]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - fs/xfs/linux-2.6/xfs_sync.c
vmscan: change shrinker API by passing shrink_control struct
[mirror_ubuntu-zesty-kernel.git] / fs / xfs / linux-2.6 / xfs_sync.c
CommitLineData
fe4fa4b8
DC
1/*
2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
17 */
18#include "xfs.h"
19#include "xfs_fs.h"
20#include "xfs_types.h"
21#include "xfs_bit.h"
22#include "xfs_log.h"
23#include "xfs_inum.h"
24#include "xfs_trans.h"
fd074841 25#include "xfs_trans_priv.h"
fe4fa4b8
DC
26#include "xfs_sb.h"
27#include "xfs_ag.h"
fe4fa4b8
DC
28#include "xfs_mount.h"
29#include "xfs_bmap_btree.h"
fe4fa4b8
DC
30#include "xfs_inode.h"
31#include "xfs_dinode.h"
32#include "xfs_error.h"
fe4fa4b8
DC
33#include "xfs_filestream.h"
34#include "xfs_vnodeops.h"
fe4fa4b8 35#include "xfs_inode_item.h"
7d095257 36#include "xfs_quota.h"
0b1b213f 37#include "xfs_trace.h"
1a387d3b 38#include "xfs_fsops.h"
fe4fa4b8 39
a167b17e
DC
40#include <linux/kthread.h>
41#include <linux/freezer.h>
42
c6d09b66
DC
43struct workqueue_struct *xfs_syncd_wq; /* sync workqueue */
44
78ae5256
DC
45/*
46 * The inode lookup is done in batches to keep the amount of lock traffic and
47 * radix tree lookups to a minimum. The batch size is a trade off between
48 * lookup reduction and stack usage. This is in the reclaim path, so we can't
49 * be too greedy.
50 */
51#define XFS_LOOKUP_BATCH 32
52
e13de955
DC
53STATIC int
54xfs_inode_ag_walk_grab(
55 struct xfs_inode *ip)
56{
57 struct inode *inode = VFS_I(ip);
58
1a3e8f3d
DC
59 ASSERT(rcu_read_lock_held());
60
61 /*
62 * check for stale RCU freed inode
63 *
64 * If the inode has been reallocated, it doesn't matter if it's not in
65 * the AG we are walking - we are walking for writeback, so if it
66 * passes all the "valid inode" checks and is dirty, then we'll write
67 * it back anyway. If it has been reallocated and still being
68 * initialised, the XFS_INEW check below will catch it.
69 */
70 spin_lock(&ip->i_flags_lock);
71 if (!ip->i_ino)
72 goto out_unlock_noent;
73
74 /* avoid new or reclaimable inodes. Leave for reclaim code to flush */
75 if (__xfs_iflags_test(ip, XFS_INEW | XFS_IRECLAIMABLE | XFS_IRECLAIM))
76 goto out_unlock_noent;
77 spin_unlock(&ip->i_flags_lock);
78
e13de955
DC
79 /* nothing to sync during shutdown */
80 if (XFS_FORCED_SHUTDOWN(ip->i_mount))
81 return EFSCORRUPTED;
82
e13de955
DC
83 /* If we can't grab the inode, it must on it's way to reclaim. */
84 if (!igrab(inode))
85 return ENOENT;
86
87 if (is_bad_inode(inode)) {
88 IRELE(ip);
89 return ENOENT;
90 }
91
92 /* inode is valid */
93 return 0;
1a3e8f3d
DC
94
95out_unlock_noent:
96 spin_unlock(&ip->i_flags_lock);
97 return ENOENT;
e13de955
DC
98}
99
75f3cb13
DC
100STATIC int
101xfs_inode_ag_walk(
102 struct xfs_mount *mp,
5017e97d 103 struct xfs_perag *pag,
75f3cb13
DC
104 int (*execute)(struct xfs_inode *ip,
105 struct xfs_perag *pag, int flags),
65d0f205 106 int flags)
75f3cb13 107{
75f3cb13
DC
108 uint32_t first_index;
109 int last_error = 0;
110 int skipped;
65d0f205 111 int done;
78ae5256 112 int nr_found;
75f3cb13
DC
113
114restart:
65d0f205 115 done = 0;
75f3cb13
DC
116 skipped = 0;
117 first_index = 0;
78ae5256 118 nr_found = 0;
75f3cb13 119 do {
78ae5256 120 struct xfs_inode *batch[XFS_LOOKUP_BATCH];
75f3cb13 121 int error = 0;
78ae5256 122 int i;
75f3cb13 123
1a3e8f3d 124 rcu_read_lock();
65d0f205 125 nr_found = radix_tree_gang_lookup(&pag->pag_ici_root,
78ae5256
DC
126 (void **)batch, first_index,
127 XFS_LOOKUP_BATCH);
65d0f205 128 if (!nr_found) {
1a3e8f3d 129 rcu_read_unlock();
75f3cb13 130 break;
c8e20be0 131 }
75f3cb13 132
65d0f205 133 /*
78ae5256
DC
134 * Grab the inodes before we drop the lock. if we found
135 * nothing, nr == 0 and the loop will be skipped.
65d0f205 136 */
78ae5256
DC
137 for (i = 0; i < nr_found; i++) {
138 struct xfs_inode *ip = batch[i];
139
140 if (done || xfs_inode_ag_walk_grab(ip))
141 batch[i] = NULL;
142
143 /*
1a3e8f3d
DC
144 * Update the index for the next lookup. Catch
145 * overflows into the next AG range which can occur if
146 * we have inodes in the last block of the AG and we
147 * are currently pointing to the last inode.
