]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - fs/xfs/linux-2.6/xfs_aops.c
xfs: remove iomap_delta
[mirror_ubuntu-zesty-kernel.git] / fs / xfs / linux-2.6 / xfs_aops.c
CommitLineData
1da177e4 1/*
7b718769
NS
2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
1da177e4 4 *
7b718769
NS
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
1da177e4
LT
7 * published by the Free Software Foundation.
8 *
7b718769
NS
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
1da177e4 13 *
7b718769
NS
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
1da177e4 17 */
1da177e4 18#include "xfs.h"
a844f451 19#include "xfs_bit.h"
1da177e4 20#include "xfs_log.h"
a844f451 21#include "xfs_inum.h"
1da177e4 22#include "xfs_sb.h"
a844f451 23#include "xfs_ag.h"
1da177e4
LT
24#include "xfs_dir2.h"
25#include "xfs_trans.h"
26#include "xfs_dmapi.h"
27#include "xfs_mount.h"
28#include "xfs_bmap_btree.h"
29#include "xfs_alloc_btree.h"
30#include "xfs_ialloc_btree.h"
1da177e4 31#include "xfs_dir2_sf.h"
a844f451 32#include "xfs_attr_sf.h"
1da177e4
LT
33#include "xfs_dinode.h"
34#include "xfs_inode.h"
a844f451
NS
35#include "xfs_alloc.h"
36#include "xfs_btree.h"
1da177e4
LT
37#include "xfs_error.h"
38#include "xfs_rw.h"
39#include "xfs_iomap.h"
739bfb2a 40#include "xfs_vnodeops.h"
0b1b213f 41#include "xfs_trace.h"
3ed3a434 42#include "xfs_bmap.h"
5a0e3ad6 43#include <linux/gfp.h>
1da177e4 44#include <linux/mpage.h>
10ce4444 45#include <linux/pagevec.h>
1da177e4
LT
46#include <linux/writeback.h>
47
25e41b3d
CH
48
49/*
50 * Prime number of hash buckets since address is used as the key.
51 */
52#define NVSYNC 37
53#define to_ioend_wq(v) (&xfs_ioend_wq[((unsigned long)v) % NVSYNC])
54static wait_queue_head_t xfs_ioend_wq[NVSYNC];
55
56void __init
57xfs_ioend_init(void)
58{
59 int i;
60
61 for (i = 0; i < NVSYNC; i++)
62 init_waitqueue_head(&xfs_ioend_wq[i]);
63}
64
65void
66xfs_ioend_wait(
67 xfs_inode_t *ip)
68{
69 wait_queue_head_t *wq = to_ioend_wq(ip);
70
71 wait_event(*wq, (atomic_read(&ip->i_iocount) == 0));
72}
73
74STATIC void
75xfs_ioend_wake(
76 xfs_inode_t *ip)
77{
78 if (atomic_dec_and_test(&ip->i_iocount))
79 wake_up(to_ioend_wq(ip));
80}
81
0b1b213f 82void
f51623b2
NS
83xfs_count_page_state(
84 struct page *page,
85 int *delalloc,
86 int *unmapped,
87 int *unwritten)
88{
89 struct buffer_head *bh, *head;
90
91 *delalloc = *unmapped = *unwritten = 0;
92
93 bh = head = page_buffers(page);
94 do {
95 if (buffer_uptodate(bh) && !buffer_mapped(bh))
96 (*unmapped) = 1;
f51623b2
NS
97 else if (buffer_unwritten(bh))
98 (*unwritten) = 1;
99 else if (buffer_delay(bh))
100 (*delalloc) = 1;
101 } while ((bh = bh->b_this_page) != head);
102}
103
6214ed44
CH
104STATIC struct block_device *
105xfs_find_bdev_for_inode(
046f1685 106 struct inode *inode)
6214ed44 107{
046f1685 108 struct xfs_inode *ip = XFS_I(inode);
6214ed44
CH
109 struct xfs_mount *mp = ip->i_mount;
110
71ddabb9 111 if (XFS_IS_REALTIME_INODE(ip))
6214ed44
CH
112 return mp->m_rtdev_targp->bt_bdev;
113 else
114 return mp->m_ddev_targp->bt_bdev;
115}
116
f6d6d4fc
CH
117/*
118 * We're now finished for good with this ioend structure.
119 * Update the page state via the associated buffer_heads,
120 * release holds on the inode and bio, and finally free
121 * up memory. Do not use the ioend after this.
122 */
0829c360
CH
123STATIC void
124xfs_destroy_ioend(
125 xfs_ioend_t *ioend)
126{
f6d6d4fc 127 struct buffer_head *bh, *next;
583fa586 128 struct xfs_inode *ip = XFS_I(ioend->io_inode);
f6d6d4fc
CH
129
130 for (bh = ioend->io_buffer_head; bh; bh = next) {
131 next = bh->b_private;
7d04a335 132 bh->b_end_io(bh, !ioend->io_error);
f6d6d4fc 133 }
583fa586
CH
134
135 /*
136 * Volume managers supporting multiple paths can send back ENODEV
137 * when the final path disappears. In this case continuing to fill
138 * the page cache with dirty data which cannot be written out is
139 * evil, so prevent that.
140 */
141 if (unlikely(ioend->io_error == -ENODEV)) {
142 xfs_do_force_shutdown(ip->i_mount, SHUTDOWN_DEVICE_REQ,
143 __FILE__, __LINE__);
b677c210 144 }
583fa586 145
25e41b3d 146 xfs_ioend_wake(ip);
0829c360
CH
147 mempool_free(ioend, xfs_ioend_pool);
148}
149
932640e8
DC
150/*
151 * If the end of the current ioend is beyond the current EOF,
152 * return the new EOF value, otherwise zero.
153 */
154STATIC xfs_fsize_t
155xfs_ioend_new_eof(
156 xfs_ioend_t *ioend)
157{
158 xfs_inode_t *ip = XFS_I(ioend->io_inode);
159 xfs_fsize_t isize;
160 xfs_fsize_t bsize;
161
162 bsize = ioend->io_offset + ioend->io_size;
163 isize = MAX(ip->i_size, ip->i_new_size);
164 isize = MIN(isize, bsize);
165 return isize > ip->i_d.di_size ? isize : 0;
166}
167
ba87ea69 168/*
77d7a0c2
DC
169 * Update on-disk file size now that data has been written to disk. The
170 * current in-memory file size is i_size. If a write is beyond eof i_new_size
171 * will be the intended file size until i_size is updated. If this write does
172 * not extend all the way to the valid file size then restrict this update to
173 * the end of the write.
174 *
175 * This function does not block as blocking on the inode lock in IO completion
176 * can lead to IO completion order dependency deadlocks.. If it can't get the
177 * inode ilock it will return EAGAIN. Callers must handle this.
ba87ea69 178 */
77d7a0c2 179STATIC int
ba87ea69
LM
180xfs_setfilesize(
181 xfs_ioend_t *ioend)
182{
b677c210 183 xfs_inode_t *ip = XFS_I(ioend->io_inode);
ba87ea69 184 xfs_fsize_t isize;
ba87ea69 185
ba87ea69
LM
186 ASSERT((ip->i_d.di_mode & S_IFMT) == S_IFREG);
187 ASSERT(ioend->io_type != IOMAP_READ);
188
189 if (unlikely(ioend->io_error))
77d7a0c2
DC
190 return 0;
191
192 if (!xfs_ilock_nowait(ip, XFS_ILOCK_EXCL))
193 return EAGAIN;
ba87ea69 194
932640e8
DC
195 isize = xfs_ioend_new_eof(ioend);
196 if (isize) {
ba87ea69 197 ip->i_d.di_size = isize;
66d834ea 198 xfs_mark_inode_dirty(ip);
ba87ea69
LM
199 }
200
201 xfs_iunlock(ip, XFS_ILOCK_EXCL);
77d7a0c2
DC
202 return 0;
203}
204
205/*
206 * Schedule IO completion handling on a xfsdatad if this was
207 * the final hold on this ioend. If we are asked to wait,
208 * flush the workqueue.
209 */
210STATIC void
211xfs_finish_ioend(
212 xfs_ioend_t *ioend,
213 int wait)
214{
215 if (atomic_dec_and_test(&ioend->io_remaining)) {
216 struct workqueue_struct *wq;
217
218 wq = (ioend->io_type == IOMAP_UNWRITTEN) ?
