241
242 error = xfs_iomap_write_unwritten(ip, ioend->io_offset,
243 ioend->io_size);
244 if (error)
245 ioend->io_error = error;
246 }
ba87ea69 247
5ec4fabb
CH
248 /*
249 * We might have to update the on-disk file size after extending
250 * writes.
251 */
77d7a0c2
DC
252 if (ioend->io_type != IOMAP_READ) {
253 error = xfs_setfilesize(ioend);
254 ASSERT(!error || error == EAGAIN);
c626d174 255 }
77d7a0c2
DC
256
257 /*
258 * If we didn't complete processing of the ioend, requeue it to the
259 * tail of the workqueue for another attempt later. Otherwise destroy
260 * it.
261 */
262 if (error == EAGAIN) {
263 atomic_inc(&ioend->io_remaining);
264 xfs_finish_ioend(ioend, 0);
265 /* ensure we don't spin on blocked ioends */
266 delay(1);
267 } else
268 xfs_destroy_ioend(ioend);
c626d174
DC
269}
270
0829c360
CH
271/*
272 * Allocate and initialise an IO completion structure.
273 * We need to track unwritten extent write completion here initially.
274 * We'll need to extend this for updating the ondisk inode size later
275 * (vs. incore size).
276 */
277STATIC xfs_ioend_t *
278xfs_alloc_ioend(
f6d6d4fc
CH
279 struct inode *inode,
280 unsigned int type)
0829c360
CH
281{
282 xfs_ioend_t *ioend;
283
284 ioend = mempool_alloc(xfs_ioend_pool, GFP_NOFS);
285
286 /*
287 * Set the count to 1 initially, which will prevent an I/O
288 * completion callback from happening before we have started
289 * all the I/O from calling the completion routine too early.
290 */
291 atomic_set(&ioend->io_remaining, 1);
7d04a335 292 ioend->io_error = 0;
f6d6d4fc
CH
293 ioend->io_list = NULL;
294 ioend->io_type = type;
b677c210 295 ioend->io_inode = inode;
c1a073bd 296 ioend->io_buffer_head = NULL;
f6d6d4fc 297 ioend->io_buffer_tail = NULL;
b677c210 298 atomic_inc(&XFS_I(ioend->io_inode)->i_iocount);
0829c360
CH
299 ioend->io_offset = 0;
300 ioend->io_size = 0;
301
5ec4fabb 302 INIT_WORK(&ioend->io_work, xfs_end_io);
0829c360
CH
303 return ioend;
304}
305
1da177e4
LT
306STATIC int
307xfs_map_blocks(
308 struct inode *inode,
309 loff_t offset,
310 ssize_t count,
311 xfs_iomap_t *mapp,
312 int flags)
313{
6bd16ff2
CH
314 int nmaps = 1;
315
316 return -xfs_iomap(XFS_I(inode), offset, count, flags, mapp, &nmaps);
1da177e4
LT
317}
318
b8f82a4a 319STATIC int
1defeac9 320xfs_iomap_valid(
1da177e4 321 xfs_iomap_t *iomapp,
1defeac9 322 loff_t offset)
1da177e4 323{
1defeac9
CH
324 return offset >= iomapp->iomap_offset &&
325 offset < iomapp->iomap_offset + iomapp->iomap_bsize;
1da177e4
LT
326}
327
f6d6d4fc
CH
328/*
329 * BIO completion handler for buffered IO.
330 */
782e3b3b 331STATIC void
f6d6d4fc
CH
332xfs_end_bio(
333 struct bio *bio,
f6d6d4fc
CH
334 int error)
335{
336 xfs_ioend_t *ioend = bio->bi_private;
337
f6d6d4fc 338 ASSERT(atomic_read(&bio->bi_cnt) >= 1);
7d04a335 339 ioend->io_error = test_bit(BIO_UPTODATE, &bio->bi_flags) ? 0 : error;
f6d6d4fc
CH
340
341 /* Toss bio and pass work off to an xfsdatad thread */
f6d6d4fc
CH
342 bio->bi_private = NULL;
343 bio->bi_end_io = NULL;
f6d6d4fc 344 bio_put(bio);
7d04a335 345
e927af90 346 xfs_finish_ioend(ioend, 0);
f6d6d4fc
CH
347}
348
349STATIC void
350xfs_submit_ioend_bio(
06342cf8
CH
351 struct writeback_control *wbc,
352 xfs_ioend_t *ioend,
353 struct bio *bio)
f6d6d4fc
CH
354{
355 atomic_inc(&ioend->io_remaining);
f6d6d4fc
CH
356 bio->bi_private = ioend;
357 bio->bi_end_io = xfs_end_bio;
358
932640e8
DC
359 /*
360 * If the I/O is beyond EOF we mark the inode dirty immediately
361 * but don't update the inode size until I/O completion.
362 */
363 if (xfs_ioend_new_eof(ioend))
66d834ea 364 xfs_mark_inode_dirty(XFS_I(ioend->io_inode));
932640e8 365
06342cf8
CH
366 submit_bio(wbc->sync_mode == WB_SYNC_ALL ?
367 WRITE_SYNC_PLUG : WRITE, bio);
f6d6d4fc
CH
368 ASSERT(!bio_flagged(bio, BIO_EOPNOTSUPP));
369 bio_put(bio);
370}
371
372STATIC struct bio *
373xfs_alloc_ioend_bio(
374 struct buffer_head *bh)
375{
376 struct bio *bio;
377 int nvecs = bio_get_nr_vecs(bh->b_bdev);
378
379 do {
380 bio = bio_alloc(GFP_NOIO, nvecs);
381 nvecs >>= 1;
382 } while (!bio);
383
384 ASSERT(bio->bi_private == NULL);
385 bio->bi_sector = bh->b_blocknr * (bh->b_size >> 9);
386 bio->bi_bdev = bh->b_bdev;
387 bio_get(bio);
388 return bio;
389}
390
391STATIC void
392xfs_start_buffer_writeback(
393 struct buffer_head *bh)
394{
395 ASSERT(buffer_mapped(bh));
396 ASSERT(buffer_locked(bh));
397 ASSERT(!buffer_delay(bh));
398 ASSERT(!buffer_unwritten(bh));
399
400 mark_buffer_async_write(bh);
401 set_buffer_uptodate(bh);
402 clear_buffer_dirty(bh);
403}
404
405STATIC void
406xfs_start_page_writeback(
407 struct page *page,
f6d6d4fc
CH
408 int clear_dirty,
409 int buffers)
410{
411 ASSERT(PageLocked(page));
412 ASSERT(!PageWriteback(page));
f6d6d4fc 413 if (clear_dirty)
92132021
DC
414 clear_page_dirty_for_io(page);
415 set_page_writeback(page);
f6d6d4fc 416 unlock_page(page);
1f7decf6
FW
417 /* If no buffers on the page are to be written, finish it here */
418 if (!buffers)
f6d6d4fc 419 end_page_writeback(page);
f6d6d4fc
CH
420}
421
422static inline int bio_add_buffer(struct bio *bio, struct buffer_head *bh)
423{
424 return bio_add_page(bio, bh->b_page, bh->b_size, bh_offset(bh));
425}
426
427/*
d88992f6
DC
428 * Submit all of the bios for all of the ioends we have saved up, covering the
429 * initial writepage page and also any probed pages.
