]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - fs/xfs/linux-2.6/xfs_aops.c
[XFS] Flush the block device before closing it on unmount.
[mirror_ubuntu-zesty-kernel.git] / fs / xfs / linux-2.6 / xfs_aops.c
CommitLineData
1da177e4 1/*
7b718769
NS
2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
1da177e4 4 *
7b718769
NS
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
1da177e4
LT
7 * published by the Free Software Foundation.
8 *
7b718769
NS
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
1da177e4 13 *
7b718769
NS
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
1da177e4 17 */
1da177e4 18#include "xfs.h"
a844f451 19#include "xfs_bit.h"
1da177e4 20#include "xfs_log.h"
a844f451 21#include "xfs_inum.h"
1da177e4 22#include "xfs_sb.h"
a844f451 23#include "xfs_ag.h"
1da177e4
LT
24#include "xfs_dir2.h"
25#include "xfs_trans.h"
26#include "xfs_dmapi.h"
27#include "xfs_mount.h"
28#include "xfs_bmap_btree.h"
29#include "xfs_alloc_btree.h"
30#include "xfs_ialloc_btree.h"
1da177e4 31#include "xfs_dir2_sf.h"
a844f451 32#include "xfs_attr_sf.h"
1da177e4
LT
33#include "xfs_dinode.h"
34#include "xfs_inode.h"
a844f451
NS
35#include "xfs_alloc.h"
36#include "xfs_btree.h"
1da177e4
LT
37#include "xfs_error.h"
38#include "xfs_rw.h"
39#include "xfs_iomap.h"
40#include <linux/mpage.h>
10ce4444 41#include <linux/pagevec.h>
1da177e4
LT
42#include <linux/writeback.h>
43
f51623b2
NS
44STATIC void
45xfs_count_page_state(
46 struct page *page,
47 int *delalloc,
48 int *unmapped,
49 int *unwritten)
50{
51 struct buffer_head *bh, *head;
52
53 *delalloc = *unmapped = *unwritten = 0;
54
55 bh = head = page_buffers(page);
56 do {
57 if (buffer_uptodate(bh) && !buffer_mapped(bh))
58 (*unmapped) = 1;
f51623b2
NS
59 else if (buffer_unwritten(bh))
60 (*unwritten) = 1;
61 else if (buffer_delay(bh))
62 (*delalloc) = 1;
63 } while ((bh = bh->b_this_page) != head);
64}
65
1da177e4
LT
66#if defined(XFS_RW_TRACE)
67void
68xfs_page_trace(
69 int tag,
70 struct inode *inode,
71 struct page *page,
ed9d88f7 72 unsigned long pgoff)
1da177e4
LT
73{
74 xfs_inode_t *ip;
67fcaa73 75 bhv_vnode_t *vp = vn_from_inode(inode);
1da177e4 76 loff_t isize = i_size_read(inode);
f6d6d4fc 77 loff_t offset = page_offset(page);
1da177e4
LT
78 int delalloc = -1, unmapped = -1, unwritten = -1;
79
80 if (page_has_buffers(page))
81 xfs_count_page_state(page, &delalloc, &unmapped, &unwritten);
82
75e17b3c 83 ip = xfs_vtoi(vp);
1da177e4
LT
84 if (!ip->i_rwtrace)
85 return;
86
87 ktrace_enter(ip->i_rwtrace,
88 (void *)((unsigned long)tag),
89 (void *)ip,
90 (void *)inode,
91 (void *)page,
ed9d88f7 92 (void *)pgoff,
1da177e4
LT
93 (void *)((unsigned long)((ip->i_d.di_size >> 32) & 0xffffffff)),
94 (void *)((unsigned long)(ip->i_d.di_size & 0xffffffff)),
95 (void *)((unsigned long)((isize >> 32) & 0xffffffff)),
96 (void *)((unsigned long)(isize & 0xffffffff)),
97 (void *)((unsigned long)((offset >> 32) & 0xffffffff)),
98 (void *)((unsigned long)(offset & 0xffffffff)),
99 (void *)((unsigned long)delalloc),
100 (void *)((unsigned long)unmapped),
101 (void *)((unsigned long)unwritten),
f1fdc848 102 (void *)((unsigned long)current_pid()),
1da177e4
LT
103 (void *)NULL);
104}
105#else
ed9d88f7 106#define xfs_page_trace(tag, inode, page, pgoff)
1da177e4
LT
107#endif
108
0829c360
CH
109/*
110 * Schedule IO completion handling on a xfsdatad if this was
111 * the final hold on this ioend.
112 */
113STATIC void
114xfs_finish_ioend(
115 xfs_ioend_t *ioend)
116{
117 if (atomic_dec_and_test(&ioend->io_remaining))
118 queue_work(xfsdatad_workqueue, &ioend->io_work);
119}
120
f6d6d4fc
CH
121/*
122 * We're now finished for good with this ioend structure.
123 * Update the page state via the associated buffer_heads,
124 * release holds on the inode and bio, and finally free
125 * up memory. Do not use the ioend after this.
126 */
0829c360
CH
127STATIC void
128xfs_destroy_ioend(
129 xfs_ioend_t *ioend)
130{
f6d6d4fc
CH
131 struct buffer_head *bh, *next;
132
133 for (bh = ioend->io_buffer_head; bh; bh = next) {
134 next = bh->b_private;
7d04a335 135 bh->b_end_io(bh, !ioend->io_error);
f6d6d4fc 136 }
7d04a335
NS
137 if (unlikely(ioend->io_error))
138 vn_ioerror(ioend->io_vnode, ioend->io_error, __FILE__,__LINE__);
0829c360
CH
139 vn_iowake(ioend->io_vnode);
140 mempool_free(ioend, xfs_ioend_pool);
141}
142
ba87ea69
LM
143/*
144 * Update on-disk file size now that data has been written to disk.
145 * The current in-memory file size is i_size. If a write is beyond
146 * eof io_new_size will be the intended file size until i_size is
147 * updated. If this write does not extend all the way to the valid
148 * file size then restrict this update to the end of the write.
149 */
150STATIC void
151xfs_setfilesize(
152 xfs_ioend_t *ioend)
153{
154 xfs_inode_t *ip;
155 xfs_fsize_t isize;
156 xfs_fsize_t bsize;
157
158 ip = xfs_vtoi(ioend->io_vnode);
159
160 ASSERT((ip->i_d.di_mode & S_IFMT) == S_IFREG);
161 ASSERT(ioend->io_type != IOMAP_READ);
162
163 if (unlikely(ioend->io_error))
164 return;
165
166 bsize = ioend->io_offset + ioend->io_size;
167
168 xfs_ilock(ip, XFS_ILOCK_EXCL);
169
170 isize = MAX(ip->i_size, ip->i_iocore.io_new_size);
171 isize = MIN(isize, bsize);
172
173 if (ip->i_d.di_size < isize) {
174 ip->i_d.di_size = isize;
175 ip->i_update_core = 1;
176 ip->i_update_size = 1;
177 }
178
179 xfs_iunlock(ip, XFS_ILOCK_EXCL);
180}
181
0829c360 182/*
f6d6d4fc 183 * Buffered IO write completion for delayed allocate extents.
f6d6d4fc
CH
184 */
185STATIC void
186xfs_end_bio_delalloc(
c4028958 187 struct work_struct *work)
f6d6d4fc 188{
c4028958
DH
189 xfs_ioend_t *ioend =
190 container_of(work, xfs_ioend_t, io_work);
f6d6d4fc 191
ba87ea69 192 xfs_setfilesize(ioend);
f6d6d4fc
CH
193 xfs_destroy_ioend(ioend);
194}
195
196/*
197 * Buffered IO write completion for regular, written extents.