219 xfsconvertd_workqueue : xfsdatad_workqueue;
220 queue_work(wq, &ioend->io_work);
221 if (wait)
222 flush_workqueue(wq);
223 }
ba87ea69
LM
224}
225
0829c360 226/*
5ec4fabb 227 * IO write completion.
f6d6d4fc
CH
228 */
229STATIC void
5ec4fabb 230xfs_end_io(
77d7a0c2 231 struct work_struct *work)
0829c360 232{
77d7a0c2
DC
233 xfs_ioend_t *ioend = container_of(work, xfs_ioend_t, io_work);
234 struct xfs_inode *ip = XFS_I(ioend->io_inode);
69418932 235 int error = 0;
ba87ea69 236
5ec4fabb
CH
237 /*
238 * For unwritten extents we need to issue transactions to convert a
239 * range to normal written extens after the data I/O has finished.
240 */
241 if (ioend->io_type == IOMAP_UNWRITTEN &&
242 likely(!ioend->io_error && !XFS_FORCED_SHUTDOWN(ip->i_mount))) {
5ec4fabb
CH
243
244 error = xfs_iomap_write_unwritten(ip, ioend->io_offset,
245 ioend->io_size);
246 if (error)
247 ioend->io_error = error;
248 }
ba87ea69 249
5ec4fabb
CH
250 /*
251 * We might have to update the on-disk file size after extending
252 * writes.
253 */
77d7a0c2
DC
254 if (ioend->io_type != IOMAP_READ) {
255 error = xfs_setfilesize(ioend);
256 ASSERT(!error || error == EAGAIN);
c626d174 257 }
77d7a0c2
DC
258
259 /*
260 * If we didn't complete processing of the ioend, requeue it to the
261 * tail of the workqueue for another attempt later. Otherwise destroy
262 * it.
263 */
264 if (error == EAGAIN) {
265 atomic_inc(&ioend->io_remaining);
266 xfs_finish_ioend(ioend, 0);
267 /* ensure we don't spin on blocked ioends */
268 delay(1);
269 } else
270 xfs_destroy_ioend(ioend);
c626d174
DC
271}
272
0829c360
CH
273/*
274 * Allocate and initialise an IO completion structure.
275 * We need to track unwritten extent write completion here initially.
276 * We'll need to extend this for updating the ondisk inode size later
277 * (vs. incore size).
278 */
279STATIC xfs_ioend_t *
280xfs_alloc_ioend(
f6d6d4fc
CH
281 struct inode *inode,
282 unsigned int type)
0829c360
CH
283{
284 xfs_ioend_t *ioend;
285
286 ioend = mempool_alloc(xfs_ioend_pool, GFP_NOFS);
287
288 /*
289 * Set the count to 1 initially, which will prevent an I/O
290 * completion callback from happening before we have started
291 * all the I/O from calling the completion routine too early.
292 */
293 atomic_set(&ioend->io_remaining, 1);
7d04a335 294 ioend->io_error = 0;
f6d6d4fc
CH
295 ioend->io_list = NULL;
296 ioend->io_type = type;
b677c210 297 ioend->io_inode = inode;
c1a073bd 298 ioend->io_buffer_head = NULL;
f6d6d4fc 299 ioend->io_buffer_tail = NULL;
b677c210 300 atomic_inc(&XFS_I(ioend->io_inode)->i_iocount);
0829c360
CH
301 ioend->io_offset = 0;
302 ioend->io_size = 0;
303
5ec4fabb 304 INIT_WORK(&ioend->io_work, xfs_end_io);
0829c360
CH
305 return ioend;
306}
307
1da177e4
LT
308STATIC int
309xfs_map_blocks(
310 struct inode *inode,
311 loff_t offset,
312 ssize_t count,
313 xfs_iomap_t *mapp,
314 int flags)
315{
6bd16ff2
CH
316 int nmaps = 1;
317
318 return -xfs_iomap(XFS_I(inode), offset, count, flags, mapp, &nmaps);
1da177e4
LT
319}
320
b8f82a4a 321STATIC int
1defeac9 322xfs_iomap_valid(
1da177e4 323 xfs_iomap_t *iomapp,
1defeac9 324 loff_t offset)
1da177e4 325{
1defeac9
CH
326 return offset >= iomapp->iomap_offset &&
327 offset < iomapp->iomap_offset + iomapp->iomap_bsize;
1da177e4
LT
328}
329
f6d6d4fc
CH
330/*
331 * BIO completion handler for buffered IO.
332 */
782e3b3b 333STATIC void
f6d6d4fc
CH
334xfs_end_bio(
335 struct bio *bio,
f6d6d4fc
CH
336 int error)
337{
338 xfs_ioend_t *ioend = bio->bi_private;
339
f6d6d4fc 340 ASSERT(atomic_read(&bio->bi_cnt) >= 1);
7d04a335 341 ioend->io_error = test_bit(BIO_UPTODATE, &bio->bi_flags) ? 0 : error;
f6d6d4fc
CH
342
343 /* Toss bio and pass work off to an xfsdatad thread */
f6d6d4fc
CH
344 bio->bi_private = NULL;
345 bio->bi_end_io = NULL;
f6d6d4fc 346 bio_put(bio);
7d04a335 347
e927af90 348 xfs_finish_ioend(ioend, 0);
f6d6d4fc
CH
349}
350
351STATIC void
352xfs_submit_ioend_bio(
06342cf8
CH
353 struct writeback_control *wbc,
354 xfs_ioend_t *ioend,
355 struct bio *bio)
f6d6d4fc
CH
356{
357 atomic_inc(&ioend->io_remaining);
f6d6d4fc
CH
358 bio->bi_private = ioend;
359 bio->bi_end_io = xfs_end_bio;
360
932640e8
DC
361 /*
362 * If the I/O is beyond EOF we mark the inode dirty immediately
363 * but don't update the inode size until I/O completion.
364 */
365 if (xfs_ioend_new_eof(ioend))
66d834ea 366 xfs_mark_inode_dirty(XFS_I(ioend->io_inode));
932640e8 367
06342cf8
CH
368 submit_bio(wbc->sync_mode == WB_SYNC_ALL ?
369 WRITE_SYNC_PLUG : WRITE, bio);
f6d6d4fc
CH
370 ASSERT(!bio_flagged(bio, BIO_EOPNOTSUPP));
371 bio_put(bio);
372}
373
374STATIC struct bio *
375xfs_alloc_ioend_bio(
376 struct buffer_head *bh)
377{
378 struct bio *bio;
379 int nvecs = bio_get_nr_vecs(bh->b_bdev);
380
381 do {
382 bio = bio_alloc(GFP_NOIO, nvecs);
383 nvecs >>= 1;
384 } while (!bio);
385
386 ASSERT(bio->bi_private == NULL);
387 bio->bi_sector = bh->b_blocknr * (bh->b_size >> 9);
388 bio->bi_bdev = bh->b_bdev;
389 bio_get(bio);
390 return bio;
391}
392
393STATIC void
394xfs_start_buffer_writeback(
395 struct buffer_head *bh)
396{
397 ASSERT(buffer_mapped(bh));
398 ASSERT(buffer_locked(bh));
399 ASSERT(!buffer_delay(bh));
400 ASSERT(!buffer_unwritten(bh));
401
402 mark_buffer_async_write(bh);
403 set_buffer_uptodate(bh);
404 clear_buffer_dirty(bh);
405}
406
407STATIC void
408xfs_start_page_writeback(
409 struct page *page,
f6d6d4fc
CH
410 int clear_dirty,
411 int buffers)
412{
413 ASSERT(PageLocked(page));
414 ASSERT(!PageWriteback(page));
f6d6d4fc 415 if (clear_dirty)
92132021
DC
416 clear_page_dirty_for_io(page);
417 set_page_writeback(page);
f6d6d4fc 418 unlock_page(page);
1f7decf6
FW
419 /* If no buffers on the page are to be written, finish it here */
420 if (!buffers)
f6d6d4fc 421 end_page_writeback(page);
f6d6d4fc
CH
422}
423
424static inline int bio_add_buffer(struct bio *bio, struct buffer_head *bh)
425{
426 return bio_add_page(bio, bh->b_page, bh->b_size, bh_offset(bh));
427}
428
429/*
d88992f6
DC
430 * Submit all of the bios for all of the ioends we have saved up, covering the
431 * initial writepage page and also any probed pages.
432 *
433 * Because we may have multiple ioends spanning a page, we need to start
434 * writeback on all the buffers before we submit them for I/O. If we mark the
435 * buffers as we got, then we can end up with a page that only has buffers
436 * marked async write and I/O complete on can occur before we mark the other
437 * buffers async write.
438 *
439 * The end result of this is that we trip a bug in end_page_writeback() because
440 * we call it twice for the one page as the code in end_buffer_async_write()
441 * assumes that all buffers on the page are started at the same time.
