]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - fs/xfs/linux-2.6/xfs_buf.c
vmscan: change shrinker API by passing shrink_control struct
[mirror_ubuntu-artful-kernel.git] / fs / xfs / linux-2.6 / xfs_buf.c
CommitLineData
1da177e4 1/*
f07c2250 2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
7b718769 3 * All Rights Reserved.
1da177e4 4 *
7b718769
NS
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
1da177e4
LT
7 * published by the Free Software Foundation.
8 *
7b718769
NS
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
1da177e4 13 *
7b718769
NS
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
1da177e4 17 */
93c189c1 18#include "xfs.h"
1da177e4
LT
19#include <linux/stddef.h>
20#include <linux/errno.h>
5a0e3ad6 21#include <linux/gfp.h>
1da177e4
LT
22#include <linux/pagemap.h>
23#include <linux/init.h>
24#include <linux/vmalloc.h>
25#include <linux/bio.h>
26#include <linux/sysctl.h>
27#include <linux/proc_fs.h>
28#include <linux/workqueue.h>
29#include <linux/percpu.h>
30#include <linux/blkdev.h>
31#include <linux/hash.h>
4df08c52 32#include <linux/kthread.h>
b20a3503 33#include <linux/migrate.h>
3fcfab16 34#include <linux/backing-dev.h>
7dfb7103 35#include <linux/freezer.h>
1da177e4 36
b7963133
CH
37#include "xfs_sb.h"
38#include "xfs_inum.h"
ed3b4d6c 39#include "xfs_log.h"
b7963133 40#include "xfs_ag.h"
b7963133 41#include "xfs_mount.h"
0b1b213f 42#include "xfs_trace.h"
b7963133 43
7989cb8e 44static kmem_zone_t *xfs_buf_zone;
a6867a68 45STATIC int xfsbufd(void *);
ce8e922c 46STATIC void xfs_buf_delwri_queue(xfs_buf_t *, int);
23ea4032 47
7989cb8e 48static struct workqueue_struct *xfslogd_workqueue;
0829c360 49struct workqueue_struct *xfsdatad_workqueue;
c626d174 50struct workqueue_struct *xfsconvertd_workqueue;
1da177e4 51
ce8e922c
NS
52#ifdef XFS_BUF_LOCK_TRACKING
53# define XB_SET_OWNER(bp) ((bp)->b_last_holder = current->pid)
54# define XB_CLEAR_OWNER(bp) ((bp)->b_last_holder = -1)
55# define XB_GET_OWNER(bp) ((bp)->b_last_holder)
1da177e4 56#else
ce8e922c
NS
57# define XB_SET_OWNER(bp) do { } while (0)
58# define XB_CLEAR_OWNER(bp) do { } while (0)
59# define XB_GET_OWNER(bp) do { } while (0)
1da177e4
LT
60#endif
61
ce8e922c
NS
62#define xb_to_gfp(flags) \
63 ((((flags) & XBF_READ_AHEAD) ? __GFP_NORETRY : \
64 ((flags) & XBF_DONT_BLOCK) ? GFP_NOFS : GFP_KERNEL) | __GFP_NOWARN)
1da177e4 65
ce8e922c
NS
66#define xb_to_km(flags) \
67 (((flags) & XBF_DONT_BLOCK) ? KM_NOFS : KM_SLEEP)
1da177e4 68
ce8e922c
NS
69#define xfs_buf_allocate(flags) \
70 kmem_zone_alloc(xfs_buf_zone, xb_to_km(flags))
71#define xfs_buf_deallocate(bp) \
72 kmem_zone_free(xfs_buf_zone, (bp));
1da177e4 73
73c77e2c
JB
74static inline int
75xfs_buf_is_vmapped(
76 struct xfs_buf *bp)
77{
78 /*
79 * Return true if the buffer is vmapped.
80 *
81 * The XBF_MAPPED flag is set if the buffer should be mapped, but the
82 * code is clever enough to know it doesn't have to map a single page,
83 * so the check has to be both for XBF_MAPPED and bp->b_page_count > 1.
84 */
85 return (bp->b_flags & XBF_MAPPED) && bp->b_page_count > 1;
86}
87
88static inline int
89xfs_buf_vmap_len(
90 struct xfs_buf *bp)
91{
92 return (bp->b_page_count * PAGE_SIZE) - bp->b_offset;
93}
94
1da177e4 95/*
430cbeb8
DC
96 * xfs_buf_lru_add - add a buffer to the LRU.
97 *
98 * The LRU takes a new reference to the buffer so that it will only be freed
99 * once the shrinker takes the buffer off the LRU.
100 */
101STATIC void
102xfs_buf_lru_add(
103 struct xfs_buf *bp)
104{
105 struct xfs_buftarg *btp = bp->b_target;
106
107 spin_lock(&btp->bt_lru_lock);
108 if (list_empty(&bp->b_lru)) {
109 atomic_inc(&bp->b_hold);
110 list_add_tail(&bp->b_lru, &btp->bt_lru);
111 btp->bt_lru_nr++;
112 }
113 spin_unlock(&btp->bt_lru_lock);
114}
115
116/*
117 * xfs_buf_lru_del - remove a buffer from the LRU
118 *
119 * The unlocked check is safe here because it only occurs when there are not
120 * b_lru_ref counts left on the inode under the pag->pag_buf_lock. it is there
121 * to optimise the shrinker removing the buffer from the LRU and calling
25985edc 122 * xfs_buf_free(). i.e. it removes an unnecessary round trip on the
430cbeb8 123 * bt_lru_lock.
1da177e4 124 */
430cbeb8
DC
125STATIC void
126xfs_buf_lru_del(
127 struct xfs_buf *bp)
128{
129 struct xfs_buftarg *btp = bp->b_target;
130
131 if (list_empty(&bp->b_lru))
132 return;
133
134 spin_lock(&btp->bt_lru_lock);
135 if (!list_empty(&bp->b_lru)) {
136 list_del_init(&bp->b_lru);
137 btp->bt_lru_nr--;
138 }
139 spin_unlock(&btp->bt_lru_lock);
140}
141
142/*
143 * When we mark a buffer stale, we remove the buffer from the LRU and clear the
144 * b_lru_ref count so that the buffer is freed immediately when the buffer
145 * reference count falls to zero. If the buffer is already on the LRU, we need
146 * to remove the reference that LRU holds on the buffer.
147 *
148 * This prevents build-up of stale buffers on the LRU.
149 */
150void
151xfs_buf_stale(
152 struct xfs_buf *bp)
153{
154 bp->b_flags |= XBF_STALE;
155 atomic_set(&(bp)->b_lru_ref, 0);
156 if (!list_empty(&bp->b_lru)) {
157 struct xfs_buftarg *btp = bp->b_target;
158
159 spin_lock(&btp->bt_lru_lock);
160 if (!list_empty(&bp->b_lru)) {
161 list_del_init(&bp->b_lru);
162 btp->bt_lru_nr--;
163 atomic_dec(&bp->b_hold);
164 }
165 spin_unlock(&btp->bt_lru_lock);
166 }
167 ASSERT(atomic_read(&bp->b_hold) >= 1);
168}
1da177e4
LT
169
170STATIC void
ce8e922c
NS
171_xfs_buf_initialize(
172 xfs_buf_t *bp,
1da177e4 173 xfs_buftarg_t *target,
204ab25f 174 xfs_off_t range_base,
1da177e4 175 size_t range_length,
ce8e922c 176 xfs_buf_flags_t flags)
1da177e4
LT
177{
178 /*
ce8e922c 179 * We don't want certain flags to appear in b_flags.
1da177e4 180 */
ce8e922c
NS
181 flags &= ~(XBF_LOCK|XBF_MAPPED|XBF_DONT_BLOCK|XBF_READ_AHEAD);
182
183 memset(bp, 0, sizeof(xfs_buf_t));
184 atomic_set(&bp->b_hold, 1);
430cbeb8 185 atomic_set(&bp->b_lru_ref, 1);
b4dd330b 186 init_completion(&bp->b_iowait);
430cbeb8 187 INIT_LIST_HEAD(&bp->b_lru);
ce8e922c 188 INIT_LIST_HEAD(&bp->b_list);
74f75a0c 189 RB_CLEAR_NODE(&bp->b_rbnode);
a731cd11 190 sema_init(&bp->b_sema, 0); /* held, no waiters */
ce8e922c
NS
191 XB_SET_OWNER(bp);
192 bp->b_target = target;
193 bp->b_file_offset = range_base;
1da177e4
LT
194 /*
195 * Set buffer_length and count_desired to the same value initially.
196 * I/O routines should use count_desired, which will be the same in
197 * most cases but may be reset (e.g. XFS recovery).
198 */
ce8e922c
NS
199 bp->b_buffer_length = bp->b_count_desired = range_length;
200 bp->b_flags = flags;
201 bp->b_bn = XFS_BUF_DADDR_NULL;
202 atomic_set(&bp->b_pin_count, 0);
203 init_waitqueue_head(&bp->b_waiters);
204
205 XFS_STATS_INC(xb_create);
0b1b213f
CH
206
207 trace_xfs_buf_init(bp, _RET_IP_);
1da177e4
LT
208}
209
210/*
ce8e922c
NS
211 * Allocate a page array capable of holding a specified number
212 * of pages, and point the page buf at it.
1da177e4
LT
213 */
214STATIC int
ce8e922c
NS
215_xfs_buf_get_pages(
216 xfs_buf_t *bp,
1da177e4 217 int page_count,
ce8e922c 218 xfs_buf_flags_t flags)
1da177e4
LT
219{
220 /* Make sure that we have a page list */
ce8e922c
NS
221 if (bp->b_pages == NULL) {
222 bp->b_offset = xfs_buf_poff(bp->b_file_offset);
223 bp->b_page_count = page_count;
224 if (page_count <= XB_PAGES) {
225 bp->b_pages = bp->b_page_array;
1da177e4 226 } else {
ce8e922c
NS
227 bp->b_pages = kmem_alloc(sizeof(struct page *) *
228 page_count, xb_to_km(flags));
229 if (bp->b_pages == NULL)
1da177e4
LT
230 return -ENOMEM;
231 }
ce8e922c 232 memset(bp->b_pages, 0, sizeof(struct page *) * page_count);
1da177e4
LT
233 }
234 return 0;
235}
236
237/*
ce8e922c 238 * Frees b_pages if it was allocated.
