]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - fs/xfs/linux-2.6/xfs_file.c
xfs: factor post-write newsize updates
[mirror_ubuntu-artful-kernel.git] / fs / xfs / linux-2.6 / xfs_file.c
CommitLineData
1da177e4 1/*
7b718769
NS
2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
1da177e4 4 *
7b718769
NS
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
1da177e4
LT
7 * published by the Free Software Foundation.
8 *
7b718769
NS
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
1da177e4 13 *
7b718769
NS
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
1da177e4 17 */
1da177e4 18#include "xfs.h"
dda35b8f 19#include "xfs_fs.h"
a844f451 20#include "xfs_bit.h"
1da177e4 21#include "xfs_log.h"
a844f451 22#include "xfs_inum.h"
1da177e4 23#include "xfs_sb.h"
a844f451 24#include "xfs_ag.h"
1da177e4 25#include "xfs_trans.h"
1da177e4
LT
26#include "xfs_mount.h"
27#include "xfs_bmap_btree.h"
1da177e4 28#include "xfs_alloc.h"
1da177e4
LT
29#include "xfs_dinode.h"
30#include "xfs_inode.h"
fd3200be 31#include "xfs_inode_item.h"
dda35b8f 32#include "xfs_bmap.h"
1da177e4 33#include "xfs_error.h"
739bfb2a 34#include "xfs_vnodeops.h"
f999a5bf 35#include "xfs_da_btree.h"
ddcd856d 36#include "xfs_ioctl.h"
dda35b8f 37#include "xfs_trace.h"
1da177e4
LT
38
39#include <linux/dcache.h>
1da177e4 40
f0f37e2f 41static const struct vm_operations_struct xfs_file_vm_ops;
1da177e4 42
dda35b8f
CH
43/*
44 * xfs_iozero
45 *
46 * xfs_iozero clears the specified range of buffer supplied,
47 * and marks all the affected blocks as valid and modified. If
48 * an affected block is not allocated, it will be allocated. If
49 * an affected block is not completely overwritten, and is not
50 * valid before the operation, it will be read from disk before
51 * being partially zeroed.
52 */
53STATIC int
54xfs_iozero(
55 struct xfs_inode *ip, /* inode */
56 loff_t pos, /* offset in file */
57 size_t count) /* size of data to zero */
58{
59 struct page *page;
60 struct address_space *mapping;
61 int status;
62
63 mapping = VFS_I(ip)->i_mapping;
64 do {
65 unsigned offset, bytes;
66 void *fsdata;
67
68 offset = (pos & (PAGE_CACHE_SIZE -1)); /* Within page */
69 bytes = PAGE_CACHE_SIZE - offset;
70 if (bytes > count)
71 bytes = count;
72
73 status = pagecache_write_begin(NULL, mapping, pos, bytes,
74 AOP_FLAG_UNINTERRUPTIBLE,
75 &page, &fsdata);
76 if (status)
77 break;
78
79 zero_user(page, offset, bytes);
80
81 status = pagecache_write_end(NULL, mapping, pos, bytes, bytes,
82 page, fsdata);
83 WARN_ON(status <= 0); /* can't return less than zero! */
84 pos += bytes;
85 count -= bytes;
86 status = 0;
87 } while (count);
88
89 return (-status);
90}
91
fd3200be
CH
92STATIC int
93xfs_file_fsync(
94 struct file *file,
fd3200be
CH
95 int datasync)
96{
7ea80859
CH
97 struct inode *inode = file->f_mapping->host;
98 struct xfs_inode *ip = XFS_I(inode);
fd3200be
CH
99 struct xfs_trans *tp;
100 int error = 0;
101 int log_flushed = 0;
102
cca28fb8 103 trace_xfs_file_fsync(ip);
fd3200be
CH
104
105 if (XFS_FORCED_SHUTDOWN(ip->i_mount))
106 return -XFS_ERROR(EIO);
107
108 xfs_iflags_clear(ip, XFS_ITRUNCATED);
109
37bc5743
CH
110 xfs_ioend_wait(ip);
111
fd3200be
CH
112 /*
113 * We always need to make sure that the required inode state is safe on
114 * disk. The inode might be clean but we still might need to force the
115 * log because of committed transactions that haven't hit the disk yet.
116 * Likewise, there could be unflushed non-transactional changes to the
117 * inode core that have to go to disk and this requires us to issue
118 * a synchronous transaction to capture these changes correctly.
119 *
120 * This code relies on the assumption that if the i_update_core field
121 * of the inode is clear and the inode is unpinned then it is clean
122 * and no action is required.
123 */
124 xfs_ilock(ip, XFS_ILOCK_SHARED);
125
66d834ea
CH
126 /*
127 * First check if the VFS inode is marked dirty. All the dirtying
128 * of non-transactional updates no goes through mark_inode_dirty*,
129 * which allows us to distinguish beteeen pure timestamp updates
130 * and i_size updates which need to be caught for fdatasync.
