]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - fs/xfs/linux-2.6/xfs_buf.c
[XFS] Update license/copyright notices to match the prefered SGI
[mirror_ubuntu-jammy-kernel.git] / fs / xfs / linux-2.6 / xfs_buf.c
CommitLineData
1da177e4 1/*
7b718769
NS
2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
1da177e4 4 *
7b718769
NS
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
1da177e4
LT
7 * published by the Free Software Foundation.
8 *
7b718769
NS
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
1da177e4 13 *
7b718769
NS
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
1da177e4 17 */
1da177e4
LT
18#include <linux/stddef.h>
19#include <linux/errno.h>
20#include <linux/slab.h>
21#include <linux/pagemap.h>
22#include <linux/init.h>
23#include <linux/vmalloc.h>
24#include <linux/bio.h>
25#include <linux/sysctl.h>
26#include <linux/proc_fs.h>
27#include <linux/workqueue.h>
28#include <linux/percpu.h>
29#include <linux/blkdev.h>
30#include <linux/hash.h>
4df08c52 31#include <linux/kthread.h>
1da177e4
LT
32#include "xfs_linux.h"
33
23ea4032 34STATIC kmem_cache_t *pagebuf_zone;
1da177e4 35STATIC kmem_shaker_t pagebuf_shake;
27496a8c 36STATIC int xfsbufd_wakeup(int, gfp_t);
1da177e4 37STATIC void pagebuf_delwri_queue(xfs_buf_t *, int);
23ea4032
CH
38
39STATIC struct workqueue_struct *xfslogd_workqueue;
0829c360 40struct workqueue_struct *xfsdatad_workqueue;
1da177e4 41
1da177e4
LT
42#ifdef PAGEBUF_TRACE
43void
44pagebuf_trace(
45 xfs_buf_t *pb,
46 char *id,
47 void *data,
48 void *ra)
49{
50 ktrace_enter(pagebuf_trace_buf,
51 pb, id,
52 (void *)(unsigned long)pb->pb_flags,
53 (void *)(unsigned long)pb->pb_hold.counter,
54 (void *)(unsigned long)pb->pb_sema.count.counter,
55 (void *)current,
56 data, ra,
57 (void *)(unsigned long)((pb->pb_file_offset>>32) & 0xffffffff),
58 (void *)(unsigned long)(pb->pb_file_offset & 0xffffffff),
59 (void *)(unsigned long)pb->pb_buffer_length,
60 NULL, NULL, NULL, NULL, NULL);
61}
62ktrace_t *pagebuf_trace_buf;
63#define PAGEBUF_TRACE_SIZE 4096
64#define PB_TRACE(pb, id, data) \
65 pagebuf_trace(pb, id, (void *)data, (void *)__builtin_return_address(0))
66#else
67#define PB_TRACE(pb, id, data) do { } while (0)
68#endif
69
70#ifdef PAGEBUF_LOCK_TRACKING
71# define PB_SET_OWNER(pb) ((pb)->pb_last_holder = current->pid)
72# define PB_CLEAR_OWNER(pb) ((pb)->pb_last_holder = -1)
73# define PB_GET_OWNER(pb) ((pb)->pb_last_holder)
74#else
75# define PB_SET_OWNER(pb) do { } while (0)
76# define PB_CLEAR_OWNER(pb) do { } while (0)
77# define PB_GET_OWNER(pb) do { } while (0)
78#endif
79
1da177e4
LT
80#define pb_to_gfp(flags) \
81 ((((flags) & PBF_READ_AHEAD) ? __GFP_NORETRY : \
82 ((flags) & PBF_DONT_BLOCK) ? GFP_NOFS : GFP_KERNEL) | __GFP_NOWARN)
83
84#define pb_to_km(flags) \
85 (((flags) & PBF_DONT_BLOCK) ? KM_NOFS : KM_SLEEP)
86
1da177e4 87#define pagebuf_allocate(flags) \
23ea4032 88 kmem_zone_alloc(pagebuf_zone, pb_to_km(flags))
1da177e4 89#define pagebuf_deallocate(pb) \
23ea4032 90 kmem_zone_free(pagebuf_zone, (pb));
1da177e4
LT
91
92/*
93 * Page Region interfaces.
94 *
95 * For pages in filesystems where the blocksize is smaller than the
96 * pagesize, we use the page->private field (long) to hold a bitmap
97 * of uptodate regions within the page.
98 *
99 * Each such region is "bytes per page / bits per long" bytes long.
100 *
101 * NBPPR == number-of-bytes-per-page-region
102 * BTOPR == bytes-to-page-region (rounded up)
103 * BTOPRT == bytes-to-page-region-truncated (rounded down)
104 */
105#if (BITS_PER_LONG == 32)
106#define PRSHIFT (PAGE_CACHE_SHIFT - 5) /* (32 == 1<<5) */
107#elif (BITS_PER_LONG == 64)
108#define PRSHIFT (PAGE_CACHE_SHIFT - 6) /* (64 == 1<<6) */
109#else
110#error BITS_PER_LONG must be 32 or 64
111#endif
112#define NBPPR (PAGE_CACHE_SIZE/BITS_PER_LONG)
113#define BTOPR(b) (((unsigned int)(b) + (NBPPR - 1)) >> PRSHIFT)
114#define BTOPRT(b) (((unsigned int)(b) >> PRSHIFT))
115
116STATIC unsigned long
117page_region_mask(
118 size_t offset,
119 size_t length)
120{
121 unsigned long mask;
122 int first, final;
123
124 first = BTOPR(offset);
125 final = BTOPRT(offset + length - 1);
126 first = min(first, final);
127
128 mask = ~0UL;
129 mask <<= BITS_PER_LONG - (final - first);
130 mask >>= BITS_PER_LONG - (final);
131
132 ASSERT(offset + length <= PAGE_CACHE_SIZE);
133 ASSERT((final - first) < BITS_PER_LONG && (final - first) >= 0);
134
135 return mask;
136}
137
138STATIC inline void
139set_page_region(
140 struct page *page,
141 size_t offset,
142 size_t length)
143{
4c21e2f2
HD
144 set_page_private(page,
145 page_private(page) | page_region_mask(offset, length));
146 if (page_private(page) == ~0UL)
1da177e4
LT
147 SetPageUptodate(page);
148}
149
150STATIC inline int
151test_page_region(
152 struct page *page,
153 size_t offset,
154 size_t length)
155{
156 unsigned long mask = page_region_mask(offset, length);
157
4c21e2f2 158 return (mask && (page_private(page) & mask) == mask);
1da177e4
LT
159}
160
161/*
162 * Mapping of multi-page buffers into contiguous virtual space
163 */
164
165typedef struct a_list {
166 void *vm_addr;
167 struct a_list *next;
168} a_list_t;
169
170STATIC a_list_t *as_free_head;
171STATIC int as_list_len;
172STATIC DEFINE_SPINLOCK(as_lock);
173
174/*
175 * Try to batch vunmaps because they are costly.
176 */
177STATIC void
178free_address(
179 void *addr)
180{
181 a_list_t *aentry;
182
183 aentry = kmalloc(sizeof(a_list_t), GFP_ATOMIC & ~__GFP_HIGH);
184 if (likely(aentry)) {
185 spin_lock(&as_lock);
186 aentry->next = as_free_head;
187 aentry->vm_addr = addr;
188 as_free_head = aentry;
189 as_list_len++;
190 spin_unlock(&as_lock);
191 } else {
192 vunmap(addr);
193 }
194}
195
196STATIC void
197purge_addresses(void)
198{
199 a_list_t *aentry, *old;
200
201 if (as_free_head == NULL)
202 return;
203
204 spin_lock(&as_lock);
205 aentry = as_free_head;
206 as_free_head = NULL;
207 as_list_len = 0;
208 spin_unlock(&as_lock);
209
210 while ((old = aentry) != NULL) {
211 vunmap(aentry->vm_addr);
212 aentry = aentry->next;
213 kfree(old);
214 }
215}
216
217/*
218 * Internal pagebuf object manipulation
219 */
220
221STATIC void
222_pagebuf_initialize(
223 xfs_buf_t *pb,
224 xfs_buftarg_t *target,
225 loff_t range_base,
226 size_t range_length,
227 page_buf_flags_t flags)
228{
229 /*
230 * We don't want certain flags to appear in pb->pb_flags.
231 */
232 flags &= ~(PBF_LOCK|PBF_MAPPED|PBF_DONT_BLOCK|PBF_READ_AHEAD);
233
234 memset(pb, 0, sizeof(xfs_buf_t));
235 atomic_set(&pb->pb_hold, 1);
236 init_MUTEX_LOCKED(&pb->pb_iodonesema);
237 INIT_LIST_HEAD(&pb->pb_list);
238 INIT_LIST_HEAD(&pb->pb_hash_list);
239 init_MUTEX_LOCKED(&pb->pb_sema); /* held, no waiters */
240 PB_SET_OWNER(pb);
241 pb->pb_target = target;
242 pb->pb_file_offset = range_base;
243 /*
244 * Set buffer_length and count_desired to the same value initially.