148 *
149 * Because we may see inodes that are from the wrong AG
150 * due to RCU freeing and reallocation, only update the
151 * index if it lies in this AG. It was a race that lead
152 * us to see this inode, so another lookup from the
153 * same index will not find it again.
78ae5256 154 */
1a3e8f3d
DC
155 if (XFS_INO_TO_AGNO(mp, ip->i_ino) != pag->pag_agno)
156 continue;
78ae5256
DC
157 first_index = XFS_INO_TO_AGINO(mp, ip->i_ino + 1);
158 if (first_index < XFS_INO_TO_AGINO(mp, ip->i_ino))
159 done = 1;
e13de955 160 }
78ae5256
DC
161
162 /* unlock now we've grabbed the inodes. */
1a3e8f3d 163 rcu_read_unlock();
e13de955 164
78ae5256
DC
165 for (i = 0; i < nr_found; i++) {
166 if (!batch[i])
167 continue;
168 error = execute(batch[i], pag, flags);
169 IRELE(batch[i]);
170 if (error == EAGAIN) {
171 skipped++;
172 continue;
173 }
174 if (error && last_error != EFSCORRUPTED)
175 last_error = error;
75f3cb13 176 }
c8e20be0
DC
177
178 /* bail out if the filesystem is corrupted. */
75f3cb13
DC
179 if (error == EFSCORRUPTED)
180 break;
181
78ae5256 182 } while (nr_found && !done);
75f3cb13
DC
183
184 if (skipped) {
185 delay(1);
186 goto restart;
187 }
75f3cb13
DC
188 return last_error;
189}
190
fe588ed3 191int
75f3cb13
DC
192xfs_inode_ag_iterator(
193 struct xfs_mount *mp,
194 int (*execute)(struct xfs_inode *ip,
195 struct xfs_perag *pag, int flags),
65d0f205 196 int flags)
75f3cb13 197{
16fd5367 198 struct xfs_perag *pag;
75f3cb13
DC
199 int error = 0;
200 int last_error = 0;
201 xfs_agnumber_t ag;
202
16fd5367 203 ag = 0;
65d0f205
DC
204 while ((pag = xfs_perag_get(mp, ag))) {
205 ag = pag->pag_agno + 1;
206 error = xfs_inode_ag_walk(mp, pag, execute, flags);
5017e97d 207 xfs_perag_put(pag);
75f3cb13
DC
208 if (error) {
209 last_error = error;
210 if (error == EFSCORRUPTED)
211 break;
212 }
213 }
214 return XFS_ERROR(last_error);
215}
216
5a34d5cd
DC
217STATIC int
218xfs_sync_inode_data(
219 struct xfs_inode *ip,
75f3cb13 220 struct xfs_perag *pag,
5a34d5cd
DC
221 int flags)
222{
223 struct inode *inode = VFS_I(ip);
224 struct address_space *mapping = inode->i_mapping;
225 int error = 0;
226
227 if (!mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
228 goto out_wait;
229
230 if (!xfs_ilock_nowait(ip, XFS_IOLOCK_SHARED)) {
231 if (flags & SYNC_TRYLOCK)
232 goto out_wait;
233 xfs_ilock(ip, XFS_IOLOCK_SHARED);
234 }
235
236 error = xfs_flush_pages(ip, 0, -1, (flags & SYNC_WAIT) ?
0cadda1c 237 0 : XBF_ASYNC, FI_NONE);
5a34d5cd
DC
238 xfs_iunlock(ip, XFS_IOLOCK_SHARED);
239
240 out_wait:
b0710ccc 241 if (flags & SYNC_WAIT)
5a34d5cd
DC
242 xfs_ioend_wait(ip);
243 return error;
244}
245
845b6d0c
CH
246STATIC int
247xfs_sync_inode_attr(
248 struct xfs_inode *ip,
75f3cb13 249 struct xfs_perag *pag,
845b6d0c
CH
250 int flags)
251{
252 int error = 0;
253
254 xfs_ilock(ip, XFS_ILOCK_SHARED);
255 if (xfs_inode_clean(ip))
256 goto out_unlock;
257 if (!xfs_iflock_nowait(ip)) {
258 if (!(flags & SYNC_WAIT))
259 goto out_unlock;
260 xfs_iflock(ip);
261 }
262
263 if (xfs_inode_clean(ip)) {
264 xfs_ifunlock(ip);
265 goto out_unlock;
266 }
267
c854363e 268 error = xfs_iflush(ip, flags);
845b6d0c 269
ee58abdf
DC
270 /*
271 * We don't want to try again on non-blocking flushes that can't run
272 * again immediately. If an inode really must be written, then that's
273 * what the SYNC_WAIT flag is for.
274 */
275 if (error == EAGAIN) {
276 ASSERT(!(flags & SYNC_WAIT));
277 error = 0;
278 }
279
845b6d0c
CH
280 out_unlock:
281 xfs_iunlock(ip, XFS_ILOCK_SHARED);
282 return error;
283}
284
075fe102
CH
285/*
286 * Write out pagecache data for the whole filesystem.
287 */
64c86149 288STATIC int
075fe102
CH
289xfs_sync_data(
290 struct xfs_mount *mp,
291 int flags)
683a8970 292{
075fe102 293 int error;
fe4fa4b8 294
b0710ccc 295 ASSERT((flags & ~(SYNC_TRYLOCK|SYNC_WAIT)) == 0);
fe4fa4b8 296
65d0f205 297 error = xfs_inode_ag_iterator(mp, xfs_sync_inode_data, flags);
075fe102
CH
298 if (error)
299 return XFS_ERROR(error);
e9f1c6ee 300
a14a348b 301 xfs_log_force(mp, (flags & SYNC_WAIT) ? XFS_LOG_SYNC : 0);
075fe102
CH
302 return 0;
303}
e9f1c6ee 304
075fe102
CH
305/*
306 * Write out inode metadata (attributes) for the whole filesystem.
