]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - fs/xfs/linux-2.6/xfs_sync.c
xfs: implement batched inode lookups for AG walking
[mirror_ubuntu-artful-kernel.git] / fs / xfs / linux-2.6 / xfs_sync.c
CommitLineData
fe4fa4b8
DC
1/*
2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
17 */
18#include "xfs.h"
19#include "xfs_fs.h"
20#include "xfs_types.h"
21#include "xfs_bit.h"
22#include "xfs_log.h"
23#include "xfs_inum.h"
24#include "xfs_trans.h"
25#include "xfs_sb.h"
26#include "xfs_ag.h"
fe4fa4b8
DC
27#include "xfs_mount.h"
28#include "xfs_bmap_btree.h"
fe4fa4b8
DC
29#include "xfs_inode.h"
30#include "xfs_dinode.h"
31#include "xfs_error.h"
fe4fa4b8
DC
32#include "xfs_filestream.h"
33#include "xfs_vnodeops.h"
fe4fa4b8 34#include "xfs_inode_item.h"
7d095257 35#include "xfs_quota.h"
0b1b213f 36#include "xfs_trace.h"
1a387d3b 37#include "xfs_fsops.h"
fe4fa4b8 38
a167b17e
DC
39#include <linux/kthread.h>
40#include <linux/freezer.h>
41
78ae5256
DC
42/*
43 * The inode lookup is done in batches to keep the amount of lock traffic and
44 * radix tree lookups to a minimum. The batch size is a trade off between
45 * lookup reduction and stack usage. This is in the reclaim path, so we can't
46 * be too greedy.
47 */
48#define XFS_LOOKUP_BATCH 32
49
e13de955
DC
50STATIC int
51xfs_inode_ag_walk_grab(
52 struct xfs_inode *ip)
53{
54 struct inode *inode = VFS_I(ip);
55
56 /* nothing to sync during shutdown */
57 if (XFS_FORCED_SHUTDOWN(ip->i_mount))
58 return EFSCORRUPTED;
59
60 /* avoid new or reclaimable inodes. Leave for reclaim code to flush */
61 if (xfs_iflags_test(ip, XFS_INEW | XFS_IRECLAIMABLE | XFS_IRECLAIM))
62 return ENOENT;
63
64 /* If we can't grab the inode, it must on it's way to reclaim. */
65 if (!igrab(inode))
66 return ENOENT;
67
68 if (is_bad_inode(inode)) {
69 IRELE(ip);
70 return ENOENT;
71 }
72
73 /* inode is valid */
74 return 0;
75}
76
75f3cb13
DC
77STATIC int
78xfs_inode_ag_walk(
79 struct xfs_mount *mp,
5017e97d 80 struct xfs_perag *pag,
75f3cb13
DC
81 int (*execute)(struct xfs_inode *ip,
82 struct xfs_perag *pag, int flags),
65d0f205 83 int flags)
75f3cb13 84{
75f3cb13
DC
85 uint32_t first_index;
86 int last_error = 0;
87 int skipped;
65d0f205 88 int done;
78ae5256 89 int nr_found;
75f3cb13
DC
90
91restart:
65d0f205 92 done = 0;
75f3cb13
DC
93 skipped = 0;
94 first_index = 0;
78ae5256 95 nr_found = 0;
75f3cb13 96 do {
78ae5256 97 struct xfs_inode *batch[XFS_LOOKUP_BATCH];
75f3cb13 98 int error = 0;
78ae5256 99 int i;
75f3cb13 100
65d0f205
DC
101 read_lock(&pag->pag_ici_lock);
102 nr_found = radix_tree_gang_lookup(&pag->pag_ici_root,
78ae5256
DC
103 (void **)batch, first_index,
104 XFS_LOOKUP_BATCH);
65d0f205
DC
105 if (!nr_found) {
106 read_unlock(&pag->pag_ici_lock);
75f3cb13 107 break;
c8e20be0 108 }
75f3cb13 109
65d0f205 110 /*
78ae5256
DC
111 * Grab the inodes before we drop the lock. if we found
112 * nothing, nr == 0 and the loop will be skipped.