245 * I/O routines should use count_desired, which will be the same in
246 * most cases but may be reset (e.g. XFS recovery).
247 */
248 pb->pb_buffer_length = pb->pb_count_desired = range_length;
c86e711c 249 pb->pb_flags = flags;
1da177e4
LT
250 pb->pb_bn = XFS_BUF_DADDR_NULL;
251 atomic_set(&pb->pb_pin_count, 0);
252 init_waitqueue_head(&pb->pb_waiters);
253
254 XFS_STATS_INC(pb_create);
255 PB_TRACE(pb, "initialize", target);
256}
257
258/*
259 * Allocate a page array capable of holding a specified number
260 * of pages, and point the page buf at it.
261 */
262STATIC int
263_pagebuf_get_pages(
264 xfs_buf_t *pb,
265 int page_count,
266 page_buf_flags_t flags)
267{
268 /* Make sure that we have a page list */
269 if (pb->pb_pages == NULL) {
270 pb->pb_offset = page_buf_poff(pb->pb_file_offset);
271 pb->pb_page_count = page_count;
272 if (page_count <= PB_PAGES) {
273 pb->pb_pages = pb->pb_page_array;
274 } else {
275 pb->pb_pages = kmem_alloc(sizeof(struct page *) *
276 page_count, pb_to_km(flags));
277 if (pb->pb_pages == NULL)
278 return -ENOMEM;
279 }
280 memset(pb->pb_pages, 0, sizeof(struct page *) * page_count);
281 }
282 return 0;
283}
284
285/*
286 * Frees pb_pages if it was malloced.
287 */
288STATIC void
289_pagebuf_free_pages(
290 xfs_buf_t *bp)
291{
292 if (bp->pb_pages != bp->pb_page_array) {
293 kmem_free(bp->pb_pages,
294 bp->pb_page_count * sizeof(struct page *));
295 }
296}
297
298/*
299 * Releases the specified buffer.
300 *
301 * The modification state of any associated pages is left unchanged.
302 * The buffer most not be on any hash - use pagebuf_rele instead for
303 * hashed and refcounted buffers
304 */
305void
306pagebuf_free(
307 xfs_buf_t *bp)
308{
309 PB_TRACE(bp, "free", 0);
310
311 ASSERT(list_empty(&bp->pb_hash_list));
312
313 if (bp->pb_flags & _PBF_PAGE_CACHE) {
314 uint i;
315
316 if ((bp->pb_flags & PBF_MAPPED) && (bp->pb_page_count > 1))
317 free_address(bp->pb_addr - bp->pb_offset);
318
319 for (i = 0; i < bp->pb_page_count; i++)
320 page_cache_release(bp->pb_pages[i]);
321 _pagebuf_free_pages(bp);
322 } else if (bp->pb_flags & _PBF_KMEM_ALLOC) {
323 /*
324 * XXX(hch): bp->pb_count_desired might be incorrect (see
325 * pagebuf_associate_memory for details), but fortunately
326 * the Linux version of kmem_free ignores the len argument..
327 */
328 kmem_free(bp->pb_addr, bp->pb_count_desired);
329 _pagebuf_free_pages(bp);
330 }
331
332 pagebuf_deallocate(bp);
333}
334
335/*
336 * Finds all pages for buffer in question and builds it's page list.
337 */
338STATIC int
339_pagebuf_lookup_pages(
340 xfs_buf_t *bp,
341 uint flags)
342{
343 struct address_space *mapping = bp->pb_target->pbr_mapping;
344 size_t blocksize = bp->pb_target->pbr_bsize;
345 size_t size = bp->pb_count_desired;
346 size_t nbytes, offset;
27496a8c 347 gfp_t gfp_mask = pb_to_gfp(flags);
1da177e4
LT
348 unsigned short page_count, i;
349 pgoff_t first;
350 loff_t end;
351 int error;
352
353 end = bp->pb_file_offset + bp->pb_buffer_length;
354 page_count = page_buf_btoc(end) - page_buf_btoct(bp->pb_file_offset);
355
356 error = _pagebuf_get_pages(bp, page_count, flags);
357 if (unlikely(error))
358 return error;
359 bp->pb_flags |= _PBF_PAGE_CACHE;
360
361 offset = bp->pb_offset;
362 first = bp->pb_file_offset >> PAGE_CACHE_SHIFT;
363
364 for (i = 0; i < bp->pb_page_count; i++) {
365 struct page *page;
366 uint retries = 0;
367
368 retry:
369 page = find_or_create_page(mapping, first + i, gfp_mask);
370 if (unlikely(page == NULL)) {
371 if (flags & PBF_READ_AHEAD) {
372 bp->pb_page_count = i;
373 for (i = 0; i < bp->pb_page_count; i++)
374 unlock_page(bp->pb_pages[i]);
375 return -ENOMEM;
376 }
377
378 /*
379 * This could deadlock.
380 *
381 * But until all the XFS lowlevel code is revamped to
382 * handle buffer allocation failures we can't do much.
383 */
384 if (!(++retries % 100))
385 printk(KERN_ERR
386 "XFS: possible memory allocation "
387 "deadlock in %s (mode:0x%x)\n",
388 __FUNCTION__, gfp_mask);
389
390 XFS_STATS_INC(pb_page_retries);
23ea4032 391 xfsbufd_wakeup(0, gfp_mask);
1da177e4
LT
392 blk_congestion_wait(WRITE, HZ/50);
393 goto retry;
394 }
395
396 XFS_STATS_INC(pb_page_found);
397
398 nbytes = min_t(size_t, size, PAGE_CACHE_SIZE - offset);
399 size -= nbytes;
400
401 if (!PageUptodate(page)) {
402 page_count--;
403 if (blocksize >= PAGE_CACHE_SIZE) {
404 if (flags & PBF_READ)
405 bp->pb_locked = 1;
406 } else if (!PagePrivate(page)) {
407 if (test_page_region(page, offset, nbytes))
408 page_count++;
409 }
410 }
411
412 bp->pb_pages[i] = page;
413 offset = 0;
414 }
415
416 if (!bp->pb_locked) {
417 for (i = 0; i < bp->pb_page_count; i++)
418 unlock_page(bp->pb_pages[i]);
419 }
420
c86e711c
CH
421 if (page_count == bp->pb_page_count)
422 bp->pb_flags |= PBF_DONE;
1da177e4
LT
423
424 PB_TRACE(bp, "lookup_pages", (long)page_count);
425 return error;
426}
427
428/*
429 * Map buffer into kernel address-space if nessecary.
430 */
431STATIC int
432_pagebuf_map_pages(
433 xfs_buf_t *bp,
434 uint flags)
435{
436 /* A single page buffer is always mappable */
437 if (bp->pb_page_count == 1) {
438 bp->pb_addr = page_address(bp->pb_pages[0]) + bp->pb_offset;
439 bp->pb_flags |= PBF_MAPPED;
440 } else if (flags & PBF_MAPPED) {
441 if (as_list_len > 64)
442 purge_addresses();
443 bp->pb_addr = vmap(bp->pb_pages, bp->pb_page_count,
444 VM_MAP, PAGE_KERNEL);
445 if (unlikely(bp->pb_addr == NULL))
446 return -ENOMEM;
447 bp->pb_addr += bp->pb_offset;
448 bp->pb_flags |= PBF_MAPPED;
449 }
450
451 return 0;
452}
453
454/*
455 * Finding and Reading Buffers
456 */
457
458/*
459 * _pagebuf_find
460 *
461 * Looks up, and creates if absent, a lockable buffer for
462 * a given range of an inode. The buffer is returned
463 * locked. If other overlapping buffers exist, they are
464 * released before the new buffer is created and locked,
465 * which may imply that this call will block until those buffers
466 * are unlocked. No I/O is implied by this call.
467 */
468xfs_buf_t *
469_pagebuf_find(
470 xfs_buftarg_t *btp, /* block device target */
471 loff_t ioff, /* starting offset of range */
472 size_t isize, /* length of range */
473 page_buf_flags_t flags, /* PBF_TRYLOCK */
474 xfs_buf_t *new_pb)/* newly allocated buffer */
475{
476 loff_t range_base;
477 size_t range_length;
478 xfs_bufhash_t *hash;
479 xfs_buf_t *pb, *n;
480
481 range_base = (ioff << BBSHIFT);
482 range_length = (isize << BBSHIFT);
483
484 /* Check for IOs smaller than the sector size / not sector aligned */
485 ASSERT(!(range_length < (1 << btp->pbr_sshift)));
486 ASSERT(!(range_base & (loff_t)btp->pbr_smask));
487
488 hash = &btp->bt_hash[hash_long((unsigned long)ioff, btp->bt_hashshift)];
489
490 spin_lock(&hash->bh_lock);
491
492 list_for_each_entry_safe(pb, n, &hash->bh_list, pb_hash_list) {
493 ASSERT(btp == pb->pb_target);
494 if (pb->pb_file_offset == range_base &&
495 pb->pb_buffer_length == range_length) {
496 /*
497 * If we look at something bring it to the
498 * front of the list for next time.