430 *
431 * Because we may have multiple ioends spanning a page, we need to start
432 * writeback on all the buffers before we submit them for I/O. If we mark the
433 * buffers as we got, then we can end up with a page that only has buffers
434 * marked async write and I/O complete on can occur before we mark the other
435 * buffers async write.
436 *
437 * The end result of this is that we trip a bug in end_page_writeback() because
438 * we call it twice for the one page as the code in end_buffer_async_write()
439 * assumes that all buffers on the page are started at the same time.
440 *
441 * The fix is two passes across the ioend list - one to start writeback on the
c41564b5 442 * buffer_heads, and then submit them for I/O on the second pass.
f6d6d4fc
CH
443 */
444STATIC void
445xfs_submit_ioend(
06342cf8 446 struct writeback_control *wbc,
f6d6d4fc
CH
447 xfs_ioend_t *ioend)
448{
d88992f6 449 xfs_ioend_t *head = ioend;
f6d6d4fc
CH
450 xfs_ioend_t *next;
451 struct buffer_head *bh;
452 struct bio *bio;
453 sector_t lastblock = 0;
454
d88992f6
DC
455 /* Pass 1 - start writeback */
456 do {
457 next = ioend->io_list;
458 for (bh = ioend->io_buffer_head; bh; bh = bh->b_private) {
459 xfs_start_buffer_writeback(bh);
460 }
461 } while ((ioend = next) != NULL);
462
463 /* Pass 2 - submit I/O */
464 ioend = head;
f6d6d4fc
CH
465 do {
466 next = ioend->io_list;
467 bio = NULL;
468
469 for (bh = ioend->io_buffer_head; bh; bh = bh->b_private) {
f6d6d4fc
CH
470
471 if (!bio) {
472 retry:
473 bio = xfs_alloc_ioend_bio(bh);
474 } else if (bh->b_blocknr != lastblock + 1) {
06342cf8 475 xfs_submit_ioend_bio(wbc, ioend, bio);
f6d6d4fc
CH
476 goto retry;
477 }
478
479 if (bio_add_buffer(bio, bh) != bh->b_size) {
06342cf8 480 xfs_submit_ioend_bio(wbc, ioend, bio);
f6d6d4fc
CH
481 goto retry;
482 }
483
484 lastblock = bh->b_blocknr;
485 }
486 if (bio)
06342cf8 487 xfs_submit_ioend_bio(wbc, ioend, bio);
e927af90 488 xfs_finish_ioend(ioend, 0);
f6d6d4fc
CH
489 } while ((ioend = next) != NULL);
490}
491
492/*
493 * Cancel submission of all buffer_heads so far in this endio.
494 * Toss the endio too. Only ever called for the initial page
495 * in a writepage request, so only ever one page.
496 */
497STATIC void
498xfs_cancel_ioend(
499 xfs_ioend_t *ioend)
500{
501 xfs_ioend_t *next;
502 struct buffer_head *bh, *next_bh;
503
504 do {
505 next = ioend->io_list;
506 bh = ioend->io_buffer_head;
507 do {
508 next_bh = bh->b_private;
509 clear_buffer_async_write(bh);
510 unlock_buffer(bh);
511 } while ((bh = next_bh) != NULL);
512
25e41b3d 513 xfs_ioend_wake(XFS_I(ioend->io_inode));
f6d6d4fc
CH
514 mempool_free(ioend, xfs_ioend_pool);
515 } while ((ioend = next) != NULL);
516}
517
518/*
519 * Test to see if we've been building up a completion structure for
520 * earlier buffers -- if so, we try to append to this ioend if we
521 * can, otherwise we finish off any current ioend and start another.
522 * Return true if we've finished the given ioend.
523 */
524STATIC void
525xfs_add_to_ioend(
526 struct inode *inode,
527 struct buffer_head *bh,
7336cea8 528 xfs_off_t offset,
f6d6d4fc
CH
529 unsigned int type,
530 xfs_ioend_t **result,
531 int need_ioend)
532{
533 xfs_ioend_t *ioend = *result;
534
535 if (!ioend || need_ioend || type != ioend->io_type) {
536 xfs_ioend_t *previous = *result;
f6d6d4fc 537
f6d6d4fc
CH
538 ioend = xfs_alloc_ioend(inode, type);
539 ioend->io_offset = offset;
540 ioend->io_buffer_head = bh;
541 ioend->io_buffer_tail = bh;
542 if (previous)
543 previous->io_list = ioend;
544 *result = ioend;
545 } else {
546 ioend->io_buffer_tail->b_private = bh;
547 ioend->io_buffer_tail = bh;
548 }
549
550 bh->b_private = NULL;
551 ioend->io_size += bh->b_size;
552}
553
87cbc49c
NS
554STATIC void
555xfs_map_buffer(
556 struct buffer_head *bh,
557 xfs_iomap_t *mp,
558 xfs_off_t offset,
559 uint block_bits)
560{
561 sector_t bn;
562
563 ASSERT(mp->iomap_bn != IOMAP_DADDR_NULL);
564
565 bn = (mp->iomap_bn >> (block_bits - BBSHIFT)) +
566 ((offset - mp->iomap_offset) >> block_bits);
567
568 ASSERT(bn || (mp->iomap_flags & IOMAP_REALTIME));
569
570 bh->b_blocknr = bn;
571 set_buffer_mapped(bh);
572}
573
1da177e4
LT
574STATIC void
575xfs_map_at_offset(
1da177e4 576 struct buffer_head *bh,
1defeac9 577 loff_t offset,
1da177e4 578 int block_bits,
1defeac9 579 xfs_iomap_t *iomapp)
1da177e4 580{
1da177e4
LT
581 ASSERT(!(iomapp->iomap_flags & IOMAP_HOLE));
582 ASSERT(!(iomapp->iomap_flags & IOMAP_DELAY));
1da177e4
LT
583
584 lock_buffer(bh);
87cbc49c 585 xfs_map_buffer(bh, iomapp, offset, block_bits);
ce8e922c 586 bh->b_bdev = iomapp->iomap_target->bt_bdev;
1da177e4
LT
587 set_buffer_mapped(bh);
588 clear_buffer_delay(bh);
f6d6d4fc 589 clear_buffer_unwritten(bh);
1da177e4
LT
590}
591
592/*
6c4fe19f 593 * Look for a page at index that is suitable for clustering.