131 * After that also theck for the dirty state in the XFS inode, which
132 * might gets cleared when the inode gets written out via the AIL
133 * or xfs_iflush_cluster.
134 */
7ea80859
CH
135 if (((inode->i_state & I_DIRTY_DATASYNC) ||
136 ((inode->i_state & I_DIRTY_SYNC) && !datasync)) &&
66d834ea 137 ip->i_update_core) {
fd3200be
CH
138 /*
139 * Kick off a transaction to log the inode core to get the
140 * updates. The sync transaction will also force the log.
141 */
142 xfs_iunlock(ip, XFS_ILOCK_SHARED);
143 tp = xfs_trans_alloc(ip->i_mount, XFS_TRANS_FSYNC_TS);
144 error = xfs_trans_reserve(tp, 0,
145 XFS_FSYNC_TS_LOG_RES(ip->i_mount), 0, 0, 0);
146 if (error) {
147 xfs_trans_cancel(tp, 0);
148 return -error;
149 }
150 xfs_ilock(ip, XFS_ILOCK_EXCL);
151
152 /*
153 * Note - it's possible that we might have pushed ourselves out
154 * of the way during trans_reserve which would flush the inode.
155 * But there's no guarantee that the inode buffer has actually
156 * gone out yet (it's delwri). Plus the buffer could be pinned
157 * anyway if it's part of an inode in another recent
158 * transaction. So we play it safe and fire off the
159 * transaction anyway.
160 */
898621d5 161 xfs_trans_ijoin(tp, ip);
fd3200be
CH
162 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
163 xfs_trans_set_sync(tp);
164 error = _xfs_trans_commit(tp, 0, &log_flushed);
165
166 xfs_iunlock(ip, XFS_ILOCK_EXCL);
167 } else {
168 /*
169 * Timestamps/size haven't changed since last inode flush or
170 * inode transaction commit. That means either nothing got
171 * written or a transaction committed which caught the updates.
172 * If the latter happened and the transaction hasn't hit the
173 * disk yet, the inode will be still be pinned. If it is,
174 * force the log.
175 */
fd3200be 176 if (xfs_ipincount(ip)) {
024910cb
CH
177 error = _xfs_log_force_lsn(ip->i_mount,
178 ip->i_itemp->ili_last_lsn,
179 XFS_LOG_SYNC, &log_flushed);
fd3200be 180 }
024910cb 181 xfs_iunlock(ip, XFS_ILOCK_SHARED);
fd3200be
CH
182 }
183
184 if (ip->i_mount->m_flags & XFS_MOUNT_BARRIER) {
185 /*
186 * If the log write didn't issue an ordered tag we need
187 * to flush the disk cache for the data device now.
188 */
189 if (!log_flushed)
190 xfs_blkdev_issue_flush(ip->i_mount->m_ddev_targp);
191
192 /*
193 * If this inode is on the RT dev we need to flush that
194 * cache as well.
195 */
196 if (XFS_IS_REALTIME_INODE(ip))
197 xfs_blkdev_issue_flush(ip->i_mount->m_rtdev_targp);
198 }
199
200 return -error;
201}
202
00258e36
CH
203STATIC ssize_t
204xfs_file_aio_read(
dda35b8f
CH
205 struct kiocb *iocb,
206 const struct iovec *iovp,
00258e36
CH
207 unsigned long nr_segs,
208 loff_t pos)
dda35b8f
CH
209{
210 struct file *file = iocb->ki_filp;
211 struct inode *inode = file->f_mapping->host;
00258e36
CH
212 struct xfs_inode *ip = XFS_I(inode);
213 struct xfs_mount *mp = ip->i_mount;
dda35b8f
CH
214 size_t size = 0;
215 ssize_t ret = 0;
00258e36 216 int ioflags = 0;
dda35b8f
CH
217 xfs_fsize_t n;
218 unsigned long seg;
219
dda35b8f
CH
220 XFS_STATS_INC(xs_read_calls);
221
00258e36
CH
222 BUG_ON(iocb->ki_pos != pos);
223
224 if (unlikely(file->f_flags & O_DIRECT))
225 ioflags |= IO_ISDIRECT;
226 if (file->f_mode & FMODE_NOCMTIME)
227 ioflags |= IO_INVIS;
228
dda35b8f 229 /* START copy & waste from filemap.c */
00258e36 230 for (seg = 0; seg < nr_segs; seg++) {
dda35b8f
CH
231 const struct iovec *iv = &iovp[seg];
232
233 /*
234 * If any segment has a negative length, or the cumulative
235 * length ever wraps negative then return -EINVAL.