442 *
443 * The fix is two passes across the ioend list - one to start writeback on the
c41564b5 444 * buffer_heads, and then submit them for I/O on the second pass.
f6d6d4fc
CH
445 */
446STATIC void
447xfs_submit_ioend(
06342cf8 448 struct writeback_control *wbc,
f6d6d4fc
CH
449 xfs_ioend_t *ioend)
450{
d88992f6 451 xfs_ioend_t *head = ioend;
f6d6d4fc
CH
452 xfs_ioend_t *next;
453 struct buffer_head *bh;
454 struct bio *bio;
455 sector_t lastblock = 0;
456
d88992f6
DC
457 /* Pass 1 - start writeback */
458 do {
459 next = ioend->io_list;
460 for (bh = ioend->io_buffer_head; bh; bh = bh->b_private) {
461 xfs_start_buffer_writeback(bh);
462 }
463 } while ((ioend = next) != NULL);
464
465 /* Pass 2 - submit I/O */
466 ioend = head;
f6d6d4fc
CH
467 do {
468 next = ioend->io_list;
469 bio = NULL;
470
471 for (bh = ioend->io_buffer_head; bh; bh = bh->b_private) {
f6d6d4fc
CH
472
473 if (!bio) {
474 retry:
475 bio = xfs_alloc_ioend_bio(bh);
476 } else if (bh->b_blocknr != lastblock + 1) {
06342cf8 477 xfs_submit_ioend_bio(wbc, ioend, bio);
f6d6d4fc
CH
478 goto retry;
479 }
480
481 if (bio_add_buffer(bio, bh) != bh->b_size) {
06342cf8 482 xfs_submit_ioend_bio(wbc, ioend, bio);
f6d6d4fc
CH
483 goto retry;
484 }
485
486 lastblock = bh->b_blocknr;
487 }
488 if (bio)
06342cf8 489 xfs_submit_ioend_bio(wbc, ioend, bio);
e927af90 490 xfs_finish_ioend(ioend, 0);
f6d6d4fc
CH
491 } while ((ioend = next) != NULL);
492}
493
494/*
495 * Cancel submission of all buffer_heads so far in this endio.
496 * Toss the endio too. Only ever called for the initial page
497 * in a writepage request, so only ever one page.
498 */
499STATIC void
500xfs_cancel_ioend(
501 xfs_ioend_t *ioend)
502{
503 xfs_ioend_t *next;
504 struct buffer_head *bh, *next_bh;
505
506 do {
507 next = ioend->io_list;
508 bh = ioend->io_buffer_head;
509 do {
510 next_bh = bh->b_private;
511 clear_buffer_async_write(bh);
512 unlock_buffer(bh);
513 } while ((bh = next_bh) != NULL);
514
25e41b3d 515 xfs_ioend_wake(XFS_I(ioend->io_inode));
f6d6d4fc
CH
516 mempool_free(ioend, xfs_ioend_pool);
517 } while ((ioend = next) != NULL);
518}
519
520/*
521 * Test to see if we've been building up a completion structure for
522 * earlier buffers -- if so, we try to append to this ioend if we
523 * can, otherwise we finish off any current ioend and start another.
524 * Return true if we've finished the given ioend.
525 */
526STATIC void
527xfs_add_to_ioend(
528 struct inode *inode,
529 struct buffer_head *bh,
7336cea8 530 xfs_off_t offset,
f6d6d4fc
CH
531 unsigned int type,
532 xfs_ioend_t **result,
533 int need_ioend)
534{
535 xfs_ioend_t *ioend = *result;
536
537 if (!ioend || need_ioend || type != ioend->io_type) {
538 xfs_ioend_t *previous = *result;
f6d6d4fc 539
f6d6d4fc
CH
540 ioend = xfs_alloc_ioend(inode, type);
541 ioend->io_offset = offset;
542 ioend->io_buffer_head = bh;
543 ioend->io_buffer_tail = bh;
544 if (previous)
545 previous->io_list = ioend;
546 *result = ioend;
547 } else {
548 ioend->io_buffer_tail->b_private = bh;
549 ioend->io_buffer_tail = bh;
550 }
551
552 bh->b_private = NULL;
553 ioend->io_size += bh->b_size;
554}
555
87cbc49c
NS
556STATIC void
557xfs_map_buffer(
046f1685 558 struct inode *inode,
87cbc49c
NS
559 struct buffer_head *bh,
560 xfs_iomap_t *mp,
046f1685 561 xfs_off_t offset)
87cbc49c
NS
562{
563 sector_t bn;
564
565 ASSERT(mp->iomap_bn != IOMAP_DADDR_NULL);
566
046f1685
CH
567 bn = (mp->iomap_bn >> (inode->i_blkbits - BBSHIFT)) +
568 ((offset - mp->iomap_offset) >> inode->i_blkbits);
87cbc49c 569
046f1685 570 ASSERT(bn || XFS_IS_REALTIME_INODE(XFS_I(inode)));
87cbc49c
NS
571
572 bh->b_blocknr = bn;
573 set_buffer_mapped(bh);
574}
575
1da177e4
LT
576STATIC void
577xfs_map_at_offset(
046f1685 578 struct inode *inode,
1da177e4 579 struct buffer_head *bh,
046f1685
CH
580 xfs_iomap_t *iomapp,
581 xfs_off_t offset)
1da177e4 582{
1da177e4
LT
583 ASSERT(!(iomapp->iomap_flags & IOMAP_HOLE));
584 ASSERT(!(iomapp->iomap_flags & IOMAP_DELAY));
1da177e4
LT
585
586 lock_buffer(bh);
046f1685
CH
587 xfs_map_buffer(inode, bh, iomapp, offset);
588 bh->b_bdev = xfs_find_bdev_for_inode(inode);
1da177e4
LT
589 set_buffer_mapped(bh);
590 clear_buffer_delay(bh);
f6d6d4fc 591 clear_buffer_unwritten(bh);
1da177e4
LT
592}
593
594/*
6c4fe19f 595 * Look for a page at index that is suitable for clustering.
1da177e4
LT
596 */
597STATIC unsigned int
6c4fe19f 598xfs_probe_page(
10ce4444 599 struct page *page,
6c4fe19f
CH
600 unsigned int pg_offset,
601 int mapped)
1da177e4 602{
1da177e4
LT
603 int ret = 0;
604
1da177e4 605 if (PageWriteback(page))
10ce4444 606 return 0;
1da177e4
LT
607
608 if (page->mapping && PageDirty(page)) {
609 if (page_has_buffers(page)) {
610 struct buffer_head *bh, *head;
611
612 bh = head = page_buffers(page);
613 do {
6c4fe19f
CH
614 if (!buffer_uptodate(bh))
615 break;
616 if (mapped != buffer_mapped(bh))
1da177e4
LT
617 break;
618 ret += bh->b_size;
619 if (ret >= pg_offset)
620 break;
621 } while ((bh = bh->b_this_page) != head);
622 } else
6c4fe19f 623 ret = mapped ? 0 : PAGE_CACHE_SIZE;
1da177e4
LT
624 }
625
1da177e4
LT
626 return ret;
627}
628
f6d6d4fc 629STATIC size_t
6c4fe19f 630xfs_probe_cluster(
1da177e4
LT
631 struct inode *inode,
632 struct page *startpage,
633 struct buffer_head *bh,
6c4fe19f
CH
634 struct buffer_head *head,
635 int mapped)
1da177e4 636{
10ce4444 637 struct pagevec pvec;
1da177e4 638 pgoff_t tindex, tlast, tloff;
10ce4444
CH
639 size_t total = 0;
640 int done = 0, i;
1da177e4
LT
641
642 /* First sum forwards in this page */
643 do {
2353e8e9 644 if (!buffer_uptodate(bh) || (mapped != buffer_mapped(bh)))
10ce4444 645 return total;
1da177e4
LT
646 total += bh->b_size;
647 } while ((bh = bh->b_this_page) != head);
648
10ce4444
CH
649 /* if we reached the end of the page, sum forwards in following pages */
650 tlast = i_size_read(inode) >> PAGE_CACHE_SHIFT;
651 tindex = startpage->index + 1;
652
653 /* Prune this back to avoid pathological behavior */
654 tloff = min(tlast, startpage->index + 64);
655
656 pagevec_init(&pvec, 0);
657 while (!done && tindex <= tloff) {
658 unsigned len = min_t(pgoff_t, PAGEVEC_SIZE, tlast - tindex + 1);
659
660 if (!pagevec_lookup(&pvec, inode->i_mapping, tindex, len))
661 break;
662
663 for (i = 0; i < pagevec_count(&pvec); i++) {
664 struct page *page = pvec.pages[i];
265c1fac 665 size_t pg_offset, pg_len = 0;
10ce4444
CH
666
667 if (tindex == tlast) {
668 pg_offset =
669 i_size_read(inode) & (PAGE_CACHE_SIZE - 1);
1defeac9
CH
670 if (!pg_offset) {
671 done = 1;
10ce4444 672 break;
1defeac9 673 }
10ce4444
CH
674 } else
675 pg_offset = PAGE_CACHE_SIZE;
676
529ae9aa 677 if (page->index == tindex && trylock_page(page)) {
265c1fac 678 pg_len = xfs_probe_page(page, pg_offset, mapped);
10ce4444
CH
679 unlock_page(page);
680 }
681
265c1fac 682 if (!pg_len) {
10ce4444
CH
683 done = 1;
684 break;
685 }
686
265c1fac 687 total += pg_len;
1defeac9 688 tindex++;
1da177e4 689 }
10ce4444
CH
690
691 pagevec_release(&pvec);
692 cond_resched();
1da177e4 693 }
10ce4444 694
1da177e4
LT
695 return total;
696}
697
698/*
10ce4444
CH
699 * Test if a given page is suitable for writing as part of an unwritten
700 * or delayed allocate extent.