198 */
199STATIC void
200xfs_end_bio_written(
c4028958 201 struct work_struct *work)
f6d6d4fc 202{
c4028958
DH
203 xfs_ioend_t *ioend =
204 container_of(work, xfs_ioend_t, io_work);
f6d6d4fc 205
ba87ea69 206 xfs_setfilesize(ioend);
f6d6d4fc
CH
207 xfs_destroy_ioend(ioend);
208}
209
210/*
211 * IO write completion for unwritten extents.
212 *
0829c360 213 * Issue transactions to convert a buffer range from unwritten
f0973863 214 * to written extents.
0829c360
CH
215 */
216STATIC void
217xfs_end_bio_unwritten(
c4028958 218 struct work_struct *work)
0829c360 219{
c4028958
DH
220 xfs_ioend_t *ioend =
221 container_of(work, xfs_ioend_t, io_work);
67fcaa73 222 bhv_vnode_t *vp = ioend->io_vnode;
0829c360
CH
223 xfs_off_t offset = ioend->io_offset;
224 size_t size = ioend->io_size;
0829c360 225
ba87ea69 226 if (likely(!ioend->io_error)) {
67fcaa73 227 bhv_vop_bmap(vp, offset, size, BMAPI_UNWRITTEN, NULL, NULL);
ba87ea69
LM
228 xfs_setfilesize(ioend);
229 }
230 xfs_destroy_ioend(ioend);
231}
232
233/*
234 * IO read completion for regular, written extents.
235 */
236STATIC void
237xfs_end_bio_read(
238 struct work_struct *work)
239{
240 xfs_ioend_t *ioend =
241 container_of(work, xfs_ioend_t, io_work);
242
0829c360
CH
243 xfs_destroy_ioend(ioend);
244}
245
246/*
247 * Allocate and initialise an IO completion structure.
248 * We need to track unwritten extent write completion here initially.
249 * We'll need to extend this for updating the ondisk inode size later
250 * (vs. incore size).
251 */
252STATIC xfs_ioend_t *
253xfs_alloc_ioend(
f6d6d4fc
CH
254 struct inode *inode,
255 unsigned int type)
0829c360
CH
256{
257 xfs_ioend_t *ioend;
258
259 ioend = mempool_alloc(xfs_ioend_pool, GFP_NOFS);
260
261 /*
262 * Set the count to 1 initially, which will prevent an I/O
263 * completion callback from happening before we have started
264 * all the I/O from calling the completion routine too early.
265 */
266 atomic_set(&ioend->io_remaining, 1);
7d04a335 267 ioend->io_error = 0;
f6d6d4fc
CH
268 ioend->io_list = NULL;
269 ioend->io_type = type;
ec86dc02 270 ioend->io_vnode = vn_from_inode(inode);
c1a073bd 271 ioend->io_buffer_head = NULL;
f6d6d4fc 272 ioend->io_buffer_tail = NULL;
0829c360
CH
273 atomic_inc(&ioend->io_vnode->v_iocount);
274 ioend->io_offset = 0;
275 ioend->io_size = 0;
276
f6d6d4fc 277 if (type == IOMAP_UNWRITTEN)
c4028958 278 INIT_WORK(&ioend->io_work, xfs_end_bio_unwritten);
f6d6d4fc 279 else if (type == IOMAP_DELAY)
c4028958 280 INIT_WORK(&ioend->io_work, xfs_end_bio_delalloc);
ba87ea69
LM
281 else if (type == IOMAP_READ)
282 INIT_WORK(&ioend->io_work, xfs_end_bio_read);
f6d6d4fc 283 else
c4028958 284 INIT_WORK(&ioend->io_work, xfs_end_bio_written);
0829c360
CH
285
286 return ioend;
287}
288
1da177e4
LT
289STATIC int
290xfs_map_blocks(
291 struct inode *inode,
292 loff_t offset,
293 ssize_t count,
294 xfs_iomap_t *mapp,
295 int flags)
296{
67fcaa73 297 bhv_vnode_t *vp = vn_from_inode(inode);
1da177e4
LT
298 int error, nmaps = 1;
299
67fcaa73 300 error = bhv_vop_bmap(vp, offset, count, flags, mapp, &nmaps);
1da177e4
LT
301 if (!error && (flags & (BMAPI_WRITE|BMAPI_ALLOCATE)))
302 VMODIFY(vp);
303 return -error;
304}
305
7989cb8e 306STATIC_INLINE int
1defeac9 307xfs_iomap_valid(
1da177e4 308 xfs_iomap_t *iomapp,
1defeac9 309 loff_t offset)
1da177e4 310{
1defeac9
CH
311 return offset >= iomapp->iomap_offset &&
312 offset < iomapp->iomap_offset + iomapp->iomap_bsize;
1da177e4
LT
313}
314
f6d6d4fc
CH
315/*
316 * BIO completion handler for buffered IO.
317 */
318STATIC int
319xfs_end_bio(
320 struct bio *bio,
321 unsigned int bytes_done,
322 int error)
323{
324 xfs_ioend_t *ioend = bio->bi_private;
325
326 if (bio->bi_size)
327 return 1;
328
f6d6d4fc 329 ASSERT(atomic_read(&bio->bi_cnt) >= 1);
7d04a335 330 ioend->io_error = test_bit(BIO_UPTODATE, &bio->bi_flags) ? 0 : error;
f6d6d4fc
CH
331
332 /* Toss bio and pass work off to an xfsdatad thread */
f6d6d4fc
CH
333 bio->bi_private = NULL;
334 bio->bi_end_io = NULL;
f6d6d4fc 335 bio_put(bio);
7d04a335 336
f6d6d4fc
CH
337 xfs_finish_ioend(ioend);
338 return 0;
339}
340
341STATIC void
342xfs_submit_ioend_bio(
343 xfs_ioend_t *ioend,
344 struct bio *bio)
345{
346 atomic_inc(&ioend->io_remaining);
347
348 bio->bi_private = ioend;
349 bio->bi_end_io = xfs_end_bio;
350
351 submit_bio(WRITE, bio);
352 ASSERT(!bio_flagged(bio, BIO_EOPNOTSUPP));
353 bio_put(bio);
354}
355
356STATIC struct bio *
357xfs_alloc_ioend_bio(
358 struct buffer_head *bh)
359{
360 struct bio *bio;
361 int nvecs = bio_get_nr_vecs(bh->b_bdev);
362
363 do {
364 bio = bio_alloc(GFP_NOIO, nvecs);
365 nvecs >>= 1;
366 } while (!bio);
367
368 ASSERT(bio->bi_private == NULL);
369 bio->bi_sector = bh->b_blocknr * (bh->b_size >> 9);
370 bio->bi_bdev = bh->b_bdev;
371 bio_get(bio);
372 return bio;
373}
374
375STATIC void
376xfs_start_buffer_writeback(
377 struct buffer_head *bh)
378{
379 ASSERT(buffer_mapped(bh));
380 ASSERT(buffer_locked(bh));
381 ASSERT(!buffer_delay(bh));
382 ASSERT(!buffer_unwritten(bh));
383
384 mark_buffer_async_write(bh);
385 set_buffer_uptodate(bh);
386 clear_buffer_dirty(bh);
387}
388
389STATIC void
390xfs_start_page_writeback(
391 struct page *page,
392 struct writeback_control *wbc,
393 int clear_dirty,
394 int buffers)
395{
396 ASSERT(PageLocked(page));
397 ASSERT(!PageWriteback(page));
f6d6d4fc 398 if (clear_dirty)
92132021
DC
399 clear_page_dirty_for_io(page);
400 set_page_writeback(page);
f6d6d4fc
CH
401 unlock_page(page);
402 if (!buffers) {
403 end_page_writeback(page);
404 wbc->pages_skipped++; /* We didn't write this page */
405 }
406}
407
408static inline int bio_add_buffer(struct bio *bio, struct buffer_head *bh)
409{
410 return bio_add_page(bio, bh->b_page, bh->b_size, bh_offset(bh));
411}
412
413/*
d88992f6
DC
414 * Submit all of the bios for all of the ioends we have saved up, covering the
415 * initial writepage page and also any probed pages.