236 */
237 size += iv->iov_len;
238 if (unlikely((ssize_t)(size|iv->iov_len) < 0))
239 return XFS_ERROR(-EINVAL);
240 }
241 /* END copy & waste from filemap.c */
242
243 if (unlikely(ioflags & IO_ISDIRECT)) {
244 xfs_buftarg_t *target =
245 XFS_IS_REALTIME_INODE(ip) ?
246 mp->m_rtdev_targp : mp->m_ddev_targp;
00258e36 247 if ((iocb->ki_pos & target->bt_smask) ||
dda35b8f 248 (size & target->bt_smask)) {
00258e36
CH
249 if (iocb->ki_pos == ip->i_size)
250 return 0;
dda35b8f
CH
251 return -XFS_ERROR(EINVAL);
252 }
253 }
254
00258e36
CH
255 n = XFS_MAXIOFFSET(mp) - iocb->ki_pos;
256 if (n <= 0 || size == 0)
dda35b8f
CH
257 return 0;
258
259 if (n < size)
260 size = n;
261
262 if (XFS_FORCED_SHUTDOWN(mp))
263 return -EIO;
264
265 if (unlikely(ioflags & IO_ISDIRECT))
266 mutex_lock(&inode->i_mutex);
267 xfs_ilock(ip, XFS_IOLOCK_SHARED);
268
dda35b8f 269 if (unlikely(ioflags & IO_ISDIRECT)) {
00258e36
CH
270 if (inode->i_mapping->nrpages) {
271 ret = -xfs_flushinval_pages(ip,
272 (iocb->ki_pos & PAGE_CACHE_MASK),
273 -1, FI_REMAPF_LOCKED);
274 }
dda35b8f
CH
275 mutex_unlock(&inode->i_mutex);
276 if (ret) {
277 xfs_iunlock(ip, XFS_IOLOCK_SHARED);
278 return ret;
279 }
280 }
281
00258e36 282 trace_xfs_file_read(ip, size, iocb->ki_pos, ioflags);
dda35b8f 283
00258e36 284 ret = generic_file_aio_read(iocb, iovp, nr_segs, iocb->ki_pos);
dda35b8f
CH
285 if (ret > 0)
286 XFS_STATS_ADD(xs_read_bytes, ret);
287
288 xfs_iunlock(ip, XFS_IOLOCK_SHARED);
289 return ret;
290}
291
00258e36
CH
292STATIC ssize_t
293xfs_file_splice_read(
dda35b8f
CH
294 struct file *infilp,
295 loff_t *ppos,
296 struct pipe_inode_info *pipe,
297 size_t count,
00258e36 298 unsigned int flags)
dda35b8f 299{
00258e36 300 struct xfs_inode *ip = XFS_I(infilp->f_mapping->host);
00258e36 301 int ioflags = 0;
dda35b8f
CH
302 ssize_t ret;
303
304 XFS_STATS_INC(xs_read_calls);
00258e36
CH
305
306 if (infilp->f_mode & FMODE_NOCMTIME)
307 ioflags |= IO_INVIS;
308
dda35b8f
CH
309 if (XFS_FORCED_SHUTDOWN(ip->i_mount))
310 return -EIO;
311
312 xfs_ilock(ip, XFS_IOLOCK_SHARED);
313
dda35b8f
CH
314 trace_xfs_file_splice_read(ip, count, *ppos, ioflags);
315
316 ret = generic_file_splice_read(infilp, ppos, pipe, count, flags);
317 if (ret > 0)
318 XFS_STATS_ADD(xs_read_bytes, ret);
319
320 xfs_iunlock(ip, XFS_IOLOCK_SHARED);
321 return ret;
322}
323
edafb6da
DC
324STATIC void
325xfs_aio_write_isize_update(
326 struct inode *inode,
327 loff_t *ppos,
328 ssize_t bytes_written)
329{
330 struct xfs_inode *ip = XFS_I(inode);
331 xfs_fsize_t isize = i_size_read(inode);
332
333 if (bytes_written > 0)
334 XFS_STATS_ADD(xs_write_bytes, bytes_written);
335
336 if (unlikely(bytes_written < 0 && bytes_written != -EFAULT &&
337 *ppos > isize))
338 *ppos = isize;
339
340 if (*ppos > ip->i_size) {
341 xfs_ilock(ip, XFS_ILOCK_EXCL);
342 if (*ppos > ip->i_size)
343 ip->i_size = *ppos;
344 xfs_iunlock(ip, XFS_ILOCK_EXCL);
345 }
346}
347
4c5cfd1b
DC
348/*
349 * If this was a direct or synchronous I/O that failed (such as ENOSPC) then
350 * part of the I/O may have been written to disk before the error occured. In
351 * this case the on-disk file size may have been adjusted beyond the in-memory
352 * file size and now needs to be truncated back.