1da177e4 701 */
10ce4444
CH
702STATIC int
703xfs_is_delayed_page(
704 struct page *page,
f6d6d4fc 705 unsigned int type)
1da177e4 706{
1da177e4 707 if (PageWriteback(page))
10ce4444 708 return 0;
1da177e4
LT
709
710 if (page->mapping && page_has_buffers(page)) {
711 struct buffer_head *bh, *head;
712 int acceptable = 0;
713
714 bh = head = page_buffers(page);
715 do {
f6d6d4fc
CH
716 if (buffer_unwritten(bh))
717 acceptable = (type == IOMAP_UNWRITTEN);
718 else if (buffer_delay(bh))
719 acceptable = (type == IOMAP_DELAY);
2ddee844 720 else if (buffer_dirty(bh) && buffer_mapped(bh))
df3c7244 721 acceptable = (type == IOMAP_NEW);
f6d6d4fc 722 else
1da177e4 723 break;
1da177e4
LT
724 } while ((bh = bh->b_this_page) != head);
725
726 if (acceptable)
10ce4444 727 return 1;
1da177e4
LT
728 }
729
10ce4444 730 return 0;
1da177e4
LT
731}
732
1da177e4
LT
733/*
734 * Allocate & map buffers for page given the extent map. Write it out.
735 * except for the original page of a writepage, this is called on
736 * delalloc/unwritten pages only, for the original page it is possible
737 * that the page has no mapping at all.
738 */
f6d6d4fc 739STATIC int
1da177e4
LT
740xfs_convert_page(
741 struct inode *inode,
742 struct page *page,
10ce4444 743 loff_t tindex,
1defeac9 744 xfs_iomap_t *mp,
f6d6d4fc 745 xfs_ioend_t **ioendp,
1da177e4 746 struct writeback_control *wbc,
1da177e4
LT
747 int startio,
748 int all_bh)
749{
f6d6d4fc 750 struct buffer_head *bh, *head;
9260dc6b
CH
751 xfs_off_t end_offset;
752 unsigned long p_offset;
f6d6d4fc 753 unsigned int type;
24e17b5f 754 int len, page_dirty;
f6d6d4fc 755 int count = 0, done = 0, uptodate = 1;
9260dc6b 756 xfs_off_t offset = page_offset(page);
1da177e4 757
10ce4444
CH
758 if (page->index != tindex)
759 goto fail;
529ae9aa 760 if (!trylock_page(page))
10ce4444
CH
761 goto fail;
762 if (PageWriteback(page))
763 goto fail_unlock_page;
764 if (page->mapping != inode->i_mapping)
765 goto fail_unlock_page;
766 if (!xfs_is_delayed_page(page, (*ioendp)->io_type))
767 goto fail_unlock_page;
768
24e17b5f
NS
769 /*
770 * page_dirty is initially a count of buffers on the page before
c41564b5 771 * EOF and is decremented as we move each into a cleanable state.
9260dc6b
CH
772 *
773 * Derivation:
774 *
775 * End offset is the highest offset that this page should represent.
776 * If we are on the last page, (end_offset & (PAGE_CACHE_SIZE - 1))
777 * will evaluate non-zero and be less than PAGE_CACHE_SIZE and
778 * hence give us the correct page_dirty count. On any other page,
779 * it will be zero and in that case we need page_dirty to be the
780 * count of buffers on the page.
24e17b5f 781 */
9260dc6b
CH
782 end_offset = min_t(unsigned long long,
783 (xfs_off_t)(page->index + 1) << PAGE_CACHE_SHIFT,
784 i_size_read(inode));
785
24e17b5f 786 len = 1 << inode->i_blkbits;
9260dc6b
CH
787 p_offset = min_t(unsigned long, end_offset & (PAGE_CACHE_SIZE - 1),
788 PAGE_CACHE_SIZE);
789 p_offset = p_offset ? roundup(p_offset, len) : PAGE_CACHE_SIZE;
790 page_dirty = p_offset / len;
24e17b5f 791
1da177e4
LT
792 bh = head = page_buffers(page);
793 do {
9260dc6b 794 if (offset >= end_offset)
1da177e4 795 break;
f6d6d4fc
CH
796 if (!buffer_uptodate(bh))
797 uptodate = 0;
798 if (!(PageUptodate(page) || buffer_uptodate(bh))) {
799 done = 1;
1da177e4 800 continue;
f6d6d4fc
CH
801 }
802
9260dc6b
CH
803 if (buffer_unwritten(bh) || buffer_delay(bh)) {
804 if (buffer_unwritten(bh))
805 type = IOMAP_UNWRITTEN;
806 else
807 type = IOMAP_DELAY;
808
809 if (!xfs_iomap_valid(mp, offset)) {
f6d6d4fc 810 done = 1;
9260dc6b
CH
811 continue;
812 }
813
814 ASSERT(!(mp->iomap_flags & IOMAP_HOLE));
815 ASSERT(!(mp->iomap_flags & IOMAP_DELAY));
816
046f1685 817 xfs_map_at_offset(inode, bh, mp, offset);
9260dc6b 818 if (startio) {
7336cea8 819 xfs_add_to_ioend(inode, bh, offset,
9260dc6b
CH
820 type, ioendp, done);
821 } else {
822 set_buffer_dirty(bh);
823 unlock_buffer(bh);
824 mark_buffer_dirty(bh);
825 }
826 page_dirty--;
827 count++;
828 } else {
df3c7244 829 type = IOMAP_NEW;
9260dc6b 830 if (buffer_mapped(bh) && all_bh && startio) {
1da177e4 831 lock_buffer(bh);
7336cea8 832 xfs_add_to_ioend(inode, bh, offset,
f6d6d4fc
CH
833 type, ioendp, done);
834 count++;
24e17b5f 835 page_dirty--;
9260dc6b
CH
836 } else {
837 done = 1;
1da177e4 838 }
1da177e4 839 }
7336cea8 840 } while (offset += len, (bh = bh->b_this_page) != head);
1da177e4 841
f6d6d4fc
CH
842 if (uptodate && bh == head)
843 SetPageUptodate(page);
844
845 if (startio) {
f5e596bb 846 if (count) {
9fddaca2 847 wbc->nr_to_write--;
0d99519e 848 if (wbc->nr_to_write <= 0)
f5e596bb 849 done = 1;
f5e596bb 850 }
b41759cf 851 xfs_start_page_writeback(page, !page_dirty, count);
1da177e4 852 }
f6d6d4fc
CH
853
854 return done;
10ce4444
CH
855 fail_unlock_page:
856 unlock_page(page);
857 fail:
858 return 1;
1da177e4
LT
859}
860
861/*
862 * Convert & write out a cluster of pages in the same extent as defined
863 * by mp and following the start page.