1da177e4
LT
239 */
240STATIC void
ce8e922c 241_xfs_buf_free_pages(
1da177e4
LT
242 xfs_buf_t *bp)
243{
ce8e922c 244 if (bp->b_pages != bp->b_page_array) {
f0e2d93c 245 kmem_free(bp->b_pages);
3fc98b1a 246 bp->b_pages = NULL;
1da177e4
LT
247 }
248}
249
250/*
251 * Releases the specified buffer.
252 *
253 * The modification state of any associated pages is left unchanged.
ce8e922c 254 * The buffer most not be on any hash - use xfs_buf_rele instead for
1da177e4
LT
255 * hashed and refcounted buffers
256 */
257void
ce8e922c 258xfs_buf_free(
1da177e4
LT
259 xfs_buf_t *bp)
260{
0b1b213f 261 trace_xfs_buf_free(bp, _RET_IP_);
1da177e4 262
430cbeb8
DC
263 ASSERT(list_empty(&bp->b_lru));
264
0e6e847f 265 if (bp->b_flags & _XBF_PAGES) {
1da177e4
LT
266 uint i;
267
73c77e2c 268 if (xfs_buf_is_vmapped(bp))
8a262e57
AE
269 vm_unmap_ram(bp->b_addr - bp->b_offset,
270 bp->b_page_count);
1da177e4 271
948ecdb4
NS
272 for (i = 0; i < bp->b_page_count; i++) {
273 struct page *page = bp->b_pages[i];
274
0e6e847f 275 __free_page(page);
948ecdb4 276 }
0e6e847f
DC
277 } else if (bp->b_flags & _XBF_KMEM)
278 kmem_free(bp->b_addr);
3fc98b1a 279 _xfs_buf_free_pages(bp);
ce8e922c 280 xfs_buf_deallocate(bp);
1da177e4
LT
281}
282
283/*
0e6e847f 284 * Allocates all the pages for buffer in question and builds it's page list.
1da177e4
LT
285 */
286STATIC int
0e6e847f 287xfs_buf_allocate_memory(
1da177e4
LT
288 xfs_buf_t *bp,
289 uint flags)
290{
ce8e922c 291 size_t size = bp->b_count_desired;
1da177e4 292 size_t nbytes, offset;
ce8e922c 293 gfp_t gfp_mask = xb_to_gfp(flags);
1da177e4 294 unsigned short page_count, i;
204ab25f 295 xfs_off_t end;
1da177e4
LT
296 int error;
297
0e6e847f
DC
298 /*
299 * for buffers that are contained within a single page, just allocate
300 * the memory from the heap - there's no need for the complexity of
301 * page arrays to keep allocation down to order 0.
302 */
303 if (bp->b_buffer_length < PAGE_SIZE) {
304 bp->b_addr = kmem_alloc(bp->b_buffer_length, xb_to_km(flags));
305 if (!bp->b_addr) {
306 /* low memory - use alloc_page loop instead */
307 goto use_alloc_page;
308 }
309
310 if (((unsigned long)(bp->b_addr + bp->b_buffer_length - 1) &
311 PAGE_MASK) !=
312 ((unsigned long)bp->b_addr & PAGE_MASK)) {
313 /* b_addr spans two pages - use alloc_page instead */
314 kmem_free(bp->b_addr);
315 bp->b_addr = NULL;
316 goto use_alloc_page;
317 }
318 bp->b_offset = offset_in_page(bp->b_addr);
319 bp->b_pages = bp->b_page_array;
320 bp->b_pages[0] = virt_to_page(bp->b_addr);
321 bp->b_page_count = 1;
322 bp->b_flags |= XBF_MAPPED | _XBF_KMEM;
323 return 0;
324 }
325
326use_alloc_page:
ce8e922c
NS
327 end = bp->b_file_offset + bp->b_buffer_length;
328 page_count = xfs_buf_btoc(end) - xfs_buf_btoct(bp->b_file_offset);
ce8e922c 329 error = _xfs_buf_get_pages(bp, page_count, flags);
1da177e4
LT
330 if (unlikely(error))
331 return error;
1da177e4 332
ce8e922c 333 offset = bp->b_offset;
0e6e847f 334 bp->b_flags |= _XBF_PAGES;
1da177e4 335
ce8e922c 336 for (i = 0; i < bp->b_page_count; i++) {
1da177e4
LT
337 struct page *page;
338 uint retries = 0;
0e6e847f
DC
339retry:
340 page = alloc_page(gfp_mask);
1da177e4 341 if (unlikely(page == NULL)) {
ce8e922c
NS
342 if (flags & XBF_READ_AHEAD) {
343 bp->b_page_count = i;
0e6e847f
DC
344 error = ENOMEM;
345 goto out_free_pages;
1da177e4
LT
346 }
347
348 /*
349 * This could deadlock.
350 *
351 * But until all the XFS lowlevel code is revamped to
352 * handle buffer allocation failures we can't do much.
353 */
354 if (!(++retries % 100))
4f10700a
DC
355 xfs_err(NULL,
356 "possible memory allocation deadlock in %s (mode:0x%x)",
34a622b2 357 __func__, gfp_mask);
1da177e4 358
ce8e922c 359 XFS_STATS_INC(xb_page_retries);
8aa7e847 360 congestion_wait(BLK_RW_ASYNC, HZ/50);
1da177e4
LT
361 goto retry;
362 }
363
ce8e922c 364 XFS_STATS_INC(xb_page_found);
1da177e4 365
0e6e847f 366 nbytes = min_t(size_t, size, PAGE_SIZE - offset);
1da177e4 367 size -= nbytes;
ce8e922c 368 bp->b_pages[i] = page;
1da177e4
LT
369 offset = 0;
370 }
0e6e847f 371 return 0;
1da177e4 372
0e6e847f
DC
373out_free_pages:
374 for (i = 0; i < bp->b_page_count; i++)
375 __free_page(bp->b_pages[i]);
1da177e4
LT
376 return error;
377}
378
379/*
25985edc 380 * Map buffer into kernel address-space if necessary.
1da177e4
LT
381 */
382STATIC int
ce8e922c 383_xfs_buf_map_pages(
1da177e4
LT
384 xfs_buf_t *bp,
385 uint flags)
386{
0e6e847f 387 ASSERT(bp->b_flags & _XBF_PAGES);
ce8e922c 388 if (bp->b_page_count == 1) {
0e6e847f 389 /* A single page buffer is always mappable */
ce8e922c
NS
390 bp->b_addr = page_address(bp->b_pages[0]) + bp->b_offset;
391 bp->b_flags |= XBF_MAPPED;
392 } else if (flags & XBF_MAPPED) {
a19fb380
DC
393 int retried = 0;
394
395 do {
396 bp->b_addr = vm_map_ram(bp->b_pages, bp->b_page_count,
397 -1, PAGE_KERNEL);
398 if (bp->b_addr)
399 break;
400 vm_unmap_aliases();
401 } while (retried++ <= 1);
402
403 if (!bp->b_addr)
1da177e4 404 return -ENOMEM;
ce8e922c
NS
405 bp->b_addr += bp->b_offset;
406 bp->b_flags |= XBF_MAPPED;
1da177e4
LT
407 }
408
409 return 0;
410}
411
412/*
413 * Finding and Reading Buffers
414 */
415
416/*
ce8e922c 417 * Look up, and creates if absent, a lockable buffer for
1da177e4
LT
418 * a given range of an inode. The buffer is returned
419 * locked. If other overlapping buffers exist, they are
420 * released before the new buffer is created and locked,
421 * which may imply that this call will block until those buffers
422 * are unlocked. No I/O is implied by this call.
423 */
424xfs_buf_t *
ce8e922c 425_xfs_buf_find(
1da177e4 426 xfs_buftarg_t *btp, /* block device target */
204ab25f 427 xfs_off_t ioff, /* starting offset of range */
1da177e4 428 size_t isize, /* length of range */
ce8e922c
NS
429 xfs_buf_flags_t flags,
430 xfs_buf_t *new_bp)
1da177e4 431{
204ab25f 432 xfs_off_t range_base;
1da177e4 433 size_t range_length;
74f75a0c
DC
434 struct xfs_perag *pag;
435 struct rb_node **rbp;
436 struct rb_node *parent;
437 xfs_buf_t *bp;
1da177e4
LT
438
439 range_base = (ioff << BBSHIFT);
440 range_length = (isize << BBSHIFT);
441
442 /* Check for IOs smaller than the sector size / not sector aligned */
ce8e922c 443 ASSERT(!(range_length < (1 << btp->bt_sshift)));
204ab25f 444 ASSERT(!(range_base & (xfs_off_t)btp->bt_smask));
1da177e4 445
74f75a0c
DC
446 /* get tree root */
447 pag = xfs_perag_get(btp->bt_mount,
448 xfs_daddr_to_agno(btp->bt_mount, ioff));
449
450 /* walk tree */
451 spin_lock(&pag->pag_buf_lock);
452 rbp = &pag->pag_buf_tree.rb_node;
453 parent = NULL;
454 bp = NULL;
455 while (*rbp) {
456 parent = *rbp;
457 bp = rb_entry(parent, struct xfs_buf, b_rbnode);
458
459 if (range_base < bp->b_file_offset)
460 rbp = &(*rbp)->rb_left;
461 else if (range_base > bp->b_file_offset)
462 rbp = &(*rbp)->rb_right;
463 else {
464 /*
465 * found a block offset match. If the range doesn't
466 * match, the only way this is allowed is if the buffer
467 * in the cache is stale and the transaction that made
468 * it stale has not yet committed. i.e. we are
469 * reallocating a busy extent. Skip this buffer and
470 * continue searching to the right for an exact match.