65d0f205 113 */
78ae5256
DC
114 for (i = 0; i < nr_found; i++) {
115 struct xfs_inode *ip = batch[i];
116
117 if (done || xfs_inode_ag_walk_grab(ip))
118 batch[i] = NULL;
119
120 /*
121 * Update the index for the next lookup. Catch overflows
122 * into the next AG range which can occur if we have inodes
123 * in the last block of the AG and we are currently
124 * pointing to the last inode.
125 */
126 first_index = XFS_INO_TO_AGINO(mp, ip->i_ino + 1);
127 if (first_index < XFS_INO_TO_AGINO(mp, ip->i_ino))
128 done = 1;
e13de955 129 }
78ae5256
DC
130
131 /* unlock now we've grabbed the inodes. */
e13de955
DC
132 read_unlock(&pag->pag_ici_lock);
133
78ae5256
DC
134 for (i = 0; i < nr_found; i++) {
135 if (!batch[i])
136 continue;
137 error = execute(batch[i], pag, flags);
138 IRELE(batch[i]);
139 if (error == EAGAIN) {
140 skipped++;
141 continue;
142 }
143 if (error && last_error != EFSCORRUPTED)
144 last_error = error;
75f3cb13 145 }
c8e20be0
DC
146
147 /* bail out if the filesystem is corrupted. */
75f3cb13
DC
148 if (error == EFSCORRUPTED)
149 break;
150
78ae5256 151 } while (nr_found && !done);
75f3cb13
DC
152
153 if (skipped) {
154 delay(1);
155 goto restart;
156 }
75f3cb13
DC
157 return last_error;
158}
159
fe588ed3 160int
75f3cb13
DC
161xfs_inode_ag_iterator(
162 struct xfs_mount *mp,
163 int (*execute)(struct xfs_inode *ip,
164 struct xfs_perag *pag, int flags),
65d0f205 165 int flags)
75f3cb13 166{
16fd5367 167 struct xfs_perag *pag;
75f3cb13
DC
168 int error = 0;
169 int last_error = 0;
170 xfs_agnumber_t ag;
171
16fd5367 172 ag = 0;
65d0f205
DC
173 while ((pag = xfs_perag_get(mp, ag))) {
174 ag = pag->pag_agno + 1;
175 error = xfs_inode_ag_walk(mp, pag, execute, flags);
5017e97d 176 xfs_perag_put(pag);
75f3cb13
DC
177 if (error) {
178 last_error = error;
179 if (error == EFSCORRUPTED)
180 break;
181 }
182 }
183 return XFS_ERROR(last_error);
184}
185
5a34d5cd
DC
186STATIC int
187xfs_sync_inode_data(
188 struct xfs_inode *ip,
75f3cb13 189 struct xfs_perag *pag,
5a34d5cd
DC
190 int flags)
191{
192 struct inode *inode = VFS_I(ip);
193 struct address_space *mapping = inode->i_mapping;
194 int error = 0;
195
196 if (!mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
197 goto out_wait;
198
199 if (!xfs_ilock_nowait(ip, XFS_IOLOCK_SHARED)) {
200 if (flags & SYNC_TRYLOCK)
201 goto out_wait;
202 xfs_ilock(ip, XFS_IOLOCK_SHARED);
203 }
204
205 error = xfs_flush_pages(ip, 0, -1, (flags & SYNC_WAIT) ?
0cadda1c 206 0 : XBF_ASYNC, FI_NONE);
5a34d5cd
DC
207 xfs_iunlock(ip, XFS_IOLOCK_SHARED);
208
209 out_wait:
b0710ccc 210 if (flags & SYNC_WAIT)
5a34d5cd
DC
211 xfs_ioend_wait(ip);
212 return error;
213}
214
845b6d0c
CH
215STATIC int
216xfs_sync_inode_attr(
217 struct xfs_inode *ip,
75f3cb13 218 struct xfs_perag *pag,
845b6d0c
CH
219 int flags)
220{
221 int error = 0;
222
223 xfs_ilock(ip, XFS_ILOCK_SHARED);
224 if (xfs_inode_clean(ip))
225 goto out_unlock;
226 if (!xfs_iflock_nowait(ip)) {
227 if (!(flags & SYNC_WAIT))
228 goto out_unlock;
229 xfs_iflock(ip);
230 }
231
232 if (xfs_inode_clean(ip)) {
233 xfs_ifunlock(ip);
234 goto out_unlock;
235 }
236
c854363e 237 error = xfs_iflush(ip, flags);
845b6d0c
CH
238
239 out_unlock:
240 xfs_iunlock(ip, XFS_ILOCK_SHARED);
241 return error;
242}
243
075fe102
CH
244/*
245 * Write out pagecache data for the whole filesystem.