864 */
865STATIC void
866xfs_cluster_write(
867 struct inode *inode,
868 pgoff_t tindex,
869 xfs_iomap_t *iomapp,
f6d6d4fc 870 xfs_ioend_t **ioendp,
1da177e4
LT
871 struct writeback_control *wbc,
872 int startio,
873 int all_bh,
874 pgoff_t tlast)
875{
10ce4444
CH
876 struct pagevec pvec;
877 int done = 0, i;
1da177e4 878
10ce4444
CH
879 pagevec_init(&pvec, 0);
880 while (!done && tindex <= tlast) {
881 unsigned len = min_t(pgoff_t, PAGEVEC_SIZE, tlast - tindex + 1);
882
883 if (!pagevec_lookup(&pvec, inode->i_mapping, tindex, len))
1da177e4 884 break;
10ce4444
CH
885
886 for (i = 0; i < pagevec_count(&pvec); i++) {
887 done = xfs_convert_page(inode, pvec.pages[i], tindex++,
888 iomapp, ioendp, wbc, startio, all_bh);
889 if (done)
890 break;
891 }
892
893 pagevec_release(&pvec);
894 cond_resched();
1da177e4
LT
895 }
896}
897
3ed3a434
DC
898STATIC void
899xfs_vm_invalidatepage(
900 struct page *page,
901 unsigned long offset)
902{
903 trace_xfs_invalidatepage(page->mapping->host, page, offset);
904 block_invalidatepage(page, offset);
905}
906
907/*
908 * If the page has delalloc buffers on it, we need to punch them out before we
909 * invalidate the page. If we don't, we leave a stale delalloc mapping on the
910 * inode that can trip a BUG() in xfs_get_blocks() later on if a direct IO read
911 * is done on that same region - the delalloc extent is returned when none is
912 * supposed to be there.
913 *
914 * We prevent this by truncating away the delalloc regions on the page before
915 * invalidating it. Because they are delalloc, we can do this without needing a
916 * transaction. Indeed - if we get ENOSPC errors, we have to be able to do this
917 * truncation without a transaction as there is no space left for block
918 * reservation (typically why we see a ENOSPC in writeback).
919 *
920 * This is not a performance critical path, so for now just do the punching a
921 * buffer head at a time.
922 */
923STATIC void
924xfs_aops_discard_page(
925 struct page *page)
926{
927 struct inode *inode = page->mapping->host;
928 struct xfs_inode *ip = XFS_I(inode);
929 struct buffer_head *bh, *head;
930 loff_t offset = page_offset(page);
931 ssize_t len = 1 << inode->i_blkbits;
932
933 if (!xfs_is_delayed_page(page, IOMAP_DELAY))
934 goto out_invalidate;
935
e8c3753c
DC
936 if (XFS_FORCED_SHUTDOWN(ip->i_mount))
937 goto out_invalidate;
938
3ed3a434
DC
939 xfs_fs_cmn_err(CE_ALERT, ip->i_mount,
940 "page discard on page %p, inode 0x%llx, offset %llu.",
941 page, ip->i_ino, offset);
942
943 xfs_ilock(ip, XFS_ILOCK_EXCL);
944 bh = head = page_buffers(page);
945 do {
946 int done;
947 xfs_fileoff_t offset_fsb;
948 xfs_bmbt_irec_t imap;
949 int nimaps = 1;
950 int error;
951 xfs_fsblock_t firstblock;
952 xfs_bmap_free_t flist;
953
954 if (!buffer_delay(bh))
955 goto next_buffer;
956
957 offset_fsb = XFS_B_TO_FSBT(ip->i_mount, offset);
958
959 /*
960 * Map the range first and check that it is a delalloc extent
961 * before trying to unmap the range. Otherwise we will be
962 * trying to remove a real extent (which requires a
963 * transaction) or a hole, which is probably a bad idea...
964 */
965 error = xfs_bmapi(NULL, ip, offset_fsb, 1,
966 XFS_BMAPI_ENTIRE, NULL, 0, &imap,
967 &nimaps, NULL, NULL);
968
969 if (error) {
970 /* something screwed, just bail */
e8c3753c
DC
971 if (!XFS_FORCED_SHUTDOWN(ip->i_mount)) {
972 xfs_fs_cmn_err(CE_ALERT, ip->i_mount,
973 "page discard failed delalloc mapping lookup.");
974 }
3ed3a434
DC
975 break;
976 }
977 if (!nimaps) {
978 /* nothing there */
979 goto next_buffer;
980 }
981 if (imap.br_startblock != DELAYSTARTBLOCK) {
982 /* been converted, ignore */
983 goto next_buffer;
984 }
985 WARN_ON(imap.br_blockcount == 0);
986
987 /*
988 * Note: while we initialise the firstblock/flist pair, they
989 * should never be used because blocks should never be
990 * allocated or freed for a delalloc extent and hence we need
991 * don't cancel or finish them after the xfs_bunmapi() call.
992 */
993 xfs_bmap_init(&flist, &firstblock);
994 error = xfs_bunmapi(NULL, ip, offset_fsb, 1, 0, 1, &firstblock,
995 &flist, NULL, &done);
996
997 ASSERT(!flist.xbf_count && !flist.xbf_first);
998 if (error) {
999 /* something screwed, just bail */
e8c3753c
DC
1000 if (!XFS_FORCED_SHUTDOWN(ip->i_mount)) {
1001 xfs_fs_cmn_err(CE_ALERT, ip->i_mount,
3ed3a434 1002 "page discard unable to remove delalloc mapping.");
e8c3753c 1003 }
3ed3a434
DC
1004 break;
1005 }
1006next_buffer:
1007 offset += len;
1008
1009 } while ((bh = bh->b_this_page) != head);
1010
1011 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1012out_invalidate:
1013 xfs_vm_invalidatepage(page, 0);
1014 return;
1015}
1016
1da177e4
LT
1017/*
1018 * Calling this without startio set means we are being asked to make a dirty
1019 * page ready for freeing it's buffers. When called with startio set then
1020 * we are coming from writepage.
1021 *
1022 * When called with startio set it is important that we write the WHOLE
1023 * page if possible.
1024 * The bh->b_state's cannot know if any of the blocks or which block for
1025 * that matter are dirty due to mmap writes, and therefore bh uptodate is
c41564b5 1026 * only valid if the page itself isn't completely uptodate. Some layers
1da177e4
LT
1027 * may clear the page dirty flag prior to calling write page, under the
1028 * assumption the entire page will be written out; by not writing out the
1029 * whole page the page can be reused before all valid dirty data is
1030 * written out. Note: in the case of a page that has been dirty'd by
1031 * mapwrite and but partially setup by block_prepare_write the
1032 * bh->b_states's will not agree and only ones setup by BPW/BCW will have
1033 * valid state, thus the whole page must be written out thing.
1034 */
1035
1036STATIC int
1037xfs_page_state_convert(
1038 struct inode *inode,
1039 struct page *page,
1040 struct writeback_control *wbc,
1041 int startio,
1042 int unmapped) /* also implies page uptodate */
1043{
f6d6d4fc 1044 struct buffer_head *bh, *head;
1defeac9 1045 xfs_iomap_t iomap;
f6d6d4fc 1046 xfs_ioend_t *ioend = NULL, *iohead = NULL;
1da177e4
LT
1047 loff_t offset;
1048 unsigned long p_offset = 0;
f6d6d4fc 1049 unsigned int type;
1da177e4
LT
1050 __uint64_t end_offset;
1051 pgoff_t end_index, last_index, tlast;
d5cb48aa
CH
1052 ssize_t size, len;
1053 int flags, err, iomap_valid = 0, uptodate = 1;
8272145c
NS
1054 int page_dirty, count = 0;
1055 int trylock = 0;
6c4fe19f 1056 int all_bh = unmapped;
1da177e4 1057
8272145c
NS
1058 if (startio) {
1059 if (wbc->sync_mode == WB_SYNC_NONE && wbc->nonblocking)
1060 trylock |= BMAPI_TRYLOCK;
1061 }
3ba0815a 1062
1da177e4
LT
1063 /* Is this page beyond the end of the file? */
1064 offset = i_size_read(inode);
1065 end_index = offset >> PAGE_CACHE_SHIFT;
1066 last_index = (offset - 1) >> PAGE_CACHE_SHIFT;
1067 if (page->index >= end_index) {
1068 if ((page->index >= end_index + 1) ||
1069 !(i_size_read(inode) & (PAGE_CACHE_SIZE - 1))) {
19d5bcf3
NS
1070 if (startio)
1071 unlock_page(page);
1072 return 0;
1da177e4
LT
1073 }
1074 }
1075
1da177e4 1076 /*
24e17b5f 1077 * page_dirty is initially a count of buffers on the page before
c41564b5 1078 * EOF and is decremented as we move each into a cleanable state.
f6d6d4fc
CH
1079 *
1080 * Derivation:
1081 *
1082 * End offset is the highest offset that this page should represent.
1083 * If we are on the last page, (end_offset & (PAGE_CACHE_SIZE - 1))
1084 * will evaluate non-zero and be less than PAGE_CACHE_SIZE and
1085 * hence give us the correct page_dirty count. On any other page,
1086 * it will be zero and in that case we need page_dirty to be the
1087 * count of buffers on the page.