471 */
472 if (bp->b_buffer_length != range_length) {
473 ASSERT(bp->b_flags & XBF_STALE);
474 rbp = &(*rbp)->rb_right;
475 continue;
476 }
ce8e922c 477 atomic_inc(&bp->b_hold);
1da177e4
LT
478 goto found;
479 }
480 }
481
482 /* No match found */
ce8e922c
NS
483 if (new_bp) {
484 _xfs_buf_initialize(new_bp, btp, range_base,
1da177e4 485 range_length, flags);
74f75a0c
DC
486 rb_link_node(&new_bp->b_rbnode, parent, rbp);
487 rb_insert_color(&new_bp->b_rbnode, &pag->pag_buf_tree);
488 /* the buffer keeps the perag reference until it is freed */
489 new_bp->b_pag = pag;
490 spin_unlock(&pag->pag_buf_lock);
1da177e4 491 } else {
ce8e922c 492 XFS_STATS_INC(xb_miss_locked);
74f75a0c
DC
493 spin_unlock(&pag->pag_buf_lock);
494 xfs_perag_put(pag);
1da177e4 495 }
ce8e922c 496 return new_bp;
1da177e4
LT
497
498found:
74f75a0c
DC
499 spin_unlock(&pag->pag_buf_lock);
500 xfs_perag_put(pag);
1da177e4 501
90810b9e
DC
502 if (xfs_buf_cond_lock(bp)) {
503 /* failed, so wait for the lock if requested. */
ce8e922c 504 if (!(flags & XBF_TRYLOCK)) {
ce8e922c
NS
505 xfs_buf_lock(bp);
506 XFS_STATS_INC(xb_get_locked_waited);
1da177e4 507 } else {
ce8e922c
NS
508 xfs_buf_rele(bp);
509 XFS_STATS_INC(xb_busy_locked);
510 return NULL;
1da177e4 511 }
1da177e4
LT
512 }
513
0e6e847f
DC
514 /*
515 * if the buffer is stale, clear all the external state associated with
516 * it. We need to keep flags such as how we allocated the buffer memory
517 * intact here.
518 */
ce8e922c
NS
519 if (bp->b_flags & XBF_STALE) {
520 ASSERT((bp->b_flags & _XBF_DELWRI_Q) == 0);
0e6e847f 521 bp->b_flags &= XBF_MAPPED | _XBF_KMEM | _XBF_PAGES;
2f926587 522 }
0b1b213f
CH
523
524 trace_xfs_buf_find(bp, flags, _RET_IP_);
ce8e922c
NS
525 XFS_STATS_INC(xb_get_locked);
526 return bp;
1da177e4
LT
527}
528
529/*
ce8e922c 530 * Assembles a buffer covering the specified range.
1da177e4
LT
531 * Storage in memory for all portions of the buffer will be allocated,
532 * although backing storage may not be.
533 */
534xfs_buf_t *
6ad112bf 535xfs_buf_get(
1da177e4 536 xfs_buftarg_t *target,/* target for buffer */
204ab25f 537 xfs_off_t ioff, /* starting offset of range */
1da177e4 538 size_t isize, /* length of range */
ce8e922c 539 xfs_buf_flags_t flags)
1da177e4 540{
ce8e922c 541 xfs_buf_t *bp, *new_bp;
0e6e847f 542 int error = 0;
1da177e4 543
ce8e922c
NS
544 new_bp = xfs_buf_allocate(flags);
545 if (unlikely(!new_bp))
1da177e4
LT
546 return NULL;
547
ce8e922c
NS
548 bp = _xfs_buf_find(target, ioff, isize, flags, new_bp);
549 if (bp == new_bp) {
0e6e847f 550 error = xfs_buf_allocate_memory(bp, flags);
1da177e4
LT
551 if (error)
552 goto no_buffer;
553 } else {
ce8e922c
NS
554 xfs_buf_deallocate(new_bp);
555 if (unlikely(bp == NULL))
1da177e4
LT
556 return NULL;
557 }
558
ce8e922c
NS
559 if (!(bp->b_flags & XBF_MAPPED)) {
560 error = _xfs_buf_map_pages(bp, flags);
1da177e4 561 if (unlikely(error)) {
4f10700a
DC
562 xfs_warn(target->bt_mount,
563 "%s: failed to map pages\n", __func__);
1da177e4
LT
564 goto no_buffer;
565 }
566 }
567
ce8e922c 568 XFS_STATS_INC(xb_get);
1da177e4
LT
569
570 /*
571 * Always fill in the block number now, the mapped cases can do
572 * their own overlay of this later.
573 */
ce8e922c
NS
574 bp->b_bn = ioff;
575 bp->b_count_desired = bp->b_buffer_length;
1da177e4 576
0b1b213f 577 trace_xfs_buf_get(bp, flags, _RET_IP_);
ce8e922c 578 return bp;
1da177e4
LT
579
580 no_buffer:
ce8e922c
NS
581 if (flags & (XBF_LOCK | XBF_TRYLOCK))
582 xfs_buf_unlock(bp);
583 xfs_buf_rele(bp);
1da177e4
LT
584 return NULL;
585}
586
5d765b97
CH
587STATIC int
588_xfs_buf_read(
589 xfs_buf_t *bp,
590 xfs_buf_flags_t flags)
591{
592 int status;
593
5d765b97
CH
594 ASSERT(!(flags & (XBF_DELWRI|XBF_WRITE)));
595 ASSERT(bp->b_bn != XFS_BUF_DADDR_NULL);
596
597 bp->b_flags &= ~(XBF_WRITE | XBF_ASYNC | XBF_DELWRI | \
598 XBF_READ_AHEAD | _XBF_RUN_QUEUES);
599 bp->b_flags |= flags & (XBF_READ | XBF_ASYNC | \
600 XBF_READ_AHEAD | _XBF_RUN_QUEUES);
601
602 status = xfs_buf_iorequest(bp);
ec53d1db
DC
603 if (status || XFS_BUF_ISERROR(bp) || (flags & XBF_ASYNC))
604 return status;
605 return xfs_buf_iowait(bp);
5d765b97
CH
606}
607
1da177e4 608xfs_buf_t *
6ad112bf 609xfs_buf_read(
1da177e4 610 xfs_buftarg_t *target,
204ab25f 611 xfs_off_t ioff,
1da177e4 612 size_t isize,
ce8e922c 613 xfs_buf_flags_t flags)
1da177e4 614{
ce8e922c
NS
615 xfs_buf_t *bp;
616
617 flags |= XBF_READ;
618
6ad112bf 619 bp = xfs_buf_get(target, ioff, isize, flags);
ce8e922c 620 if (bp) {
0b1b213f
CH
621 trace_xfs_buf_read(bp, flags, _RET_IP_);
622
ce8e922c 623 if (!XFS_BUF_ISDONE(bp)) {
ce8e922c 624 XFS_STATS_INC(xb_get_read);
5d765b97 625 _xfs_buf_read(bp, flags);
ce8e922c 626 } else if (flags & XBF_ASYNC) {
1da177e4
LT
627 /*
628 * Read ahead call which is already satisfied,
629 * drop the buffer
630 */
631 goto no_buffer;
632 } else {
1da177e4 633 /* We do not want read in the flags */
ce8e922c 634 bp->b_flags &= ~XBF_READ;
1da177e4
LT
635 }
636 }
637
ce8e922c 638 return bp;
1da177e4
LT
639
640 no_buffer:
ce8e922c
NS
641 if (flags & (XBF_LOCK | XBF_TRYLOCK))
642 xfs_buf_unlock(bp);
643 xfs_buf_rele(bp);
1da177e4
LT
644 return NULL;
645}
646
1da177e4 647/*
ce8e922c
NS
648 * If we are not low on memory then do the readahead in a deadlock
649 * safe manner.
1da177e4
LT
650 */
651void
ce8e922c 652xfs_buf_readahead(
1da177e4 653 xfs_buftarg_t *target,
204ab25f 654 xfs_off_t ioff,
1a1a3e97 655 size_t isize)
1da177e4 656{
0e6e847f 657 if (bdi_read_congested(target->bt_bdi))
1da177e4
LT
658 return;
659
1a1a3e97
CH
660 xfs_buf_read(target, ioff, isize,
661 XBF_TRYLOCK|XBF_ASYNC|XBF_READ_AHEAD|XBF_DONT_BLOCK);
1da177e4
LT
662}
663
5adc94c2
DC
664/*
665 * Read an uncached buffer from disk. Allocates and returns a locked
666 * buffer containing the disk contents or nothing.
667 */
668struct xfs_buf *
669xfs_buf_read_uncached(
670 struct xfs_mount *mp,
671 struct xfs_buftarg *target,
672 xfs_daddr_t daddr,
673 size_t length,
674 int flags)
675{
676 xfs_buf_t *bp;
677 int error;
678
679 bp = xfs_buf_get_uncached(target, length, flags);
680 if (!bp)
681 return NULL;
682
683 /* set up the buffer for a read IO */
684 xfs_buf_lock(bp);
685 XFS_BUF_SET_ADDR(bp, daddr);
686 XFS_BUF_READ(bp);
687 XFS_BUF_BUSY(bp);
688
689 xfsbdstrat(mp, bp);
1a1a3e97 690 error = xfs_buf_iowait(bp);
5adc94c2
DC
691 if (error || bp->b_error) {
692 xfs_buf_relse(bp);
693 return NULL;
694 }
695 return bp;
1da177e4
LT
696}
697
698xfs_buf_t *
ce8e922c 699xfs_buf_get_empty(
1da177e4
LT
700 size_t len,
701 xfs_buftarg_t *target)
702{
ce8e922c 703 xfs_buf_t *bp;
1da177e4 704
ce8e922c
NS
705 bp = xfs_buf_allocate(0);
706 if (bp)
707 _xfs_buf_initialize(bp, target, 0, len, 0);
708 return bp;
1da177e4
LT
709}
710
44396476
DC
711/*
712 * Return a buffer allocated as an empty buffer and associated to external
713 * memory via xfs_buf_associate_memory() back to it's empty state.