353 */
354STATIC void
355xfs_aio_write_newsize_update(
356 struct xfs_inode *ip)
357{
358 if (ip->i_new_size) {
359 xfs_ilock(ip, XFS_ILOCK_EXCL);
360 ip->i_new_size = 0;
361 if (ip->i_d.di_size > ip->i_size)
362 ip->i_d.di_size = ip->i_size;
363 xfs_iunlock(ip, XFS_ILOCK_EXCL);
364 }
365}
366
00258e36
CH
367STATIC ssize_t
368xfs_file_splice_write(
dda35b8f
CH
369 struct pipe_inode_info *pipe,
370 struct file *outfilp,
371 loff_t *ppos,
372 size_t count,
00258e36 373 unsigned int flags)
dda35b8f 374{
dda35b8f 375 struct inode *inode = outfilp->f_mapping->host;
00258e36 376 struct xfs_inode *ip = XFS_I(inode);
edafb6da 377 xfs_fsize_t new_size;
00258e36
CH
378 int ioflags = 0;
379 ssize_t ret;
dda35b8f
CH
380
381 XFS_STATS_INC(xs_write_calls);
00258e36
CH
382
383 if (outfilp->f_mode & FMODE_NOCMTIME)
384 ioflags |= IO_INVIS;
385
dda35b8f
CH
386 if (XFS_FORCED_SHUTDOWN(ip->i_mount))
387 return -EIO;
388
389 xfs_ilock(ip, XFS_IOLOCK_EXCL);
390
dda35b8f
CH
391 new_size = *ppos + count;
392
393 xfs_ilock(ip, XFS_ILOCK_EXCL);
394 if (new_size > ip->i_size)
395 ip->i_new_size = new_size;
396 xfs_iunlock(ip, XFS_ILOCK_EXCL);
397
398 trace_xfs_file_splice_write(ip, count, *ppos, ioflags);
399
400 ret = generic_file_splice_write(pipe, outfilp, ppos, count, flags);
dda35b8f 401
edafb6da 402 xfs_aio_write_isize_update(inode, ppos, ret);
4c5cfd1b 403 xfs_aio_write_newsize_update(ip);
dda35b8f
CH
404 xfs_iunlock(ip, XFS_IOLOCK_EXCL);
405 return ret;
406}
407
408/*
409 * This routine is called to handle zeroing any space in the last
410 * block of the file that is beyond the EOF. We do this since the
411 * size is being increased without writing anything to that block
412 * and we don't want anyone to read the garbage on the disk.
413 */
414STATIC int /* error (positive) */
415xfs_zero_last_block(
416 xfs_inode_t *ip,
417 xfs_fsize_t offset,
418 xfs_fsize_t isize)
419{
420 xfs_fileoff_t last_fsb;
421 xfs_mount_t *mp = ip->i_mount;
422 int nimaps;
423 int zero_offset;
424 int zero_len;
425 int error = 0;
426 xfs_bmbt_irec_t imap;
427
428 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
429
430 zero_offset = XFS_B_FSB_OFFSET(mp, isize);
431 if (zero_offset == 0) {
432 /*
433 * There are no extra bytes in the last block on disk to
434 * zero, so return.
435 */
436 return 0;
437 }
438
439 last_fsb = XFS_B_TO_FSBT(mp, isize);
440 nimaps = 1;
441 error = xfs_bmapi(NULL, ip, last_fsb, 1, 0, NULL, 0, &imap,
b4e9181e 442 &nimaps, NULL);
dda35b8f
CH
443 if (error) {
444 return error;
445 }
446 ASSERT(nimaps > 0);
447 /*
448 * If the block underlying isize is just a hole, then there
449 * is nothing to zero.
450 */
451 if (imap.br_startblock == HOLESTARTBLOCK) {
452 return 0;
453 }
454 /*
455 * Zero the part of the last block beyond the EOF, and write it
456 * out sync. We need to drop the ilock while we do this so we
457 * don't deadlock when the buffer cache calls back to us.
458 */
459 xfs_iunlock(ip, XFS_ILOCK_EXCL);
460
461 zero_len = mp->m_sb.sb_blocksize - zero_offset;
462 if (isize + zero_len > offset)
463 zero_len = offset - isize;
464 error = xfs_iozero(ip, isize, zero_len);
465
466 xfs_ilock(ip, XFS_ILOCK_EXCL);
467 ASSERT(error >= 0);
468 return error;
469}
470
471/*
472 * Zero any on disk space between the current EOF and the new,
473 * larger EOF. This handles the normal case of zeroing the remainder
474 * of the last block in the file and the unusual case of zeroing blocks
475 * out beyond the size of the file. This second case only happens
476 * with fixed size extents and when the system crashes before the inode
477 * size was updated but after blocks were allocated. If fill is set,
478 * then any holes in the range are filled and zeroed. If not, the holes
479 * are left alone as holes.