1088 */
1089 end_offset = min_t(unsigned long long,
1090 (xfs_off_t)(page->index + 1) << PAGE_CACHE_SHIFT, offset);
24e17b5f 1091 len = 1 << inode->i_blkbits;
f6d6d4fc
CH
1092 p_offset = min_t(unsigned long, end_offset & (PAGE_CACHE_SIZE - 1),
1093 PAGE_CACHE_SIZE);
1094 p_offset = p_offset ? roundup(p_offset, len) : PAGE_CACHE_SIZE;
24e17b5f
NS
1095 page_dirty = p_offset / len;
1096
24e17b5f 1097 bh = head = page_buffers(page);
f6d6d4fc 1098 offset = page_offset(page);
df3c7244
DC
1099 flags = BMAPI_READ;
1100 type = IOMAP_NEW;
f6d6d4fc 1101
f6d6d4fc 1102 /* TODO: cleanup count and page_dirty */
1da177e4
LT
1103
1104 do {
1105 if (offset >= end_offset)
1106 break;
1107 if (!buffer_uptodate(bh))
1108 uptodate = 0;
f6d6d4fc 1109 if (!(PageUptodate(page) || buffer_uptodate(bh)) && !startio) {
1defeac9
CH
1110 /*
1111 * the iomap is actually still valid, but the ioend
1112 * isn't. shouldn't happen too often.
1113 */
1114 iomap_valid = 0;
1da177e4 1115 continue;
f6d6d4fc 1116 }
1da177e4 1117
1defeac9
CH
1118 if (iomap_valid)
1119 iomap_valid = xfs_iomap_valid(&iomap, offset);
1da177e4
LT
1120
1121 /*
1122 * First case, map an unwritten extent and prepare for
1123 * extent state conversion transaction on completion.
f6d6d4fc 1124 *
1da177e4
LT
1125 * Second case, allocate space for a delalloc buffer.
1126 * We can return EAGAIN here in the release page case.
d5cb48aa
CH
1127 *
1128 * Third case, an unmapped buffer was found, and we are
1129 * in a path where we need to write the whole page out.
df3c7244 1130 */
d5cb48aa
CH
1131 if (buffer_unwritten(bh) || buffer_delay(bh) ||
1132 ((buffer_uptodate(bh) || PageUptodate(page)) &&
1133 !buffer_mapped(bh) && (unmapped || startio))) {
effd120e
DC
1134 int new_ioend = 0;
1135
df3c7244 1136 /*
6c4fe19f
CH
1137 * Make sure we don't use a read-only iomap
1138 */
df3c7244 1139 if (flags == BMAPI_READ)
6c4fe19f
CH
1140 iomap_valid = 0;
1141
f6d6d4fc
CH
1142 if (buffer_unwritten(bh)) {
1143 type = IOMAP_UNWRITTEN;
8272145c 1144 flags = BMAPI_WRITE | BMAPI_IGNSTATE;
d5cb48aa 1145 } else if (buffer_delay(bh)) {
f6d6d4fc 1146 type = IOMAP_DELAY;
8272145c 1147 flags = BMAPI_ALLOCATE | trylock;
d5cb48aa 1148 } else {
6c4fe19f 1149 type = IOMAP_NEW;
8272145c 1150 flags = BMAPI_WRITE | BMAPI_MMAP;
f6d6d4fc
CH
1151 }
1152
1defeac9 1153 if (!iomap_valid) {
effd120e
DC
1154 /*
1155 * if we didn't have a valid mapping then we
1156 * need to ensure that we put the new mapping
1157 * in a new ioend structure. This needs to be
1158 * done to ensure that the ioends correctly
1159 * reflect the block mappings at io completion
1160 * for unwritten extent conversion.
1161 */
1162 new_ioend = 1;
6c4fe19f
CH
1163 if (type == IOMAP_NEW) {
1164 size = xfs_probe_cluster(inode,
1165 page, bh, head, 0);
d5cb48aa
CH
1166 } else {
1167 size = len;
1168 }
1169
1170 err = xfs_map_blocks(inode, offset, size,
1171 &iomap, flags);
f6d6d4fc 1172 if (err)
1da177e4 1173 goto error;
1defeac9 1174 iomap_valid = xfs_iomap_valid(&iomap, offset);
1da177e4 1175 }
1defeac9 1176 if (iomap_valid) {
046f1685 1177 xfs_map_at_offset(inode, bh, &iomap, offset);
1da177e4 1178 if (startio) {
7336cea8 1179 xfs_add_to_ioend(inode, bh, offset,
1defeac9 1180 type, &ioend,
effd120e 1181 new_ioend);
1da177e4
LT
1182 } else {
1183 set_buffer_dirty(bh);
1184 unlock_buffer(bh);
1185 mark_buffer_dirty(bh);
1186 }
1187 page_dirty--;
f6d6d4fc 1188 count++;
1da177e4 1189 }
d5cb48aa 1190 } else if (buffer_uptodate(bh) && startio) {
6c4fe19f
CH
1191 /*
1192 * we got here because the buffer is already mapped.
1193 * That means it must already have extents allocated
1194 * underneath it. Map the extent by reading it.
1195 */
df3c7244 1196 if (!iomap_valid || flags != BMAPI_READ) {
6c4fe19f
CH
1197 flags = BMAPI_READ;
1198 size = xfs_probe_cluster(inode, page, bh,
1199 head, 1);
1200 err = xfs_map_blocks(inode, offset, size,
1201 &iomap, flags);
1202 if (err)
1203 goto error;
1204 iomap_valid = xfs_iomap_valid(&iomap, offset);
1205 }
d5cb48aa 1206
df3c7244
DC
1207 /*
1208 * We set the type to IOMAP_NEW in case we are doing a
1209 * small write at EOF that is extending the file but
1210 * without needing an allocation. We need to update the
1211 * file size on I/O completion in this case so it is
1212 * the same case as having just allocated a new extent
1213 * that we are writing into for the first time.
1214 */
1215 type = IOMAP_NEW;
ca5de404 1216 if (trylock_buffer(bh)) {
d5cb48aa 1217 ASSERT(buffer_mapped(bh));
6c4fe19f
CH
1218 if (iomap_valid)
1219 all_bh = 1;
7336cea8 1220 xfs_add_to_ioend(inode, bh, offset, type,
d5cb48aa
CH
1221 &ioend, !iomap_valid);
1222 page_dirty--;
1223 count++;
f6d6d4fc 1224 } else {
1defeac9 1225 iomap_valid = 0;
1da177e4 1226 }
d5cb48aa
CH
1227 } else if ((buffer_uptodate(bh) || PageUptodate(page)) &&
1228 (unmapped || startio)) {
1229 iomap_valid = 0;
1da177e4 1230 }
f6d6d4fc
CH
1231
1232 if (!iohead)
1233 iohead = ioend;
1234
1235 } while (offset += len, ((bh = bh->b_this_page) != head));
1da177e4
LT
1236
1237 if (uptodate && bh == head)
1238 SetPageUptodate(page);
1239
f6d6d4fc 1240 if (startio)
b41759cf 1241 xfs_start_page_writeback(page, 1, count);
1da177e4 1242
1defeac9
CH
1243 if (ioend && iomap_valid) {
1244 offset = (iomap.iomap_offset + iomap.iomap_bsize - 1) >>
1da177e4 1245 PAGE_CACHE_SHIFT;
775bf6c9 1246 tlast = min_t(pgoff_t, offset, last_index);
1defeac9 1247 xfs_cluster_write(inode, page->index + 1, &iomap, &ioend,
6c4fe19f 1248 wbc, startio, all_bh, tlast);
1da177e4
LT
1249 }
1250
f6d6d4fc 1251 if (iohead)
06342cf8 1252 xfs_submit_ioend(wbc, iohead);
f6d6d4fc 1253
1da177e4
LT
1254 return page_dirty;
1255
1256error:
f6d6d4fc
CH
1257 if (iohead)
1258 xfs_cancel_ioend(iohead);
1da177e4
LT
1259
1260 /*
1261 * If it's delalloc and we have nowhere to put it,
1262 * throw it away, unless the lower layers told
1263 * us to try again.
1264 */
1265 if (err != -EAGAIN) {
f6d6d4fc 1266 if (!unmapped)
3ed3a434 1267 xfs_aops_discard_page(page);
1da177e4
LT
1268 ClearPageUptodate(page);
1269 }
1270 return err;
1271}
1272
f51623b2
NS
1273/*
1274 * writepage: Called from one of two places:
1275 *
1276 * 1. we are flushing a delalloc buffer head.
1277 *
1278 * 2. we are writing out a dirty page. Typically the page dirty
1279 * state is cleared before we get here. In this case is it
1280 * conceivable we have no buffer heads.