714 */
715void
716xfs_buf_set_empty(
717 struct xfs_buf *bp,
718 size_t len)
719{
720 if (bp->b_pages)
721 _xfs_buf_free_pages(bp);
722
723 bp->b_pages = NULL;
724 bp->b_page_count = 0;
725 bp->b_addr = NULL;
726 bp->b_file_offset = 0;
727 bp->b_buffer_length = bp->b_count_desired = len;
728 bp->b_bn = XFS_BUF_DADDR_NULL;
729 bp->b_flags &= ~XBF_MAPPED;
730}
731
1da177e4
LT
732static inline struct page *
733mem_to_page(
734 void *addr)
735{
9e2779fa 736 if ((!is_vmalloc_addr(addr))) {
1da177e4
LT
737 return virt_to_page(addr);
738 } else {
739 return vmalloc_to_page(addr);
740 }
741}
742
743int
ce8e922c
NS
744xfs_buf_associate_memory(
745 xfs_buf_t *bp,
1da177e4
LT
746 void *mem,
747 size_t len)
748{
749 int rval;
750 int i = 0;
d1afb678
LM
751 unsigned long pageaddr;
752 unsigned long offset;
753 size_t buflen;
1da177e4
LT
754 int page_count;
755
0e6e847f 756 pageaddr = (unsigned long)mem & PAGE_MASK;
d1afb678 757 offset = (unsigned long)mem - pageaddr;
0e6e847f
DC
758 buflen = PAGE_ALIGN(len + offset);
759 page_count = buflen >> PAGE_SHIFT;
1da177e4
LT
760
761 /* Free any previous set of page pointers */
ce8e922c
NS
762 if (bp->b_pages)
763 _xfs_buf_free_pages(bp);
1da177e4 764
ce8e922c
NS
765 bp->b_pages = NULL;
766 bp->b_addr = mem;
1da177e4 767
36fae17a 768 rval = _xfs_buf_get_pages(bp, page_count, XBF_DONT_BLOCK);
1da177e4
LT
769 if (rval)
770 return rval;
771
ce8e922c 772 bp->b_offset = offset;
d1afb678
LM
773
774 for (i = 0; i < bp->b_page_count; i++) {
775 bp->b_pages[i] = mem_to_page((void *)pageaddr);
0e6e847f 776 pageaddr += PAGE_SIZE;
1da177e4 777 }
1da177e4 778
d1afb678
LM
779 bp->b_count_desired = len;
780 bp->b_buffer_length = buflen;
ce8e922c 781 bp->b_flags |= XBF_MAPPED;
1da177e4
LT
782
783 return 0;
784}
785
786xfs_buf_t *
686865f7
DC
787xfs_buf_get_uncached(
788 struct xfs_buftarg *target,
1da177e4 789 size_t len,
686865f7 790 int flags)
1da177e4 791{
1fa40b01
CH
792 unsigned long page_count = PAGE_ALIGN(len) >> PAGE_SHIFT;
793 int error, i;
1da177e4 794 xfs_buf_t *bp;
1da177e4 795
ce8e922c 796 bp = xfs_buf_allocate(0);
1da177e4
LT
797 if (unlikely(bp == NULL))
798 goto fail;
ce8e922c 799 _xfs_buf_initialize(bp, target, 0, len, 0);
1da177e4 800
1fa40b01
CH
801 error = _xfs_buf_get_pages(bp, page_count, 0);
802 if (error)
1da177e4
LT
803 goto fail_free_buf;
804
1fa40b01 805 for (i = 0; i < page_count; i++) {
686865f7 806 bp->b_pages[i] = alloc_page(xb_to_gfp(flags));
1fa40b01
CH
807 if (!bp->b_pages[i])
808 goto fail_free_mem;
1da177e4 809 }
1fa40b01 810 bp->b_flags |= _XBF_PAGES;
1da177e4 811
1fa40b01
CH
812 error = _xfs_buf_map_pages(bp, XBF_MAPPED);
813 if (unlikely(error)) {
4f10700a
DC
814 xfs_warn(target->bt_mount,
815 "%s: failed to map pages\n", __func__);
1da177e4 816 goto fail_free_mem;
1fa40b01 817 }
1da177e4 818
ce8e922c 819 xfs_buf_unlock(bp);
1da177e4 820
686865f7 821 trace_xfs_buf_get_uncached(bp, _RET_IP_);
1da177e4 822 return bp;
1fa40b01 823
1da177e4 824 fail_free_mem:
1fa40b01
CH
825 while (--i >= 0)
826 __free_page(bp->b_pages[i]);
ca165b88 827 _xfs_buf_free_pages(bp);
1da177e4 828 fail_free_buf:
ca165b88 829 xfs_buf_deallocate(bp);
1da177e4
LT
830 fail:
831 return NULL;
832}
833
834/*
1da177e4
LT
835 * Increment reference count on buffer, to hold the buffer concurrently
836 * with another thread which may release (free) the buffer asynchronously.
1da177e4
LT
837 * Must hold the buffer already to call this function.
838 */
839void
ce8e922c
NS
840xfs_buf_hold(
841 xfs_buf_t *bp)
1da177e4 842{
0b1b213f 843 trace_xfs_buf_hold(bp, _RET_IP_);
ce8e922c 844 atomic_inc(&bp->b_hold);
1da177e4
LT
845}
846
847/*
ce8e922c
NS
848 * Releases a hold on the specified buffer. If the
849 * the hold count is 1, calls xfs_buf_free.
1da177e4
LT
850 */
851void
ce8e922c
NS
852xfs_buf_rele(
853 xfs_buf_t *bp)
1da177e4 854{
74f75a0c 855 struct xfs_perag *pag = bp->b_pag;
1da177e4 856
0b1b213f 857 trace_xfs_buf_rele(bp, _RET_IP_);
1da177e4 858
74f75a0c 859 if (!pag) {
430cbeb8 860 ASSERT(list_empty(&bp->b_lru));
74f75a0c 861 ASSERT(RB_EMPTY_NODE(&bp->b_rbnode));
fad3aa1e
NS
862 if (atomic_dec_and_test(&bp->b_hold))
863 xfs_buf_free(bp);
864 return;
865 }
866
74f75a0c 867 ASSERT(!RB_EMPTY_NODE(&bp->b_rbnode));
430cbeb8 868
3790689f 869 ASSERT(atomic_read(&bp->b_hold) > 0);
74f75a0c 870 if (atomic_dec_and_lock(&bp->b_hold, &pag->pag_buf_lock)) {
bfc60177 871 if (!(bp->b_flags & XBF_STALE) &&
430cbeb8
DC
872 atomic_read(&bp->b_lru_ref)) {
873 xfs_buf_lru_add(bp);
874 spin_unlock(&pag->pag_buf_lock);
1da177e4 875 } else {
430cbeb8 876 xfs_buf_lru_del(bp);
ce8e922c 877 ASSERT(!(bp->b_flags & (XBF_DELWRI|_XBF_DELWRI_Q)));
74f75a0c
DC
878 rb_erase(&bp->b_rbnode, &pag->pag_buf_tree);
879 spin_unlock(&pag->pag_buf_lock);
880 xfs_perag_put(pag);
ce8e922c 881 xfs_buf_free(bp);
1da177e4
LT
882 }
883 }
884}
885
886
887/*
0e6e847f 888 * Lock a buffer object, if it is not already locked.
90810b9e
DC
889 *
890 * If we come across a stale, pinned, locked buffer, we know that we are
891 * being asked to lock a buffer that has been reallocated. Because it is
892 * pinned, we know that the log has not been pushed to disk and hence it
893 * will still be locked. Rather than continuing to have trylock attempts
894 * fail until someone else pushes the log, push it ourselves before
895 * returning. This means that the xfsaild will not get stuck trying
896 * to push on stale inode buffers.
1da177e4
LT
897 */
898int
ce8e922c
NS
899xfs_buf_cond_lock(
900 xfs_buf_t *bp)
1da177e4
LT
901{
902 int locked;
903
ce8e922c 904 locked = down_trylock(&bp->b_sema) == 0;
0b1b213f 905 if (locked)
ce8e922c 906 XB_SET_OWNER(bp);
90810b9e
DC
907 else if (atomic_read(&bp->b_pin_count) && (bp->b_flags & XBF_STALE))
908 xfs_log_force(bp->b_target->bt_mount, 0);
0b1b213f
CH
909
910 trace_xfs_buf_cond_lock(bp, _RET_IP_);
ce8e922c 911 return locked ? 0 : -EBUSY;
1da177e4
LT
912}
913
1da177e4 914int
ce8e922c
NS
915xfs_buf_lock_value(
916 xfs_buf_t *bp)
1da177e4 917{
adaa693b 918 return bp->b_sema.count;
1da177e4 919}
1da177e4
LT
920
921/*
0e6e847f 922 * Lock a buffer object.
ed3b4d6c
DC
923 *
924 * If we come across a stale, pinned, locked buffer, we know that we
925 * are being asked to lock a buffer that has been reallocated. Because
926 * it is pinned, we know that the log has not been pushed to disk and
927 * hence it will still be locked. Rather than sleeping until someone
928 * else pushes the log, push it ourselves before trying to get the lock.
1da177e4 929 */
ce8e922c
NS
930void
931xfs_buf_lock(
932 xfs_buf_t *bp)
1da177e4 933{
0b1b213f
CH
934 trace_xfs_buf_lock(bp, _RET_IP_);
935
ed3b4d6c 936 if (atomic_read(&bp->b_pin_count) && (bp->b_flags & XBF_STALE))
ebad861b 937 xfs_log_force(bp->b_target->bt_mount, 0);
ce8e922c
NS
938 down(&bp->b_sema);
939 XB_SET_OWNER(bp);
0b1b213f
CH
940
941 trace_xfs_buf_lock_done(bp, _RET_IP_);
1da177e4
LT
942}
943
944/*
ce8e922c 945 * Releases the lock on the buffer object.
2f926587 946 * If the buffer is marked delwri but is not queued, do so before we
ce8e922c 947 * unlock the buffer as we need to set flags correctly. We also need to
2f926587
DC
948 * take a reference for the delwri queue because the unlocker is going to
949 * drop their's and they don't know we just queued it.