499 */
500 atomic_inc(&pb->pb_hold);
501 list_move(&pb->pb_hash_list, &hash->bh_list);
502 goto found;
503 }
504 }
505
506 /* No match found */
507 if (new_pb) {
508 _pagebuf_initialize(new_pb, btp, range_base,
509 range_length, flags);
510 new_pb->pb_hash = hash;
511 list_add(&new_pb->pb_hash_list, &hash->bh_list);
512 } else {
513 XFS_STATS_INC(pb_miss_locked);
514 }
515
516 spin_unlock(&hash->bh_lock);
517 return new_pb;
518
519found:
520 spin_unlock(&hash->bh_lock);
521
522 /* Attempt to get the semaphore without sleeping,
523 * if this does not work then we need to drop the
524 * spinlock and do a hard attempt on the semaphore.
525 */
526 if (down_trylock(&pb->pb_sema)) {
527 if (!(flags & PBF_TRYLOCK)) {
528 /* wait for buffer ownership */
529 PB_TRACE(pb, "get_lock", 0);
530 pagebuf_lock(pb);
531 XFS_STATS_INC(pb_get_locked_waited);
532 } else {
533 /* We asked for a trylock and failed, no need
534 * to look at file offset and length here, we
535 * know that this pagebuf at least overlaps our
536 * pagebuf and is locked, therefore our buffer
537 * either does not exist, or is this buffer
538 */
539
540 pagebuf_rele(pb);
541 XFS_STATS_INC(pb_busy_locked);
542 return (NULL);
543 }
544 } else {
545 /* trylock worked */
546 PB_SET_OWNER(pb);
547 }
548
2f926587
DC
549 if (pb->pb_flags & PBF_STALE) {
550 ASSERT((pb->pb_flags & _PBF_DELWRI_Q) == 0);
1da177e4 551 pb->pb_flags &= PBF_MAPPED;
2f926587 552 }
1da177e4
LT
553 PB_TRACE(pb, "got_lock", 0);
554 XFS_STATS_INC(pb_get_locked);
555 return (pb);
556}
557
558/*
559 * xfs_buf_get_flags assembles a buffer covering the specified range.
560 *
561 * Storage in memory for all portions of the buffer will be allocated,
562 * although backing storage may not be.
563 */
564xfs_buf_t *
565xfs_buf_get_flags( /* allocate a buffer */
566 xfs_buftarg_t *target,/* target for buffer */
567 loff_t ioff, /* starting offset of range */
568 size_t isize, /* length of range */
569 page_buf_flags_t flags) /* PBF_TRYLOCK */
570{
571 xfs_buf_t *pb, *new_pb;
572 int error = 0, i;
573
574 new_pb = pagebuf_allocate(flags);
575 if (unlikely(!new_pb))
576 return NULL;
577
578 pb = _pagebuf_find(target, ioff, isize, flags, new_pb);
579 if (pb == new_pb) {
580 error = _pagebuf_lookup_pages(pb, flags);
581 if (error)
582 goto no_buffer;
583 } else {
584 pagebuf_deallocate(new_pb);
585 if (unlikely(pb == NULL))
586 return NULL;
587 }
588
589 for (i = 0; i < pb->pb_page_count; i++)
590 mark_page_accessed(pb->pb_pages[i]);
591
592 if (!(pb->pb_flags & PBF_MAPPED)) {
593 error = _pagebuf_map_pages(pb, flags);
594 if (unlikely(error)) {
595 printk(KERN_WARNING "%s: failed to map pages\n",
596 __FUNCTION__);
597 goto no_buffer;
598 }
599 }
600
601 XFS_STATS_INC(pb_get);
602
603 /*
604 * Always fill in the block number now, the mapped cases can do
605 * their own overlay of this later.
606 */
607 pb->pb_bn = ioff;
608 pb->pb_count_desired = pb->pb_buffer_length;
609
610 PB_TRACE(pb, "get", (unsigned long)flags);
611 return pb;
612
613 no_buffer:
614 if (flags & (PBF_LOCK | PBF_TRYLOCK))
615 pagebuf_unlock(pb);
616 pagebuf_rele(pb);
617 return NULL;
618}
619
620xfs_buf_t *
621xfs_buf_read_flags(
622 xfs_buftarg_t *target,
623 loff_t ioff,
624 size_t isize,
625 page_buf_flags_t flags)
626{
627 xfs_buf_t *pb;
628
629 flags |= PBF_READ;
630
631 pb = xfs_buf_get_flags(target, ioff, isize, flags);
632 if (pb) {
88741a95 633 if (!XFS_BUF_ISDONE(pb)) {
1da177e4
LT
634 PB_TRACE(pb, "read", (unsigned long)flags);
635 XFS_STATS_INC(pb_get_read);
636 pagebuf_iostart(pb, flags);
637 } else if (flags & PBF_ASYNC) {
638 PB_TRACE(pb, "read_async", (unsigned long)flags);
639 /*
640 * Read ahead call which is already satisfied,
641 * drop the buffer
642 */
643 goto no_buffer;
644 } else {
645 PB_TRACE(pb, "read_done", (unsigned long)flags);
646 /* We do not want read in the flags */
647 pb->pb_flags &= ~PBF_READ;
648 }
649 }
650
651 return pb;
652
653 no_buffer:
654 if (flags & (PBF_LOCK | PBF_TRYLOCK))
655 pagebuf_unlock(pb);
656 pagebuf_rele(pb);
657 return NULL;
658}
659
1da177e4
LT
660/*
661 * If we are not low on memory then do the readahead in a deadlock
662 * safe manner.
663 */
664void
665pagebuf_readahead(
666 xfs_buftarg_t *target,
667 loff_t ioff,
668 size_t isize,
669 page_buf_flags_t flags)
670{
671 struct backing_dev_info *bdi;
672
673 bdi = target->pbr_mapping->backing_dev_info;
674 if (bdi_read_congested(bdi))
675 return;
676
677 flags |= (PBF_TRYLOCK|PBF_ASYNC|PBF_READ_AHEAD);
678 xfs_buf_read_flags(target, ioff, isize, flags);
679}
680
681xfs_buf_t *
682pagebuf_get_empty(
683 size_t len,
684 xfs_buftarg_t *target)
685{
686 xfs_buf_t *pb;
687
688 pb = pagebuf_allocate(0);
689 if (pb)
690 _pagebuf_initialize(pb, target, 0, len, 0);
691 return pb;
692}
693
694static inline struct page *
695mem_to_page(
696 void *addr)
697{
698 if (((unsigned long)addr < VMALLOC_START) ||
699 ((unsigned long)addr >= VMALLOC_END)) {
700 return virt_to_page(addr);
701 } else {
702 return vmalloc_to_page(addr);
703 }
704}
705
706int
707pagebuf_associate_memory(
708 xfs_buf_t *pb,
709 void *mem,
710 size_t len)
711{
712 int rval;
713 int i = 0;
714 size_t ptr;
715 size_t end, end_cur;
716 off_t offset;
717 int page_count;
718
719 page_count = PAGE_CACHE_ALIGN(len) >> PAGE_CACHE_SHIFT;
720 offset = (off_t) mem - ((off_t)mem & PAGE_CACHE_MASK);
721 if (offset && (len > PAGE_CACHE_SIZE))
722 page_count++;
723
724 /* Free any previous set of page pointers */
725 if (pb->pb_pages)
726 _pagebuf_free_pages(pb);
727
728 pb->pb_pages = NULL;
729 pb->pb_addr = mem;
730
731 rval = _pagebuf_get_pages(pb, page_count, 0);
732 if (rval)
733 return rval;
734
735 pb->pb_offset = offset;
736 ptr = (size_t) mem & PAGE_CACHE_MASK;
737 end = PAGE_CACHE_ALIGN((size_t) mem + len);
738 end_cur = end;
739 /* set up first page */
740 pb->pb_pages[0] = mem_to_page(mem);
741
742 ptr += PAGE_CACHE_SIZE;
743 pb->pb_page_count = ++i;
744 while (ptr < end) {
745 pb->pb_pages[i] = mem_to_page((void *)ptr);
746 pb->pb_page_count = ++i;
747 ptr += PAGE_CACHE_SIZE;
748 }
749 pb->pb_locked = 0;
750
751 pb->pb_count_desired = pb->pb_buffer_length = len;
752 pb->pb_flags |= PBF_MAPPED;
753
754 return 0;
755}
756
757xfs_buf_t *
758pagebuf_get_no_daddr(
759 size_t len,
760 xfs_buftarg_t *target)
761{
762 size_t malloc_len = len;
763 xfs_buf_t *bp;
764 void *data;
765 int error;
766
767 bp = pagebuf_allocate(0);
768 if (unlikely(bp == NULL))
769 goto fail;
88741a95 770 _pagebuf_initialize(bp, target, 0, len, 0);
1da177e4
LT
771
772 try_again:
773 data = kmem_alloc(malloc_len, KM_SLEEP | KM_MAYFAIL);
774 if (unlikely(data == NULL))
775 goto fail_free_buf;
776
777 /* check whether alignment matches.. */
778 if ((__psunsigned_t)data !=
779 ((__psunsigned_t)data & ~target->pbr_smask)) {
780 /* .. else double the size and try again */
781 kmem_free(data, malloc_len);
782 malloc_len <<= 1;
783 goto try_again;
784 }
785
786 error = pagebuf_associate_memory(bp, data, len);
787 if (error)
788 goto fail_free_mem;
789 bp->pb_flags |= _PBF_KMEM_ALLOC;
790
791 pagebuf_unlock(bp);
792
793 PB_TRACE(bp, "no_daddr", data);
794 return bp;
795 fail_free_mem:
796 kmem_free(data, malloc_len);
797 fail_free_buf:
798 pagebuf_free(bp);
799 fail:
800 return NULL;
801}
802
803/*
804 * pagebuf_hold
805 *
806 * Increment reference count on buffer, to hold the buffer concurrently
807 * with another thread which may release (free) the buffer asynchronously.