307 */
64c86149 308STATIC int
075fe102
CH
309xfs_sync_attr(
310 struct xfs_mount *mp,
311 int flags)
312{
313 ASSERT((flags & ~SYNC_WAIT) == 0);
75f3cb13 314
65d0f205 315 return xfs_inode_ag_iterator(mp, xfs_sync_inode_attr, flags);
fe4fa4b8
DC
316}
317
5d77c0dc 318STATIC int
2af75df7 319xfs_sync_fsdata(
df308bcf 320 struct xfs_mount *mp)
2af75df7
CH
321{
322 struct xfs_buf *bp;
2af75df7
CH
323
324 /*
df308bcf
CH
325 * If the buffer is pinned then push on the log so we won't get stuck
326 * waiting in the write for someone, maybe ourselves, to flush the log.
327 *
328 * Even though we just pushed the log above, we did not have the
329 * superblock buffer locked at that point so it can become pinned in
330 * between there and here.
2af75df7 331 */
df308bcf
CH
332 bp = xfs_getsb(mp, 0);
333 if (XFS_BUF_ISPINNED(bp))
334 xfs_log_force(mp, 0);
2af75df7 335
df308bcf 336 return xfs_bwrite(mp, bp);
e9f1c6ee
DC
337}
338
339/*
a4e4c4f4
DC
340 * When remounting a filesystem read-only or freezing the filesystem, we have
341 * two phases to execute. This first phase is syncing the data before we
342 * quiesce the filesystem, and the second is flushing all the inodes out after
343 * we've waited for all the transactions created by the first phase to
344 * complete. The second phase ensures that the inodes are written to their
345 * location on disk rather than just existing in transactions in the log. This
346 * means after a quiesce there is no log replay required to write the inodes to
347 * disk (this is the main difference between a sync and a quiesce).
348 */
349/*
350 * First stage of freeze - no writers will make progress now we are here,
e9f1c6ee
DC
351 * so we flush delwri and delalloc buffers here, then wait for all I/O to
352 * complete. Data is frozen at that point. Metadata is not frozen,
a4e4c4f4
DC
353 * transactions can still occur here so don't bother flushing the buftarg
354 * because it'll just get dirty again.
e9f1c6ee
DC
355 */
356int
357xfs_quiesce_data(
358 struct xfs_mount *mp)
359{
df308bcf 360 int error, error2 = 0;
e9f1c6ee
DC
361
362 /* push non-blocking */
075fe102 363 xfs_sync_data(mp, 0);
8b5403a6 364 xfs_qm_sync(mp, SYNC_TRYLOCK);
e9f1c6ee 365
c90b07e8 366 /* push and block till complete */
b0710ccc 367 xfs_sync_data(mp, SYNC_WAIT);
7d095257 368 xfs_qm_sync(mp, SYNC_WAIT);
e9f1c6ee 369
a4e4c4f4 370 /* write superblock and hoover up shutdown errors */
df308bcf
CH
371 error = xfs_sync_fsdata(mp);
372
373 /* make sure all delwri buffers are written out */
374 xfs_flush_buftarg(mp->m_ddev_targp, 1);
375
376 /* mark the log as covered if needed */
377 if (xfs_log_need_covered(mp))
c58efdb4 378 error2 = xfs_fs_log_dummy(mp);
e9f1c6ee 379
a4e4c4f4 380 /* flush data-only devices */
e9f1c6ee
DC
381 if (mp->m_rtdev_targp)
382 XFS_bflush(mp->m_rtdev_targp);
383
df308bcf 384 return error ? error : error2;
2af75df7
CH
385}
386
76bf105c
DC
387STATIC void
388xfs_quiesce_fs(
389 struct xfs_mount *mp)
390{
391 int count = 0, pincount;
392
c854363e 393 xfs_reclaim_inodes(mp, 0);
76bf105c 394 xfs_flush_buftarg(mp->m_ddev_targp, 0);
76bf105c
DC
395
396 /*
397 * This loop must run at least twice. The first instance of the loop
398 * will flush most meta data but that will generate more meta data
399 * (typically directory updates). Which then must be flushed and
c854363e
DC
400 * logged before we can write the unmount record. We also so sync
401 * reclaim of inodes to catch any that the above delwri flush skipped.
76bf105c
DC
402 */
403 do {
c854363e 404 xfs_reclaim_inodes(mp, SYNC_WAIT);
075fe102 405 xfs_sync_attr(mp, SYNC_WAIT);
76bf105c
DC
406 pincount = xfs_flush_buftarg(mp->m_ddev_targp, 1);
407 if (!pincount) {
408 delay(50);
409 count++;
410 }
411 } while (count < 2);
412}
413
414/*
415 * Second stage of a quiesce. The data is already synced, now we have to take
416 * care of the metadata. New transactions are already blocked, so we need to
25985edc 417 * wait for any remaining transactions to drain out before proceeding.
76bf105c
DC
418 */
419void
420xfs_quiesce_attr(
421 struct xfs_mount *mp)
422{
423 int error = 0;
424
425 /* wait for all modifications to complete */
426 while (atomic_read(&mp->m_active_trans) > 0)
427 delay(100);
428
429 /* flush inodes and push all remaining buffers out to disk */
430 xfs_quiesce_fs(mp);
431
5e106572
FB
432 /*
433 * Just warn here till VFS can correctly support
434 * read-only remount without racing.