1da177e4
LT
950 */
951void
ce8e922c
NS
952xfs_buf_unlock(
953 xfs_buf_t *bp)
1da177e4 954{
ce8e922c
NS
955 if ((bp->b_flags & (XBF_DELWRI|_XBF_DELWRI_Q)) == XBF_DELWRI) {
956 atomic_inc(&bp->b_hold);
957 bp->b_flags |= XBF_ASYNC;
958 xfs_buf_delwri_queue(bp, 0);
2f926587
DC
959 }
960
ce8e922c
NS
961 XB_CLEAR_OWNER(bp);
962 up(&bp->b_sema);
0b1b213f
CH
963
964 trace_xfs_buf_unlock(bp, _RET_IP_);
1da177e4
LT
965}
966
ce8e922c
NS
967STATIC void
968xfs_buf_wait_unpin(
969 xfs_buf_t *bp)
1da177e4
LT
970{
971 DECLARE_WAITQUEUE (wait, current);
972
ce8e922c 973 if (atomic_read(&bp->b_pin_count) == 0)
1da177e4
LT
974 return;
975
ce8e922c 976 add_wait_queue(&bp->b_waiters, &wait);
1da177e4
LT
977 for (;;) {
978 set_current_state(TASK_UNINTERRUPTIBLE);
ce8e922c 979 if (atomic_read(&bp->b_pin_count) == 0)
1da177e4 980 break;
7eaceacc 981 io_schedule();
1da177e4 982 }
ce8e922c 983 remove_wait_queue(&bp->b_waiters, &wait);
1da177e4
LT
984 set_current_state(TASK_RUNNING);
985}
986
987/*
988 * Buffer Utility Routines
989 */
990
1da177e4 991STATIC void
ce8e922c 992xfs_buf_iodone_work(
c4028958 993 struct work_struct *work)
1da177e4 994{
c4028958
DH
995 xfs_buf_t *bp =
996 container_of(work, xfs_buf_t, b_iodone_work);
1da177e4 997
80f6c29d 998 if (bp->b_iodone)
ce8e922c
NS
999 (*(bp->b_iodone))(bp);
1000 else if (bp->b_flags & XBF_ASYNC)
1da177e4
LT
1001 xfs_buf_relse(bp);
1002}
1003
1004void
ce8e922c
NS
1005xfs_buf_ioend(
1006 xfs_buf_t *bp,
1da177e4
LT
1007 int schedule)
1008{
0b1b213f
CH
1009 trace_xfs_buf_iodone(bp, _RET_IP_);
1010
77be55a5 1011 bp->b_flags &= ~(XBF_READ | XBF_WRITE | XBF_READ_AHEAD);
ce8e922c
NS
1012 if (bp->b_error == 0)
1013 bp->b_flags |= XBF_DONE;
1da177e4 1014
ce8e922c 1015 if ((bp->b_iodone) || (bp->b_flags & XBF_ASYNC)) {
1da177e4 1016 if (schedule) {
c4028958 1017 INIT_WORK(&bp->b_iodone_work, xfs_buf_iodone_work);
ce8e922c 1018 queue_work(xfslogd_workqueue, &bp->b_iodone_work);
1da177e4 1019 } else {
c4028958 1020 xfs_buf_iodone_work(&bp->b_iodone_work);
1da177e4
LT
1021 }
1022 } else {
b4dd330b 1023 complete(&bp->b_iowait);
1da177e4
LT
1024 }
1025}
1026
1da177e4 1027void
ce8e922c
NS
1028xfs_buf_ioerror(
1029 xfs_buf_t *bp,
1030 int error)
1da177e4
LT
1031{
1032 ASSERT(error >= 0 && error <= 0xffff);
ce8e922c 1033 bp->b_error = (unsigned short)error;
0b1b213f 1034 trace_xfs_buf_ioerror(bp, error, _RET_IP_);
1da177e4
LT
1035}
1036
1da177e4 1037int
64e0bc7d
CH
1038xfs_bwrite(
1039 struct xfs_mount *mp,
5d765b97 1040 struct xfs_buf *bp)
1da177e4 1041{
8c38366f 1042 int error;
1da177e4 1043
64e0bc7d 1044 bp->b_flags |= XBF_WRITE;
8c38366f 1045 bp->b_flags &= ~(XBF_ASYNC | XBF_READ);
1da177e4 1046
5d765b97 1047 xfs_buf_delwri_dequeue(bp);
939d723b 1048 xfs_bdstrat_cb(bp);
1da177e4 1049
8c38366f
CH
1050 error = xfs_buf_iowait(bp);
1051 if (error)
1052 xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
1053 xfs_buf_relse(bp);
64e0bc7d 1054 return error;
5d765b97 1055}
1da177e4 1056
5d765b97
CH
1057void
1058xfs_bdwrite(
1059 void *mp,
1060 struct xfs_buf *bp)
1061{
0b1b213f 1062 trace_xfs_buf_bdwrite(bp, _RET_IP_);
1da177e4 1063
5d765b97
CH
1064 bp->b_flags &= ~XBF_READ;
1065 bp->b_flags |= (XBF_DELWRI | XBF_ASYNC);
1066
1067 xfs_buf_delwri_queue(bp, 1);
1da177e4
LT
1068}
1069
4e23471a
CH
1070/*
1071 * Called when we want to stop a buffer from getting written or read.
1a1a3e97 1072 * We attach the EIO error, muck with its flags, and call xfs_buf_ioend
4e23471a
CH
1073 * so that the proper iodone callbacks get called.
1074 */
1075STATIC int
1076xfs_bioerror(
1077 xfs_buf_t *bp)
1078{
1079#ifdef XFSERRORDEBUG
1080 ASSERT(XFS_BUF_ISREAD(bp) || bp->b_iodone);
1081#endif
1082
1083 /*
1084 * No need to wait until the buffer is unpinned, we aren't flushing it.
1085 */
1086 XFS_BUF_ERROR(bp, EIO);
1087
1088 /*
1a1a3e97 1089 * We're calling xfs_buf_ioend, so delete XBF_DONE flag.
4e23471a
CH
1090 */
1091 XFS_BUF_UNREAD(bp);
1092 XFS_BUF_UNDELAYWRITE(bp);
1093 XFS_BUF_UNDONE(bp);
1094 XFS_BUF_STALE(bp);
1095
1a1a3e97 1096 xfs_buf_ioend(bp, 0);
4e23471a
CH
1097
1098 return EIO;
1099}
1100
1101/*
1102 * Same as xfs_bioerror, except that we are releasing the buffer
1a1a3e97 1103 * here ourselves, and avoiding the xfs_buf_ioend call.
4e23471a
CH
1104 * This is meant for userdata errors; metadata bufs come with
1105 * iodone functions attached, so that we can track down errors.
1106 */
1107STATIC int
1108xfs_bioerror_relse(
1109 struct xfs_buf *bp)
1110{
1111 int64_t fl = XFS_BUF_BFLAGS(bp);
1112 /*
1113 * No need to wait until the buffer is unpinned.
1114 * We aren't flushing it.
1115 *
1116 * chunkhold expects B_DONE to be set, whether
1117 * we actually finish the I/O or not. We don't want to
1118 * change that interface.
1119 */
1120 XFS_BUF_UNREAD(bp);
1121 XFS_BUF_UNDELAYWRITE(bp);
1122 XFS_BUF_DONE(bp);
1123 XFS_BUF_STALE(bp);
1124 XFS_BUF_CLR_IODONE_FUNC(bp);
0cadda1c 1125 if (!(fl & XBF_ASYNC)) {
4e23471a
CH
1126 /*
1127 * Mark b_error and B_ERROR _both_.
1128 * Lot's of chunkcache code assumes that.
1129 * There's no reason to mark error for
1130 * ASYNC buffers.
1131 */
1132 XFS_BUF_ERROR(bp, EIO);
1133 XFS_BUF_FINISH_IOWAIT(bp);
1134 } else {
1135 xfs_buf_relse(bp);
1136 }
1137
1138 return EIO;
1139}
1140
1141
1142/*
1143 * All xfs metadata buffers except log state machine buffers
1144 * get this attached as their b_bdstrat callback function.
1145 * This is so that we can catch a buffer
1146 * after prematurely unpinning it to forcibly shutdown the filesystem.
1147 */
1148int
1149xfs_bdstrat_cb(
1150 struct xfs_buf *bp)
1151{
ebad861b 1152 if (XFS_FORCED_SHUTDOWN(bp->b_target->bt_mount)) {
4e23471a
CH
1153 trace_xfs_bdstrat_shut(bp, _RET_IP_);
1154 /*
1155 * Metadata write that didn't get logged but
1156 * written delayed anyway. These aren't associated
1157 * with a transaction, and can be ignored.
1158 */
1159 if (!bp->b_iodone && !XFS_BUF_ISREAD(bp))
1160 return xfs_bioerror_relse(bp);
1161 else
1162 return xfs_bioerror(bp);
1163 }
1164
1165 xfs_buf_iorequest(bp);
1166 return 0;
1167}
1168
1169/*
1170 * Wrapper around bdstrat so that we can stop data from going to disk in case
1171 * we are shutting down the filesystem. Typically user data goes thru this
1172 * path; one of the exceptions is the superblock.