480 */
481
482int /* error (positive) */
483xfs_zero_eof(
484 xfs_inode_t *ip,
485 xfs_off_t offset, /* starting I/O offset */
486 xfs_fsize_t isize) /* current inode size */
487{
488 xfs_mount_t *mp = ip->i_mount;
489 xfs_fileoff_t start_zero_fsb;
490 xfs_fileoff_t end_zero_fsb;
491 xfs_fileoff_t zero_count_fsb;
492 xfs_fileoff_t last_fsb;
493 xfs_fileoff_t zero_off;
494 xfs_fsize_t zero_len;
495 int nimaps;
496 int error = 0;
497 xfs_bmbt_irec_t imap;
498
499 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_IOLOCK_EXCL));
500 ASSERT(offset > isize);
501
502 /*
503 * First handle zeroing the block on which isize resides.
504 * We only zero a part of that block so it is handled specially.
505 */
506 error = xfs_zero_last_block(ip, offset, isize);
507 if (error) {
508 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_IOLOCK_EXCL));
509 return error;
510 }
511
512 /*
513 * Calculate the range between the new size and the old
514 * where blocks needing to be zeroed may exist. To get the
515 * block where the last byte in the file currently resides,
516 * we need to subtract one from the size and truncate back
517 * to a block boundary. We subtract 1 in case the size is
518 * exactly on a block boundary.
519 */
520 last_fsb = isize ? XFS_B_TO_FSBT(mp, isize - 1) : (xfs_fileoff_t)-1;
521 start_zero_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)isize);
522 end_zero_fsb = XFS_B_TO_FSBT(mp, offset - 1);
523 ASSERT((xfs_sfiloff_t)last_fsb < (xfs_sfiloff_t)start_zero_fsb);
524 if (last_fsb == end_zero_fsb) {
525 /*
526 * The size was only incremented on its last block.
527 * We took care of that above, so just return.
528 */
529 return 0;
530 }
531
532 ASSERT(start_zero_fsb <= end_zero_fsb);
533 while (start_zero_fsb <= end_zero_fsb) {
534 nimaps = 1;
535 zero_count_fsb = end_zero_fsb - start_zero_fsb + 1;
536 error = xfs_bmapi(NULL, ip, start_zero_fsb, zero_count_fsb,
b4e9181e 537 0, NULL, 0, &imap, &nimaps, NULL);
dda35b8f
CH
538 if (error) {
539 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_IOLOCK_EXCL));
540 return error;
541 }
542 ASSERT(nimaps > 0);
543
544 if (imap.br_state == XFS_EXT_UNWRITTEN ||
545 imap.br_startblock == HOLESTARTBLOCK) {
546 /*
547 * This loop handles initializing pages that were
548 * partially initialized by the code below this
549 * loop. It basically zeroes the part of the page
550 * that sits on a hole and sets the page as P_HOLE
551 * and calls remapf if it is a mapped file.
552 */
553 start_zero_fsb = imap.br_startoff + imap.br_blockcount;
554 ASSERT(start_zero_fsb <= (end_zero_fsb + 1));
555 continue;
556 }
557
558 /*
559 * There are blocks we need to zero.
560 * Drop the inode lock while we're doing the I/O.
561 * We'll still have the iolock to protect us.
562 */
563 xfs_iunlock(ip, XFS_ILOCK_EXCL);
564
565 zero_off = XFS_FSB_TO_B(mp, start_zero_fsb);
566 zero_len = XFS_FSB_TO_B(mp, imap.br_blockcount);
567
568 if ((zero_off + zero_len) > offset)
569 zero_len = offset - zero_off;
570
571 error = xfs_iozero(ip, zero_off, zero_len);
572 if (error) {
573 goto out_lock;
574 }
575
576 start_zero_fsb = imap.br_startoff + imap.br_blockcount;
577 ASSERT(start_zero_fsb <= (end_zero_fsb + 1));
578
579 xfs_ilock(ip, XFS_ILOCK_EXCL);
580 }
581
582 return 0;
583
584out_lock:
585 xfs_ilock(ip, XFS_ILOCK_EXCL);
586 ASSERT(error >= 0);