435 */
436 WARN_ON(atomic_read(&mp->m_active_trans) != 0);
76bf105c
DC
437
438 /* Push the superblock and write an unmount record */
439 error = xfs_log_sbcount(mp, 1);
440 if (error)
4f10700a 441 xfs_warn(mp, "xfs_attr_quiesce: failed to log sb changes. "
76bf105c
DC
442 "Frozen image may not be consistent.");
443 xfs_log_unmount_write(mp);
444 xfs_unmountfs_writesb(mp);
445}
446
c6d09b66
DC
447static void
448xfs_syncd_queue_sync(
449 struct xfs_mount *mp)
a167b17e 450{
c6d09b66
DC
451 queue_delayed_work(xfs_syncd_wq, &mp->m_sync_work,
452 msecs_to_jiffies(xfs_syncd_centisecs * 10));
a167b17e
DC
453}
454
aacaa880 455/*
df308bcf
CH
456 * Every sync period we need to unpin all items, reclaim inodes and sync
457 * disk quotas. We might need to cover the log to indicate that the
1a387d3b 458 * filesystem is idle and not frozen.
aacaa880 459 */
a167b17e
DC
460STATIC void
461xfs_sync_worker(
c6d09b66 462 struct work_struct *work)
a167b17e 463{
c6d09b66
DC
464 struct xfs_mount *mp = container_of(to_delayed_work(work),
465 struct xfs_mount, m_sync_work);
a167b17e
DC
466 int error;
467
aacaa880 468 if (!(mp->m_flags & XFS_MOUNT_RDONLY)) {
aacaa880 469 /* dgc: errors ignored here */
1a387d3b
DC
470 if (mp->m_super->s_frozen == SB_UNFROZEN &&
471 xfs_log_need_covered(mp))
c58efdb4
DC
472 error = xfs_fs_log_dummy(mp);
473 else
474 xfs_log_force(mp, 0);
c58efdb4 475 error = xfs_qm_sync(mp, SYNC_TRYLOCK);
fd074841
DC
476
477 /* start pushing all the metadata that is currently dirty */
478 xfs_ail_push_all(mp->m_ail);
aacaa880 479 }
c6d09b66
DC
480
481 /* queue us up again */
482 xfs_syncd_queue_sync(mp);
a167b17e
DC
483}
484
a7b339f1
DC
485/*
486 * Queue a new inode reclaim pass if there are reclaimable inodes and there
487 * isn't a reclaim pass already in progress. By default it runs every 5s based
488 * on the xfs syncd work default of 30s. Perhaps this should have it's own
489 * tunable, but that can be done if this method proves to be ineffective or too
490 * aggressive.
491 */
492static void
493xfs_syncd_queue_reclaim(
494 struct xfs_mount *mp)
a167b17e 495{
a167b17e 496
a7b339f1
DC
497 /*
498 * We can have inodes enter reclaim after we've shut down the syncd
499 * workqueue during unmount, so don't allow reclaim work to be queued
500 * during unmount.
501 */
502 if (!(mp->m_super->s_flags & MS_ACTIVE))
503 return;
a167b17e 504
a7b339f1
DC
505 rcu_read_lock();
506 if (radix_tree_tagged(&mp->m_perag_tree, XFS_ICI_RECLAIM_TAG)) {
507 queue_delayed_work(xfs_syncd_wq, &mp->m_reclaim_work,
508 msecs_to_jiffies(xfs_syncd_centisecs / 6 * 10));
a167b17e 509 }
a7b339f1
DC
510 rcu_read_unlock();
511}
a167b17e 512
a7b339f1
DC
513/*
514 * This is a fast pass over the inode cache to try to get reclaim moving on as
515 * many inodes as possible in a short period of time. It kicks itself every few
516 * seconds, as well as being kicked by the inode cache shrinker when memory
517 * goes low. It scans as quickly as possible avoiding locked inodes or those
518 * already being flushed, and once done schedules a future pass.
519 */
520STATIC void
521xfs_reclaim_worker(
522 struct work_struct *work)
523{
524 struct xfs_mount *mp = container_of(to_delayed_work(work),
525 struct xfs_mount, m_reclaim_work);
526
527 xfs_reclaim_inodes(mp, SYNC_TRYLOCK);
528 xfs_syncd_queue_reclaim(mp);
529}
530
89e4cb55
DC
531/*
532 * Flush delayed allocate data, attempting to free up reserved space
533 * from existing allocations. At this point a new allocation attempt
534 * has failed with ENOSPC and we are in the process of scratching our
535 * heads, looking about for more room.
536 *
537 * Queue a new data flush if there isn't one already in progress and
538 * wait for completion of the flush. This means that we only ever have one
539 * inode flush in progress no matter how many ENOSPC events are occurring and
540 * so will prevent the system from bogging down due to every concurrent
541 * ENOSPC event scanning all the active inodes in the system for writeback.