1173 */
1174void
1175xfsbdstrat(
1176 struct xfs_mount *mp,
1177 struct xfs_buf *bp)
1178{
1179 if (XFS_FORCED_SHUTDOWN(mp)) {
1180 trace_xfs_bdstrat_shut(bp, _RET_IP_);
1181 xfs_bioerror_relse(bp);
1182 return;
1183 }
1184
1185 xfs_buf_iorequest(bp);
1186}
1187
b8f82a4a 1188STATIC void
ce8e922c
NS
1189_xfs_buf_ioend(
1190 xfs_buf_t *bp,
1da177e4
LT
1191 int schedule)
1192{
0e6e847f 1193 if (atomic_dec_and_test(&bp->b_io_remaining) == 1)
ce8e922c 1194 xfs_buf_ioend(bp, schedule);
1da177e4
LT
1195}
1196
782e3b3b 1197STATIC void
ce8e922c 1198xfs_buf_bio_end_io(
1da177e4 1199 struct bio *bio,
1da177e4
LT
1200 int error)
1201{
ce8e922c 1202 xfs_buf_t *bp = (xfs_buf_t *)bio->bi_private;
1da177e4 1203
cfbe5267 1204 xfs_buf_ioerror(bp, -error);
1da177e4 1205
73c77e2c
JB
1206 if (!error && xfs_buf_is_vmapped(bp) && (bp->b_flags & XBF_READ))
1207 invalidate_kernel_vmap_range(bp->b_addr, xfs_buf_vmap_len(bp));
1208
ce8e922c 1209 _xfs_buf_ioend(bp, 1);
1da177e4 1210 bio_put(bio);
1da177e4
LT
1211}
1212
1213STATIC void
ce8e922c
NS
1214_xfs_buf_ioapply(
1215 xfs_buf_t *bp)
1da177e4 1216{
a9759f2d 1217 int rw, map_i, total_nr_pages, nr_pages;
1da177e4 1218 struct bio *bio;
ce8e922c
NS
1219 int offset = bp->b_offset;
1220 int size = bp->b_count_desired;
1221 sector_t sector = bp->b_bn;
1da177e4 1222
ce8e922c 1223 total_nr_pages = bp->b_page_count;
1da177e4
LT
1224 map_i = 0;
1225
ce8e922c
NS
1226 if (bp->b_flags & XBF_ORDERED) {
1227 ASSERT(!(bp->b_flags & XBF_READ));
80f6c29d 1228 rw = WRITE_FLUSH_FUA;
2ee1abad 1229 } else if (bp->b_flags & XBF_LOG_BUFFER) {
51bdd706
NS
1230 ASSERT(!(bp->b_flags & XBF_READ_AHEAD));
1231 bp->b_flags &= ~_XBF_RUN_QUEUES;
1232 rw = (bp->b_flags & XBF_WRITE) ? WRITE_SYNC : READ_SYNC;
2ee1abad
DC
1233 } else if (bp->b_flags & _XBF_RUN_QUEUES) {
1234 ASSERT(!(bp->b_flags & XBF_READ_AHEAD));
1235 bp->b_flags &= ~_XBF_RUN_QUEUES;
1236 rw = (bp->b_flags & XBF_WRITE) ? WRITE_META : READ_META;
51bdd706
NS
1237 } else {
1238 rw = (bp->b_flags & XBF_WRITE) ? WRITE :
1239 (bp->b_flags & XBF_READ_AHEAD) ? READA : READ;
f538d4da
CH
1240 }
1241
1da177e4 1242
1da177e4 1243next_chunk:
ce8e922c 1244 atomic_inc(&bp->b_io_remaining);
1da177e4
LT
1245 nr_pages = BIO_MAX_SECTORS >> (PAGE_SHIFT - BBSHIFT);
1246 if (nr_pages > total_nr_pages)
1247 nr_pages = total_nr_pages;
1248
1249 bio = bio_alloc(GFP_NOIO, nr_pages);
ce8e922c 1250 bio->bi_bdev = bp->b_target->bt_bdev;
1da177e4 1251 bio->bi_sector = sector;
ce8e922c
NS
1252 bio->bi_end_io = xfs_buf_bio_end_io;
1253 bio->bi_private = bp;
1da177e4 1254
0e6e847f 1255
1da177e4 1256 for (; size && nr_pages; nr_pages--, map_i++) {
0e6e847f 1257 int rbytes, nbytes = PAGE_SIZE - offset;
1da177e4
LT
1258
1259 if (nbytes > size)
1260 nbytes = size;
1261
ce8e922c
NS
1262 rbytes = bio_add_page(bio, bp->b_pages[map_i], nbytes, offset);
1263 if (rbytes < nbytes)
1da177e4
LT
1264 break;
1265
1266 offset = 0;
1267 sector += nbytes >> BBSHIFT;
1268 size -= nbytes;
1269 total_nr_pages--;
1270 }
1271
1da177e4 1272 if (likely(bio->bi_size)) {
73c77e2c
JB
1273 if (xfs_buf_is_vmapped(bp)) {
1274 flush_kernel_vmap_range(bp->b_addr,
1275 xfs_buf_vmap_len(bp));
1276 }
1da177e4
LT
1277 submit_bio(rw, bio);
1278 if (size)
1279 goto next_chunk;
1280 } else {
ce8e922c 1281 xfs_buf_ioerror(bp, EIO);
ec53d1db 1282 bio_put(bio);
1da177e4
LT
1283 }
1284}
1285
1da177e4 1286int
ce8e922c
NS
1287xfs_buf_iorequest(
1288 xfs_buf_t *bp)
1da177e4 1289{
0b1b213f 1290 trace_xfs_buf_iorequest(bp, _RET_IP_);
1da177e4 1291
ce8e922c
NS
1292 if (bp->b_flags & XBF_DELWRI) {
1293 xfs_buf_delwri_queue(bp, 1);
1da177e4
LT
1294 return 0;
1295 }
1296
ce8e922c
NS
1297 if (bp->b_flags & XBF_WRITE) {
1298 xfs_buf_wait_unpin(bp);
1da177e4
LT
1299 }
1300
ce8e922c 1301 xfs_buf_hold(bp);
1da177e4
LT
1302
1303 /* Set the count to 1 initially, this will stop an I/O
1304 * completion callout which happens before we have started
ce8e922c 1305 * all the I/O from calling xfs_buf_ioend too early.
1da177e4 1306 */
ce8e922c
NS
1307 atomic_set(&bp->b_io_remaining, 1);
1308 _xfs_buf_ioapply(bp);
1309 _xfs_buf_ioend(bp, 0);
1da177e4 1310
ce8e922c 1311 xfs_buf_rele(bp);
1da177e4
LT
1312 return 0;
1313}
1314
1315/*
ce8e922c
NS
1316 * Waits for I/O to complete on the buffer supplied.
1317 * It returns immediately if no I/O is pending.
1318 * It returns the I/O error code, if any, or 0 if there was no error.
1da177e4
LT
1319 */
1320int
ce8e922c
NS
1321xfs_buf_iowait(
1322 xfs_buf_t *bp)
1da177e4 1323{
0b1b213f
CH
1324 trace_xfs_buf_iowait(bp, _RET_IP_);
1325
b4dd330b 1326 wait_for_completion(&bp->b_iowait);
0b1b213f
CH
1327
1328 trace_xfs_buf_iowait_done(bp, _RET_IP_);
ce8e922c 1329 return bp->b_error;
1da177e4
LT
1330}
1331
ce8e922c
NS
1332xfs_caddr_t
1333xfs_buf_offset(
1334 xfs_buf_t *bp,
1da177e4
LT
1335 size_t offset)
1336{
1337 struct page *page;
1338
ce8e922c
NS
1339 if (bp->b_flags & XBF_MAPPED)
1340 return XFS_BUF_PTR(bp) + offset;
1da177e4 1341
ce8e922c 1342 offset += bp->b_offset;
0e6e847f
DC
1343 page = bp->b_pages[offset >> PAGE_SHIFT];
1344 return (xfs_caddr_t)page_address(page) + (offset & (PAGE_SIZE-1));
1da177e4
LT
1345}
1346
1347/*
1da177e4
LT
1348 * Move data into or out of a buffer.
1349 */
1350void
ce8e922c
NS
1351xfs_buf_iomove(
1352 xfs_buf_t *bp, /* buffer to process */
1da177e4
LT
1353 size_t boff, /* starting buffer offset */
1354 size_t bsize, /* length to copy */
b9c48649 1355 void *data, /* data address */
ce8e922c 1356 xfs_buf_rw_t mode) /* read/write/zero flag */
1da177e4
LT
1357{
1358 size_t bend, cpoff, csize;
1359 struct page *page;
1360
1361 bend = boff + bsize;
1362 while (boff < bend) {
ce8e922c
NS
1363 page = bp->b_pages[xfs_buf_btoct(boff + bp->b_offset)];
1364 cpoff = xfs_buf_poff(boff + bp->b_offset);
1da177e4 1365 csize = min_t(size_t,
0e6e847f 1366 PAGE_SIZE-cpoff, bp->b_count_desired-boff);
1da177e4 1367
0e6e847f 1368 ASSERT(((csize + cpoff) <= PAGE_SIZE));
1da177e4
LT
1369
1370 switch (mode) {
ce8e922c 1371 case XBRW_ZERO:
1da177e4
LT
1372 memset(page_address(page) + cpoff, 0, csize);
1373 break;
ce8e922c 1374 case XBRW_READ:
1da177e4
LT
1375 memcpy(data, page_address(page) + cpoff, csize);
1376 break;
ce8e922c 1377 case XBRW_WRITE:
1da177e4
LT
1378 memcpy(page_address(page) + cpoff, data, csize);
1379 }
1380
1381 boff += csize;
1382 data += csize;
1383 }
1384}
1385
1386/*
ce8e922c 1387 * Handling of buffer targets (buftargs).
1da177e4
LT
1388 */
1389
1390/*
430cbeb8
DC
1391 * Wait for any bufs with callbacks that have been submitted but have not yet
1392 * returned. These buffers will have an elevated hold count, so wait on those
1393 * while freeing all the buffers only held by the LRU.
1da177e4
LT
1394 */
1395void
1396xfs_wait_buftarg(
74f75a0c 1397 struct xfs_buftarg *btp)
1da177e4 1398{
430cbeb8
DC
1399 struct xfs_buf *bp;
1400
1401restart:
1402 spin_lock(&btp->bt_lru_lock);
1403 while (!list_empty(&btp->bt_lru)) {
1404 bp = list_first_entry(&btp->bt_lru, struct xfs_buf, b_lru);
1405 if (atomic_read(&bp->b_hold) > 1) {
1406 spin_unlock(&btp->bt_lru_lock);
26af6552 1407 delay(100);
430cbeb8 1408 goto restart;
1da177e4 1409 }
430cbeb8
DC
1410 /*
1411 * clear the LRU reference count so the bufer doesn't get
1412 * ignored in xfs_buf_rele().
1413 */
1414 atomic_set(&bp->b_lru_ref, 0);
1415 spin_unlock(&btp->bt_lru_lock);
1416 xfs_buf_rele(bp);
1417 spin_lock(&btp->bt_lru_lock);
1da177e4 1418 }
430cbeb8 1419 spin_unlock(&btp->bt_lru_lock);
1da177e4
LT
1420}
1421
ff57ab21
DC
1422int
1423xfs_buftarg_shrink(
1424 struct shrinker *shrink,
1495f230 1425 struct shrink_control *sc)
a6867a68 1426{
ff57ab21
DC
1427 struct xfs_buftarg *btp = container_of(shrink,
1428 struct xfs_buftarg, bt_shrinker);
430cbeb8 1429 struct xfs_buf *bp;
1495f230 1430 int nr_to_scan = sc->nr_to_scan;
430cbeb8
DC
1431 LIST_HEAD(dispose);
1432
1433 if (!nr_to_scan)
1434 return btp->bt_lru_nr;
1435
1436 spin_lock(&btp->bt_lru_lock);
1437 while (!list_empty(&btp->bt_lru)) {
1438 if (nr_to_scan-- <= 0)
1439 break;
1440
1441 bp = list_first_entry(&btp->bt_lru, struct xfs_buf, b_lru);
1442
1443 /*
1444 * Decrement the b_lru_ref count unless the value is already
1445 * zero. If the value is already zero, we need to reclaim the
1446 * buffer, otherwise it gets another trip through the LRU.