808 *
809 * Must hold the buffer already to call this function.
810 */
811void
812pagebuf_hold(
813 xfs_buf_t *pb)
814{
815 atomic_inc(&pb->pb_hold);
816 PB_TRACE(pb, "hold", 0);
817}
818
819/*
820 * pagebuf_rele
821 *
822 * pagebuf_rele releases a hold on the specified buffer. If the
823 * the hold count is 1, pagebuf_rele calls pagebuf_free.
824 */
825void
826pagebuf_rele(
827 xfs_buf_t *pb)
828{
829 xfs_bufhash_t *hash = pb->pb_hash;
830
831 PB_TRACE(pb, "rele", pb->pb_relse);
832
2f926587
DC
833 /*
834 * pagebuf_lookup buffers are not hashed, not delayed write,
835 * and don't have their own release routines. Special case.
836 */
837 if (unlikely(!hash)) {
838 ASSERT(!pb->pb_relse);
839 if (atomic_dec_and_test(&pb->pb_hold))
840 xfs_buf_free(pb);
841 return;
842 }
843
1da177e4
LT
844 if (atomic_dec_and_lock(&pb->pb_hold, &hash->bh_lock)) {
845 int do_free = 1;
846
847 if (pb->pb_relse) {
848 atomic_inc(&pb->pb_hold);
849 spin_unlock(&hash->bh_lock);
850 (*(pb->pb_relse)) (pb);
851 spin_lock(&hash->bh_lock);
852 do_free = 0;
853 }
854
2f926587 855 if (pb->pb_flags & PBF_FS_MANAGED) {
1da177e4
LT
856 do_free = 0;
857 }
858
859 if (do_free) {
2f926587 860 ASSERT((pb->pb_flags & (PBF_DELWRI|_PBF_DELWRI_Q)) == 0);
1da177e4
LT
861 list_del_init(&pb->pb_hash_list);
862 spin_unlock(&hash->bh_lock);
863 pagebuf_free(pb);
864 } else {
865 spin_unlock(&hash->bh_lock);
866 }
2f926587
DC
867 } else {
868 /*
869 * Catch reference count leaks
870 */
871 ASSERT(atomic_read(&pb->pb_hold) >= 0);
1da177e4
LT
872 }
873}
874
875
876/*
877 * Mutual exclusion on buffers. Locking model:
878 *
879 * Buffers associated with inodes for which buffer locking
880 * is not enabled are not protected by semaphores, and are
881 * assumed to be exclusively owned by the caller. There is a
882 * spinlock in the buffer, used by the caller when concurrent
883 * access is possible.
884 */
885
886/*
887 * pagebuf_cond_lock
888 *
889 * pagebuf_cond_lock locks a buffer object, if it is not already locked.
890 * Note that this in no way
891 * locks the underlying pages, so it is only useful for synchronizing
892 * concurrent use of page buffer objects, not for synchronizing independent
893 * access to the underlying pages.
894 */
895int
896pagebuf_cond_lock( /* lock buffer, if not locked */
897 /* returns -EBUSY if locked) */
898 xfs_buf_t *pb)
899{
900 int locked;
901
902 locked = down_trylock(&pb->pb_sema) == 0;
903 if (locked) {
904 PB_SET_OWNER(pb);
905 }
906 PB_TRACE(pb, "cond_lock", (long)locked);
907 return(locked ? 0 : -EBUSY);
908}
909
910#if defined(DEBUG) || defined(XFS_BLI_TRACE)
911/*
912 * pagebuf_lock_value
913 *
914 * Return lock value for a pagebuf
915 */
916int
917pagebuf_lock_value(
918 xfs_buf_t *pb)
919{
920 return(atomic_read(&pb->pb_sema.count));
921}
922#endif
923
924/*
925 * pagebuf_lock
926 *
927 * pagebuf_lock locks a buffer object. Note that this in no way
928 * locks the underlying pages, so it is only useful for synchronizing
929 * concurrent use of page buffer objects, not for synchronizing independent
930 * access to the underlying pages.
931 */
932int
933pagebuf_lock(
934 xfs_buf_t *pb)
935{
936 PB_TRACE(pb, "lock", 0);
937 if (atomic_read(&pb->pb_io_remaining))
938 blk_run_address_space(pb->pb_target->pbr_mapping);
939 down(&pb->pb_sema);
940 PB_SET_OWNER(pb);
941 PB_TRACE(pb, "locked", 0);
942 return 0;
943}
944
945/*
946 * pagebuf_unlock
947 *
948 * pagebuf_unlock releases the lock on the buffer object created by
2f926587
DC
949 * pagebuf_lock or pagebuf_cond_lock (not any pinning of underlying pages
950 * created by pagebuf_pin).
951 *
952 * If the buffer is marked delwri but is not queued, do so before we
953 * unlock the buffer as we need to set flags correctly. We also need to
954 * take a reference for the delwri queue because the unlocker is going to
955 * drop their's and they don't know we just queued it.
1da177e4
LT
956 */
957void
958pagebuf_unlock( /* unlock buffer */
959 xfs_buf_t *pb) /* buffer to unlock */
960{
2f926587
DC
961 if ((pb->pb_flags & (PBF_DELWRI|_PBF_DELWRI_Q)) == PBF_DELWRI) {
962 atomic_inc(&pb->pb_hold);
963 pb->pb_flags |= PBF_ASYNC;
964 pagebuf_delwri_queue(pb, 0);
965 }
966
1da177e4
LT
967 PB_CLEAR_OWNER(pb);
968 up(&pb->pb_sema);
969 PB_TRACE(pb, "unlock", 0);
970}
971
972
973/*
974 * Pinning Buffer Storage in Memory
975 */
976
977/*
978 * pagebuf_pin
979 *
980 * pagebuf_pin locks all of the memory represented by a buffer in
981 * memory. Multiple calls to pagebuf_pin and pagebuf_unpin, for
982 * the same or different buffers affecting a given page, will
983 * properly count the number of outstanding "pin" requests. The
984 * buffer may be released after the pagebuf_pin and a different
985 * buffer used when calling pagebuf_unpin, if desired.
986 * pagebuf_pin should be used by the file system when it wants be
987 * assured that no attempt will be made to force the affected
988 * memory to disk. It does not assure that a given logical page
989 * will not be moved to a different physical page.
990 */
991void
992pagebuf_pin(
993 xfs_buf_t *pb)
994{
995 atomic_inc(&pb->pb_pin_count);
996 PB_TRACE(pb, "pin", (long)pb->pb_pin_count.counter);
997}
998
999/*
1000 * pagebuf_unpin
1001 *
1002 * pagebuf_unpin reverses the locking of memory performed by
1003 * pagebuf_pin. Note that both functions affected the logical
1004 * pages associated with the buffer, not the buffer itself.