416 *
417 * Because we may have multiple ioends spanning a page, we need to start
418 * writeback on all the buffers before we submit them for I/O. If we mark the
419 * buffers as we got, then we can end up with a page that only has buffers
420 * marked async write and I/O complete on can occur before we mark the other
421 * buffers async write.
422 *
423 * The end result of this is that we trip a bug in end_page_writeback() because
424 * we call it twice for the one page as the code in end_buffer_async_write()
425 * assumes that all buffers on the page are started at the same time.
426 *
427 * The fix is two passes across the ioend list - one to start writeback on the
c41564b5 428 * buffer_heads, and then submit them for I/O on the second pass.
f6d6d4fc
CH
429 */
430STATIC void
431xfs_submit_ioend(
432 xfs_ioend_t *ioend)
433{
d88992f6 434 xfs_ioend_t *head = ioend;
f6d6d4fc
CH
435 xfs_ioend_t *next;
436 struct buffer_head *bh;
437 struct bio *bio;
438 sector_t lastblock = 0;
439
d88992f6
DC
440 /* Pass 1 - start writeback */
441 do {
442 next = ioend->io_list;
443 for (bh = ioend->io_buffer_head; bh; bh = bh->b_private) {
444 xfs_start_buffer_writeback(bh);
445 }
446 } while ((ioend = next) != NULL);
447
448 /* Pass 2 - submit I/O */
449 ioend = head;
f6d6d4fc
CH
450 do {
451 next = ioend->io_list;
452 bio = NULL;
453
454 for (bh = ioend->io_buffer_head; bh; bh = bh->b_private) {
f6d6d4fc
CH
455
456 if (!bio) {
457 retry:
458 bio = xfs_alloc_ioend_bio(bh);
459 } else if (bh->b_blocknr != lastblock + 1) {
460 xfs_submit_ioend_bio(ioend, bio);
461 goto retry;
462 }
463
464 if (bio_add_buffer(bio, bh) != bh->b_size) {
465 xfs_submit_ioend_bio(ioend, bio);
466 goto retry;
467 }
468
469 lastblock = bh->b_blocknr;
470 }
471 if (bio)
472 xfs_submit_ioend_bio(ioend, bio);
473 xfs_finish_ioend(ioend);
474 } while ((ioend = next) != NULL);
475}
476
477/*
478 * Cancel submission of all buffer_heads so far in this endio.
479 * Toss the endio too. Only ever called for the initial page
480 * in a writepage request, so only ever one page.
481 */
482STATIC void
483xfs_cancel_ioend(
484 xfs_ioend_t *ioend)
485{
486 xfs_ioend_t *next;
487 struct buffer_head *bh, *next_bh;
488
489 do {
490 next = ioend->io_list;
491 bh = ioend->io_buffer_head;
492 do {
493 next_bh = bh->b_private;
494 clear_buffer_async_write(bh);
495 unlock_buffer(bh);
496 } while ((bh = next_bh) != NULL);
497
498 vn_iowake(ioend->io_vnode);
499 mempool_free(ioend, xfs_ioend_pool);
500 } while ((ioend = next) != NULL);
501}
502
503/*
504 * Test to see if we've been building up a completion structure for
505 * earlier buffers -- if so, we try to append to this ioend if we
506 * can, otherwise we finish off any current ioend and start another.
507 * Return true if we've finished the given ioend.
508 */
509STATIC void
510xfs_add_to_ioend(
511 struct inode *inode,
512 struct buffer_head *bh,
7336cea8 513 xfs_off_t offset,
f6d6d4fc
CH
514 unsigned int type,
515 xfs_ioend_t **result,
516 int need_ioend)
517{
518 xfs_ioend_t *ioend = *result;
519
520 if (!ioend || need_ioend || type != ioend->io_type) {
521 xfs_ioend_t *previous = *result;
f6d6d4fc 522
f6d6d4fc
CH
523 ioend = xfs_alloc_ioend(inode, type);
524 ioend->io_offset = offset;
525 ioend->io_buffer_head = bh;
526 ioend->io_buffer_tail = bh;
527 if (previous)
528 previous->io_list = ioend;
529 *result = ioend;
530 } else {
531 ioend->io_buffer_tail->b_private = bh;
532 ioend->io_buffer_tail = bh;
533 }
534
535 bh->b_private = NULL;
536 ioend->io_size += bh->b_size;
537}
538
87cbc49c
NS
539STATIC void
540xfs_map_buffer(
541 struct buffer_head *bh,
542 xfs_iomap_t *mp,
543 xfs_off_t offset,
544 uint block_bits)
545{
546 sector_t bn;
547
548 ASSERT(mp->iomap_bn != IOMAP_DADDR_NULL);
549
550 bn = (mp->iomap_bn >> (block_bits - BBSHIFT)) +
551 ((offset - mp->iomap_offset) >> block_bits);
552
553 ASSERT(bn || (mp->iomap_flags & IOMAP_REALTIME));
554
555 bh->b_blocknr = bn;
556 set_buffer_mapped(bh);
557}
558
1da177e4
LT
559STATIC void
560xfs_map_at_offset(
1da177e4 561 struct buffer_head *bh,
1defeac9 562 loff_t offset,
1da177e4 563 int block_bits,
1defeac9 564 xfs_iomap_t *iomapp)
1da177e4 565{
1da177e4
LT
566 ASSERT(!(iomapp->iomap_flags & IOMAP_HOLE));
567 ASSERT(!(iomapp->iomap_flags & IOMAP_DELAY));
1da177e4
LT
568
569 lock_buffer(bh);
87cbc49c 570 xfs_map_buffer(bh, iomapp, offset, block_bits);
ce8e922c 571 bh->b_bdev = iomapp->iomap_target->bt_bdev;
1da177e4
LT
572 set_buffer_mapped(bh);
573 clear_buffer_delay(bh);
f6d6d4fc 574 clear_buffer_unwritten(bh);
1da177e4
LT
575}
576
577/*
6c4fe19f 578 * Look for a page at index that is suitable for clustering.