1447 */
1448 if (!atomic_add_unless(&bp->b_lru_ref, -1, 0)) {
1449 list_move_tail(&bp->b_lru, &btp->bt_lru);
1450 continue;
1451 }
1452
1453 /*
1454 * remove the buffer from the LRU now to avoid needing another
1455 * lock round trip inside xfs_buf_rele().
1456 */
1457 list_move(&bp->b_lru, &dispose);
1458 btp->bt_lru_nr--;
ff57ab21 1459 }
430cbeb8
DC
1460 spin_unlock(&btp->bt_lru_lock);
1461
1462 while (!list_empty(&dispose)) {
1463 bp = list_first_entry(&dispose, struct xfs_buf, b_lru);
1464 list_del_init(&bp->b_lru);
1465 xfs_buf_rele(bp);
1466 }
1467
1468 return btp->bt_lru_nr;
a6867a68
DC
1469}
1470
1da177e4
LT
1471void
1472xfs_free_buftarg(
b7963133
CH
1473 struct xfs_mount *mp,
1474 struct xfs_buftarg *btp)
1da177e4 1475{
ff57ab21
DC
1476 unregister_shrinker(&btp->bt_shrinker);
1477
1da177e4 1478 xfs_flush_buftarg(btp, 1);
b7963133
CH
1479 if (mp->m_flags & XFS_MOUNT_BARRIER)
1480 xfs_blkdev_issue_flush(btp);
a6867a68 1481
a6867a68 1482 kthread_stop(btp->bt_task);
f0e2d93c 1483 kmem_free(btp);
1da177e4
LT
1484}
1485
1da177e4
LT
1486STATIC int
1487xfs_setsize_buftarg_flags(
1488 xfs_buftarg_t *btp,
1489 unsigned int blocksize,
1490 unsigned int sectorsize,
1491 int verbose)
1492{
ce8e922c
NS
1493 btp->bt_bsize = blocksize;
1494 btp->bt_sshift = ffs(sectorsize) - 1;
1495 btp->bt_smask = sectorsize - 1;
1da177e4 1496
ce8e922c 1497 if (set_blocksize(btp->bt_bdev, sectorsize)) {
4f10700a
DC
1498 xfs_warn(btp->bt_mount,
1499 "Cannot set_blocksize to %u on device %s\n",
1da177e4
LT
1500 sectorsize, XFS_BUFTARG_NAME(btp));
1501 return EINVAL;
1502 }
1503
1da177e4
LT
1504 return 0;
1505}
1506
1507/*
ce8e922c
NS
1508 * When allocating the initial buffer target we have not yet
1509 * read in the superblock, so don't know what sized sectors
1510 * are being used is at this early stage. Play safe.
1511 */
1da177e4
LT
1512STATIC int
1513xfs_setsize_buftarg_early(
1514 xfs_buftarg_t *btp,
1515 struct block_device *bdev)
1516{
1517 return xfs_setsize_buftarg_flags(btp,
0e6e847f 1518 PAGE_SIZE, bdev_logical_block_size(bdev), 0);
1da177e4
LT
1519}
1520
1521int
1522xfs_setsize_buftarg(
1523 xfs_buftarg_t *btp,
1524 unsigned int blocksize,
1525 unsigned int sectorsize)
1526{
1527 return xfs_setsize_buftarg_flags(btp, blocksize, sectorsize, 1);
1528}
1529
a6867a68
DC
1530STATIC int
1531xfs_alloc_delwrite_queue(
e2a07812
JE
1532 xfs_buftarg_t *btp,
1533 const char *fsname)
a6867a68 1534{
a6867a68 1535 INIT_LIST_HEAD(&btp->bt_delwrite_queue);
007c61c6 1536 spin_lock_init(&btp->bt_delwrite_lock);
a6867a68 1537 btp->bt_flags = 0;
e2a07812 1538 btp->bt_task = kthread_run(xfsbufd, btp, "xfsbufd/%s", fsname);
ff57ab21
DC
1539 if (IS_ERR(btp->bt_task))
1540 return PTR_ERR(btp->bt_task);
1541 return 0;
a6867a68
DC
1542}
1543
1da177e4
LT
1544xfs_buftarg_t *
1545xfs_alloc_buftarg(
ebad861b 1546 struct xfs_mount *mp,
1da177e4 1547 struct block_device *bdev,
e2a07812
JE
1548 int external,
1549 const char *fsname)
1da177e4
LT
1550{
1551 xfs_buftarg_t *btp;
1552
1553 btp = kmem_zalloc(sizeof(*btp), KM_SLEEP);
1554
ebad861b 1555 btp->bt_mount = mp;
ce8e922c
NS
1556 btp->bt_dev = bdev->bd_dev;
1557 btp->bt_bdev = bdev;
0e6e847f
DC
1558 btp->bt_bdi = blk_get_backing_dev_info(bdev);
1559 if (!btp->bt_bdi)
1560 goto error;
1561
430cbeb8
DC
1562 INIT_LIST_HEAD(&btp->bt_lru);
1563 spin_lock_init(&btp->bt_lru_lock);
1da177e4
LT
1564 if (xfs_setsize_buftarg_early(btp, bdev))
1565 goto error;
e2a07812 1566 if (xfs_alloc_delwrite_queue(btp, fsname))
a6867a68 1567 goto error;
ff57ab21
DC
1568 btp->bt_shrinker.shrink = xfs_buftarg_shrink;
1569 btp->bt_shrinker.seeks = DEFAULT_SEEKS;
1570 register_shrinker(&btp->bt_shrinker);
1da177e4
LT
1571 return btp;
1572
1573error:
f0e2d93c 1574 kmem_free(btp);
1da177e4
LT
1575 return NULL;
1576}
1577
1578
1579/*
ce8e922c 1580 * Delayed write buffer handling
1da177e4 1581 */
1da177e4 1582STATIC void
ce8e922c
NS
1583xfs_buf_delwri_queue(
1584 xfs_buf_t *bp,
1da177e4
LT
1585 int unlock)
1586{
ce8e922c
NS
1587 struct list_head *dwq = &bp->b_target->bt_delwrite_queue;
1588 spinlock_t *dwlk = &bp->b_target->bt_delwrite_lock;
a6867a68 1589
0b1b213f
CH
1590 trace_xfs_buf_delwri_queue(bp, _RET_IP_);
1591
ce8e922c 1592 ASSERT((bp->b_flags&(XBF_DELWRI|XBF_ASYNC)) == (XBF_DELWRI|XBF_ASYNC));
1da177e4 1593
a6867a68 1594 spin_lock(dwlk);
1da177e4 1595 /* If already in the queue, dequeue and place at tail */
ce8e922c
NS
1596 if (!list_empty(&bp->b_list)) {
1597 ASSERT(bp->b_flags & _XBF_DELWRI_Q);
1598 if (unlock)
1599 atomic_dec(&bp->b_hold);
1600 list_del(&bp->b_list);
1da177e4
LT
1601 }
1602
c9c12971
DC
1603 if (list_empty(dwq)) {
1604 /* start xfsbufd as it is about to have something to do */
1605 wake_up_process(bp->b_target->bt_task);
1606 }
1607
ce8e922c
NS
1608 bp->b_flags |= _XBF_DELWRI_Q;
1609 list_add_tail(&bp->b_list, dwq);
1610 bp->b_queuetime = jiffies;
a6867a68 1611 spin_unlock(dwlk);
1da177e4
LT
1612
1613 if (unlock)
ce8e922c 1614 xfs_buf_unlock(bp);
1da177e4
LT
1615}
1616
1617void
ce8e922c
NS
1618xfs_buf_delwri_dequeue(
1619 xfs_buf_t *bp)
1da177e4 1620{
ce8e922c 1621 spinlock_t *dwlk = &bp->b_target->bt_delwrite_lock;
1da177e4
LT
1622 int dequeued = 0;
1623
a6867a68 1624 spin_lock(dwlk);
ce8e922c
NS
1625 if ((bp->b_flags & XBF_DELWRI) && !list_empty(&bp->b_list)) {
1626 ASSERT(bp->b_flags & _XBF_DELWRI_Q);
1627 list_del_init(&bp->b_list);
1da177e4
LT
1628 dequeued = 1;
1629 }
ce8e922c 1630 bp->b_flags &= ~(XBF_DELWRI|_XBF_DELWRI_Q);
a6867a68 1631 spin_unlock(dwlk);
1da177e4
LT
1632
1633 if (dequeued)
ce8e922c 1634 xfs_buf_rele(bp);
1da177e4 1635
0b1b213f 1636 trace_xfs_buf_delwri_dequeue(bp, _RET_IP_);
1da177e4
LT
1637}
1638
d808f617
DC
1639/*
1640 * If a delwri buffer needs to be pushed before it has aged out, then promote
1641 * it to the head of the delwri queue so that it will be flushed on the next
1642 * xfsbufd run. We do this by resetting the queuetime of the buffer to be older
1643 * than the age currently needed to flush the buffer. Hence the next time the
1644 * xfsbufd sees it is guaranteed to be considered old enough to flush.
1645 */
1646void
1647xfs_buf_delwri_promote(
1648 struct xfs_buf *bp)
1649{
1650 struct xfs_buftarg *btp = bp->b_target;
1651 long age = xfs_buf_age_centisecs * msecs_to_jiffies(10) + 1;
1652
1653 ASSERT(bp->b_flags & XBF_DELWRI);
1654 ASSERT(bp->b_flags & _XBF_DELWRI_Q);
1655
1656 /*
1657 * Check the buffer age before locking the delayed write queue as we
1658 * don't need to promote buffers that are already past the flush age.
1659 */
1660 if (bp->b_queuetime < jiffies - age)
1661 return;
1662 bp->b_queuetime = jiffies - age;
1663 spin_lock(&btp->bt_delwrite_lock);
1664 list_move(&bp->b_list, &btp->bt_delwrite_queue);
1665 spin_unlock(&btp->bt_delwrite_lock);
1666}
1667
1da177e4 1668STATIC void
ce8e922c 1669xfs_buf_runall_queues(
1da177e4
LT
1670 struct workqueue_struct *queue)
1671{
1672 flush_workqueue(queue);
1673}
1674
585e6d88
DC
1675/*
1676 * Move as many buffers as specified to the supplied list
1677 * idicating if we skipped any buffers to prevent deadlocks.