1005 */
1006void
1007pagebuf_unpin(
1008 xfs_buf_t *pb)
1009{
1010 if (atomic_dec_and_test(&pb->pb_pin_count)) {
1011 wake_up_all(&pb->pb_waiters);
1012 }
1013 PB_TRACE(pb, "unpin", (long)pb->pb_pin_count.counter);
1014}
1015
1016int
1017pagebuf_ispin(
1018 xfs_buf_t *pb)
1019{
1020 return atomic_read(&pb->pb_pin_count);
1021}
1022
1023/*
1024 * pagebuf_wait_unpin
1025 *
1026 * pagebuf_wait_unpin waits until all of the memory associated
1027 * with the buffer is not longer locked in memory. It returns
1028 * immediately if none of the affected pages are locked.
1029 */
1030static inline void
1031_pagebuf_wait_unpin(
1032 xfs_buf_t *pb)
1033{
1034 DECLARE_WAITQUEUE (wait, current);
1035
1036 if (atomic_read(&pb->pb_pin_count) == 0)
1037 return;
1038
1039 add_wait_queue(&pb->pb_waiters, &wait);
1040 for (;;) {
1041 set_current_state(TASK_UNINTERRUPTIBLE);
1042 if (atomic_read(&pb->pb_pin_count) == 0)
1043 break;
1044 if (atomic_read(&pb->pb_io_remaining))
1045 blk_run_address_space(pb->pb_target->pbr_mapping);
1046 schedule();
1047 }
1048 remove_wait_queue(&pb->pb_waiters, &wait);
1049 set_current_state(TASK_RUNNING);
1050}
1051
1052/*
1053 * Buffer Utility Routines
1054 */
1055
1056/*
1057 * pagebuf_iodone
1058 *
1059 * pagebuf_iodone marks a buffer for which I/O is in progress
1060 * done with respect to that I/O. The pb_iodone routine, if
1061 * present, will be called as a side-effect.
1062 */
1063STATIC void
1064pagebuf_iodone_work(
1065 void *v)
1066{
1067 xfs_buf_t *bp = (xfs_buf_t *)v;
1068
1069 if (bp->pb_iodone)
1070 (*(bp->pb_iodone))(bp);
1071 else if (bp->pb_flags & PBF_ASYNC)
1072 xfs_buf_relse(bp);
1073}
1074
1075void
1076pagebuf_iodone(
1077 xfs_buf_t *pb,
1da177e4
LT
1078 int schedule)
1079{
1080 pb->pb_flags &= ~(PBF_READ | PBF_WRITE);
88741a95 1081 if (pb->pb_error == 0)
c86e711c 1082 pb->pb_flags |= PBF_DONE;
1da177e4
LT
1083
1084 PB_TRACE(pb, "iodone", pb->pb_iodone);
1085
1086 if ((pb->pb_iodone) || (pb->pb_flags & PBF_ASYNC)) {
1087 if (schedule) {
1088 INIT_WORK(&pb->pb_iodone_work, pagebuf_iodone_work, pb);
88741a95 1089 queue_work(xfslogd_workqueue, &pb->pb_iodone_work);
1da177e4
LT
1090 } else {
1091 pagebuf_iodone_work(pb);
1092 }
1093 } else {
1094 up(&pb->pb_iodonesema);
1095 }
1096}
1097
1098/*
1099 * pagebuf_ioerror
1100 *
1101 * pagebuf_ioerror sets the error code for a buffer.
1102 */
1103void
1104pagebuf_ioerror( /* mark/clear buffer error flag */
1105 xfs_buf_t *pb, /* buffer to mark */
1106 int error) /* error to store (0 if none) */
1107{
1108 ASSERT(error >= 0 && error <= 0xffff);
1109 pb->pb_error = (unsigned short)error;
1110 PB_TRACE(pb, "ioerror", (unsigned long)error);
1111}
1112
1113/*
1114 * pagebuf_iostart
1115 *
1116 * pagebuf_iostart initiates I/O on a buffer, based on the flags supplied.
1117 * If necessary, it will arrange for any disk space allocation required,
1118 * and it will break up the request if the block mappings require it.
1119 * The pb_iodone routine in the buffer supplied will only be called
1120 * when all of the subsidiary I/O requests, if any, have been completed.
1121 * pagebuf_iostart calls the pagebuf_ioinitiate routine or
1122 * pagebuf_iorequest, if the former routine is not defined, to start
1123 * the I/O on a given low-level request.
1124 */
1125int
1126pagebuf_iostart( /* start I/O on a buffer */
1127 xfs_buf_t *pb, /* buffer to start */
1128 page_buf_flags_t flags) /* PBF_LOCK, PBF_ASYNC, PBF_READ, */
1129 /* PBF_WRITE, PBF_DELWRI, */
1130 /* PBF_DONT_BLOCK */
1131{
1132 int status = 0;
1133
1134 PB_TRACE(pb, "iostart", (unsigned long)flags);
1135
1136 if (flags & PBF_DELWRI) {
1137 pb->pb_flags &= ~(PBF_READ | PBF_WRITE | PBF_ASYNC);
1138 pb->pb_flags |= flags & (PBF_DELWRI | PBF_ASYNC);
1139 pagebuf_delwri_queue(pb, 1);
1140 return status;
1141 }
1142
1143 pb->pb_flags &= ~(PBF_READ | PBF_WRITE | PBF_ASYNC | PBF_DELWRI | \
1144 PBF_READ_AHEAD | _PBF_RUN_QUEUES);
1145 pb->pb_flags |= flags & (PBF_READ | PBF_WRITE | PBF_ASYNC | \
1146 PBF_READ_AHEAD | _PBF_RUN_QUEUES);
1147
1148 BUG_ON(pb->pb_bn == XFS_BUF_DADDR_NULL);
1149
1150 /* For writes allow an alternate strategy routine to precede
1151 * the actual I/O request (which may not be issued at all in
1152 * a shutdown situation, for example).
1153 */
1154 status = (flags & PBF_WRITE) ?
1155 pagebuf_iostrategy(pb) : pagebuf_iorequest(pb);
1156
1157 /* Wait for I/O if we are not an async request.
1158 * Note: async I/O request completion will release the buffer,
1159 * and that can already be done by this point. So using the
1160 * buffer pointer from here on, after async I/O, is invalid.
1161 */
1162 if (!status && !(flags & PBF_ASYNC))
1163 status = pagebuf_iowait(pb);
1164
1165 return status;
1166}
1167
1168/*
1169 * Helper routine for pagebuf_iorequest
1170 */
1171
1172STATIC __inline__ int
1173_pagebuf_iolocked(
1174 xfs_buf_t *pb)
1175{
1176 ASSERT(pb->pb_flags & (PBF_READ|PBF_WRITE));
1177 if (pb->pb_flags & PBF_READ)
1178 return pb->pb_locked;
1179 return 0;
1180}
1181
1182STATIC __inline__ void
1183_pagebuf_iodone(
1184 xfs_buf_t *pb,
1185 int schedule)
1186{
1187 if (atomic_dec_and_test(&pb->pb_io_remaining) == 1) {
1188 pb->pb_locked = 0;
88741a95 1189 pagebuf_iodone(pb, schedule);
1da177e4
LT
1190 }
1191}
1192
1193STATIC int
1194bio_end_io_pagebuf(
1195 struct bio *bio,
1196 unsigned int bytes_done,
1197 int error)
1198{
1199 xfs_buf_t *pb = (xfs_buf_t *)bio->bi_private;
eedb5530
NS
1200 unsigned int blocksize = pb->pb_target->pbr_bsize;
1201 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
1da177e4
LT
1202
1203 if (bio->bi_size)
1204 return 1;
1205
1206 if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
1207 pb->pb_error = EIO;
1208
eedb5530 1209 do {
1da177e4
LT
1210 struct page *page = bvec->bv_page;
1211
eedb5530
NS
1212 if (unlikely(pb->pb_error)) {
1213 if (pb->pb_flags & PBF_READ)
1214 ClearPageUptodate(page);
1da177e4
LT
1215 SetPageError(page);
1216 } else if (blocksize == PAGE_CACHE_SIZE) {
1217 SetPageUptodate(page);
1218 } else if (!PagePrivate(page) &&
1219 (pb->pb_flags & _PBF_PAGE_CACHE)) {
1220 set_page_region(page, bvec->bv_offset, bvec->bv_len);
1221 }
1222
eedb5530
NS
1223 if (--bvec >= bio->bi_io_vec)
1224 prefetchw(&bvec->bv_page->flags);
1225
1da177e4
LT
1226 if (_pagebuf_iolocked(pb)) {
1227 unlock_page(page);
1228 }
eedb5530 1229 } while (bvec >= bio->bi_io_vec);
1da177e4
LT
1230
1231 _pagebuf_iodone(pb, 1);
1232 bio_put(bio);
1233 return 0;
1234}
1235
1236STATIC void
1237_pagebuf_ioapply(
1238 xfs_buf_t *pb)
1239{
1240 int i, rw, map_i, total_nr_pages, nr_pages;
1241 struct bio *bio;
1242 int offset = pb->pb_offset;
1243 int size = pb->pb_count_desired;
1244 sector_t sector = pb->pb_bn;
1245 unsigned int blocksize = pb->pb_target->pbr_bsize;
1246 int locking = _pagebuf_iolocked(pb);
1247
1248 total_nr_pages = pb->pb_page_count;
1249 map_i = 0;
1250
1251 if (pb->pb_flags & _PBF_RUN_QUEUES) {
1252 pb->pb_flags &= ~_PBF_RUN_QUEUES;
1253 rw = (pb->pb_flags & PBF_READ) ? READ_SYNC : WRITE_SYNC;
1254 } else {
1255 rw = (pb->pb_flags & PBF_READ) ? READ : WRITE;
1256 }
1257
f538d4da
CH
1258 if (pb->pb_flags & PBF_ORDERED) {
1259 ASSERT(!(pb->pb_flags & PBF_READ));
1260 rw = WRITE_BARRIER;
1261 }
1262
1da177e4
LT
1263 /* Special code path for reading a sub page size pagebuf in --
1264 * we populate up the whole page, and hence the other metadata
1265 * in the same page. This optimization is only valid when the
1266 * filesystem block size and the page size are equal.