542 */
543void
544xfs_flush_inodes(
545 struct xfs_inode *ip)
546{
547 struct xfs_mount *mp = ip->i_mount;
548
549 queue_work(xfs_syncd_wq, &mp->m_flush_work);
550 flush_work_sync(&mp->m_flush_work);
551}
552
553STATIC void
554xfs_flush_worker(
555 struct work_struct *work)
556{
557 struct xfs_mount *mp = container_of(work,
558 struct xfs_mount, m_flush_work);
559
560 xfs_sync_data(mp, SYNC_TRYLOCK);
561 xfs_sync_data(mp, SYNC_TRYLOCK | SYNC_WAIT);
a167b17e
DC
562}
563
564int
565xfs_syncd_init(
566 struct xfs_mount *mp)
567{
89e4cb55 568 INIT_WORK(&mp->m_flush_work, xfs_flush_worker);
c6d09b66 569 INIT_DELAYED_WORK(&mp->m_sync_work, xfs_sync_worker);
a7b339f1
DC
570 INIT_DELAYED_WORK(&mp->m_reclaim_work, xfs_reclaim_worker);
571
c6d09b66 572 xfs_syncd_queue_sync(mp);
a7b339f1 573 xfs_syncd_queue_reclaim(mp);
c6d09b66 574
a167b17e
DC
575 return 0;
576}
577
578void
579xfs_syncd_stop(
580 struct xfs_mount *mp)
581{
c6d09b66 582 cancel_delayed_work_sync(&mp->m_sync_work);
a7b339f1 583 cancel_delayed_work_sync(&mp->m_reclaim_work);
89e4cb55 584 cancel_work_sync(&mp->m_flush_work);
a167b17e
DC
585}
586
bc990f5c
CH
587void
588__xfs_inode_set_reclaim_tag(
589 struct xfs_perag *pag,
590 struct xfs_inode *ip)
591{
592 radix_tree_tag_set(&pag->pag_ici_root,
593 XFS_INO_TO_AGINO(ip->i_mount, ip->i_ino),
594 XFS_ICI_RECLAIM_TAG);
16fd5367
DC
595
596 if (!pag->pag_ici_reclaimable) {
597 /* propagate the reclaim tag up into the perag radix tree */
598 spin_lock(&ip->i_mount->m_perag_lock);
599 radix_tree_tag_set(&ip->i_mount->m_perag_tree,
600 XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino),
601 XFS_ICI_RECLAIM_TAG);
602 spin_unlock(&ip->i_mount->m_perag_lock);
a7b339f1
DC
603
604 /* schedule periodic background inode reclaim */
605 xfs_syncd_queue_reclaim(ip->i_mount);
606
16fd5367
DC
607 trace_xfs_perag_set_reclaim(ip->i_mount, pag->pag_agno,
608 -1, _RET_IP_);
609 }
9bf729c0 610 pag->pag_ici_reclaimable++;
bc990f5c
CH
611}
612
11654513
DC
613/*
614 * We set the inode flag atomically with the radix tree tag.
615 * Once we get tag lookups on the radix tree, this inode flag
616 * can go away.
617 */
396beb85
DC
618void
619xfs_inode_set_reclaim_tag(
620 xfs_inode_t *ip)
621{
5017e97d
DC
622 struct xfs_mount *mp = ip->i_mount;
623 struct xfs_perag *pag;
396beb85 624
5017e97d 625 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
1a427ab0 626 spin_lock(&pag->pag_ici_lock);
396beb85 627 spin_lock(&ip->i_flags_lock);
bc990f5c 628 __xfs_inode_set_reclaim_tag(pag, ip);
11654513 629 __xfs_iflags_set(ip, XFS_IRECLAIMABLE);
396beb85 630 spin_unlock(&ip->i_flags_lock);
1a427ab0 631 spin_unlock(&pag->pag_ici_lock);
5017e97d 632 xfs_perag_put(pag);
396beb85
DC
633}
634
081003ff
JW
635STATIC void
636__xfs_inode_clear_reclaim(
396beb85
DC
637 xfs_perag_t *pag,
638 xfs_inode_t *ip)
639{
9bf729c0 640 pag->pag_ici_reclaimable--;
16fd5367
DC
641 if (!pag->pag_ici_reclaimable) {
642 /* clear the reclaim tag from the perag radix tree */
643 spin_lock(&ip->i_mount->m_perag_lock);
644 radix_tree_tag_clear(&ip->i_mount->m_perag_tree,
645 XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino),
646 XFS_ICI_RECLAIM_TAG);
647 spin_unlock(&ip->i_mount->m_perag_lock);
648 trace_xfs_perag_clear_reclaim(ip->i_mount, pag->pag_agno,
649 -1, _RET_IP_);
650 }
396beb85
DC
651}
652
081003ff
JW
653void
654__xfs_inode_clear_reclaim_tag(
655 xfs_mount_t *mp,
656 xfs_perag_t *pag,
657 xfs_inode_t *ip)
658{
659 radix_tree_tag_clear(&pag->pag_ici_root,
660 XFS_INO_TO_AGINO(mp, ip->i_ino), XFS_ICI_RECLAIM_TAG);
661 __xfs_inode_clear_reclaim(pag, ip);
662}
663
e3a20c0b
DC
664/*
665 * Grab the inode for reclaim exclusively.
666 * Return 0 if we grabbed it, non-zero otherwise.
667 */
668STATIC int
669xfs_reclaim_inode_grab(
670 struct xfs_inode *ip,
671 int flags)
672{
1a3e8f3d
DC
673 ASSERT(rcu_read_lock_held());
674
675 /* quick check for stale RCU freed inode */
676 if (!ip->i_ino)
677 return 1;
e3a20c0b
DC
678
679 /*
1a3e8f3d 680 * do some unlocked checks first to avoid unnecessary lock traffic.
e3a20c0b
DC
681 * The first is a flush lock check, the second is a already in reclaim
682 * check. Only do these checks if we are not going to block on locks.
683 */
684 if ((flags & SYNC_TRYLOCK) &&
685 (!ip->i_flush.done || __xfs_iflags_test(ip, XFS_IRECLAIM))) {
686 return 1;
687 }
688
689 /*
690 * The radix tree lock here protects a thread in xfs_iget from racing
691 * with us starting reclaim on the inode. Once we have the
692 * XFS_IRECLAIM flag set it will not touch us.