1281 *
1282 * For delalloc space on the page we need to allocate space and
1283 * flush it. For unmapped buffer heads on the page we should
1284 * allocate space if the page is uptodate. For any other dirty
1285 * buffer heads on the page we should flush them.
1286 *
1287 * If we detect that a transaction would be required to flush
1288 * the page, we have to check the process flags first, if we
1289 * are already in a transaction or disk I/O during allocations
1290 * is off, we need to fail the writepage and redirty the page.
1291 */
1292
1293STATIC int
e4c573bb 1294xfs_vm_writepage(
f51623b2
NS
1295 struct page *page,
1296 struct writeback_control *wbc)
1297{
1298 int error;
1299 int need_trans;
1300 int delalloc, unmapped, unwritten;
1301 struct inode *inode = page->mapping->host;
1302
0b1b213f 1303 trace_xfs_writepage(inode, page, 0);
f51623b2
NS
1304
1305 /*
1306 * We need a transaction if:
1307 * 1. There are delalloc buffers on the page
1308 * 2. The page is uptodate and we have unmapped buffers
1309 * 3. The page is uptodate and we have no buffers
1310 * 4. There are unwritten buffers on the page
1311 */
1312
1313 if (!page_has_buffers(page)) {
1314 unmapped = 1;
1315 need_trans = 1;
1316 } else {
1317 xfs_count_page_state(page, &delalloc, &unmapped, &unwritten);
1318 if (!PageUptodate(page))
1319 unmapped = 0;
1320 need_trans = delalloc + unmapped + unwritten;
1321 }
1322
1323 /*
1324 * If we need a transaction and the process flags say
1325 * we are already in a transaction, or no IO is allowed
1326 * then mark the page dirty again and leave the page
1327 * as is.
1328 */
59c1b082 1329 if (current_test_flags(PF_FSTRANS) && need_trans)
f51623b2
NS
1330 goto out_fail;
1331
1332 /*
1333 * Delay hooking up buffer heads until we have
1334 * made our go/no-go decision.
1335 */
1336 if (!page_has_buffers(page))
1337 create_empty_buffers(page, 1 << inode->i_blkbits, 0);
1338
c8a4051c
ES
1339
1340 /*
1341 * VM calculation for nr_to_write seems off. Bump it way
1342 * up, this gets simple streaming writes zippy again.
1343 * To be reviewed again after Jens' writeback changes.
1344 */
1345 wbc->nr_to_write *= 4;
1346
f51623b2
NS
1347 /*
1348 * Convert delayed allocate, unwritten or unmapped space
1349 * to real space and flush out to disk.
1350 */
1351 error = xfs_page_state_convert(inode, page, wbc, 1, unmapped);
1352 if (error == -EAGAIN)
1353 goto out_fail;
1354 if (unlikely(error < 0))
1355 goto out_unlock;
1356
1357 return 0;
1358
1359out_fail:
1360 redirty_page_for_writepage(wbc, page);
1361 unlock_page(page);
1362 return 0;
1363out_unlock:
1364 unlock_page(page);
1365 return error;
1366}
1367
7d4fb40a
NS
1368STATIC int
1369xfs_vm_writepages(
1370 struct address_space *mapping,
1371 struct writeback_control *wbc)
1372{
b3aea4ed 1373 xfs_iflags_clear(XFS_I(mapping->host), XFS_ITRUNCATED);
7d4fb40a
NS
1374 return generic_writepages(mapping, wbc);
1375}
1376
f51623b2
NS
1377/*
1378 * Called to move a page into cleanable state - and from there
1379 * to be released. Possibly the page is already clean. We always
1380 * have buffer heads in this call.
1381 *
1382 * Returns 0 if the page is ok to release, 1 otherwise.
1383 *
1384 * Possible scenarios are:
1385 *
1386 * 1. We are being called to release a page which has been written
1387 * to via regular I/O. buffer heads will be dirty and possibly
1388 * delalloc. If no delalloc buffer heads in this case then we
1389 * can just return zero.
1390 *
1391 * 2. We are called to release a page which has been written via
1392 * mmap, all we need to do is ensure there is no delalloc
1393 * state in the buffer heads, if not we can let the caller
1394 * free them and we should come back later via writepage.
1395 */
1396STATIC int
238f4c54 1397xfs_vm_releasepage(
f51623b2
NS
1398 struct page *page,
1399 gfp_t gfp_mask)
1400{
1401 struct inode *inode = page->mapping->host;
1402 int dirty, delalloc, unmapped, unwritten;
1403 struct writeback_control wbc = {
1404 .sync_mode = WB_SYNC_ALL,
1405 .nr_to_write = 1,
1406 };
1407
0b1b213f 1408 trace_xfs_releasepage(inode, page, 0);
f51623b2 1409
238f4c54
NS
1410 if (!page_has_buffers(page))
1411 return 0;
1412
f51623b2
NS
1413 xfs_count_page_state(page, &delalloc, &unmapped, &unwritten);
1414 if (!delalloc && !unwritten)
1415 goto free_buffers;
1416
1417 if (!(gfp_mask & __GFP_FS))
1418 return 0;
1419
1420 /* If we are already inside a transaction or the thread cannot
1421 * do I/O, we cannot release this page.
1422 */
59c1b082 1423 if (current_test_flags(PF_FSTRANS))
f51623b2
NS
1424 return 0;
1425
1426 /*
1427 * Convert delalloc space to real space, do not flush the
1428 * data out to disk, that will be done by the caller.
1429 * Never need to allocate space here - we will always
1430 * come back to writepage in that case.
1431 */
1432 dirty = xfs_page_state_convert(inode, page, &wbc, 0, 0);
1433 if (dirty == 0 && !unwritten)
1434 goto free_buffers;
1435 return 0;
1436
1437free_buffers:
1438 return try_to_free_buffers(page);
1439}
1440
1da177e4 1441STATIC int
c2536668 1442__xfs_get_blocks(
1da177e4
LT
1443 struct inode *inode,
1444 sector_t iblock,
1da177e4
LT
1445 struct buffer_head *bh_result,
1446 int create,
1447 int direct,
1448 bmapi_flags_t flags)
1449{
1da177e4 1450 xfs_iomap_t iomap;
fdc7ed75
NS
1451 xfs_off_t offset;
1452 ssize_t size;
c2536668 1453 int niomap = 1;
1da177e4 1454 int error;
1da177e4 1455
fdc7ed75 1456 offset = (xfs_off_t)iblock << inode->i_blkbits;
c2536668
NS
1457 ASSERT(bh_result->b_size >= (1 << inode->i_blkbits));
1458 size = bh_result->b_size;
364f358a
LM
1459
1460 if (!create && direct && offset >= i_size_read(inode))
1461 return 0;
1462
541d7d3c 1463 error = xfs_iomap(XFS_I(inode), offset, size,
67fcaa73 1464 create ? flags : BMAPI_READ, &iomap, &niomap);
1da177e4
LT
1465 if (error)
1466 return -error;
c2536668 1467 if (niomap == 0)
1da177e4
LT
1468 return 0;
1469
1470 if (iomap.iomap_bn != IOMAP_DADDR_NULL) {
87cbc49c
NS
1471 /*
1472 * For unwritten extents do not report a disk address on
1da177e4
LT
1473 * the read case (treat as if we're reading into a hole).
1474 */
046f1685
CH
1475 if (create || !(iomap.iomap_flags & IOMAP_UNWRITTEN))
1476 xfs_map_buffer(inode, bh_result, &iomap, offset);
1da177e4
LT
1477 if (create && (iomap.iomap_flags & IOMAP_UNWRITTEN)) {
1478 if (direct)
1479 bh_result->b_private = inode;
1480 set_buffer_unwritten(bh_result);
1da177e4
LT
1481 }
1482 }
1483
c2536668
NS
1484 /*
1485 * If this is a realtime file, data may be on a different device.
1486 * to that pointed to from the buffer_head b_bdev currently.
1487 */
046f1685 1488 bh_result->b_bdev = xfs_find_bdev_for_inode(inode);
1da177e4 1489
c2536668 1490 /*
549054af
DC
1491 * If we previously allocated a block out beyond eof and we are now
1492 * coming back to use it then we will need to flag it as new even if it
1493 * has a disk address.
1494 *
1495 * With sub-block writes into unwritten extents we also need to mark
1496 * the buffer as new so that the unwritten parts of the buffer gets
1497 * correctly zeroed.