1267 */
1268 if ((pb->pb_buffer_length < PAGE_CACHE_SIZE) &&
1269 (pb->pb_flags & PBF_READ) && locking &&
1270 (blocksize == PAGE_CACHE_SIZE)) {
1271 bio = bio_alloc(GFP_NOIO, 1);
1272
1273 bio->bi_bdev = pb->pb_target->pbr_bdev;
1274 bio->bi_sector = sector - (offset >> BBSHIFT);
1275 bio->bi_end_io = bio_end_io_pagebuf;
1276 bio->bi_private = pb;
1277
1278 bio_add_page(bio, pb->pb_pages[0], PAGE_CACHE_SIZE, 0);
1279 size = 0;
1280
1281 atomic_inc(&pb->pb_io_remaining);
1282
1283 goto submit_io;
1284 }
1285
1286 /* Lock down the pages which we need to for the request */
1287 if (locking && (pb->pb_flags & PBF_WRITE) && (pb->pb_locked == 0)) {
1288 for (i = 0; size; i++) {
1289 int nbytes = PAGE_CACHE_SIZE - offset;
1290 struct page *page = pb->pb_pages[i];
1291
1292 if (nbytes > size)
1293 nbytes = size;
1294
1295 lock_page(page);
1296
1297 size -= nbytes;
1298 offset = 0;
1299 }
1300 offset = pb->pb_offset;
1301 size = pb->pb_count_desired;
1302 }
1303
1304next_chunk:
1305 atomic_inc(&pb->pb_io_remaining);
1306 nr_pages = BIO_MAX_SECTORS >> (PAGE_SHIFT - BBSHIFT);
1307 if (nr_pages > total_nr_pages)
1308 nr_pages = total_nr_pages;
1309
1310 bio = bio_alloc(GFP_NOIO, nr_pages);
1311 bio->bi_bdev = pb->pb_target->pbr_bdev;
1312 bio->bi_sector = sector;
1313 bio->bi_end_io = bio_end_io_pagebuf;
1314 bio->bi_private = pb;
1315
1316 for (; size && nr_pages; nr_pages--, map_i++) {
1317 int nbytes = PAGE_CACHE_SIZE - offset;
1318
1319 if (nbytes > size)
1320 nbytes = size;
1321
1322 if (bio_add_page(bio, pb->pb_pages[map_i],
1323 nbytes, offset) < nbytes)
1324 break;
1325
1326 offset = 0;
1327 sector += nbytes >> BBSHIFT;
1328 size -= nbytes;
1329 total_nr_pages--;
1330 }
1331
1332submit_io:
1333 if (likely(bio->bi_size)) {
1334 submit_bio(rw, bio);
1335 if (size)
1336 goto next_chunk;
1337 } else {
1338 bio_put(bio);
1339 pagebuf_ioerror(pb, EIO);
1340 }
1341}
1342
1343/*
1344 * pagebuf_iorequest -- the core I/O request routine.
1345 */
1346int
1347pagebuf_iorequest( /* start real I/O */
1348 xfs_buf_t *pb) /* buffer to convey to device */
1349{
1350 PB_TRACE(pb, "iorequest", 0);
1351
1352 if (pb->pb_flags & PBF_DELWRI) {
1353 pagebuf_delwri_queue(pb, 1);
1354 return 0;
1355 }
1356
1357 if (pb->pb_flags & PBF_WRITE) {
1358 _pagebuf_wait_unpin(pb);
1359 }
1360
1361 pagebuf_hold(pb);
1362
1363 /* Set the count to 1 initially, this will stop an I/O
1364 * completion callout which happens before we have started
1365 * all the I/O from calling pagebuf_iodone too early.
1366 */
1367 atomic_set(&pb->pb_io_remaining, 1);
1368 _pagebuf_ioapply(pb);
1369 _pagebuf_iodone(pb, 0);
1370
1371 pagebuf_rele(pb);
1372 return 0;
1373}
1374
1375/*
1376 * pagebuf_iowait
1377 *
1378 * pagebuf_iowait waits for I/O to complete on the buffer supplied.
1379 * It returns immediately if no I/O is pending. In any case, it returns
1380 * the error code, if any, or 0 if there is no error.
1381 */
1382int
1383pagebuf_iowait(
1384 xfs_buf_t *pb)
1385{
1386 PB_TRACE(pb, "iowait", 0);
1387 if (atomic_read(&pb->pb_io_remaining))
1388 blk_run_address_space(pb->pb_target->pbr_mapping);
1389 down(&pb->pb_iodonesema);
1390 PB_TRACE(pb, "iowaited", (long)pb->pb_error);
1391 return pb->pb_error;
1392}
1393
1394caddr_t
1395pagebuf_offset(
1396 xfs_buf_t *pb,
1397 size_t offset)
1398{
1399 struct page *page;
1400
1401 offset += pb->pb_offset;
1402
1403 page = pb->pb_pages[offset >> PAGE_CACHE_SHIFT];
1404 return (caddr_t) page_address(page) + (offset & (PAGE_CACHE_SIZE - 1));
1405}
1406
1407/*
1408 * pagebuf_iomove
1409 *
1410 * Move data into or out of a buffer.
1411 */
1412void
1413pagebuf_iomove(
1414 xfs_buf_t *pb, /* buffer to process */
1415 size_t boff, /* starting buffer offset */
1416 size_t bsize, /* length to copy */
1417 caddr_t data, /* data address */
1418 page_buf_rw_t mode) /* read/write flag */
1419{
1420 size_t bend, cpoff, csize;
1421 struct page *page;
1422
1423 bend = boff + bsize;
1424 while (boff < bend) {
1425 page = pb->pb_pages[page_buf_btoct(boff + pb->pb_offset)];
1426 cpoff = page_buf_poff(boff + pb->pb_offset);
1427 csize = min_t(size_t,
1428 PAGE_CACHE_SIZE-cpoff, pb->pb_count_desired-boff);
1429
1430 ASSERT(((csize + cpoff) <= PAGE_CACHE_SIZE));
1431
1432 switch (mode) {
1433 case PBRW_ZERO:
1434 memset(page_address(page) + cpoff, 0, csize);
1435 break;
1436 case PBRW_READ:
1437 memcpy(data, page_address(page) + cpoff, csize);
1438 break;
1439 case PBRW_WRITE:
1440 memcpy(page_address(page) + cpoff, data, csize);
1441 }
1442
1443 boff += csize;
1444 data += csize;
1445 }
1446}
1447
1448/*
1449 * Handling of buftargs.
1450 */
1451
1452/*
1453 * Wait for any bufs with callbacks that have been submitted but
1454 * have not yet returned... walk the hash list for the target.
1455 */
1456void
1457xfs_wait_buftarg(
1458 xfs_buftarg_t *btp)
1459{
1460 xfs_buf_t *bp, *n;
1461 xfs_bufhash_t *hash;
1462 uint i;
1463
1464 for (i = 0; i < (1 << btp->bt_hashshift); i++) {
1465 hash = &btp->bt_hash[i];
1466again:
1467 spin_lock(&hash->bh_lock);
1468 list_for_each_entry_safe(bp, n, &hash->bh_list, pb_hash_list) {
1469 ASSERT(btp == bp->pb_target);
1470 if (!(bp->pb_flags & PBF_FS_MANAGED)) {
1471 spin_unlock(&hash->bh_lock);
2f926587
DC
1472 /*
1473 * Catch superblock reference count leaks
1474 * immediately
1475 */
1476 BUG_ON(bp->pb_bn == 0);
1da177e4
LT
1477 delay(100);
1478 goto again;
1479 }
1480 }
1481 spin_unlock(&hash->bh_lock);
1482 }
1483}
1484
1485/*
1486 * Allocate buffer hash table for a given target.