1da177e4
LT
579 */
580STATIC unsigned int
6c4fe19f 581xfs_probe_page(
10ce4444 582 struct page *page,
6c4fe19f
CH
583 unsigned int pg_offset,
584 int mapped)
1da177e4 585{
1da177e4
LT
586 int ret = 0;
587
1da177e4 588 if (PageWriteback(page))
10ce4444 589 return 0;
1da177e4
LT
590
591 if (page->mapping && PageDirty(page)) {
592 if (page_has_buffers(page)) {
593 struct buffer_head *bh, *head;
594
595 bh = head = page_buffers(page);
596 do {
6c4fe19f
CH
597 if (!buffer_uptodate(bh))
598 break;
599 if (mapped != buffer_mapped(bh))
1da177e4
LT
600 break;
601 ret += bh->b_size;
602 if (ret >= pg_offset)
603 break;
604 } while ((bh = bh->b_this_page) != head);
605 } else
6c4fe19f 606 ret = mapped ? 0 : PAGE_CACHE_SIZE;
1da177e4
LT
607 }
608
1da177e4
LT
609 return ret;
610}
611
f6d6d4fc 612STATIC size_t
6c4fe19f 613xfs_probe_cluster(
1da177e4
LT
614 struct inode *inode,
615 struct page *startpage,
616 struct buffer_head *bh,
6c4fe19f
CH
617 struct buffer_head *head,
618 int mapped)
1da177e4 619{
10ce4444 620 struct pagevec pvec;
1da177e4 621 pgoff_t tindex, tlast, tloff;
10ce4444
CH
622 size_t total = 0;
623 int done = 0, i;
1da177e4
LT
624
625 /* First sum forwards in this page */
626 do {
2353e8e9 627 if (!buffer_uptodate(bh) || (mapped != buffer_mapped(bh)))
10ce4444 628 return total;
1da177e4
LT
629 total += bh->b_size;
630 } while ((bh = bh->b_this_page) != head);
631
10ce4444
CH
632 /* if we reached the end of the page, sum forwards in following pages */
633 tlast = i_size_read(inode) >> PAGE_CACHE_SHIFT;
634 tindex = startpage->index + 1;
635
636 /* Prune this back to avoid pathological behavior */
637 tloff = min(tlast, startpage->index + 64);
638
639 pagevec_init(&pvec, 0);
640 while (!done && tindex <= tloff) {
641 unsigned len = min_t(pgoff_t, PAGEVEC_SIZE, tlast - tindex + 1);
642
643 if (!pagevec_lookup(&pvec, inode->i_mapping, tindex, len))
644 break;
645
646 for (i = 0; i < pagevec_count(&pvec); i++) {
647 struct page *page = pvec.pages[i];
648 size_t pg_offset, len = 0;
649
650 if (tindex == tlast) {
651 pg_offset =
652 i_size_read(inode) & (PAGE_CACHE_SIZE - 1);
1defeac9
CH
653 if (!pg_offset) {
654 done = 1;
10ce4444 655 break;
1defeac9 656 }
10ce4444
CH
657 } else
658 pg_offset = PAGE_CACHE_SIZE;
659
660 if (page->index == tindex && !TestSetPageLocked(page)) {
6c4fe19f 661 len = xfs_probe_page(page, pg_offset, mapped);
10ce4444
CH
662 unlock_page(page);
663 }
664
665 if (!len) {
666 done = 1;
667 break;
668 }
669
1da177e4 670 total += len;
1defeac9 671 tindex++;
1da177e4 672 }
10ce4444
CH
673
674 pagevec_release(&pvec);
675 cond_resched();
1da177e4 676 }
10ce4444 677
1da177e4
LT
678 return total;
679}
680
681/*
10ce4444
CH
682 * Test if a given page is suitable for writing as part of an unwritten
683 * or delayed allocate extent.
1da177e4 684 */
10ce4444
CH
685STATIC int
686xfs_is_delayed_page(
687 struct page *page,
f6d6d4fc 688 unsigned int type)
1da177e4 689{
1da177e4 690 if (PageWriteback(page))
10ce4444 691 return 0;
1da177e4
LT
692
693 if (page->mapping && page_has_buffers(page)) {
694 struct buffer_head *bh, *head;
695 int acceptable = 0;
696
697 bh = head = page_buffers(page);
698 do {
f6d6d4fc
CH
699 if (buffer_unwritten(bh))
700 acceptable = (type == IOMAP_UNWRITTEN);
701 else if (buffer_delay(bh))
702 acceptable = (type == IOMAP_DELAY);
2ddee844 703 else if (buffer_dirty(bh) && buffer_mapped(bh))
df3c7244 704 acceptable = (type == IOMAP_NEW);
f6d6d4fc 705 else
1da177e4 706 break;
1da177e4
LT
707 } while ((bh = bh->b_this_page) != head);
708
709 if (acceptable)
10ce4444 710 return 1;
1da177e4
LT
711 }
712
10ce4444 713 return 0;
1da177e4
LT
714}
715
1da177e4
LT
716/*
717 * Allocate & map buffers for page given the extent map. Write it out.
718 * except for the original page of a writepage, this is called on
719 * delalloc/unwritten pages only, for the original page it is possible
720 * that the page has no mapping at all.
721 */
f6d6d4fc 722STATIC int
1da177e4
LT
723xfs_convert_page(
724 struct inode *inode,
725 struct page *page,
10ce4444 726 loff_t tindex,
1defeac9 727 xfs_iomap_t *mp,
f6d6d4fc 728 xfs_ioend_t **ioendp,
1da177e4 729 struct writeback_control *wbc,
1da177e4
LT
730 int startio,
731 int all_bh)
732{
f6d6d4fc 733 struct buffer_head *bh, *head;
9260dc6b
CH
734 xfs_off_t end_offset;
735 unsigned long p_offset;
f6d6d4fc 736 unsigned int type;
1da177e4 737 int bbits = inode->i_blkbits;
24e17b5f 738 int len, page_dirty;
f6d6d4fc 739 int count = 0, done = 0, uptodate = 1;
9260dc6b 740 xfs_off_t offset = page_offset(page);
1da177e4 741
10ce4444
CH
742 if (page->index != tindex)
743 goto fail;
744 if (TestSetPageLocked(page))
745 goto fail;
746 if (PageWriteback(page))
747 goto fail_unlock_page;
748 if (page->mapping != inode->i_mapping)
749 goto fail_unlock_page;
750 if (!xfs_is_delayed_page(page, (*ioendp)->io_type))
751 goto fail_unlock_page;
752
24e17b5f
NS
753 /*
754 * page_dirty is initially a count of buffers on the page before
c41564b5 755 * EOF and is decremented as we move each into a cleanable state.
9260dc6b
CH
756 *
757 * Derivation:
758 *
759 * End offset is the highest offset that this page should represent.
760 * If we are on the last page, (end_offset & (PAGE_CACHE_SIZE - 1))
761 * will evaluate non-zero and be less than PAGE_CACHE_SIZE and
762 * hence give us the correct page_dirty count. On any other page,
763 * it will be zero and in that case we need page_dirty to be the
764 * count of buffers on the page.
24e17b5f 765 */
9260dc6b
CH
766 end_offset = min_t(unsigned long long,
767 (xfs_off_t)(page->index + 1) << PAGE_CACHE_SHIFT,
768 i_size_read(inode));
769
24e17b5f 770 len = 1 << inode->i_blkbits;
9260dc6b
CH
771 p_offset = min_t(unsigned long, end_offset & (PAGE_CACHE_SIZE - 1),
772 PAGE_CACHE_SIZE);
773 p_offset = p_offset ? roundup(p_offset, len) : PAGE_CACHE_SIZE;
774 page_dirty = p_offset / len;
24e17b5f 775
1da177e4
LT
776 bh = head = page_buffers(page);
777 do {
9260dc6b 778 if (offset >= end_offset)
1da177e4 779 break;
f6d6d4fc
CH
780 if (!buffer_uptodate(bh))
781 uptodate = 0;
782 if (!(PageUptodate(page) || buffer_uptodate(bh))) {
783 done = 1;
1da177e4 784 continue;
f6d6d4fc
CH
785 }
786
9260dc6b
CH
787 if (buffer_unwritten(bh) || buffer_delay(bh)) {
788 if (buffer_unwritten(bh))
789 type = IOMAP_UNWRITTEN;
790 else
791 type = IOMAP_DELAY;
792
793 if (!xfs_iomap_valid(mp, offset)) {
f6d6d4fc 794 done = 1;
9260dc6b
CH
795 continue;
796 }
797
798 ASSERT(!(mp->iomap_flags & IOMAP_HOLE));
799 ASSERT(!(mp->iomap_flags & IOMAP_DELAY));
800
801 xfs_map_at_offset(bh, offset, bbits, mp);
802 if (startio) {
7336cea8 803 xfs_add_to_ioend(inode, bh, offset,
9260dc6b
CH
804 type, ioendp, done);
805 } else {
806 set_buffer_dirty(bh);
807 unlock_buffer(bh);
808 mark_buffer_dirty(bh);
809 }
810 page_dirty--;
811 count++;
812 } else {
df3c7244 813 type = IOMAP_NEW;
9260dc6b 814 if (buffer_mapped(bh) && all_bh && startio) {
1da177e4 815 lock_buffer(bh);
7336cea8 816 xfs_add_to_ioend(inode, bh, offset,
f6d6d4fc
CH
817 type, ioendp, done);
818 count++;
24e17b5f 819 page_dirty--;
9260dc6b
CH
820 } else {
821 done = 1;
1da177e4 822 }
1da177e4 823 }
7336cea8 824 } while (offset += len, (bh = bh->b_this_page) != head);
1da177e4 825
f6d6d4fc
CH
826 if (uptodate && bh == head)
827 SetPageUptodate(page);
828
829 if (startio) {
f5e596bb
CH
830 if (count) {
831 struct backing_dev_info *bdi;
832
833 bdi = inode->i_mapping->backing_dev_info;
9fddaca2 834 wbc->nr_to_write--;
f5e596bb
CH
835 if (bdi_write_congested(bdi)) {
836 wbc->encountered_congestion = 1;
837 done = 1;
9fddaca2 838 } else if (wbc->nr_to_write <= 0) {
f5e596bb
CH
839 done = 1;
840 }
841 }
f6d6d4fc 842 xfs_start_page_writeback(page, wbc, !page_dirty, count);
1da177e4 843 }
f6d6d4fc
CH
844
845 return done;
10ce4444
CH
846 fail_unlock_page:
847 unlock_page(page);
848 fail:
849 return 1;
1da177e4
LT
850}
851
852/*
853 * Convert & write out a cluster of pages in the same extent as defined
854 * by mp and following the start page.