587 return error;
588}
589
00258e36
CH
590STATIC ssize_t
591xfs_file_aio_write(
dda35b8f
CH
592 struct kiocb *iocb,
593 const struct iovec *iovp,
00258e36
CH
594 unsigned long nr_segs,
595 loff_t pos)
dda35b8f
CH
596{
597 struct file *file = iocb->ki_filp;
598 struct address_space *mapping = file->f_mapping;
599 struct inode *inode = mapping->host;
00258e36
CH
600 struct xfs_inode *ip = XFS_I(inode);
601 struct xfs_mount *mp = ip->i_mount;
a363f0c2 602 ssize_t ret = 0;
00258e36 603 int ioflags = 0;
edafb6da 604 xfs_fsize_t new_size;
dda35b8f 605 int iolock;
dda35b8f 606 size_t ocount = 0, count;
dda35b8f
CH
607 int need_i_mutex;
608
609 XFS_STATS_INC(xs_write_calls);
610
00258e36
CH
611 BUG_ON(iocb->ki_pos != pos);
612
613 if (unlikely(file->f_flags & O_DIRECT))
614 ioflags |= IO_ISDIRECT;
615 if (file->f_mode & FMODE_NOCMTIME)
616 ioflags |= IO_INVIS;
617
a363f0c2
DC
618 ret = generic_segment_checks(iovp, &nr_segs, &ocount, VERIFY_READ);
619 if (ret)
620 return ret;
dda35b8f
CH
621
622 count = ocount;
dda35b8f
CH
623 if (count == 0)
624 return 0;
625
dda35b8f
CH
626 xfs_wait_for_freeze(mp, SB_FREEZE_WRITE);
627
628 if (XFS_FORCED_SHUTDOWN(mp))
629 return -EIO;
630
631relock:
632 if (ioflags & IO_ISDIRECT) {
633 iolock = XFS_IOLOCK_SHARED;
634 need_i_mutex = 0;
635 } else {
636 iolock = XFS_IOLOCK_EXCL;
637 need_i_mutex = 1;
638 mutex_lock(&inode->i_mutex);
639 }
640
00258e36 641 xfs_ilock(ip, XFS_ILOCK_EXCL|iolock);
dda35b8f
CH
642
643start:
a363f0c2 644 ret = generic_write_checks(file, &pos, &count,
dda35b8f 645 S_ISBLK(inode->i_mode));
a363f0c2 646 if (ret) {
00258e36 647 xfs_iunlock(ip, XFS_ILOCK_EXCL|iolock);
dda35b8f
CH
648 goto out_unlock_mutex;
649 }
650
dda35b8f
CH
651 if (ioflags & IO_ISDIRECT) {
652 xfs_buftarg_t *target =
00258e36 653 XFS_IS_REALTIME_INODE(ip) ?
dda35b8f
CH
654 mp->m_rtdev_targp : mp->m_ddev_targp;
655
656 if ((pos & target->bt_smask) || (count & target->bt_smask)) {
00258e36 657 xfs_iunlock(ip, XFS_ILOCK_EXCL|iolock);
dda35b8f
CH
658 return XFS_ERROR(-EINVAL);
659 }
660
00258e36
CH
661 if (!need_i_mutex && (mapping->nrpages || pos > ip->i_size)) {
662 xfs_iunlock(ip, XFS_ILOCK_EXCL|iolock);
dda35b8f
CH
663 iolock = XFS_IOLOCK_EXCL;
664 need_i_mutex = 1;
665 mutex_lock(&inode->i_mutex);
00258e36 666 xfs_ilock(ip, XFS_ILOCK_EXCL|iolock);
dda35b8f
CH
667 goto start;
668 }
669 }
670
671 new_size = pos + count;
00258e36
CH
672 if (new_size > ip->i_size)
673 ip->i_new_size = new_size;
dda35b8f
CH
674
675 if (likely(!(ioflags & IO_INVIS)))
676 file_update_time(file);
677
678 /*
679 * If the offset is beyond the size of the file, we have a couple
680 * of things to do. First, if there is already space allocated
681 * we need to either create holes or zero the disk or ...
682 *
683 * If there is a page where the previous size lands, we need
684 * to zero it out up to the new size.
685 */
686
00258e36 687 if (pos > ip->i_size) {
a363f0c2
DC
688 ret = -xfs_zero_eof(ip, pos, ip->i_size);
689 if (ret) {
00258e36 690 xfs_iunlock(ip, XFS_ILOCK_EXCL);
dda35b8f
CH
691 goto out_unlock_internal;
692 }
693 }
00258e36 694 xfs_iunlock(ip, XFS_ILOCK_EXCL);
dda35b8f
CH
695
696 /*
697 * If we're writing the file then make sure to clear the
698 * setuid and setgid bits if the process is not being run
699 * by root. This keeps people from modifying setuid and
700 * setgid binaries.