1da177e4
LT
594 */
595STATIC unsigned int
6c4fe19f 596xfs_probe_page(
10ce4444 597 struct page *page,
6c4fe19f
CH
598 unsigned int pg_offset,
599 int mapped)
1da177e4 600{
1da177e4
LT
601 int ret = 0;
602
1da177e4 603 if (PageWriteback(page))
10ce4444 604 return 0;
1da177e4
LT
605
606 if (page->mapping && PageDirty(page)) {
607 if (page_has_buffers(page)) {
608 struct buffer_head *bh, *head;
609
610 bh = head = page_buffers(page);
611 do {
6c4fe19f
CH
612 if (!buffer_uptodate(bh))
613 break;
614 if (mapped != buffer_mapped(bh))
1da177e4
LT
615 break;
616 ret += bh->b_size;
617 if (ret >= pg_offset)
618 break;
619 } while ((bh = bh->b_this_page) != head);
620 } else
6c4fe19f 621 ret = mapped ? 0 : PAGE_CACHE_SIZE;
1da177e4
LT
622 }
623
1da177e4
LT
624 return ret;
625}
626
f6d6d4fc 627STATIC size_t
6c4fe19f 628xfs_probe_cluster(
1da177e4
LT
629 struct inode *inode,
630 struct page *startpage,
631 struct buffer_head *bh,
6c4fe19f
CH
632 struct buffer_head *head,
633 int mapped)
1da177e4 634{
10ce4444 635 struct pagevec pvec;
1da177e4 636 pgoff_t tindex, tlast, tloff;
10ce4444
CH
637 size_t total = 0;
638 int done = 0, i;
1da177e4
LT
639
640 /* First sum forwards in this page */
641 do {
2353e8e9 642 if (!buffer_uptodate(bh) || (mapped != buffer_mapped(bh)))
10ce4444 643 return total;
1da177e4
LT
644 total += bh->b_size;
645 } while ((bh = bh->b_this_page) != head);
646
10ce4444
CH
647 /* if we reached the end of the page, sum forwards in following pages */
648 tlast = i_size_read(inode) >> PAGE_CACHE_SHIFT;
649 tindex = startpage->index + 1;
650
651 /* Prune this back to avoid pathological behavior */
652 tloff = min(tlast, startpage->index + 64);
653
654 pagevec_init(&pvec, 0);
655 while (!done && tindex <= tloff) {
656 unsigned len = min_t(pgoff_t, PAGEVEC_SIZE, tlast - tindex + 1);
657
658 if (!pagevec_lookup(&pvec, inode->i_mapping, tindex, len))
659 break;
660
661 for (i = 0; i < pagevec_count(&pvec); i++) {
662 struct page *page = pvec.pages[i];
265c1fac 663 size_t pg_offset, pg_len = 0;
10ce4444
CH
664
665 if (tindex == tlast) {
666 pg_offset =
667 i_size_read(inode) & (PAGE_CACHE_SIZE - 1);
1defeac9
CH
668 if (!pg_offset) {
669 done = 1;
10ce4444 670 break;
1defeac9 671 }
10ce4444
CH
672 } else
673 pg_offset = PAGE_CACHE_SIZE;
674
529ae9aa 675 if (page->index == tindex && trylock_page(page)) {
265c1fac 676 pg_len = xfs_probe_page(page, pg_offset, mapped);
10ce4444
CH
677 unlock_page(page);
678 }
679
265c1fac 680 if (!pg_len) {
10ce4444
CH
681 done = 1;
682 break;
683 }
684
265c1fac 685 total += pg_len;
1defeac9 686 tindex++;
1da177e4 687 }
10ce4444
CH
688
689 pagevec_release(&pvec);
690 cond_resched();
1da177e4 691 }
10ce4444 692
1da177e4
LT
693 return total;
694}
695
696/*
10ce4444
CH
697 * Test if a given page is suitable for writing as part of an unwritten
698 * or delayed allocate extent.
1da177e4 699 */
10ce4444
CH
700STATIC int
701xfs_is_delayed_page(
702 struct page *page,
f6d6d4fc 703 unsigned int type)
1da177e4 704{
1da177e4 705 if (PageWriteback(page))
10ce4444 706 return 0;
1da177e4
LT
707
708 if (page->mapping && page_has_buffers(page)) {
709 struct buffer_head *bh, *head;
710 int acceptable = 0;
711
712 bh = head = page_buffers(page);
713 do {
f6d6d4fc
CH
714 if (buffer_unwritten(bh))
715 acceptable = (type == IOMAP_UNWRITTEN);
716 else if (buffer_delay(bh))
717 acceptable = (type == IOMAP_DELAY);
2ddee844 718 else if (buffer_dirty(bh) && buffer_mapped(bh))
df3c7244 719 acceptable = (type == IOMAP_NEW);
f6d6d4fc 720 else
1da177e4 721 break;
1da177e4
LT
722 } while ((bh = bh->b_this_page) != head);
723
724 if (acceptable)
10ce4444 725 return 1;
1da177e4
LT
726 }
727
10ce4444 728 return 0;
1da177e4
LT
729}
730
1da177e4
LT
731/*
732 * Allocate & map buffers for page given the extent map. Write it out.
733 * except for the original page of a writepage, this is called on
734 * delalloc/unwritten pages only, for the original page it is possible
735 * that the page has no mapping at all.
736 */
f6d6d4fc 737STATIC int
1da177e4
LT
738xfs_convert_page(
739 struct inode *inode,
740 struct page *page,
10ce4444 741 loff_t tindex,
1defeac9 742 xfs_iomap_t *mp,
f6d6d4fc 743 xfs_ioend_t **ioendp,
1da177e4 744 struct writeback_control *wbc,
1da177e4
LT
745 int startio,
746 int all_bh)
747{
f6d6d4fc 748 struct buffer_head *bh, *head;
9260dc6b
CH
749 xfs_off_t end_offset;
750 unsigned long p_offset;
f6d6d4fc 751 unsigned int type;
1da177e4 752 int bbits = inode->i_blkbits;
24e17b5f 753 int len, page_dirty;
f6d6d4fc 754 int count = 0, done = 0, uptodate = 1;
9260dc6b 755 xfs_off_t offset = page_offset(page);
1da177e4 756
10ce4444
CH
757 if (page->index != tindex)
758 goto fail;
529ae9aa 759 if (!trylock_page(page))
10ce4444
CH
760 goto fail;
761 if (PageWriteback(page))
762 goto fail_unlock_page;
763 if (page->mapping != inode->i_mapping)
764 goto fail_unlock_page;
765 if (!xfs_is_delayed_page(page, (*ioendp)->io_type))
766 goto fail_unlock_page;
767
24e17b5f
NS
768 /*
769 * page_dirty is initially a count of buffers on the page before
c41564b5 770 * EOF and is decremented as we move each into a cleanable state.
9260dc6b
CH
771 *
772 * Derivation:
773 *
774 * End offset is the highest offset that this page should represent.
775 * If we are on the last page, (end_offset & (PAGE_CACHE_SIZE - 1))
776 * will evaluate non-zero and be less than PAGE_CACHE_SIZE and
777 * hence give us the correct page_dirty count. On any other page,
778 * it will be zero and in that case we need page_dirty to be the
779 * count of buffers on the page.