855 */
856STATIC void
857xfs_cluster_write(
858 struct inode *inode,
859 pgoff_t tindex,
860 xfs_iomap_t *iomapp,
f6d6d4fc 861 xfs_ioend_t **ioendp,
1da177e4
LT
862 struct writeback_control *wbc,
863 int startio,
864 int all_bh,
865 pgoff_t tlast)
866{
10ce4444
CH
867 struct pagevec pvec;
868 int done = 0, i;
1da177e4 869
10ce4444
CH
870 pagevec_init(&pvec, 0);
871 while (!done && tindex <= tlast) {
872 unsigned len = min_t(pgoff_t, PAGEVEC_SIZE, tlast - tindex + 1);
873
874 if (!pagevec_lookup(&pvec, inode->i_mapping, tindex, len))
1da177e4 875 break;
10ce4444
CH
876
877 for (i = 0; i < pagevec_count(&pvec); i++) {
878 done = xfs_convert_page(inode, pvec.pages[i], tindex++,
879 iomapp, ioendp, wbc, startio, all_bh);
880 if (done)
881 break;
882 }
883
884 pagevec_release(&pvec);
885 cond_resched();
1da177e4
LT
886 }
887}
888
889/*
890 * Calling this without startio set means we are being asked to make a dirty
891 * page ready for freeing it's buffers. When called with startio set then
892 * we are coming from writepage.
893 *
894 * When called with startio set it is important that we write the WHOLE
895 * page if possible.
896 * The bh->b_state's cannot know if any of the blocks or which block for
897 * that matter are dirty due to mmap writes, and therefore bh uptodate is
c41564b5 898 * only valid if the page itself isn't completely uptodate. Some layers
1da177e4
LT
899 * may clear the page dirty flag prior to calling write page, under the
900 * assumption the entire page will be written out; by not writing out the
901 * whole page the page can be reused before all valid dirty data is
902 * written out. Note: in the case of a page that has been dirty'd by
903 * mapwrite and but partially setup by block_prepare_write the
904 * bh->b_states's will not agree and only ones setup by BPW/BCW will have
905 * valid state, thus the whole page must be written out thing.
906 */
907
908STATIC int
909xfs_page_state_convert(
910 struct inode *inode,
911 struct page *page,
912 struct writeback_control *wbc,
913 int startio,
914 int unmapped) /* also implies page uptodate */
915{
f6d6d4fc 916 struct buffer_head *bh, *head;
1defeac9 917 xfs_iomap_t iomap;
f6d6d4fc 918 xfs_ioend_t *ioend = NULL, *iohead = NULL;
1da177e4
LT
919 loff_t offset;
920 unsigned long p_offset = 0;
f6d6d4fc 921 unsigned int type;
1da177e4
LT
922 __uint64_t end_offset;
923 pgoff_t end_index, last_index, tlast;
d5cb48aa
CH
924 ssize_t size, len;
925 int flags, err, iomap_valid = 0, uptodate = 1;
8272145c
NS
926 int page_dirty, count = 0;
927 int trylock = 0;
6c4fe19f 928 int all_bh = unmapped;
1da177e4 929
8272145c
NS
930 if (startio) {
931 if (wbc->sync_mode == WB_SYNC_NONE && wbc->nonblocking)
932 trylock |= BMAPI_TRYLOCK;
933 }
3ba0815a 934
1da177e4
LT
935 /* Is this page beyond the end of the file? */
936 offset = i_size_read(inode);
937 end_index = offset >> PAGE_CACHE_SHIFT;
938 last_index = (offset - 1) >> PAGE_CACHE_SHIFT;
939 if (page->index >= end_index) {
940 if ((page->index >= end_index + 1) ||
941 !(i_size_read(inode) & (PAGE_CACHE_SIZE - 1))) {
19d5bcf3
NS
942 if (startio)
943 unlock_page(page);
944 return 0;
1da177e4
LT
945 }
946 }
947
1da177e4 948 /*
24e17b5f 949 * page_dirty is initially a count of buffers on the page before
c41564b5 950 * EOF and is decremented as we move each into a cleanable state.
f6d6d4fc
CH
951 *
952 * Derivation:
953 *
954 * End offset is the highest offset that this page should represent.
955 * If we are on the last page, (end_offset & (PAGE_CACHE_SIZE - 1))
956 * will evaluate non-zero and be less than PAGE_CACHE_SIZE and
957 * hence give us the correct page_dirty count. On any other page,
958 * it will be zero and in that case we need page_dirty to be the
959 * count of buffers on the page.
960 */
961 end_offset = min_t(unsigned long long,
962 (xfs_off_t)(page->index + 1) << PAGE_CACHE_SHIFT, offset);
24e17b5f 963 len = 1 << inode->i_blkbits;
f6d6d4fc
CH
964 p_offset = min_t(unsigned long, end_offset & (PAGE_CACHE_SIZE - 1),
965 PAGE_CACHE_SIZE);
966 p_offset = p_offset ? roundup(p_offset, len) : PAGE_CACHE_SIZE;
24e17b5f
NS
967 page_dirty = p_offset / len;
968
24e17b5f 969 bh = head = page_buffers(page);
f6d6d4fc 970 offset = page_offset(page);
df3c7244
DC
971 flags = BMAPI_READ;
972 type = IOMAP_NEW;
f6d6d4fc 973
f6d6d4fc 974 /* TODO: cleanup count and page_dirty */
1da177e4
LT
975
976 do {
977 if (offset >= end_offset)
978 break;
979 if (!buffer_uptodate(bh))
980 uptodate = 0;
f6d6d4fc 981 if (!(PageUptodate(page) || buffer_uptodate(bh)) && !startio) {
1defeac9
CH
982 /*
983 * the iomap is actually still valid, but the ioend
984 * isn't. shouldn't happen too often.
985 */
986 iomap_valid = 0;
1da177e4 987 continue;
f6d6d4fc 988 }
1da177e4 989
1defeac9
CH
990 if (iomap_valid)
991 iomap_valid = xfs_iomap_valid(&iomap, offset);
1da177e4
LT
992
993 /*
994 * First case, map an unwritten extent and prepare for
995 * extent state conversion transaction on completion.
f6d6d4fc 996 *
1da177e4
LT
997 * Second case, allocate space for a delalloc buffer.