1a3e8f3d
DC
693 *
694 * Due to RCU lookup, we may find inodes that have been freed and only
695 * have XFS_IRECLAIM set. Indeed, we may see reallocated inodes that
696 * aren't candidates for reclaim at all, so we must check the
697 * XFS_IRECLAIMABLE is set first before proceeding to reclaim.
e3a20c0b
DC
698 */
699 spin_lock(&ip->i_flags_lock);
1a3e8f3d
DC
700 if (!__xfs_iflags_test(ip, XFS_IRECLAIMABLE) ||
701 __xfs_iflags_test(ip, XFS_IRECLAIM)) {
702 /* not a reclaim candidate. */
e3a20c0b
DC
703 spin_unlock(&ip->i_flags_lock);
704 return 1;
705 }
706 __xfs_iflags_set(ip, XFS_IRECLAIM);
707 spin_unlock(&ip->i_flags_lock);
708 return 0;
709}
710
777df5af
DC
711/*
712 * Inodes in different states need to be treated differently, and the return
713 * value of xfs_iflush is not sufficient to get this right. The following table
714 * lists the inode states and the reclaim actions necessary for non-blocking
715 * reclaim:
716 *
717 *
718 * inode state iflush ret required action
719 * --------------- ---------- ---------------
720 * bad - reclaim
721 * shutdown EIO unpin and reclaim
722 * clean, unpinned 0 reclaim
723 * stale, unpinned 0 reclaim
c854363e
DC
724 * clean, pinned(*) 0 requeue
725 * stale, pinned EAGAIN requeue
726 * dirty, delwri ok 0 requeue
727 * dirty, delwri blocked EAGAIN requeue
728 * dirty, sync flush 0 reclaim
777df5af
DC
729 *
730 * (*) dgc: I don't think the clean, pinned state is possible but it gets
731 * handled anyway given the order of checks implemented.
732 *
c854363e
DC
733 * As can be seen from the table, the return value of xfs_iflush() is not
734 * sufficient to correctly decide the reclaim action here. The checks in
735 * xfs_iflush() might look like duplicates, but they are not.
736 *
737 * Also, because we get the flush lock first, we know that any inode that has
738 * been flushed delwri has had the flush completed by the time we check that
739 * the inode is clean. The clean inode check needs to be done before flushing
740 * the inode delwri otherwise we would loop forever requeuing clean inodes as
741 * we cannot tell apart a successful delwri flush and a clean inode from the
742 * return value of xfs_iflush().
743 *
744 * Note that because the inode is flushed delayed write by background
745 * writeback, the flush lock may already be held here and waiting on it can
746 * result in very long latencies. Hence for sync reclaims, where we wait on the
747 * flush lock, the caller should push out delayed write inodes first before
748 * trying to reclaim them to minimise the amount of time spent waiting. For
749 * background relaim, we just requeue the inode for the next pass.
750 *
777df5af
DC
751 * Hence the order of actions after gaining the locks should be:
752 * bad => reclaim
753 * shutdown => unpin and reclaim
c854363e
DC
754 * pinned, delwri => requeue
755 * pinned, sync => unpin
777df5af
DC
756 * stale => reclaim
757 * clean => reclaim
c854363e
DC
758 * dirty, delwri => flush and requeue
759 * dirty, sync => flush, wait and reclaim
777df5af 760 */
75f3cb13 761STATIC int
c8e20be0 762xfs_reclaim_inode(
75f3cb13
DC
763 struct xfs_inode *ip,
764 struct xfs_perag *pag,
c8e20be0 765 int sync_mode)
fce08f2f 766{
1bfd8d04 767 int error;
777df5af 768
1bfd8d04
DC
769restart:
770 error = 0;
c8e20be0 771 xfs_ilock(ip, XFS_ILOCK_EXCL);
c854363e
DC
772 if (!xfs_iflock_nowait(ip)) {
773 if (!(sync_mode & SYNC_WAIT))
774 goto out;
775 xfs_iflock(ip);
776 }
7a3be02b 777
777df5af
DC
778 if (is_bad_inode(VFS_I(ip)))
779 goto reclaim;
780 if (XFS_FORCED_SHUTDOWN(ip->i_mount)) {
781 xfs_iunpin_wait(ip);
782 goto reclaim;
783 }
c854363e
DC
784 if (xfs_ipincount(ip)) {
785 if (!(sync_mode & SYNC_WAIT)) {
786 xfs_ifunlock(ip);
787 goto out;
788 }
777df5af 789 xfs_iunpin_wait(ip);
c854363e 790 }
777df5af
DC
791 if (xfs_iflags_test(ip, XFS_ISTALE))
792 goto reclaim;
793 if (xfs_inode_clean(ip))
794 goto reclaim;
795
1bfd8d04
DC
796 /*
797 * Now we have an inode that needs flushing.
798 *
799 * We do a nonblocking flush here even if we are doing a SYNC_WAIT
800 * reclaim as we can deadlock with inode cluster removal.
801 * xfs_ifree_cluster() can lock the inode buffer before it locks the
802 * ip->i_lock, and we are doing the exact opposite here. As a result,
803 * doing a blocking xfs_itobp() to get the cluster buffer will result
804 * in an ABBA deadlock with xfs_ifree_cluster().
805 *
806 * As xfs_ifree_cluser() must gather all inodes that are active in the
807 * cache to mark them stale, if we hit this case we don't actually want
808 * to do IO here - we want the inode marked stale so we can simply
809 * reclaim it. Hence if we get an EAGAIN error on a SYNC_WAIT flush,
810 * just unlock the inode, back off and try again. Hopefully the next
811 * pass through will see the stale flag set on the inode.
812 */
813 error = xfs_iflush(ip, SYNC_TRYLOCK | sync_mode);
c854363e 814 if (sync_mode & SYNC_WAIT) {
1bfd8d04
DC
815 if (error == EAGAIN) {
816 xfs_iunlock(ip, XFS_ILOCK_EXCL);
817 /* backoff longer than in xfs_ifree_cluster */
818 delay(2);
819 goto restart;
820 }
c854363e
DC
821 xfs_iflock(ip);
822 goto reclaim;
c8e20be0
DC
823 }
824
c854363e
DC
825 /*
826 * When we have to flush an inode but don't have SYNC_WAIT set, we
827 * flush the inode out using a delwri buffer and wait for the next
828 * call into reclaim to find it in a clean state instead of waiting for
829 * it now. We also don't return errors here - if the error is transient
830 * then the next reclaim pass will flush the inode, and if the error
f1d486a3 831 * is permanent then the next sync reclaim will reclaim the inode and
c854363e
DC
832 * pass on the error.