24e17b5f 780 */
9260dc6b
CH
781 end_offset = min_t(unsigned long long,
782 (xfs_off_t)(page->index + 1) << PAGE_CACHE_SHIFT,
783 i_size_read(inode));
784
24e17b5f 785 len = 1 << inode->i_blkbits;
9260dc6b
CH
786 p_offset = min_t(unsigned long, end_offset & (PAGE_CACHE_SIZE - 1),
787 PAGE_CACHE_SIZE);
788 p_offset = p_offset ? roundup(p_offset, len) : PAGE_CACHE_SIZE;
789 page_dirty = p_offset / len;
24e17b5f 790
1da177e4
LT
791 bh = head = page_buffers(page);
792 do {
9260dc6b 793 if (offset >= end_offset)
1da177e4 794 break;
f6d6d4fc
CH
795 if (!buffer_uptodate(bh))
796 uptodate = 0;
797 if (!(PageUptodate(page) || buffer_uptodate(bh))) {
798 done = 1;
1da177e4 799 continue;
f6d6d4fc
CH
800 }
801
9260dc6b
CH
802 if (buffer_unwritten(bh) || buffer_delay(bh)) {
803 if (buffer_unwritten(bh))
804 type = IOMAP_UNWRITTEN;
805 else
806 type = IOMAP_DELAY;
807
808 if (!xfs_iomap_valid(mp, offset)) {
f6d6d4fc 809 done = 1;
9260dc6b
CH
810 continue;
811 }
812
813 ASSERT(!(mp->iomap_flags & IOMAP_HOLE));
814 ASSERT(!(mp->iomap_flags & IOMAP_DELAY));
815
816 xfs_map_at_offset(bh, offset, bbits, mp);
817 if (startio) {
7336cea8 818 xfs_add_to_ioend(inode, bh, offset,
9260dc6b
CH
819 type, ioendp, done);
820 } else {
821 set_buffer_dirty(bh);
822 unlock_buffer(bh);
823 mark_buffer_dirty(bh);
824 }
825 page_dirty--;
826 count++;
827 } else {
df3c7244 828 type = IOMAP_NEW;
9260dc6b 829 if (buffer_mapped(bh) && all_bh && startio) {
1da177e4 830 lock_buffer(bh);
7336cea8 831 xfs_add_to_ioend(inode, bh, offset,
f6d6d4fc
CH
832 type, ioendp, done);
833 count++;
24e17b5f 834 page_dirty--;
9260dc6b
CH
835 } else {
836 done = 1;
1da177e4 837 }
1da177e4 838 }
7336cea8 839 } while (offset += len, (bh = bh->b_this_page) != head);
1da177e4 840
f6d6d4fc
CH
841 if (uptodate && bh == head)
842 SetPageUptodate(page);
843
844 if (startio) {
f5e596bb 845 if (count) {
9fddaca2 846 wbc->nr_to_write--;
0d99519e 847 if (wbc->nr_to_write <= 0)
f5e596bb 848 done = 1;
f5e596bb 849 }
b41759cf 850 xfs_start_page_writeback(page, !page_dirty, count);
1da177e4 851 }
f6d6d4fc
CH
852
853 return done;
10ce4444
CH
854 fail_unlock_page:
855 unlock_page(page);
856 fail:
857 return 1;
1da177e4
LT
858}
859
860/*
861 * Convert & write out a cluster of pages in the same extent as defined
862 * by mp and following the start page.
863 */
864STATIC void
865xfs_cluster_write(
866 struct inode *inode,
867 pgoff_t tindex,
868 xfs_iomap_t *iomapp,
f6d6d4fc 869 xfs_ioend_t **ioendp,
1da177e4
LT
870 struct writeback_control *wbc,
871 int startio,
872 int all_bh,
873 pgoff_t tlast)
874{
10ce4444
CH
875 struct pagevec pvec;
876 int done = 0, i;
1da177e4 877
10ce4444
CH
878 pagevec_init(&pvec, 0);
879 while (!done && tindex <= tlast) {
880 unsigned len = min_t(pgoff_t, PAGEVEC_SIZE, tlast - tindex + 1);
881
882 if (!pagevec_lookup(&pvec, inode->i_mapping, tindex, len))
1da177e4 883 break;
10ce4444
CH
884
885 for (i = 0; i < pagevec_count(&pvec); i++) {
886 done = xfs_convert_page(inode, pvec.pages[i], tindex++,
887 iomapp, ioendp, wbc, startio, all_bh);
888 if (done)
889 break;
890 }
891
892 pagevec_release(&pvec);
893 cond_resched();
1da177e4
LT
894 }
895}
896
3ed3a434
DC
897STATIC void
898xfs_vm_invalidatepage(
899 struct page *page,
900 unsigned long offset)
901{
902 trace_xfs_invalidatepage(page->mapping->host, page, offset);
903 block_invalidatepage(page, offset);
904}
905
906/*
907 * If the page has delalloc buffers on it, we need to punch them out before we
908 * invalidate the page. If we don't, we leave a stale delalloc mapping on the
909 * inode that can trip a BUG() in xfs_get_blocks() later on if a direct IO read
910 * is done on that same region - the delalloc extent is returned when none is
911 * supposed to be there.
912 *
913 * We prevent this by truncating away the delalloc regions on the page before
914 * invalidating it. Because they are delalloc, we can do this without needing a
915 * transaction. Indeed - if we get ENOSPC errors, we have to be able to do this
916 * truncation without a transaction as there is no space left for block
917 * reservation (typically why we see a ENOSPC in writeback).
918 *
919 * This is not a performance critical path, so for now just do the punching a
920 * buffer head at a time.
921 */
922STATIC void
923xfs_aops_discard_page(
924 struct page *page)
925{
926 struct inode *inode = page->mapping->host;
927 struct xfs_inode *ip = XFS_I(inode);
928 struct buffer_head *bh, *head;
929 loff_t offset = page_offset(page);
930 ssize_t len = 1 << inode->i_blkbits;
931
932 if (!xfs_is_delayed_page(page, IOMAP_DELAY))
933 goto out_invalidate;
934
935 xfs_fs_cmn_err(CE_ALERT, ip->i_mount,
936 "page discard on page %p, inode 0x%llx, offset %llu.",
937 page, ip->i_ino, offset);
938
939 xfs_ilock(ip, XFS_ILOCK_EXCL);
940 bh = head = page_buffers(page);
941 do {
942 int done;
943 xfs_fileoff_t offset_fsb;
944 xfs_bmbt_irec_t imap;
945 int nimaps = 1;
946 int error;
947 xfs_fsblock_t firstblock;
948 xfs_bmap_free_t flist;
949
950 if (!buffer_delay(bh))
951 goto next_buffer;
952
953 offset_fsb = XFS_B_TO_FSBT(ip->i_mount, offset);
954
955 /*
956 * Map the range first and check that it is a delalloc extent
957 * before trying to unmap the range. Otherwise we will be
958 * trying to remove a real extent (which requires a
959 * transaction) or a hole, which is probably a bad idea...
960 */
961 error = xfs_bmapi(NULL, ip, offset_fsb, 1,
962 XFS_BMAPI_ENTIRE, NULL, 0, &imap,
963 &nimaps, NULL, NULL);
964
965 if (error) {
966 /* something screwed, just bail */
967 xfs_fs_cmn_err(CE_ALERT, ip->i_mount,
968 "page discard failed delalloc mapping lookup.");
969 break;
970 }
971 if (!nimaps) {
972 /* nothing there */
973 goto next_buffer;
974 }
975 if (imap.br_startblock != DELAYSTARTBLOCK) {
976 /* been converted, ignore */
977 goto next_buffer;
978 }
979 WARN_ON(imap.br_blockcount == 0);
980
981 /*
982 * Note: while we initialise the firstblock/flist pair, they
983 * should never be used because blocks should never be
984 * allocated or freed for a delalloc extent and hence we need
985 * don't cancel or finish them after the xfs_bunmapi() call.
986 */
987 xfs_bmap_init(&flist, &firstblock);
988 error = xfs_bunmapi(NULL, ip, offset_fsb, 1, 0, 1, &firstblock,
989 &flist, NULL, &done);
990
991 ASSERT(!flist.xbf_count && !flist.xbf_first);
992 if (error) {
993 /* something screwed, just bail */
994 xfs_fs_cmn_err(CE_ALERT, ip->i_mount,
995 "page discard unable to remove delalloc mapping.");
996 break;
997 }
998next_buffer:
999 offset += len;
1000
1001 } while ((bh = bh->b_this_page) != head);
1002
1003 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1004out_invalidate:
1005 xfs_vm_invalidatepage(page, 0);
1006 return;
1007}
1008
1da177e4
LT
1009/*
1010 * Calling this without startio set means we are being asked to make a dirty
1011 * page ready for freeing it's buffers. When called with startio set then
1012 * we are coming from writepage.