1da177e4
LT
1498 */
1499 if (create &&
1500 ((!buffer_mapped(bh_result) && !buffer_uptodate(bh_result)) ||
549054af
DC
1501 (offset >= i_size_read(inode)) ||
1502 (iomap.iomap_flags & (IOMAP_NEW|IOMAP_UNWRITTEN))))
1da177e4 1503 set_buffer_new(bh_result);
1da177e4
LT
1504
1505 if (iomap.iomap_flags & IOMAP_DELAY) {
1506 BUG_ON(direct);
1507 if (create) {
1508 set_buffer_uptodate(bh_result);
1509 set_buffer_mapped(bh_result);
1510 set_buffer_delay(bh_result);
1511 }
1512 }
1513
c2536668 1514 if (direct || size > (1 << inode->i_blkbits)) {
9563b3d8
CH
1515 xfs_off_t iomap_delta = offset - iomap.iomap_offset;
1516
1517 ASSERT(iomap.iomap_bsize - iomap_delta > 0);
fdc7ed75 1518 offset = min_t(xfs_off_t,
9563b3d8 1519 iomap.iomap_bsize - iomap_delta, size);
c2536668 1520 bh_result->b_size = (ssize_t)min_t(xfs_off_t, LONG_MAX, offset);
1da177e4
LT
1521 }
1522
1523 return 0;
1524}
1525
1526int
c2536668 1527xfs_get_blocks(
1da177e4
LT
1528 struct inode *inode,
1529 sector_t iblock,
1530 struct buffer_head *bh_result,
1531 int create)
1532{
c2536668 1533 return __xfs_get_blocks(inode, iblock,
fa30bd05 1534 bh_result, create, 0, BMAPI_WRITE);
1da177e4
LT
1535}
1536
1537STATIC int
e4c573bb 1538xfs_get_blocks_direct(
1da177e4
LT
1539 struct inode *inode,
1540 sector_t iblock,
1da177e4
LT
1541 struct buffer_head *bh_result,
1542 int create)
1543{
c2536668 1544 return __xfs_get_blocks(inode, iblock,
1d8fa7a2 1545 bh_result, create, 1, BMAPI_WRITE|BMAPI_DIRECT);
1da177e4
LT
1546}
1547
f0973863 1548STATIC void
e4c573bb 1549xfs_end_io_direct(
f0973863
CH
1550 struct kiocb *iocb,
1551 loff_t offset,
1552 ssize_t size,
1553 void *private)
1554{
1555 xfs_ioend_t *ioend = iocb->private;
1556
1557 /*
1558 * Non-NULL private data means we need to issue a transaction to
1559 * convert a range from unwritten to written extents. This needs
c41564b5 1560 * to happen from process context but aio+dio I/O completion
f0973863 1561 * happens from irq context so we need to defer it to a workqueue.
c41564b5 1562 * This is not necessary for synchronous direct I/O, but we do
f0973863
CH
1563 * it anyway to keep the code uniform and simpler.
1564 *
e927af90
DC
1565 * Well, if only it were that simple. Because synchronous direct I/O
1566 * requires extent conversion to occur *before* we return to userspace,
1567 * we have to wait for extent conversion to complete. Look at the
1568 * iocb that has been passed to us to determine if this is AIO or
1569 * not. If it is synchronous, tell xfs_finish_ioend() to kick the
1570 * workqueue and wait for it to complete.
1571 *
f0973863
CH
1572 * The core direct I/O code might be changed to always call the
1573 * completion handler in the future, in which case all this can
1574 * go away.
1575 */
ba87ea69
LM
1576 ioend->io_offset = offset;
1577 ioend->io_size = size;
1578 if (ioend->io_type == IOMAP_READ) {
e927af90 1579 xfs_finish_ioend(ioend, 0);
ba87ea69 1580 } else if (private && size > 0) {
e927af90 1581 xfs_finish_ioend(ioend, is_sync_kiocb(iocb));
f0973863 1582 } else {
ba87ea69
LM
1583 /*
1584 * A direct I/O write ioend starts it's life in unwritten
1585 * state in case they map an unwritten extent. This write
1586 * didn't map an unwritten extent so switch it's completion
1587 * handler.
1588 */
5ec4fabb 1589 ioend->io_type = IOMAP_NEW;
e927af90 1590 xfs_finish_ioend(ioend, 0);
f0973863
CH
1591 }
1592
1593 /*
c41564b5 1594 * blockdev_direct_IO can return an error even after the I/O
f0973863
CH
1595 * completion handler was called. Thus we need to protect
1596 * against double-freeing.
1597 */
1598 iocb->private = NULL;
1599}
1600
1da177e4 1601STATIC ssize_t
e4c573bb 1602xfs_vm_direct_IO(
1da177e4
LT
1603 int rw,
1604 struct kiocb *iocb,
1605 const struct iovec *iov,
1606 loff_t offset,
1607 unsigned long nr_segs)
1608{
1609 struct file *file = iocb->ki_filp;
1610 struct inode *inode = file->f_mapping->host;
6214ed44 1611 struct block_device *bdev;
f0973863 1612 ssize_t ret;
1da177e4 1613
046f1685 1614 bdev = xfs_find_bdev_for_inode(inode);
1da177e4 1615
5fe878ae
CH
1616 iocb->private = xfs_alloc_ioend(inode, rw == WRITE ?
1617 IOMAP_UNWRITTEN : IOMAP_READ);
1618
1619 ret = blockdev_direct_IO_no_locking(rw, iocb, inode, bdev, iov,
1620 offset, nr_segs,
1621 xfs_get_blocks_direct,
1622 xfs_end_io_direct);
f0973863 1623
8459d86a 1624 if (unlikely(ret != -EIOCBQUEUED && iocb->private))
f0973863
CH
1625 xfs_destroy_ioend(iocb->private);
1626 return ret;
1da177e4
LT
1627}
1628
f51623b2 1629STATIC int
d79689c7 1630xfs_vm_write_begin(
f51623b2 1631 struct file *file,
d79689c7
NP
1632 struct address_space *mapping,
1633 loff_t pos,
1634 unsigned len,
1635 unsigned flags,
1636 struct page **pagep,
1637 void **fsdata)
f51623b2 1638{
d79689c7
NP
1639 *pagep = NULL;
1640 return block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
1641 xfs_get_blocks);
f51623b2 1642}
1da177e4
LT
1643
1644STATIC sector_t
e4c573bb 1645xfs_vm_bmap(
1da177e4
LT
1646 struct address_space *mapping,
1647 sector_t block)
1648{
1649 struct inode *inode = (struct inode *)mapping->host;
739bfb2a 1650 struct xfs_inode *ip = XFS_I(inode);
1da177e4 1651
cf441eeb 1652 xfs_itrace_entry(XFS_I(inode));
126468b1 1653 xfs_ilock(ip, XFS_IOLOCK_SHARED);
739bfb2a 1654 xfs_flush_pages(ip, (xfs_off_t)0, -1, 0, FI_REMAPF);
126468b1 1655 xfs_iunlock(ip, XFS_IOLOCK_SHARED);
c2536668 1656 return generic_block_bmap(mapping, block, xfs_get_blocks);
1da177e4
LT
1657}
1658
1659STATIC int
e4c573bb 1660xfs_vm_readpage(
1da177e4
LT
1661 struct file *unused,
1662 struct page *page)
1663{
c2536668 1664 return mpage_readpage(page, xfs_get_blocks);
1da177e4
LT
1665}
1666
1667STATIC int
e4c573bb 1668xfs_vm_readpages(
1da177e4
LT
1669 struct file *unused,
1670 struct address_space *mapping,
1671 struct list_head *pages,
1672 unsigned nr_pages)
1673{
c2536668 1674 return mpage_readpages(mapping, pages, nr_pages, xfs_get_blocks);
1da177e4
LT
1675}
1676
f5e54d6e 1677const struct address_space_operations xfs_address_space_operations = {
e4c573bb
NS
1678 .readpage = xfs_vm_readpage,
1679 .readpages = xfs_vm_readpages,
1680 .writepage = xfs_vm_writepage,
7d4fb40a 1681 .writepages = xfs_vm_writepages,
1da177e4 1682 .sync_page = block_sync_page,
238f4c54
NS
1683 .releasepage = xfs_vm_releasepage,
1684 .invalidatepage = xfs_vm_invalidatepage,
d79689c7
NP
1685 .write_begin = xfs_vm_write_begin,
1686 .write_end = generic_write_end,
e4c573bb
NS
1687 .bmap = xfs_vm_bmap,
1688 .direct_IO = xfs_vm_direct_IO,
e965f963 1689 .migratepage = buffer_migrate_page,
bddaafa1 1690 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 1691 .error_remove_page = generic_error_remove_page,
1da177e4 1692};