701 */
a363f0c2
DC
702 ret = file_remove_suid(file);
703 if (unlikely(ret))
dda35b8f
CH
704 goto out_unlock_internal;
705
706 /* We can write back this queue in page reclaim */
707 current->backing_dev_info = mapping->backing_dev_info;
708
709 if ((ioflags & IO_ISDIRECT)) {
710 if (mapping->nrpages) {
711 WARN_ON(need_i_mutex == 0);
a363f0c2 712 ret = -xfs_flushinval_pages(ip,
dda35b8f
CH
713 (pos & PAGE_CACHE_MASK),
714 -1, FI_REMAPF_LOCKED);
a363f0c2 715 if (ret)
dda35b8f
CH
716 goto out_unlock_internal;
717 }
718
719 if (need_i_mutex) {
720 /* demote the lock now the cached pages are gone */
00258e36 721 xfs_ilock_demote(ip, XFS_IOLOCK_EXCL);
dda35b8f
CH
722 mutex_unlock(&inode->i_mutex);
723
724 iolock = XFS_IOLOCK_SHARED;
725 need_i_mutex = 0;
726 }
727
00258e36 728 trace_xfs_file_direct_write(ip, count, iocb->ki_pos, ioflags);
dda35b8f 729 ret = generic_file_direct_write(iocb, iovp,
00258e36 730 &nr_segs, pos, &iocb->ki_pos, count, ocount);
dda35b8f
CH
731
732 /*
733 * direct-io write to a hole: fall through to buffered I/O
734 * for completing the rest of the request.
735 */
736 if (ret >= 0 && ret != count) {
737 XFS_STATS_ADD(xs_write_bytes, ret);
738
739 pos += ret;
740 count -= ret;
741
742 ioflags &= ~IO_ISDIRECT;
00258e36 743 xfs_iunlock(ip, iolock);
dda35b8f
CH
744 goto relock;
745 }
746 } else {
747 int enospc = 0;
dda35b8f
CH
748
749write_retry:
00258e36 750 trace_xfs_file_buffered_write(ip, count, iocb->ki_pos, ioflags);
a363f0c2 751 ret = generic_file_buffered_write(iocb, iovp, nr_segs,
00258e36 752 pos, &iocb->ki_pos, count, ret);
dda35b8f
CH
753 /*
754 * if we just got an ENOSPC, flush the inode now we
755 * aren't holding any page locks and retry *once*
756 */
a363f0c2
DC
757 if (ret == -ENOSPC && !enospc) {
758 ret = xfs_flush_pages(ip, 0, -1, 0, FI_NONE);
759 if (ret)
dda35b8f
CH
760 goto out_unlock_internal;
761 enospc = 1;
762 goto write_retry;
763 }
dda35b8f
CH
764 }
765
766 current->backing_dev_info = NULL;
767
edafb6da 768 xfs_aio_write_isize_update(inode, &iocb->ki_pos, ret);
dda35b8f 769
dda35b8f
CH
770 if (ret <= 0)
771 goto out_unlock_internal;
772
dda35b8f
CH
773 /* Handle various SYNC-type writes */
774 if ((file->f_flags & O_DSYNC) || IS_SYNC(inode)) {
775 loff_t end = pos + ret - 1;
a363f0c2 776 int error, error2;
dda35b8f 777
00258e36 778 xfs_iunlock(ip, iolock);
dda35b8f
CH
779 if (need_i_mutex)
780 mutex_unlock(&inode->i_mutex);
781
a363f0c2 782 error = filemap_write_and_wait_range(mapping, pos, end);
dda35b8f
CH
783 if (need_i_mutex)
784 mutex_lock(&inode->i_mutex);
00258e36 785 xfs_ilock(ip, iolock);
dda35b8f 786
7ea80859 787 error2 = -xfs_file_fsync(file,
fd3200be 788 (file->f_flags & __O_SYNC) ? 0 : 1);
a363f0c2
DC
789 if (error)
790 ret = error;
791 else if (error2)
792 ret = error2;
dda35b8f
CH
793 }
794
795 out_unlock_internal:
4c5cfd1b 796 xfs_aio_write_newsize_update(ip);
00258e36 797 xfs_iunlock(ip, iolock);
dda35b8f
CH
798 out_unlock_mutex:
799 if (need_i_mutex)
800 mutex_unlock(&inode->i_mutex);
a363f0c2 801 return ret;
dda35b8f
CH
802}
803
1da177e4 804STATIC int
3562fd45 805xfs_file_open(
1da177e4 806 struct inode *inode,
f999a5bf 807 struct file *file)
1da177e4 808{
f999a5bf 809 if (!(file->f_flags & O_LARGEFILE) && i_size_read(inode) > MAX_NON_LFS)
1da177e4 810 return -EFBIG;
f999a5bf
CH
811 if (XFS_FORCED_SHUTDOWN(XFS_M(inode->i_sb)))
812 return -EIO;
813 return 0;
814}
815
816STATIC int
817xfs_dir_open(
818 struct inode *inode,
819 struct file *file)
820{
821 struct xfs_inode *ip = XFS_I(inode);
822 int mode;
823 int error;
824
825 error = xfs_file_open(inode, file);
826 if (error)
827 return error;
828
829 /*
830 * If there are any blocks, read-ahead block 0 as we're almost
831 * certain to have the next operation be a read there.