1013 *
1014 * When called with startio set it is important that we write the WHOLE
1015 * page if possible.
1016 * The bh->b_state's cannot know if any of the blocks or which block for
1017 * that matter are dirty due to mmap writes, and therefore bh uptodate is
c41564b5 1018 * only valid if the page itself isn't completely uptodate. Some layers
1da177e4
LT
1019 * may clear the page dirty flag prior to calling write page, under the
1020 * assumption the entire page will be written out; by not writing out the
1021 * whole page the page can be reused before all valid dirty data is
1022 * written out. Note: in the case of a page that has been dirty'd by
1023 * mapwrite and but partially setup by block_prepare_write the
1024 * bh->b_states's will not agree and only ones setup by BPW/BCW will have
1025 * valid state, thus the whole page must be written out thing.
1026 */
1027
1028STATIC int
1029xfs_page_state_convert(
1030 struct inode *inode,
1031 struct page *page,
1032 struct writeback_control *wbc,
1033 int startio,
1034 int unmapped) /* also implies page uptodate */
1035{
f6d6d4fc 1036 struct buffer_head *bh, *head;
1defeac9 1037 xfs_iomap_t iomap;
f6d6d4fc 1038 xfs_ioend_t *ioend = NULL, *iohead = NULL;
1da177e4
LT
1039 loff_t offset;
1040 unsigned long p_offset = 0;
f6d6d4fc 1041 unsigned int type;
1da177e4
LT
1042 __uint64_t end_offset;
1043 pgoff_t end_index, last_index, tlast;
d5cb48aa
CH
1044 ssize_t size, len;
1045 int flags, err, iomap_valid = 0, uptodate = 1;
8272145c
NS
1046 int page_dirty, count = 0;
1047 int trylock = 0;
6c4fe19f 1048 int all_bh = unmapped;
1da177e4 1049
8272145c
NS
1050 if (startio) {
1051 if (wbc->sync_mode == WB_SYNC_NONE && wbc->nonblocking)
1052 trylock |= BMAPI_TRYLOCK;
1053 }
3ba0815a 1054
1da177e4
LT
1055 /* Is this page beyond the end of the file? */
1056 offset = i_size_read(inode);
1057 end_index = offset >> PAGE_CACHE_SHIFT;
1058 last_index = (offset - 1) >> PAGE_CACHE_SHIFT;
1059 if (page->index >= end_index) {
1060 if ((page->index >= end_index + 1) ||
1061 !(i_size_read(inode) & (PAGE_CACHE_SIZE - 1))) {
19d5bcf3
NS
1062 if (startio)
1063 unlock_page(page);
1064 return 0;
1da177e4
LT
1065 }
1066 }
1067
1da177e4 1068 /*
24e17b5f 1069 * page_dirty is initially a count of buffers on the page before
c41564b5 1070 * EOF and is decremented as we move each into a cleanable state.
f6d6d4fc
CH
1071 *
1072 * Derivation:
1073 *
1074 * End offset is the highest offset that this page should represent.
1075 * If we are on the last page, (end_offset & (PAGE_CACHE_SIZE - 1))
1076 * will evaluate non-zero and be less than PAGE_CACHE_SIZE and
1077 * hence give us the correct page_dirty count. On any other page,
1078 * it will be zero and in that case we need page_dirty to be the
1079 * count of buffers on the page.
1080 */
1081 end_offset = min_t(unsigned long long,
1082 (xfs_off_t)(page->index + 1) << PAGE_CACHE_SHIFT, offset);
24e17b5f 1083 len = 1 << inode->i_blkbits;
f6d6d4fc
CH
1084 p_offset = min_t(unsigned long, end_offset & (PAGE_CACHE_SIZE - 1),
1085 PAGE_CACHE_SIZE);
1086 p_offset = p_offset ? roundup(p_offset, len) : PAGE_CACHE_SIZE;
24e17b5f
NS
1087 page_dirty = p_offset / len;
1088
24e17b5f 1089 bh = head = page_buffers(page);
f6d6d4fc 1090 offset = page_offset(page);
df3c7244
DC
1091 flags = BMAPI_READ;
1092 type = IOMAP_NEW;
f6d6d4fc 1093
f6d6d4fc 1094 /* TODO: cleanup count and page_dirty */
1da177e4
LT
1095
1096 do {
1097 if (offset >= end_offset)
1098 break;
1099 if (!buffer_uptodate(bh))
1100 uptodate = 0;
f6d6d4fc 1101 if (!(PageUptodate(page) || buffer_uptodate(bh)) && !startio) {
1defeac9
CH
1102 /*
1103 * the iomap is actually still valid, but the ioend
1104 * isn't. shouldn't happen too often.
1105 */
1106 iomap_valid = 0;
1da177e4 1107 continue;
f6d6d4fc 1108 }
1da177e4 1109
1defeac9
CH
1110 if (iomap_valid)
1111 iomap_valid = xfs_iomap_valid(&iomap, offset);
1da177e4
LT
1112
1113 /*
1114 * First case, map an unwritten extent and prepare for
1115 * extent state conversion transaction on completion.
f6d6d4fc 1116 *
1da177e4
LT
1117 * Second case, allocate space for a delalloc buffer.
1118 * We can return EAGAIN here in the release page case.
d5cb48aa
CH
1119 *
1120 * Third case, an unmapped buffer was found, and we are
1121 * in a path where we need to write the whole page out.
df3c7244 1122 */
d5cb48aa
CH
1123 if (buffer_unwritten(bh) || buffer_delay(bh) ||
1124 ((buffer_uptodate(bh) || PageUptodate(page)) &&
1125 !buffer_mapped(bh) && (unmapped || startio))) {
effd120e
DC
1126 int new_ioend = 0;
1127
df3c7244 1128 /*
6c4fe19f
CH
1129 * Make sure we don't use a read-only iomap
1130 */
df3c7244 1131 if (flags == BMAPI_READ)
6c4fe19f
CH
1132 iomap_valid = 0;
1133
f6d6d4fc
CH
1134 if (buffer_unwritten(bh)) {
1135 type = IOMAP_UNWRITTEN;
8272145c 1136 flags = BMAPI_WRITE | BMAPI_IGNSTATE;
d5cb48aa 1137 } else if (buffer_delay(bh)) {
f6d6d4fc 1138 type = IOMAP_DELAY;
8272145c 1139 flags = BMAPI_ALLOCATE | trylock;
d5cb48aa 1140 } else {
6c4fe19f 1141 type = IOMAP_NEW;
8272145c 1142 flags = BMAPI_WRITE | BMAPI_MMAP;
f6d6d4fc
CH
1143 }
1144
1defeac9 1145 if (!iomap_valid) {
effd120e
DC
1146 /*
1147 * if we didn't have a valid mapping then we
1148 * need to ensure that we put the new mapping
1149 * in a new ioend structure. This needs to be
1150 * done to ensure that the ioends correctly
1151 * reflect the block mappings at io completion
1152 * for unwritten extent conversion.