998 * We can return EAGAIN here in the release page case.
d5cb48aa
CH
999 *
1000 * Third case, an unmapped buffer was found, and we are
1001 * in a path where we need to write the whole page out.
df3c7244 1002 */
d5cb48aa
CH
1003 if (buffer_unwritten(bh) || buffer_delay(bh) ||
1004 ((buffer_uptodate(bh) || PageUptodate(page)) &&
1005 !buffer_mapped(bh) && (unmapped || startio))) {
df3c7244 1006 /*
6c4fe19f
CH
1007 * Make sure we don't use a read-only iomap
1008 */
df3c7244 1009 if (flags == BMAPI_READ)
6c4fe19f
CH
1010 iomap_valid = 0;
1011
f6d6d4fc
CH
1012 if (buffer_unwritten(bh)) {
1013 type = IOMAP_UNWRITTEN;
8272145c 1014 flags = BMAPI_WRITE | BMAPI_IGNSTATE;
d5cb48aa 1015 } else if (buffer_delay(bh)) {
f6d6d4fc 1016 type = IOMAP_DELAY;
8272145c 1017 flags = BMAPI_ALLOCATE | trylock;
d5cb48aa 1018 } else {
6c4fe19f 1019 type = IOMAP_NEW;
8272145c 1020 flags = BMAPI_WRITE | BMAPI_MMAP;
f6d6d4fc
CH
1021 }
1022
1defeac9 1023 if (!iomap_valid) {
6c4fe19f
CH
1024 if (type == IOMAP_NEW) {
1025 size = xfs_probe_cluster(inode,
1026 page, bh, head, 0);
d5cb48aa
CH
1027 } else {
1028 size = len;
1029 }
1030
1031 err = xfs_map_blocks(inode, offset, size,
1032 &iomap, flags);
f6d6d4fc 1033 if (err)
1da177e4 1034 goto error;
1defeac9 1035 iomap_valid = xfs_iomap_valid(&iomap, offset);
1da177e4 1036 }
1defeac9
CH
1037 if (iomap_valid) {
1038 xfs_map_at_offset(bh, offset,
1039 inode->i_blkbits, &iomap);
1da177e4 1040 if (startio) {
7336cea8 1041 xfs_add_to_ioend(inode, bh, offset,
1defeac9
CH
1042 type, &ioend,
1043 !iomap_valid);
1da177e4
LT
1044 } else {
1045 set_buffer_dirty(bh);
1046 unlock_buffer(bh);
1047 mark_buffer_dirty(bh);
1048 }
1049 page_dirty--;
f6d6d4fc 1050 count++;
1da177e4 1051 }
d5cb48aa 1052 } else if (buffer_uptodate(bh) && startio) {
6c4fe19f
CH
1053 /*
1054 * we got here because the buffer is already mapped.
1055 * That means it must already have extents allocated
1056 * underneath it. Map the extent by reading it.
1057 */
df3c7244 1058 if (!iomap_valid || flags != BMAPI_READ) {
6c4fe19f
CH
1059 flags = BMAPI_READ;
1060 size = xfs_probe_cluster(inode, page, bh,
1061 head, 1);
1062 err = xfs_map_blocks(inode, offset, size,
1063 &iomap, flags);
1064 if (err)
1065 goto error;
1066 iomap_valid = xfs_iomap_valid(&iomap, offset);
1067 }
d5cb48aa 1068
df3c7244
DC
1069 /*
1070 * We set the type to IOMAP_NEW in case we are doing a
1071 * small write at EOF that is extending the file but
1072 * without needing an allocation. We need to update the
1073 * file size on I/O completion in this case so it is
1074 * the same case as having just allocated a new extent
1075 * that we are writing into for the first time.
1076 */
1077 type = IOMAP_NEW;
d5cb48aa
CH
1078 if (!test_and_set_bit(BH_Lock, &bh->b_state)) {
1079 ASSERT(buffer_mapped(bh));
6c4fe19f
CH
1080 if (iomap_valid)
1081 all_bh = 1;
7336cea8 1082 xfs_add_to_ioend(inode, bh, offset, type,
d5cb48aa
CH
1083 &ioend, !iomap_valid);
1084 page_dirty--;
1085 count++;
f6d6d4fc 1086 } else {
1defeac9 1087 iomap_valid = 0;
1da177e4 1088 }
d5cb48aa
CH
1089 } else if ((buffer_uptodate(bh) || PageUptodate(page)) &&
1090 (unmapped || startio)) {
1091 iomap_valid = 0;
1da177e4 1092 }
f6d6d4fc
CH
1093
1094 if (!iohead)
1095 iohead = ioend;
1096
1097 } while (offset += len, ((bh = bh->b_this_page) != head));
1da177e4
LT
1098
1099 if (uptodate && bh == head)
1100 SetPageUptodate(page);
1101
f6d6d4fc
CH
1102 if (startio)
1103 xfs_start_page_writeback(page, wbc, 1, count);
1da177e4 1104
1defeac9
CH
1105 if (ioend && iomap_valid) {
1106 offset = (iomap.iomap_offset + iomap.iomap_bsize - 1) >>
1da177e4 1107 PAGE_CACHE_SHIFT;
775bf6c9 1108 tlast = min_t(pgoff_t, offset, last_index);
1defeac9 1109 xfs_cluster_write(inode, page->index + 1, &iomap, &ioend,
6c4fe19f 1110 wbc, startio, all_bh, tlast);
1da177e4
LT
1111 }
1112
f6d6d4fc
CH
1113 if (iohead)
1114 xfs_submit_ioend(iohead);
1115
1da177e4
LT
1116 return page_dirty;
1117
1118error:
f6d6d4fc
CH
1119 if (iohead)
1120 xfs_cancel_ioend(iohead);
1da177e4
LT
1121
1122 /*
1123 * If it's delalloc and we have nowhere to put it,
1124 * throw it away, unless the lower layers told
1125 * us to try again.
1126 */
1127 if (err != -EAGAIN) {
f6d6d4fc 1128 if (!unmapped)
1da177e4 1129 block_invalidatepage(page, 0);
1da177e4
LT
1130 ClearPageUptodate(page);
1131 }
1132 return err;
1133}
1134
f51623b2
NS
1135/*
1136 * writepage: Called from one of two places:
1137 *
1138 * 1. we are flushing a delalloc buffer head.
1139 *
1140 * 2. we are writing out a dirty page. Typically the page dirty
1141 * state is cleared before we get here. In this case is it
1142 * conceivable we have no buffer heads.
1143 *
1144 * For delalloc space on the page we need to allocate space and
1145 * flush it. For unmapped buffer heads on the page we should
1146 * allocate space if the page is uptodate. For any other dirty
1147 * buffer heads on the page we should flush them.
1148 *
1149 * If we detect that a transaction would be required to flush
1150 * the page, we have to check the process flags first, if we
1151 * are already in a transaction or disk I/O during allocations
1152 * is off, we need to fail the writepage and redirty the page.
1153 */
1154
1155STATIC int
e4c573bb 1156xfs_vm_writepage(
f51623b2
NS
1157 struct page *page,
1158 struct writeback_control *wbc)
1159{
1160 int error;
1161 int need_trans;
1162 int delalloc, unmapped, unwritten;
1163 struct inode *inode = page->mapping->host;
1164
1165 xfs_page_trace(XFS_WRITEPAGE_ENTER, inode, page, 0);
1166
1167 /*
1168 * We need a transaction if:
1169 * 1. There are delalloc buffers on the page
1170 * 2. The page is uptodate and we have unmapped buffers
1171 * 3. The page is uptodate and we have no buffers
1172 * 4. There are unwritten buffers on the page
1173 */
1174
1175 if (!page_has_buffers(page)) {
1176 unmapped = 1;
1177 need_trans = 1;
1178 } else {
1179 xfs_count_page_state(page, &delalloc, &unmapped, &unwritten);
1180 if (!PageUptodate(page))
1181 unmapped = 0;
1182 need_trans = delalloc + unmapped + unwritten;
1183 }
1184
1185 /*
1186 * If we need a transaction and the process flags say
1187 * we are already in a transaction, or no IO is allowed
1188 * then mark the page dirty again and leave the page
1189 * as is.