1487 * For devices containing metadata (i.e. not the log/realtime devices)
1488 * we need to allocate a much larger hash table.
1489 */
1490STATIC void
1491xfs_alloc_bufhash(
1492 xfs_buftarg_t *btp,
1493 int external)
1494{
1495 unsigned int i;
1496
1497 btp->bt_hashshift = external ? 3 : 8; /* 8 or 256 buckets */
1498 btp->bt_hashmask = (1 << btp->bt_hashshift) - 1;
1499 btp->bt_hash = kmem_zalloc((1 << btp->bt_hashshift) *
1500 sizeof(xfs_bufhash_t), KM_SLEEP);
1501 for (i = 0; i < (1 << btp->bt_hashshift); i++) {
1502 spin_lock_init(&btp->bt_hash[i].bh_lock);
1503 INIT_LIST_HEAD(&btp->bt_hash[i].bh_list);
1504 }
1505}
1506
1507STATIC void
1508xfs_free_bufhash(
1509 xfs_buftarg_t *btp)
1510{
1511 kmem_free(btp->bt_hash,
1512 (1 << btp->bt_hashshift) * sizeof(xfs_bufhash_t));
1513 btp->bt_hash = NULL;
1514}
1515
1516void
1517xfs_free_buftarg(
1518 xfs_buftarg_t *btp,
1519 int external)
1520{
1521 xfs_flush_buftarg(btp, 1);
1522 if (external)
1523 xfs_blkdev_put(btp->pbr_bdev);
1524 xfs_free_bufhash(btp);
1525 iput(btp->pbr_mapping->host);
1526 kmem_free(btp, sizeof(*btp));
1527}
1528
1da177e4
LT
1529STATIC int
1530xfs_setsize_buftarg_flags(
1531 xfs_buftarg_t *btp,
1532 unsigned int blocksize,
1533 unsigned int sectorsize,
1534 int verbose)
1535{
1536 btp->pbr_bsize = blocksize;
1537 btp->pbr_sshift = ffs(sectorsize) - 1;
1538 btp->pbr_smask = sectorsize - 1;
1539
1540 if (set_blocksize(btp->pbr_bdev, sectorsize)) {
1541 printk(KERN_WARNING
1542 "XFS: Cannot set_blocksize to %u on device %s\n",
1543 sectorsize, XFS_BUFTARG_NAME(btp));
1544 return EINVAL;
1545 }
1546
1547 if (verbose &&
1548 (PAGE_CACHE_SIZE / BITS_PER_LONG) > sectorsize) {
1549 printk(KERN_WARNING
1550 "XFS: %u byte sectors in use on device %s. "
1551 "This is suboptimal; %u or greater is ideal.\n",
1552 sectorsize, XFS_BUFTARG_NAME(btp),
1553 (unsigned int)PAGE_CACHE_SIZE / BITS_PER_LONG);
1554 }
1555
1556 return 0;
1557}
1558
1559/*
1560* When allocating the initial buffer target we have not yet
1561* read in the superblock, so don't know what sized sectors
1562* are being used is at this early stage. Play safe.
1563*/
1564STATIC int
1565xfs_setsize_buftarg_early(
1566 xfs_buftarg_t *btp,
1567 struct block_device *bdev)
1568{
1569 return xfs_setsize_buftarg_flags(btp,
1570 PAGE_CACHE_SIZE, bdev_hardsect_size(bdev), 0);
1571}
1572
1573int
1574xfs_setsize_buftarg(
1575 xfs_buftarg_t *btp,
1576 unsigned int blocksize,
1577 unsigned int sectorsize)
1578{
1579 return xfs_setsize_buftarg_flags(btp, blocksize, sectorsize, 1);
1580}
1581
1582STATIC int
1583xfs_mapping_buftarg(
1584 xfs_buftarg_t *btp,
1585 struct block_device *bdev)
1586{
1587 struct backing_dev_info *bdi;
1588 struct inode *inode;
1589 struct address_space *mapping;
1590 static struct address_space_operations mapping_aops = {
1591 .sync_page = block_sync_page,
1592 };
1593
1594 inode = new_inode(bdev->bd_inode->i_sb);
1595 if (!inode) {
1596 printk(KERN_WARNING
1597 "XFS: Cannot allocate mapping inode for device %s\n",
1598 XFS_BUFTARG_NAME(btp));
1599 return ENOMEM;
1600 }
1601 inode->i_mode = S_IFBLK;
1602 inode->i_bdev = bdev;
1603 inode->i_rdev = bdev->bd_dev;
1604 bdi = blk_get_backing_dev_info(bdev);
1605 if (!bdi)
1606 bdi = &default_backing_dev_info;
1607 mapping = &inode->i_data;
1608 mapping->a_ops = &mapping_aops;
1609 mapping->backing_dev_info = bdi;
1610 mapping_set_gfp_mask(mapping, GFP_NOFS);
1611 btp->pbr_mapping = mapping;
1612 return 0;
1613}
1614
1615xfs_buftarg_t *
1616xfs_alloc_buftarg(
1617 struct block_device *bdev,
1618 int external)
1619{
1620 xfs_buftarg_t *btp;
1621
1622 btp = kmem_zalloc(sizeof(*btp), KM_SLEEP);
1623
1624 btp->pbr_dev = bdev->bd_dev;
1625 btp->pbr_bdev = bdev;
1626 if (xfs_setsize_buftarg_early(btp, bdev))
1627 goto error;
1628 if (xfs_mapping_buftarg(btp, bdev))
1629 goto error;
1630 xfs_alloc_bufhash(btp, external);
1631 return btp;
1632
1633error:
1634 kmem_free(btp, sizeof(*btp));
1635 return NULL;
1636}
1637
1638
1639/*
1640 * Pagebuf delayed write buffer handling
1641 */
1642
1643STATIC LIST_HEAD(pbd_delwrite_queue);
1644STATIC DEFINE_SPINLOCK(pbd_delwrite_lock);
1645
1646STATIC void
1647pagebuf_delwri_queue(
1648 xfs_buf_t *pb,
1649 int unlock)
1650{
1651 PB_TRACE(pb, "delwri_q", (long)unlock);
2f926587
DC
1652 ASSERT((pb->pb_flags & (PBF_DELWRI|PBF_ASYNC)) ==
1653 (PBF_DELWRI|PBF_ASYNC));
1da177e4
LT
1654
1655 spin_lock(&pbd_delwrite_lock);
1656 /* If already in the queue, dequeue and place at tail */
1657 if (!list_empty(&pb->pb_list)) {
2f926587 1658 ASSERT(pb->pb_flags & _PBF_DELWRI_Q);
1da177e4
LT
1659 if (unlock) {
1660 atomic_dec(&pb->pb_hold);
1661 }
1662 list_del(&pb->pb_list);
1663 }
1664
2f926587 1665 pb->pb_flags |= _PBF_DELWRI_Q;
1da177e4
LT
1666 list_add_tail(&pb->pb_list, &pbd_delwrite_queue);
1667 pb->pb_queuetime = jiffies;
1668 spin_unlock(&pbd_delwrite_lock);
1669
1670 if (unlock)
1671 pagebuf_unlock(pb);
1672}
1673
1674void
1675pagebuf_delwri_dequeue(
1676 xfs_buf_t *pb)
1677{
1678 int dequeued = 0;
1679
1680 spin_lock(&pbd_delwrite_lock);
1681 if ((pb->pb_flags & PBF_DELWRI) && !list_empty(&pb->pb_list)) {
2f926587 1682 ASSERT(pb->pb_flags & _PBF_DELWRI_Q);
1da177e4
LT
1683 list_del_init(&pb->pb_list);
1684 dequeued = 1;
1685 }
2f926587 1686 pb->pb_flags &= ~(PBF_DELWRI|_PBF_DELWRI_Q);
1da177e4
LT
1687 spin_unlock(&pbd_delwrite_lock);
1688
1689 if (dequeued)
1690 pagebuf_rele(pb);
1691
1692 PB_TRACE(pb, "delwri_dq", (long)dequeued);
1693}
1694
1695STATIC void
1696pagebuf_runall_queues(
1697 struct workqueue_struct *queue)
1698{
1699 flush_workqueue(queue);
1700}
1701
1702/* Defines for pagebuf daemon */
23ea4032 1703STATIC struct task_struct *xfsbufd_task;
23ea4032
CH
1704STATIC int xfsbufd_force_flush;
1705STATIC int xfsbufd_force_sleep;