1153 */
1154 new_ioend = 1;
6c4fe19f
CH
1155 if (type == IOMAP_NEW) {
1156 size = xfs_probe_cluster(inode,
1157 page, bh, head, 0);
d5cb48aa
CH
1158 } else {
1159 size = len;
1160 }
1161
1162 err = xfs_map_blocks(inode, offset, size,
1163 &iomap, flags);
f6d6d4fc 1164 if (err)
1da177e4 1165 goto error;
1defeac9 1166 iomap_valid = xfs_iomap_valid(&iomap, offset);
1da177e4 1167 }
1defeac9
CH
1168 if (iomap_valid) {
1169 xfs_map_at_offset(bh, offset,
1170 inode->i_blkbits, &iomap);
1da177e4 1171 if (startio) {
7336cea8 1172 xfs_add_to_ioend(inode, bh, offset,
1defeac9 1173 type, &ioend,
effd120e 1174 new_ioend);
1da177e4
LT
1175 } else {
1176 set_buffer_dirty(bh);
1177 unlock_buffer(bh);
1178 mark_buffer_dirty(bh);
1179 }
1180 page_dirty--;
f6d6d4fc 1181 count++;
1da177e4 1182 }
d5cb48aa 1183 } else if (buffer_uptodate(bh) && startio) {
6c4fe19f
CH
1184 /*
1185 * we got here because the buffer is already mapped.
1186 * That means it must already have extents allocated
1187 * underneath it. Map the extent by reading it.
1188 */
df3c7244 1189 if (!iomap_valid || flags != BMAPI_READ) {
6c4fe19f
CH
1190 flags = BMAPI_READ;
1191 size = xfs_probe_cluster(inode, page, bh,
1192 head, 1);
1193 err = xfs_map_blocks(inode, offset, size,
1194 &iomap, flags);
1195 if (err)
1196 goto error;
1197 iomap_valid = xfs_iomap_valid(&iomap, offset);
1198 }
d5cb48aa 1199
df3c7244
DC
1200 /*
1201 * We set the type to IOMAP_NEW in case we are doing a
1202 * small write at EOF that is extending the file but
1203 * without needing an allocation. We need to update the
1204 * file size on I/O completion in this case so it is
1205 * the same case as having just allocated a new extent
1206 * that we are writing into for the first time.
1207 */
1208 type = IOMAP_NEW;
ca5de404 1209 if (trylock_buffer(bh)) {
d5cb48aa 1210 ASSERT(buffer_mapped(bh));
6c4fe19f
CH
1211 if (iomap_valid)
1212 all_bh = 1;
7336cea8 1213 xfs_add_to_ioend(inode, bh, offset, type,
d5cb48aa
CH
1214 &ioend, !iomap_valid);
1215 page_dirty--;
1216 count++;
f6d6d4fc 1217 } else {
1defeac9 1218 iomap_valid = 0;
1da177e4 1219 }
d5cb48aa
CH
1220 } else if ((buffer_uptodate(bh) || PageUptodate(page)) &&
1221 (unmapped || startio)) {
1222 iomap_valid = 0;
1da177e4 1223 }
f6d6d4fc
CH
1224
1225 if (!iohead)
1226 iohead = ioend;
1227
1228 } while (offset += len, ((bh = bh->b_this_page) != head));
1da177e4
LT
1229
1230 if (uptodate && bh == head)
1231 SetPageUptodate(page);
1232
f6d6d4fc 1233 if (startio)
b41759cf 1234 xfs_start_page_writeback(page, 1, count);
1da177e4 1235
1defeac9
CH
1236 if (ioend && iomap_valid) {
1237 offset = (iomap.iomap_offset + iomap.iomap_bsize - 1) >>
1da177e4 1238 PAGE_CACHE_SHIFT;
775bf6c9 1239 tlast = min_t(pgoff_t, offset, last_index);
1defeac9 1240 xfs_cluster_write(inode, page->index + 1, &iomap, &ioend,
6c4fe19f 1241 wbc, startio, all_bh, tlast);
1da177e4
LT
1242 }
1243
f6d6d4fc 1244 if (iohead)
06342cf8 1245 xfs_submit_ioend(wbc, iohead);
f6d6d4fc 1246
1da177e4
LT
1247 return page_dirty;
1248
1249error:
f6d6d4fc
CH
1250 if (iohead)
1251 xfs_cancel_ioend(iohead);
1da177e4
LT
1252
1253 /*
1254 * If it's delalloc and we have nowhere to put it,
1255 * throw it away, unless the lower layers told
1256 * us to try again.
1257 */
1258 if (err != -EAGAIN) {
f6d6d4fc 1259 if (!unmapped)
3ed3a434 1260 xfs_aops_discard_page(page);
1da177e4
LT
1261 ClearPageUptodate(page);
1262 }
1263 return err;
1264}
1265
f51623b2
NS
1266/*
1267 * writepage: Called from one of two places:
1268 *
1269 * 1. we are flushing a delalloc buffer head.
1270 *
1271 * 2. we are writing out a dirty page. Typically the page dirty
1272 * state is cleared before we get here. In this case is it
1273 * conceivable we have no buffer heads.
1274 *
1275 * For delalloc space on the page we need to allocate space and
1276 * flush it. For unmapped buffer heads on the page we should
1277 * allocate space if the page is uptodate. For any other dirty
1278 * buffer heads on the page we should flush them.
1279 *
1280 * If we detect that a transaction would be required to flush
1281 * the page, we have to check the process flags first, if we
1282 * are already in a transaction or disk I/O during allocations
1283 * is off, we need to fail the writepage and redirty the page.
1284 */
1285
1286STATIC int
e4c573bb 1287xfs_vm_writepage(
f51623b2
NS
1288 struct page *page,
1289 struct writeback_control *wbc)
1290{
1291 int error;
1292 int need_trans;
1293 int delalloc, unmapped, unwritten;
1294 struct inode *inode = page->mapping->host;
1295
0b1b213f 1296 trace_xfs_writepage(inode, page, 0);
f51623b2
NS
1297
1298 /*
1299 * We need a transaction if:
1300 * 1. There are delalloc buffers on the page
1301 * 2. The page is uptodate and we have unmapped buffers
1302 * 3. The page is uptodate and we have no buffers
1303 * 4. There are unwritten buffers on the page
1304 */
1305
1306 if (!page_has_buffers(page)) {
1307 unmapped = 1;
1308 need_trans = 1;
1309 } else {
1310 xfs_count_page_state(page, &delalloc, &unmapped, &unwritten);
1311 if (!PageUptodate(page))
1312 unmapped = 0;
1313 need_trans = delalloc + unmapped + unwritten;
1314 }
1315
1316 /*
1317 * If we need a transaction and the process flags say
1318 * we are already in a transaction, or no IO is allowed
1319 * then mark the page dirty again and leave the page
1320 * as is.
1321 */
59c1b082 1322 if (current_test_flags(PF_FSTRANS) && need_trans)
f51623b2
NS
1323 goto out_fail;
1324
1325 /*
1326 * Delay hooking up buffer heads until we have
1327 * made our go/no-go decision.
1328 */
1329 if (!page_has_buffers(page))
1330 create_empty_buffers(page, 1 << inode->i_blkbits, 0);
1331
c8a4051c
ES
1332
1333 /*
1334 * VM calculation for nr_to_write seems off. Bump it way
1335 * up, this gets simple streaming writes zippy again.
1336 * To be reviewed again after Jens' writeback changes.