833 */
f1d486a3 834 if (error && error != EAGAIN && !XFS_FORCED_SHUTDOWN(ip->i_mount)) {
4f10700a 835 xfs_warn(ip->i_mount,
c854363e
DC
836 "inode 0x%llx background reclaim flush failed with %d",
837 (long long)ip->i_ino, error);
838 }
839out:
840 xfs_iflags_clear(ip, XFS_IRECLAIM);
841 xfs_iunlock(ip, XFS_ILOCK_EXCL);
842 /*
843 * We could return EAGAIN here to make reclaim rescan the inode tree in
844 * a short while. However, this just burns CPU time scanning the tree
845 * waiting for IO to complete and xfssyncd never goes back to the idle
846 * state. Instead, return 0 to let the next scheduled background reclaim
847 * attempt to reclaim the inode again.
848 */
849 return 0;
850
777df5af
DC
851reclaim:
852 xfs_ifunlock(ip);
c8e20be0 853 xfs_iunlock(ip, XFS_ILOCK_EXCL);
2f11feab
DC
854
855 XFS_STATS_INC(xs_ig_reclaims);
856 /*
857 * Remove the inode from the per-AG radix tree.
858 *
859 * Because radix_tree_delete won't complain even if the item was never
860 * added to the tree assert that it's been there before to catch
861 * problems with the inode life time early on.
862 */
1a427ab0 863 spin_lock(&pag->pag_ici_lock);
2f11feab
DC
864 if (!radix_tree_delete(&pag->pag_ici_root,
865 XFS_INO_TO_AGINO(ip->i_mount, ip->i_ino)))
866 ASSERT(0);
081003ff 867 __xfs_inode_clear_reclaim(pag, ip);
1a427ab0 868 spin_unlock(&pag->pag_ici_lock);
2f11feab
DC
869
870 /*
871 * Here we do an (almost) spurious inode lock in order to coordinate
872 * with inode cache radix tree lookups. This is because the lookup
873 * can reference the inodes in the cache without taking references.
874 *
875 * We make that OK here by ensuring that we wait until the inode is
876 * unlocked after the lookup before we go ahead and free it. We get
877 * both the ilock and the iolock because the code may need to drop the
878 * ilock one but will still hold the iolock.
879 */
880 xfs_ilock(ip, XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL);
881 xfs_qm_dqdetach(ip);
882 xfs_iunlock(ip, XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL);
883
884 xfs_inode_free(ip);
c854363e
DC
885 return error;
886
7a3be02b
DC
887}
888
65d0f205
DC
889/*
890 * Walk the AGs and reclaim the inodes in them. Even if the filesystem is
891 * corrupted, we still want to try to reclaim all the inodes. If we don't,
892 * then a shut down during filesystem unmount reclaim walk leak all the
893 * unreclaimed inodes.
894 */
895int
896xfs_reclaim_inodes_ag(
897 struct xfs_mount *mp,
898 int flags,
899 int *nr_to_scan)
900{
901 struct xfs_perag *pag;
902 int error = 0;
903 int last_error = 0;
904 xfs_agnumber_t ag;
69b491c2
DC
905 int trylock = flags & SYNC_TRYLOCK;
906 int skipped;
65d0f205 907
69b491c2 908restart:
65d0f205 909 ag = 0;
69b491c2 910 skipped = 0;
65d0f205
DC
911 while ((pag = xfs_perag_get_tag(mp, ag, XFS_ICI_RECLAIM_TAG))) {
912 unsigned long first_index = 0;
913 int done = 0;
e3a20c0b 914 int nr_found = 0;
65d0f205
DC
915
916 ag = pag->pag_agno + 1;
917
69b491c2
DC
918 if (trylock) {
919 if (!mutex_trylock(&pag->pag_ici_reclaim_lock)) {
920 skipped++;
f83282a8 921 xfs_perag_put(pag);
69b491c2
DC
922 continue;
923 }
924 first_index = pag->pag_ici_reclaim_cursor;
925 } else
926 mutex_lock(&pag->pag_ici_reclaim_lock);
927
65d0f205 928 do {
e3a20c0b
DC
929 struct xfs_inode *batch[XFS_LOOKUP_BATCH];
930 int i;
65d0f205 931
1a3e8f3d 932 rcu_read_lock();
e3a20c0b
DC
933 nr_found = radix_tree_gang_lookup_tag(
934 &pag->pag_ici_root,
935 (void **)batch, first_index,
936 XFS_LOOKUP_BATCH,
65d0f205
DC
937 XFS_ICI_RECLAIM_TAG);
938 if (!nr_found) {
b2232219 939 done = 1;
1a3e8f3d 940 rcu_read_unlock();
65d0f205
DC
941 break;
942 }
943
944 /*
e3a20c0b
DC
945 * Grab the inodes before we drop the lock. if we found
946 * nothing, nr == 0 and the loop will be skipped.
65d0f205 947 */
e3a20c0b
DC
948 for (i = 0; i < nr_found; i++) {
949 struct xfs_inode *ip = batch[i];
950
951 if (done || xfs_reclaim_inode_grab(ip, flags))
952 batch[i] = NULL;
953
954 /*
955 * Update the index for the next lookup. Catch
956 * overflows into the next AG range which can
957 * occur if we have inodes in the last block of
958 * the AG and we are currently pointing to the
959 * last inode.