1678 */
1679STATIC int
1680xfs_buf_delwri_split(
1681 xfs_buftarg_t *target,
1682 struct list_head *list,
5e6a07df 1683 unsigned long age)
585e6d88
DC
1684{
1685 xfs_buf_t *bp, *n;
1686 struct list_head *dwq = &target->bt_delwrite_queue;
1687 spinlock_t *dwlk = &target->bt_delwrite_lock;
1688 int skipped = 0;
5e6a07df 1689 int force;
585e6d88 1690
5e6a07df 1691 force = test_and_clear_bit(XBT_FORCE_FLUSH, &target->bt_flags);
585e6d88
DC
1692 INIT_LIST_HEAD(list);
1693 spin_lock(dwlk);
1694 list_for_each_entry_safe(bp, n, dwq, b_list) {
585e6d88
DC
1695 ASSERT(bp->b_flags & XBF_DELWRI);
1696
4d16e924 1697 if (!XFS_BUF_ISPINNED(bp) && !xfs_buf_cond_lock(bp)) {
5e6a07df 1698 if (!force &&
585e6d88
DC
1699 time_before(jiffies, bp->b_queuetime + age)) {
1700 xfs_buf_unlock(bp);
1701 break;
1702 }
1703
1704 bp->b_flags &= ~(XBF_DELWRI|_XBF_DELWRI_Q|
1705 _XBF_RUN_QUEUES);
1706 bp->b_flags |= XBF_WRITE;
1707 list_move_tail(&bp->b_list, list);
bfe27419 1708 trace_xfs_buf_delwri_split(bp, _RET_IP_);
585e6d88
DC
1709 } else
1710 skipped++;
1711 }
1712 spin_unlock(dwlk);
1713
1714 return skipped;
1715
1716}
1717
089716aa
DC
1718/*
1719 * Compare function is more complex than it needs to be because
1720 * the return value is only 32 bits and we are doing comparisons
1721 * on 64 bit values
1722 */
1723static int
1724xfs_buf_cmp(
1725 void *priv,
1726 struct list_head *a,
1727 struct list_head *b)
1728{
1729 struct xfs_buf *ap = container_of(a, struct xfs_buf, b_list);
1730 struct xfs_buf *bp = container_of(b, struct xfs_buf, b_list);
1731 xfs_daddr_t diff;
1732
1733 diff = ap->b_bn - bp->b_bn;
1734 if (diff < 0)
1735 return -1;
1736 if (diff > 0)
1737 return 1;
1738 return 0;
1739}
1740
1741void
1742xfs_buf_delwri_sort(
1743 xfs_buftarg_t *target,
1744 struct list_head *list)
1745{
1746 list_sort(NULL, list, xfs_buf_cmp);
1747}
1748
1da177e4 1749STATIC int
23ea4032 1750xfsbufd(
585e6d88 1751 void *data)
1da177e4 1752{
089716aa 1753 xfs_buftarg_t *target = (xfs_buftarg_t *)data;
1da177e4 1754
1da177e4
LT
1755 current->flags |= PF_MEMALLOC;
1756
978c7b2f
RW
1757 set_freezable();
1758
1da177e4 1759 do {
c9c12971
DC
1760 long age = xfs_buf_age_centisecs * msecs_to_jiffies(10);
1761 long tout = xfs_buf_timer_centisecs * msecs_to_jiffies(10);
089716aa 1762 struct list_head tmp;
a1b7ea5d 1763 struct blk_plug plug;
c9c12971 1764
3e1d1d28 1765 if (unlikely(freezing(current))) {
ce8e922c 1766 set_bit(XBT_FORCE_SLEEP, &target->bt_flags);
3e1d1d28 1767 refrigerator();
abd0cf7a 1768 } else {
ce8e922c 1769 clear_bit(XBT_FORCE_SLEEP, &target->bt_flags);
abd0cf7a 1770 }
1da177e4 1771
c9c12971
DC
1772 /* sleep for a long time if there is nothing to do. */
1773 if (list_empty(&target->bt_delwrite_queue))
1774 tout = MAX_SCHEDULE_TIMEOUT;
1775 schedule_timeout_interruptible(tout);
1da177e4 1776
c9c12971 1777 xfs_buf_delwri_split(target, &tmp, age);
089716aa 1778 list_sort(NULL, &tmp, xfs_buf_cmp);
a1b7ea5d
CH
1779
1780 blk_start_plug(&plug);
1da177e4 1781 while (!list_empty(&tmp)) {
089716aa
DC
1782 struct xfs_buf *bp;
1783 bp = list_first_entry(&tmp, struct xfs_buf, b_list);
ce8e922c 1784 list_del_init(&bp->b_list);
939d723b 1785 xfs_bdstrat_cb(bp);
1da177e4 1786 }
a1b7ea5d 1787 blk_finish_plug(&plug);
4df08c52 1788 } while (!kthread_should_stop());
1da177e4 1789
4df08c52 1790 return 0;
1da177e4
LT
1791}
1792
1793/*
ce8e922c
NS
1794 * Go through all incore buffers, and release buffers if they belong to
1795 * the given device. This is used in filesystem error handling to
1796 * preserve the consistency of its metadata.
1da177e4
LT
1797 */
1798int
1799xfs_flush_buftarg(
585e6d88
DC
1800 xfs_buftarg_t *target,
1801 int wait)
1da177e4 1802{
089716aa 1803 xfs_buf_t *bp;
585e6d88 1804 int pincount = 0;
089716aa
DC
1805 LIST_HEAD(tmp_list);
1806 LIST_HEAD(wait_list);
a1b7ea5d 1807 struct blk_plug plug;
1da177e4 1808
c626d174 1809 xfs_buf_runall_queues(xfsconvertd_workqueue);
ce8e922c
NS
1810 xfs_buf_runall_queues(xfsdatad_workqueue);
1811 xfs_buf_runall_queues(xfslogd_workqueue);
1da177e4 1812
5e6a07df 1813 set_bit(XBT_FORCE_FLUSH, &target->bt_flags);
089716aa 1814 pincount = xfs_buf_delwri_split(target, &tmp_list, 0);
1da177e4
LT
1815
1816 /*
089716aa
DC
1817 * Dropped the delayed write list lock, now walk the temporary list.
1818 * All I/O is issued async and then if we need to wait for completion
1819 * we do that after issuing all the IO.
1da177e4 1820 */
089716aa 1821 list_sort(NULL, &tmp_list, xfs_buf_cmp);
a1b7ea5d
CH
1822
1823 blk_start_plug(&plug);
089716aa
DC
1824 while (!list_empty(&tmp_list)) {
1825 bp = list_first_entry(&tmp_list, struct xfs_buf, b_list);
585e6d88 1826 ASSERT(target == bp->b_target);
089716aa
DC
1827 list_del_init(&bp->b_list);
1828 if (wait) {
ce8e922c 1829 bp->b_flags &= ~XBF_ASYNC;
089716aa
DC
1830 list_add(&bp->b_list, &wait_list);
1831 }
939d723b 1832 xfs_bdstrat_cb(bp);
1da177e4 1833 }
a1b7ea5d 1834 blk_finish_plug(&plug);
1da177e4 1835
089716aa 1836 if (wait) {
a1b7ea5d 1837 /* Wait for IO to complete. */
089716aa
DC
1838 while (!list_empty(&wait_list)) {
1839 bp = list_first_entry(&wait_list, struct xfs_buf, b_list);
f07c2250 1840
089716aa 1841 list_del_init(&bp->b_list);
1a1a3e97 1842 xfs_buf_iowait(bp);
089716aa
DC
1843 xfs_buf_relse(bp);
1844 }
1da177e4
LT
1845 }
1846
1da177e4
LT
1847 return pincount;
1848}
1849
04d8b284 1850int __init
ce8e922c 1851xfs_buf_init(void)
1da177e4 1852{
8758280f
NS
1853 xfs_buf_zone = kmem_zone_init_flags(sizeof(xfs_buf_t), "xfs_buf",
1854 KM_ZONE_HWALIGN, NULL);
ce8e922c 1855 if (!xfs_buf_zone)
0b1b213f 1856 goto out;
04d8b284 1857
51749e47 1858 xfslogd_workqueue = alloc_workqueue("xfslogd",
6370a6ad 1859 WQ_MEM_RECLAIM | WQ_HIGHPRI, 1);
23ea4032 1860 if (!xfslogd_workqueue)
04d8b284 1861 goto out_free_buf_zone;
1da177e4 1862
83e75904 1863 xfsdatad_workqueue = alloc_workqueue("xfsdatad", WQ_MEM_RECLAIM, 1);
23ea4032
CH
1864 if (!xfsdatad_workqueue)
1865 goto out_destroy_xfslogd_workqueue;
1da177e4 1866
83e75904
TH
1867 xfsconvertd_workqueue = alloc_workqueue("xfsconvertd",
1868 WQ_MEM_RECLAIM, 1);
c626d174
DC
1869 if (!xfsconvertd_workqueue)
1870 goto out_destroy_xfsdatad_workqueue;
1871
23ea4032 1872 return 0;
1da177e4 1873
c626d174
DC
1874 out_destroy_xfsdatad_workqueue:
1875 destroy_workqueue(xfsdatad_workqueue);
23ea4032
CH
1876 out_destroy_xfslogd_workqueue:
1877 destroy_workqueue(xfslogd_workqueue);
23ea4032 1878 out_free_buf_zone:
ce8e922c 1879 kmem_zone_destroy(xfs_buf_zone);
0b1b213f 1880 out:
8758280f 1881 return -ENOMEM;
1da177e4
LT
1882}
1883
1da177e4 1884void
ce8e922c 1885xfs_buf_terminate(void)
1da177e4 1886{
c626d174 1887 destroy_workqueue(xfsconvertd_workqueue);
04d8b284
CH
1888 destroy_workqueue(xfsdatad_workqueue);
1889 destroy_workqueue(xfslogd_workqueue);
ce8e922c 1890 kmem_zone_destroy(xfs_buf_zone);
1da177e4 1891}
e6a0e9cd
TS
1892
1893#ifdef CONFIG_KDB_MODULES
1894struct list_head *
1895xfs_get_buftarg_list(void)
1896{
1897 return &xfs_buftarg_list;
1898}
1899#endif