1337 */
1338 wbc->nr_to_write *= 4;
1339
f51623b2
NS
1340 /*
1341 * Convert delayed allocate, unwritten or unmapped space
1342 * to real space and flush out to disk.
1343 */
1344 error = xfs_page_state_convert(inode, page, wbc, 1, unmapped);
1345 if (error == -EAGAIN)
1346 goto out_fail;
1347 if (unlikely(error < 0))
1348 goto out_unlock;
1349
1350 return 0;
1351
1352out_fail:
1353 redirty_page_for_writepage(wbc, page);
1354 unlock_page(page);
1355 return 0;
1356out_unlock:
1357 unlock_page(page);
1358 return error;
1359}
1360
7d4fb40a
NS
1361STATIC int
1362xfs_vm_writepages(
1363 struct address_space *mapping,
1364 struct writeback_control *wbc)
1365{
b3aea4ed 1366 xfs_iflags_clear(XFS_I(mapping->host), XFS_ITRUNCATED);
7d4fb40a
NS
1367 return generic_writepages(mapping, wbc);
1368}
1369
f51623b2
NS
1370/*
1371 * Called to move a page into cleanable state - and from there
1372 * to be released. Possibly the page is already clean. We always
1373 * have buffer heads in this call.
1374 *
1375 * Returns 0 if the page is ok to release, 1 otherwise.
1376 *
1377 * Possible scenarios are:
1378 *
1379 * 1. We are being called to release a page which has been written
1380 * to via regular I/O. buffer heads will be dirty and possibly
1381 * delalloc. If no delalloc buffer heads in this case then we
1382 * can just return zero.
1383 *
1384 * 2. We are called to release a page which has been written via
1385 * mmap, all we need to do is ensure there is no delalloc
1386 * state in the buffer heads, if not we can let the caller
1387 * free them and we should come back later via writepage.
1388 */
1389STATIC int
238f4c54 1390xfs_vm_releasepage(
f51623b2
NS
1391 struct page *page,
1392 gfp_t gfp_mask)
1393{
1394 struct inode *inode = page->mapping->host;
1395 int dirty, delalloc, unmapped, unwritten;
1396 struct writeback_control wbc = {
1397 .sync_mode = WB_SYNC_ALL,
1398 .nr_to_write = 1,
1399 };
1400
0b1b213f 1401 trace_xfs_releasepage(inode, page, 0);
f51623b2 1402
238f4c54
NS
1403 if (!page_has_buffers(page))
1404 return 0;
1405
f51623b2
NS
1406 xfs_count_page_state(page, &delalloc, &unmapped, &unwritten);
1407 if (!delalloc && !unwritten)
1408 goto free_buffers;
1409
1410 if (!(gfp_mask & __GFP_FS))
1411 return 0;
1412
1413 /* If we are already inside a transaction or the thread cannot
1414 * do I/O, we cannot release this page.
1415 */
59c1b082 1416 if (current_test_flags(PF_FSTRANS))
f51623b2
NS
1417 return 0;
1418
1419 /*
1420 * Convert delalloc space to real space, do not flush the
1421 * data out to disk, that will be done by the caller.
1422 * Never need to allocate space here - we will always
1423 * come back to writepage in that case.
1424 */
1425 dirty = xfs_page_state_convert(inode, page, &wbc, 0, 0);
1426 if (dirty == 0 && !unwritten)
1427 goto free_buffers;
1428 return 0;
1429
1430free_buffers:
1431 return try_to_free_buffers(page);
1432}
1433
1da177e4 1434STATIC int
c2536668 1435__xfs_get_blocks(
1da177e4
LT
1436 struct inode *inode,
1437 sector_t iblock,
1da177e4
LT
1438 struct buffer_head *bh_result,
1439 int create,
1440 int direct,
1441 bmapi_flags_t flags)
1442{
1da177e4 1443 xfs_iomap_t iomap;
fdc7ed75
NS
1444 xfs_off_t offset;
1445 ssize_t size;
c2536668 1446 int niomap = 1;
1da177e4 1447 int error;
1da177e4 1448
fdc7ed75 1449 offset = (xfs_off_t)iblock << inode->i_blkbits;
c2536668
NS
1450 ASSERT(bh_result->b_size >= (1 << inode->i_blkbits));
1451 size = bh_result->b_size;
364f358a
LM
1452
1453 if (!create && direct && offset >= i_size_read(inode))
1454 return 0;
1455
541d7d3c 1456 error = xfs_iomap(XFS_I(inode), offset, size,
67fcaa73 1457 create ? flags : BMAPI_READ, &iomap, &niomap);
1da177e4
LT
1458 if (error)
1459 return -error;
c2536668 1460 if (niomap == 0)
1da177e4
LT
1461 return 0;
1462
1463 if (iomap.iomap_bn != IOMAP_DADDR_NULL) {
87cbc49c
NS
1464 /*
1465 * For unwritten extents do not report a disk address on
1da177e4
LT
1466 * the read case (treat as if we're reading into a hole).
1467 */
1468 if (create || !(iomap.iomap_flags & IOMAP_UNWRITTEN)) {
87cbc49c
NS
1469 xfs_map_buffer(bh_result, &iomap, offset,
1470 inode->i_blkbits);
1da177e4
LT
1471 }
1472 if (create && (iomap.iomap_flags & IOMAP_UNWRITTEN)) {
1473 if (direct)
1474 bh_result->b_private = inode;
1475 set_buffer_unwritten(bh_result);
1da177e4
LT
1476 }
1477 }
1478
c2536668
NS
1479 /*
1480 * If this is a realtime file, data may be on a different device.
1481 * to that pointed to from the buffer_head b_bdev currently.
1482 */
ce8e922c 1483 bh_result->b_bdev = iomap.iomap_target->bt_bdev;
1da177e4 1484
c2536668 1485 /*
549054af
DC
1486 * If we previously allocated a block out beyond eof and we are now
1487 * coming back to use it then we will need to flag it as new even if it
1488 * has a disk address.
1489 *
1490 * With sub-block writes into unwritten extents we also need to mark
1491 * the buffer as new so that the unwritten parts of the buffer gets
1492 * correctly zeroed.