1a3e8f3d
DC
960 *
961 * Because we may see inodes that are from the
962 * wrong AG due to RCU freeing and
963 * reallocation, only update the index if it
964 * lies in this AG. It was a race that lead us
965 * to see this inode, so another lookup from
966 * the same index will not find it again.
e3a20c0b 967 */
1a3e8f3d
DC
968 if (XFS_INO_TO_AGNO(mp, ip->i_ino) !=
969 pag->pag_agno)
970 continue;
e3a20c0b
DC
971 first_index = XFS_INO_TO_AGINO(mp, ip->i_ino + 1);
972 if (first_index < XFS_INO_TO_AGINO(mp, ip->i_ino))
973 done = 1;
974 }
65d0f205 975
e3a20c0b 976 /* unlock now we've grabbed the inodes. */
1a3e8f3d 977 rcu_read_unlock();
e3a20c0b
DC
978
979 for (i = 0; i < nr_found; i++) {
980 if (!batch[i])
981 continue;
982 error = xfs_reclaim_inode(batch[i], pag, flags);
983 if (error && last_error != EFSCORRUPTED)
984 last_error = error;
985 }
986
987 *nr_to_scan -= XFS_LOOKUP_BATCH;
65d0f205 988
e3a20c0b 989 } while (nr_found && !done && *nr_to_scan > 0);
65d0f205 990
69b491c2
DC
991 if (trylock && !done)
992 pag->pag_ici_reclaim_cursor = first_index;
993 else
994 pag->pag_ici_reclaim_cursor = 0;
995 mutex_unlock(&pag->pag_ici_reclaim_lock);
65d0f205
DC
996 xfs_perag_put(pag);
997 }
69b491c2
DC
998
999 /*
1000 * if we skipped any AG, and we still have scan count remaining, do
1001 * another pass this time using blocking reclaim semantics (i.e
1002 * waiting on the reclaim locks and ignoring the reclaim cursors). This
1003 * ensure that when we get more reclaimers than AGs we block rather
1004 * than spin trying to execute reclaim.
1005 */
1006 if (trylock && skipped && *nr_to_scan > 0) {
1007 trylock = 0;
1008 goto restart;
1009 }
65d0f205
DC
1010 return XFS_ERROR(last_error);
1011}
1012
7a3be02b
DC
1013int
1014xfs_reclaim_inodes(
1015 xfs_mount_t *mp,
7a3be02b
DC
1016 int mode)
1017{
65d0f205
DC
1018 int nr_to_scan = INT_MAX;
1019
1020 return xfs_reclaim_inodes_ag(mp, mode, &nr_to_scan);
9bf729c0
DC
1021}
1022
1023/*
a7b339f1
DC
1024 * Inode cache shrinker.
1025 *
1026 * When called we make sure that there is a background (fast) inode reclaim in
1027 * progress, while we will throttle the speed of reclaim via doiing synchronous
1028 * reclaim of inodes. That means if we come across dirty inodes, we wait for
1029 * them to be cleaned, which we hope will not be very long due to the
1030 * background walker having already kicked the IO off on those dirty inodes.
9bf729c0 1031 */
9bf729c0
DC
1032static int
1033xfs_reclaim_inode_shrink(
7f8275d0 1034 struct shrinker *shrink,
1495f230 1035 struct shrink_control *sc)
9bf729c0
DC
1036{
1037 struct xfs_mount *mp;
1038 struct xfs_perag *pag;
1039 xfs_agnumber_t ag;
16fd5367 1040 int reclaimable;
1495f230
YH
1041 int nr_to_scan = sc->nr_to_scan;
1042 gfp_t gfp_mask = sc->gfp_mask;
9bf729c0 1043
70e60ce7 1044 mp = container_of(shrink, struct xfs_mount, m_inode_shrink);
9bf729c0 1045 if (nr_to_scan) {
fd074841 1046 /* kick background reclaimer and push the AIL */
a7b339f1 1047 xfs_syncd_queue_reclaim(mp);
fd074841 1048 xfs_ail_push_all(mp->m_ail);
a7b339f1 1049
9bf729c0
DC
1050 if (!(gfp_mask & __GFP_FS))
1051 return -1;
1052
a7b339f1
DC
1053 xfs_reclaim_inodes_ag(mp, SYNC_TRYLOCK | SYNC_WAIT,
1054 &nr_to_scan);
65d0f205 1055 /* terminate if we don't exhaust the scan */
70e60ce7
DC
1056 if (nr_to_scan > 0)
1057 return -1;
1058 }
9bf729c0 1059
16fd5367
DC
1060 reclaimable = 0;
1061 ag = 0;
65d0f205
DC
1062 while ((pag = xfs_perag_get_tag(mp, ag, XFS_ICI_RECLAIM_TAG))) {
1063 ag = pag->pag_agno + 1;
70e60ce7
DC
1064 reclaimable += pag->pag_ici_reclaimable;
1065 xfs_perag_put(pag);
9bf729c0 1066 }
9bf729c0
DC
1067 return reclaimable;
1068}
1069
9bf729c0
DC
1070void
1071xfs_inode_shrinker_register(
1072 struct xfs_mount *mp)
1073{
70e60ce7
DC
1074 mp->m_inode_shrink.shrink = xfs_reclaim_inode_shrink;
1075 mp->m_inode_shrink.seeks = DEFAULT_SEEKS;
1076 register_shrinker(&mp->m_inode_shrink);
9bf729c0
DC
1077}
1078
1079void
1080xfs_inode_shrinker_unregister(
1081 struct xfs_mount *mp)
1082{
70e60ce7 1083 unregister_shrinker(&mp->m_inode_shrink);
fce08f2f 1084}