1190 */
59c1b082 1191 if (current_test_flags(PF_FSTRANS) && need_trans)
f51623b2
NS
1192 goto out_fail;
1193
1194 /*
1195 * Delay hooking up buffer heads until we have
1196 * made our go/no-go decision.
1197 */
1198 if (!page_has_buffers(page))
1199 create_empty_buffers(page, 1 << inode->i_blkbits, 0);
1200
1201 /*
1202 * Convert delayed allocate, unwritten or unmapped space
1203 * to real space and flush out to disk.
1204 */
1205 error = xfs_page_state_convert(inode, page, wbc, 1, unmapped);
1206 if (error == -EAGAIN)
1207 goto out_fail;
1208 if (unlikely(error < 0))
1209 goto out_unlock;
1210
1211 return 0;
1212
1213out_fail:
1214 redirty_page_for_writepage(wbc, page);
1215 unlock_page(page);
1216 return 0;
1217out_unlock:
1218 unlock_page(page);
1219 return error;
1220}
1221
7d4fb40a
NS
1222STATIC int
1223xfs_vm_writepages(
1224 struct address_space *mapping,
1225 struct writeback_control *wbc)
1226{
67fcaa73 1227 struct bhv_vnode *vp = vn_from_inode(mapping->host);
7d4fb40a
NS
1228
1229 if (VN_TRUNC(vp))
1230 VUNTRUNCATE(vp);
1231 return generic_writepages(mapping, wbc);
1232}
1233
f51623b2
NS
1234/*
1235 * Called to move a page into cleanable state - and from there
1236 * to be released. Possibly the page is already clean. We always
1237 * have buffer heads in this call.
1238 *
1239 * Returns 0 if the page is ok to release, 1 otherwise.
1240 *
1241 * Possible scenarios are:
1242 *
1243 * 1. We are being called to release a page which has been written
1244 * to via regular I/O. buffer heads will be dirty and possibly
1245 * delalloc. If no delalloc buffer heads in this case then we
1246 * can just return zero.
1247 *
1248 * 2. We are called to release a page which has been written via
1249 * mmap, all we need to do is ensure there is no delalloc
1250 * state in the buffer heads, if not we can let the caller
1251 * free them and we should come back later via writepage.
1252 */
1253STATIC int
238f4c54 1254xfs_vm_releasepage(
f51623b2
NS
1255 struct page *page,
1256 gfp_t gfp_mask)
1257{
1258 struct inode *inode = page->mapping->host;
1259 int dirty, delalloc, unmapped, unwritten;
1260 struct writeback_control wbc = {
1261 .sync_mode = WB_SYNC_ALL,
1262 .nr_to_write = 1,
1263 };
1264
ed9d88f7 1265 xfs_page_trace(XFS_RELEASEPAGE_ENTER, inode, page, 0);
f51623b2 1266
238f4c54
NS
1267 if (!page_has_buffers(page))
1268 return 0;
1269
f51623b2
NS
1270 xfs_count_page_state(page, &delalloc, &unmapped, &unwritten);
1271 if (!delalloc && !unwritten)
1272 goto free_buffers;
1273
1274 if (!(gfp_mask & __GFP_FS))
1275 return 0;
1276
1277 /* If we are already inside a transaction or the thread cannot
1278 * do I/O, we cannot release this page.
1279 */
59c1b082 1280 if (current_test_flags(PF_FSTRANS))
f51623b2
NS
1281 return 0;
1282
1283 /*
1284 * Convert delalloc space to real space, do not flush the
1285 * data out to disk, that will be done by the caller.
1286 * Never need to allocate space here - we will always
1287 * come back to writepage in that case.
1288 */
1289 dirty = xfs_page_state_convert(inode, page, &wbc, 0, 0);
1290 if (dirty == 0 && !unwritten)
1291 goto free_buffers;
1292 return 0;
1293
1294free_buffers:
1295 return try_to_free_buffers(page);
1296}
1297
1da177e4 1298STATIC int
c2536668 1299__xfs_get_blocks(
1da177e4
LT
1300 struct inode *inode,
1301 sector_t iblock,
1da177e4
LT
1302 struct buffer_head *bh_result,
1303 int create,
1304 int direct,
1305 bmapi_flags_t flags)
1306{
67fcaa73 1307 bhv_vnode_t *vp = vn_from_inode(inode);
1da177e4 1308 xfs_iomap_t iomap;
fdc7ed75
NS
1309 xfs_off_t offset;
1310 ssize_t size;
c2536668 1311 int niomap = 1;
1da177e4 1312 int error;
1da177e4 1313
fdc7ed75 1314 offset = (xfs_off_t)iblock << inode->i_blkbits;
c2536668
NS
1315 ASSERT(bh_result->b_size >= (1 << inode->i_blkbits));
1316 size = bh_result->b_size;
67fcaa73
NS
1317 error = bhv_vop_bmap(vp, offset, size,
1318 create ? flags : BMAPI_READ, &iomap, &niomap);
1da177e4
LT
1319 if (error)
1320 return -error;
c2536668 1321 if (niomap == 0)
1da177e4
LT
1322 return 0;
1323
1324 if (iomap.iomap_bn != IOMAP_DADDR_NULL) {
87cbc49c
NS
1325 /*
1326 * For unwritten extents do not report a disk address on
1da177e4
LT
1327 * the read case (treat as if we're reading into a hole).
1328 */
1329 if (create || !(iomap.iomap_flags & IOMAP_UNWRITTEN)) {
87cbc49c
NS
1330 xfs_map_buffer(bh_result, &iomap, offset,
1331 inode->i_blkbits);
1da177e4
LT
1332 }
1333 if (create && (iomap.iomap_flags & IOMAP_UNWRITTEN)) {
1334 if (direct)
1335 bh_result->b_private = inode;
1336 set_buffer_unwritten(bh_result);
1da177e4
LT
1337 }
1338 }
1339
c2536668
NS
1340 /*
1341 * If this is a realtime file, data may be on a different device.
1342 * to that pointed to from the buffer_head b_bdev currently.
1343 */
ce8e922c 1344 bh_result->b_bdev = iomap.iomap_target->bt_bdev;
1da177e4 1345
c2536668 1346 /*
549054af
DC
1347 * If we previously allocated a block out beyond eof and we are now
1348 * coming back to use it then we will need to flag it as new even if it
1349 * has a disk address.
1350 *
1351 * With sub-block writes into unwritten extents we also need to mark
1352 * the buffer as new so that the unwritten parts of the buffer gets
1353 * correctly zeroed.