832 */
833 mode = xfs_ilock_map_shared(ip);
834 if (ip->i_d.di_nextents > 0)
835 xfs_da_reada_buf(NULL, ip, 0, XFS_DATA_FORK);
836 xfs_iunlock(ip, mode);
837 return 0;
1da177e4
LT
838}
839
1da177e4 840STATIC int
3562fd45 841xfs_file_release(
1da177e4
LT
842 struct inode *inode,
843 struct file *filp)
844{
739bfb2a 845 return -xfs_release(XFS_I(inode));
1da177e4
LT
846}
847
1da177e4 848STATIC int
3562fd45 849xfs_file_readdir(
1da177e4
LT
850 struct file *filp,
851 void *dirent,
852 filldir_t filldir)
853{
051e7cd4 854 struct inode *inode = filp->f_path.dentry->d_inode;
739bfb2a 855 xfs_inode_t *ip = XFS_I(inode);
051e7cd4
CH
856 int error;
857 size_t bufsize;
858
859 /*
860 * The Linux API doesn't pass down the total size of the buffer
861 * we read into down to the filesystem. With the filldir concept
862 * it's not needed for correct information, but the XFS dir2 leaf
863 * code wants an estimate of the buffer size to calculate it's
864 * readahead window and size the buffers used for mapping to
865 * physical blocks.
866 *
867 * Try to give it an estimate that's good enough, maybe at some
868 * point we can change the ->readdir prototype to include the
a9cc799e 869 * buffer size. For now we use the current glibc buffer size.
051e7cd4 870 */
a9cc799e 871 bufsize = (size_t)min_t(loff_t, 32768, ip->i_d.di_size);
051e7cd4 872
739bfb2a 873 error = xfs_readdir(ip, dirent, bufsize,
051e7cd4
CH
874 (xfs_off_t *)&filp->f_pos, filldir);
875 if (error)
876 return -error;
877 return 0;
1da177e4
LT
878}
879
1da177e4 880STATIC int
3562fd45 881xfs_file_mmap(
1da177e4
LT
882 struct file *filp,
883 struct vm_area_struct *vma)
884{
3562fd45 885 vma->vm_ops = &xfs_file_vm_ops;
d0217ac0 886 vma->vm_flags |= VM_CAN_NONLINEAR;
6fac0cb4 887
fbc1462b 888 file_accessed(filp);
1da177e4
LT
889 return 0;
890}
891
4f57dbc6
DC
892/*
893 * mmap()d file has taken write protection fault and is being made
894 * writable. We can set the page state up correctly for a writable
895 * page, which means we can do correct delalloc accounting (ENOSPC
896 * checking!) and unwritten extent mapping.
897 */
898STATIC int
899xfs_vm_page_mkwrite(
900 struct vm_area_struct *vma,
c2ec175c 901 struct vm_fault *vmf)
4f57dbc6 902{
c2ec175c 903 return block_page_mkwrite(vma, vmf, xfs_get_blocks);
4f57dbc6
DC
904}
905
4b6f5d20 906const struct file_operations xfs_file_operations = {
1da177e4
LT
907 .llseek = generic_file_llseek,
908 .read = do_sync_read,
bb3f724e 909 .write = do_sync_write,
3562fd45
NS
910 .aio_read = xfs_file_aio_read,
911 .aio_write = xfs_file_aio_write,
1b895840
NS
912 .splice_read = xfs_file_splice_read,
913 .splice_write = xfs_file_splice_write,
3562fd45 914 .unlocked_ioctl = xfs_file_ioctl,
1da177e4 915#ifdef CONFIG_COMPAT
3562fd45 916 .compat_ioctl = xfs_file_compat_ioctl,
1da177e4 917#endif
3562fd45
NS
918 .mmap = xfs_file_mmap,
919 .open = xfs_file_open,
920 .release = xfs_file_release,
921 .fsync = xfs_file_fsync,
1da177e4
LT
922};
923
4b6f5d20 924const struct file_operations xfs_dir_file_operations = {
f999a5bf 925 .open = xfs_dir_open,
1da177e4 926 .read = generic_read_dir,
3562fd45 927 .readdir = xfs_file_readdir,
59af1584 928 .llseek = generic_file_llseek,
3562fd45 929 .unlocked_ioctl = xfs_file_ioctl,
d3870398 930#ifdef CONFIG_COMPAT
3562fd45 931 .compat_ioctl = xfs_file_compat_ioctl,
d3870398 932#endif
3562fd45 933 .fsync = xfs_file_fsync,
1da177e4
LT
934};
935
f0f37e2f 936static const struct vm_operations_struct xfs_file_vm_ops = {
54cb8821 937 .fault = filemap_fault,
4f57dbc6 938 .page_mkwrite = xfs_vm_page_mkwrite,
6fac0cb4 939};