1da177e4
LT
1706
1707STATIC int
23ea4032 1708xfsbufd_wakeup(
27496a8c
AV
1709 int priority,
1710 gfp_t mask)
1da177e4 1711{
23ea4032 1712 if (xfsbufd_force_sleep)
abd0cf7a 1713 return 0;
23ea4032 1714 xfsbufd_force_flush = 1;
1da177e4 1715 barrier();
23ea4032 1716 wake_up_process(xfsbufd_task);
1da177e4
LT
1717 return 0;
1718}
1719
1720STATIC int
23ea4032 1721xfsbufd(
1da177e4
LT
1722 void *data)
1723{
1724 struct list_head tmp;
1725 unsigned long age;
1726 xfs_buftarg_t *target;
1727 xfs_buf_t *pb, *n;
1728
1da177e4
LT
1729 current->flags |= PF_MEMALLOC;
1730
1da177e4
LT
1731 INIT_LIST_HEAD(&tmp);
1732 do {
3e1d1d28 1733 if (unlikely(freezing(current))) {
23ea4032 1734 xfsbufd_force_sleep = 1;
3e1d1d28 1735 refrigerator();
abd0cf7a 1736 } else {
23ea4032 1737 xfsbufd_force_sleep = 0;
abd0cf7a 1738 }
1da177e4 1739
041e0e3b
NA
1740 schedule_timeout_interruptible
1741 (xfs_buf_timer_centisecs * msecs_to_jiffies(10));
1da177e4 1742
041e0e3b 1743 age = xfs_buf_age_centisecs * msecs_to_jiffies(10);
1da177e4
LT
1744 spin_lock(&pbd_delwrite_lock);
1745 list_for_each_entry_safe(pb, n, &pbd_delwrite_queue, pb_list) {
1746 PB_TRACE(pb, "walkq1", (long)pagebuf_ispin(pb));
1747 ASSERT(pb->pb_flags & PBF_DELWRI);
1748
1749 if (!pagebuf_ispin(pb) && !pagebuf_cond_lock(pb)) {
23ea4032 1750 if (!xfsbufd_force_flush &&
1da177e4
LT
1751 time_before(jiffies,
1752 pb->pb_queuetime + age)) {
1753 pagebuf_unlock(pb);
1754 break;
1755 }
1756
2f926587 1757 pb->pb_flags &= ~(PBF_DELWRI|_PBF_DELWRI_Q);
1da177e4
LT
1758 pb->pb_flags |= PBF_WRITE;
1759 list_move(&pb->pb_list, &tmp);
1760 }
1761 }
1762 spin_unlock(&pbd_delwrite_lock);
1763
1764 while (!list_empty(&tmp)) {
1765 pb = list_entry(tmp.next, xfs_buf_t, pb_list);
1766 target = pb->pb_target;
1767
1768 list_del_init(&pb->pb_list);
1769 pagebuf_iostrategy(pb);
1770
1771 blk_run_address_space(target->pbr_mapping);
1772 }
1773
1774 if (as_list_len > 0)
1775 purge_addresses();
1776
23ea4032 1777 xfsbufd_force_flush = 0;
4df08c52 1778 } while (!kthread_should_stop());
1da177e4 1779
4df08c52 1780 return 0;
1da177e4
LT
1781}
1782
1783/*
1784 * Go through all incore buffers, and release buffers if they belong to
1785 * the given device. This is used in filesystem error handling to
1786 * preserve the consistency of its metadata.
1787 */
1788int
1789xfs_flush_buftarg(
1790 xfs_buftarg_t *target,
1791 int wait)
1792{
1793 struct list_head tmp;
1794 xfs_buf_t *pb, *n;
1795 int pincount = 0;
1796
23ea4032
CH
1797 pagebuf_runall_queues(xfsdatad_workqueue);
1798 pagebuf_runall_queues(xfslogd_workqueue);
1da177e4
LT
1799
1800 INIT_LIST_HEAD(&tmp);
1801 spin_lock(&pbd_delwrite_lock);
1802 list_for_each_entry_safe(pb, n, &pbd_delwrite_queue, pb_list) {
1803
1804 if (pb->pb_target != target)
1805 continue;
1806
2f926587 1807 ASSERT(pb->pb_flags & (PBF_DELWRI|_PBF_DELWRI_Q));
1da177e4
LT
1808 PB_TRACE(pb, "walkq2", (long)pagebuf_ispin(pb));
1809 if (pagebuf_ispin(pb)) {
1810 pincount++;
1811 continue;
1812 }
1813
1da177e4
LT
1814 list_move(&pb->pb_list, &tmp);
1815 }
1816 spin_unlock(&pbd_delwrite_lock);
1817
1818 /*
1819 * Dropped the delayed write list lock, now walk the temporary list
1820 */
1821 list_for_each_entry_safe(pb, n, &tmp, pb_list) {
2f926587
DC
1822 pagebuf_lock(pb);
1823 pb->pb_flags &= ~(PBF_DELWRI|_PBF_DELWRI_Q);
1824 pb->pb_flags |= PBF_WRITE;
1da177e4
LT
1825 if (wait)
1826 pb->pb_flags &= ~PBF_ASYNC;
1827 else
1828 list_del_init(&pb->pb_list);
1829
1da177e4
LT
1830 pagebuf_iostrategy(pb);
1831 }
1832
1833 /*
1834 * Remaining list items must be flushed before returning
1835 */
1836 while (!list_empty(&tmp)) {
1837 pb = list_entry(tmp.next, xfs_buf_t, pb_list);
1838
1839 list_del_init(&pb->pb_list);
1840 xfs_iowait(pb);
1841 xfs_buf_relse(pb);
1842 }
1843
1844 if (wait)
1845 blk_run_address_space(target->pbr_mapping);
1846
1847 return pincount;
1848}
1849
04d8b284
CH
1850int __init
1851pagebuf_init(void)
1da177e4 1852{
23ea4032 1853 int error = -ENOMEM;
1da177e4 1854
04d8b284
CH
1855#ifdef PAGEBUF_TRACE
1856 pagebuf_trace_buf = ktrace_alloc(PAGEBUF_TRACE_SIZE, KM_SLEEP);
1857#endif
1858
1859 pagebuf_zone = kmem_zone_init(sizeof(xfs_buf_t), "xfs_buf");
1860 if (!pagebuf_zone)
1861 goto out_free_trace_buf;
1862
23ea4032
CH
1863 xfslogd_workqueue = create_workqueue("xfslogd");
1864 if (!xfslogd_workqueue)
04d8b284 1865 goto out_free_buf_zone;
1da177e4 1866
23ea4032
CH
1867 xfsdatad_workqueue = create_workqueue("xfsdatad");
1868 if (!xfsdatad_workqueue)
1869 goto out_destroy_xfslogd_workqueue;
1da177e4 1870
4df08c52
CH
1871 xfsbufd_task = kthread_run(xfsbufd, NULL, "xfsbufd");
1872 if (IS_ERR(xfsbufd_task)) {
1873 error = PTR_ERR(xfsbufd_task);
23ea4032 1874 goto out_destroy_xfsdatad_workqueue;
4df08c52 1875 }
04d8b284
CH
1876
1877 pagebuf_shake = kmem_shake_register(xfsbufd_wakeup);
1878 if (!pagebuf_shake)
1879 goto out_stop_xfsbufd;
1880
23ea4032 1881 return 0;
1da177e4 1882
04d8b284
CH
1883 out_stop_xfsbufd:
1884 kthread_stop(xfsbufd_task);
23ea4032
CH
1885 out_destroy_xfsdatad_workqueue:
1886 destroy_workqueue(xfsdatad_workqueue);
1887 out_destroy_xfslogd_workqueue:
1888 destroy_workqueue(xfslogd_workqueue);
23ea4032 1889 out_free_buf_zone:
04d8b284
CH
1890 kmem_zone_destroy(pagebuf_zone);
1891 out_free_trace_buf:
23ea4032
CH
1892#ifdef PAGEBUF_TRACE
1893 ktrace_free(pagebuf_trace_buf);
1894#endif
23ea4032 1895 return error;
1da177e4
LT
1896}
1897
1da177e4
LT
1898void
1899pagebuf_terminate(void)
1900{
04d8b284
CH
1901 kmem_shake_deregister(pagebuf_shake);
1902 kthread_stop(xfsbufd_task);
1903 destroy_workqueue(xfsdatad_workqueue);
1904 destroy_workqueue(xfslogd_workqueue);
1905 kmem_zone_destroy(pagebuf_zone);
1da177e4
LT
1906#ifdef PAGEBUF_TRACE
1907 ktrace_free(pagebuf_trace_buf);
1908#endif
1da177e4 1909}