1da177e4
LT
1354 */
1355 if (create &&
1356 ((!buffer_mapped(bh_result) && !buffer_uptodate(bh_result)) ||
549054af
DC
1357 (offset >= i_size_read(inode)) ||
1358 (iomap.iomap_flags & (IOMAP_NEW|IOMAP_UNWRITTEN))))
1da177e4 1359 set_buffer_new(bh_result);
1da177e4
LT
1360
1361 if (iomap.iomap_flags & IOMAP_DELAY) {
1362 BUG_ON(direct);
1363 if (create) {
1364 set_buffer_uptodate(bh_result);
1365 set_buffer_mapped(bh_result);
1366 set_buffer_delay(bh_result);
1367 }
1368 }
1369
c2536668 1370 if (direct || size > (1 << inode->i_blkbits)) {
fdc7ed75
NS
1371 ASSERT(iomap.iomap_bsize - iomap.iomap_delta > 0);
1372 offset = min_t(xfs_off_t,
c2536668
NS
1373 iomap.iomap_bsize - iomap.iomap_delta, size);
1374 bh_result->b_size = (ssize_t)min_t(xfs_off_t, LONG_MAX, offset);
1da177e4
LT
1375 }
1376
1377 return 0;
1378}
1379
1380int
c2536668 1381xfs_get_blocks(
1da177e4
LT
1382 struct inode *inode,
1383 sector_t iblock,
1384 struct buffer_head *bh_result,
1385 int create)
1386{
c2536668 1387 return __xfs_get_blocks(inode, iblock,
fa30bd05 1388 bh_result, create, 0, BMAPI_WRITE);
1da177e4
LT
1389}
1390
1391STATIC int
e4c573bb 1392xfs_get_blocks_direct(
1da177e4
LT
1393 struct inode *inode,
1394 sector_t iblock,
1da177e4
LT
1395 struct buffer_head *bh_result,
1396 int create)
1397{
c2536668 1398 return __xfs_get_blocks(inode, iblock,
1d8fa7a2 1399 bh_result, create, 1, BMAPI_WRITE|BMAPI_DIRECT);
1da177e4
LT
1400}
1401
f0973863 1402STATIC void
e4c573bb 1403xfs_end_io_direct(
f0973863
CH
1404 struct kiocb *iocb,
1405 loff_t offset,
1406 ssize_t size,
1407 void *private)
1408{
1409 xfs_ioend_t *ioend = iocb->private;
1410
1411 /*
1412 * Non-NULL private data means we need to issue a transaction to
1413 * convert a range from unwritten to written extents. This needs
c41564b5 1414 * to happen from process context but aio+dio I/O completion
f0973863 1415 * happens from irq context so we need to defer it to a workqueue.
c41564b5 1416 * This is not necessary for synchronous direct I/O, but we do
f0973863
CH
1417 * it anyway to keep the code uniform and simpler.
1418 *
1419 * The core direct I/O code might be changed to always call the
1420 * completion handler in the future, in which case all this can
1421 * go away.
1422 */
ba87ea69
LM
1423 ioend->io_offset = offset;
1424 ioend->io_size = size;
1425 if (ioend->io_type == IOMAP_READ) {
1426 xfs_finish_ioend(ioend);
1427 } else if (private && size > 0) {
f0973863
CH
1428 xfs_finish_ioend(ioend);
1429 } else {
ba87ea69
LM
1430 /*
1431 * A direct I/O write ioend starts it's life in unwritten
1432 * state in case they map an unwritten extent. This write
1433 * didn't map an unwritten extent so switch it's completion
1434 * handler.
1435 */
1436 INIT_WORK(&ioend->io_work, xfs_end_bio_written);
1437 xfs_finish_ioend(ioend);
f0973863
CH
1438 }
1439
1440 /*
c41564b5 1441 * blockdev_direct_IO can return an error even after the I/O
f0973863
CH
1442 * completion handler was called. Thus we need to protect
1443 * against double-freeing.
1444 */
1445 iocb->private = NULL;
1446}
1447
1da177e4 1448STATIC ssize_t
e4c573bb 1449xfs_vm_direct_IO(
1da177e4
LT
1450 int rw,
1451 struct kiocb *iocb,
1452 const struct iovec *iov,
1453 loff_t offset,
1454 unsigned long nr_segs)
1455{
1456 struct file *file = iocb->ki_filp;
1457 struct inode *inode = file->f_mapping->host;
67fcaa73 1458 bhv_vnode_t *vp = vn_from_inode(inode);
1da177e4
LT
1459 xfs_iomap_t iomap;
1460 int maps = 1;
1461 int error;
f0973863 1462 ssize_t ret;
1da177e4 1463
67fcaa73 1464 error = bhv_vop_bmap(vp, offset, 0, BMAPI_DEVICE, &iomap, &maps);
1da177e4
LT
1465 if (error)
1466 return -error;
1467
721259bc 1468 if (rw == WRITE) {
ba87ea69 1469 iocb->private = xfs_alloc_ioend(inode, IOMAP_UNWRITTEN);
721259bc
LM
1470 ret = blockdev_direct_IO_own_locking(rw, iocb, inode,
1471 iomap.iomap_target->bt_bdev,
1472 iov, offset, nr_segs,
1473 xfs_get_blocks_direct,
1474 xfs_end_io_direct);
1475 } else {
ba87ea69 1476 iocb->private = xfs_alloc_ioend(inode, IOMAP_READ);
721259bc
LM
1477 ret = blockdev_direct_IO_no_locking(rw, iocb, inode,
1478 iomap.iomap_target->bt_bdev,
1479 iov, offset, nr_segs,
1480 xfs_get_blocks_direct,
1481 xfs_end_io_direct);
1482 }
f0973863 1483
8459d86a 1484 if (unlikely(ret != -EIOCBQUEUED && iocb->private))
f0973863
CH
1485 xfs_destroy_ioend(iocb->private);
1486 return ret;
1da177e4
LT
1487}
1488
f51623b2 1489STATIC int
e4c573bb 1490xfs_vm_prepare_write(
f51623b2
NS
1491 struct file *file,
1492 struct page *page,
1493 unsigned int from,
1494 unsigned int to)
1495{
c2536668 1496 return block_prepare_write(page, from, to, xfs_get_blocks);
f51623b2 1497}
1da177e4
LT
1498
1499STATIC sector_t
e4c573bb 1500xfs_vm_bmap(
1da177e4
LT
1501 struct address_space *mapping,
1502 sector_t block)
1503{
1504 struct inode *inode = (struct inode *)mapping->host;
67fcaa73 1505 bhv_vnode_t *vp = vn_from_inode(inode);
1da177e4 1506
e4c573bb 1507 vn_trace_entry(vp, __FUNCTION__, (inst_t *)__return_address);
67fcaa73
NS
1508 bhv_vop_rwlock(vp, VRWLOCK_READ);
1509 bhv_vop_flush_pages(vp, (xfs_off_t)0, -1, 0, FI_REMAPF);
1510 bhv_vop_rwunlock(vp, VRWLOCK_READ);
c2536668 1511 return generic_block_bmap(mapping, block, xfs_get_blocks);
1da177e4
LT
1512}
1513
1514STATIC int
e4c573bb 1515xfs_vm_readpage(
1da177e4
LT
1516 struct file *unused,
1517 struct page *page)
1518{
c2536668 1519 return mpage_readpage(page, xfs_get_blocks);
1da177e4
LT
1520}
1521
1522STATIC int
e4c573bb 1523xfs_vm_readpages(
1da177e4
LT
1524 struct file *unused,
1525 struct address_space *mapping,
1526 struct list_head *pages,
1527 unsigned nr_pages)
1528{
c2536668 1529 return mpage_readpages(mapping, pages, nr_pages, xfs_get_blocks);
1da177e4
LT
1530}
1531
2ff28e22 1532STATIC void
238f4c54 1533xfs_vm_invalidatepage(
bcec2b7f
NS
1534 struct page *page,
1535 unsigned long offset)
1536{
1537 xfs_page_trace(XFS_INVALIDPAGE_ENTER,
1538 page->mapping->host, page, offset);
2ff28e22 1539 block_invalidatepage(page, offset);
bcec2b7f
NS
1540}
1541
f5e54d6e 1542const struct address_space_operations xfs_address_space_operations = {
e4c573bb
NS
1543 .readpage = xfs_vm_readpage,
1544 .readpages = xfs_vm_readpages,
1545 .writepage = xfs_vm_writepage,
7d4fb40a 1546 .writepages = xfs_vm_writepages,
1da177e4 1547 .sync_page = block_sync_page,
238f4c54
NS
1548 .releasepage = xfs_vm_releasepage,
1549 .invalidatepage = xfs_vm_invalidatepage,
e4c573bb 1550 .prepare_write = xfs_vm_prepare_write,
1da177e4 1551 .commit_write = generic_commit_write,
e4c573bb
NS
1552 .bmap = xfs_vm_bmap,
1553 .direct_IO = xfs_vm_direct_IO,
e965f963 1554 .migratepage = buffer_migrate_page,
1da177e4 1555};