1da177e4
LT
1493 */
1494 if (create &&
1495 ((!buffer_mapped(bh_result) && !buffer_uptodate(bh_result)) ||
549054af
DC
1496 (offset >= i_size_read(inode)) ||
1497 (iomap.iomap_flags & (IOMAP_NEW|IOMAP_UNWRITTEN))))
1da177e4 1498 set_buffer_new(bh_result);
1da177e4
LT
1499
1500 if (iomap.iomap_flags & IOMAP_DELAY) {
1501 BUG_ON(direct);
1502 if (create) {
1503 set_buffer_uptodate(bh_result);
1504 set_buffer_mapped(bh_result);
1505 set_buffer_delay(bh_result);
1506 }
1507 }
1508
c2536668 1509 if (direct || size > (1 << inode->i_blkbits)) {
fdc7ed75
NS
1510 ASSERT(iomap.iomap_bsize - iomap.iomap_delta > 0);
1511 offset = min_t(xfs_off_t,
c2536668
NS
1512 iomap.iomap_bsize - iomap.iomap_delta, size);
1513 bh_result->b_size = (ssize_t)min_t(xfs_off_t, LONG_MAX, offset);
1da177e4
LT
1514 }
1515
1516 return 0;
1517}
1518
1519int
c2536668 1520xfs_get_blocks(
1da177e4
LT
1521 struct inode *inode,
1522 sector_t iblock,
1523 struct buffer_head *bh_result,
1524 int create)
1525{
c2536668 1526 return __xfs_get_blocks(inode, iblock,
fa30bd05 1527 bh_result, create, 0, BMAPI_WRITE);
1da177e4
LT
1528}
1529
1530STATIC int
e4c573bb 1531xfs_get_blocks_direct(
1da177e4
LT
1532 struct inode *inode,
1533 sector_t iblock,
1da177e4
LT
1534 struct buffer_head *bh_result,
1535 int create)
1536{
c2536668 1537 return __xfs_get_blocks(inode, iblock,
1d8fa7a2 1538 bh_result, create, 1, BMAPI_WRITE|BMAPI_DIRECT);
1da177e4
LT
1539}
1540
f0973863 1541STATIC void
e4c573bb 1542xfs_end_io_direct(
f0973863
CH
1543 struct kiocb *iocb,
1544 loff_t offset,
1545 ssize_t size,
1546 void *private)
1547{
1548 xfs_ioend_t *ioend = iocb->private;
1549
1550 /*
1551 * Non-NULL private data means we need to issue a transaction to
1552 * convert a range from unwritten to written extents. This needs
c41564b5 1553 * to happen from process context but aio+dio I/O completion
f0973863 1554 * happens from irq context so we need to defer it to a workqueue.
c41564b5 1555 * This is not necessary for synchronous direct I/O, but we do
f0973863
CH
1556 * it anyway to keep the code uniform and simpler.
1557 *
e927af90
DC
1558 * Well, if only it were that simple. Because synchronous direct I/O
1559 * requires extent conversion to occur *before* we return to userspace,
1560 * we have to wait for extent conversion to complete. Look at the
1561 * iocb that has been passed to us to determine if this is AIO or
1562 * not. If it is synchronous, tell xfs_finish_ioend() to kick the
1563 * workqueue and wait for it to complete.
1564 *
f0973863
CH
1565 * The core direct I/O code might be changed to always call the
1566 * completion handler in the future, in which case all this can
1567 * go away.
1568 */
ba87ea69
LM
1569 ioend->io_offset = offset;
1570 ioend->io_size = size;
1571 if (ioend->io_type == IOMAP_READ) {
e927af90 1572 xfs_finish_ioend(ioend, 0);
ba87ea69 1573 } else if (private && size > 0) {
e927af90 1574 xfs_finish_ioend(ioend, is_sync_kiocb(iocb));
f0973863 1575 } else {
ba87ea69
LM
1576 /*
1577 * A direct I/O write ioend starts it's life in unwritten
1578 * state in case they map an unwritten extent. This write
1579 * didn't map an unwritten extent so switch it's completion
1580 * handler.
1581 */
5ec4fabb 1582 ioend->io_type = IOMAP_NEW;
e927af90 1583 xfs_finish_ioend(ioend, 0);
f0973863
CH
1584 }
1585
1586 /*
c41564b5 1587 * blockdev_direct_IO can return an error even after the I/O
f0973863
CH
1588 * completion handler was called. Thus we need to protect
1589 * against double-freeing.
1590 */
1591 iocb->private = NULL;
1592}
1593
1da177e4 1594STATIC ssize_t
e4c573bb 1595xfs_vm_direct_IO(
1da177e4
LT
1596 int rw,
1597 struct kiocb *iocb,
1598 const struct iovec *iov,
1599 loff_t offset,
1600 unsigned long nr_segs)
1601{
1602 struct file *file = iocb->ki_filp;
1603 struct inode *inode = file->f_mapping->host;
6214ed44 1604 struct block_device *bdev;
f0973863 1605 ssize_t ret;
1da177e4 1606
6214ed44 1607 bdev = xfs_find_bdev_for_inode(XFS_I(inode));
1da177e4 1608
5fe878ae
CH
1609 iocb->private = xfs_alloc_ioend(inode, rw == WRITE ?
1610 IOMAP_UNWRITTEN : IOMAP_READ);
1611
1612 ret = blockdev_direct_IO_no_locking(rw, iocb, inode, bdev, iov,
1613 offset, nr_segs,
1614 xfs_get_blocks_direct,
1615 xfs_end_io_direct);
f0973863 1616
8459d86a 1617 if (unlikely(ret != -EIOCBQUEUED && iocb->private))
f0973863
CH
1618 xfs_destroy_ioend(iocb->private);
1619 return ret;
1da177e4
LT
1620}
1621
f51623b2 1622STATIC int
d79689c7 1623xfs_vm_write_begin(
f51623b2 1624 struct file *file,
d79689c7
NP
1625 struct address_space *mapping,
1626 loff_t pos,
1627 unsigned len,
1628 unsigned flags,
1629 struct page **pagep,
1630 void **fsdata)
f51623b2 1631{
d79689c7
NP
1632 *pagep = NULL;
1633 return block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
1634 xfs_get_blocks);
f51623b2 1635}
1da177e4
LT
1636
1637STATIC sector_t
e4c573bb 1638xfs_vm_bmap(
1da177e4
LT
1639 struct address_space *mapping,
1640 sector_t block)
1641{
1642 struct inode *inode = (struct inode *)mapping->host;
739bfb2a 1643 struct xfs_inode *ip = XFS_I(inode);
1da177e4 1644
cf441eeb 1645 xfs_itrace_entry(XFS_I(inode));
126468b1 1646 xfs_ilock(ip, XFS_IOLOCK_SHARED);
739bfb2a 1647 xfs_flush_pages(ip, (xfs_off_t)0, -1, 0, FI_REMAPF);
126468b1 1648 xfs_iunlock(ip, XFS_IOLOCK_SHARED);
c2536668 1649 return generic_block_bmap(mapping, block, xfs_get_blocks);
1da177e4
LT
1650}
1651
1652STATIC int
e4c573bb 1653xfs_vm_readpage(
1da177e4
LT
1654 struct file *unused,
1655 struct page *page)
1656{
c2536668 1657 return mpage_readpage(page, xfs_get_blocks);
1da177e4
LT
1658}
1659
1660STATIC int
e4c573bb 1661xfs_vm_readpages(
1da177e4
LT
1662 struct file *unused,
1663 struct address_space *mapping,
1664 struct list_head *pages,
1665 unsigned nr_pages)
1666{
c2536668 1667 return mpage_readpages(mapping, pages, nr_pages, xfs_get_blocks);
1da177e4
LT
1668}
1669
f5e54d6e 1670const struct address_space_operations xfs_address_space_operations = {
e4c573bb
NS
1671 .readpage = xfs_vm_readpage,
1672 .readpages = xfs_vm_readpages,
1673 .writepage = xfs_vm_writepage,
7d4fb40a 1674 .writepages = xfs_vm_writepages,
1da177e4 1675 .sync_page = block_sync_page,
238f4c54
NS
1676 .releasepage = xfs_vm_releasepage,
1677 .invalidatepage = xfs_vm_invalidatepage,
d79689c7
NP
1678 .write_begin = xfs_vm_write_begin,
1679 .write_end = generic_write_end,
e4c573bb
NS
1680 .bmap = xfs_vm_bmap,
1681 .direct_IO = xfs_vm_direct_IO,
e965f963 1682 .migratepage = buffer_migrate_page,
bddaafa1 1683 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 1684 .error_remove_page = generic_error_remove_page,
1da177e4 1685};