246 */
64c86149 247STATIC int
075fe102
CH
248xfs_sync_data(
249 struct xfs_mount *mp,
250 int flags)
683a8970 251{
075fe102 252 int error;
fe4fa4b8 253
b0710ccc 254 ASSERT((flags & ~(SYNC_TRYLOCK|SYNC_WAIT)) == 0);
fe4fa4b8 255
65d0f205 256 error = xfs_inode_ag_iterator(mp, xfs_sync_inode_data, flags);
075fe102
CH
257 if (error)
258 return XFS_ERROR(error);
e9f1c6ee 259
a14a348b 260 xfs_log_force(mp, (flags & SYNC_WAIT) ? XFS_LOG_SYNC : 0);
075fe102
CH
261 return 0;
262}
e9f1c6ee 263
075fe102
CH
264/*
265 * Write out inode metadata (attributes) for the whole filesystem.
266 */
64c86149 267STATIC int
075fe102
CH
268xfs_sync_attr(
269 struct xfs_mount *mp,
270 int flags)
271{
272 ASSERT((flags & ~SYNC_WAIT) == 0);
75f3cb13 273
65d0f205 274 return xfs_inode_ag_iterator(mp, xfs_sync_inode_attr, flags);
fe4fa4b8
DC
275}
276
5d77c0dc 277STATIC int
2af75df7 278xfs_sync_fsdata(
df308bcf 279 struct xfs_mount *mp)
2af75df7
CH
280{
281 struct xfs_buf *bp;
2af75df7
CH
282
283 /*
df308bcf
CH
284 * If the buffer is pinned then push on the log so we won't get stuck
285 * waiting in the write for someone, maybe ourselves, to flush the log.
286 *
287 * Even though we just pushed the log above, we did not have the
288 * superblock buffer locked at that point so it can become pinned in
289 * between there and here.
2af75df7 290 */
df308bcf
CH
291 bp = xfs_getsb(mp, 0);
292 if (XFS_BUF_ISPINNED(bp))
293 xfs_log_force(mp, 0);
2af75df7 294
df308bcf 295 return xfs_bwrite(mp, bp);
e9f1c6ee
DC
296}
297
298/*
a4e4c4f4
DC
299 * When remounting a filesystem read-only or freezing the filesystem, we have
300 * two phases to execute. This first phase is syncing the data before we
301 * quiesce the filesystem, and the second is flushing all the inodes out after
302 * we've waited for all the transactions created by the first phase to
303 * complete. The second phase ensures that the inodes are written to their
304 * location on disk rather than just existing in transactions in the log. This
305 * means after a quiesce there is no log replay required to write the inodes to
306 * disk (this is the main difference between a sync and a quiesce).
307 */
308/*
309 * First stage of freeze - no writers will make progress now we are here,
e9f1c6ee
DC
310 * so we flush delwri and delalloc buffers here, then wait for all I/O to
311 * complete. Data is frozen at that point. Metadata is not frozen,
a4e4c4f4
DC
312 * transactions can still occur here so don't bother flushing the buftarg
313 * because it'll just get dirty again.
e9f1c6ee
DC
314 */
315int
316xfs_quiesce_data(
317 struct xfs_mount *mp)
318{
df308bcf 319 int error, error2 = 0;
e9f1c6ee
DC
320
321 /* push non-blocking */
075fe102 322 xfs_sync_data(mp, 0);
8b5403a6 323 xfs_qm_sync(mp, SYNC_TRYLOCK);
e9f1c6ee 324
c90b07e8 325 /* push and block till complete */
b0710ccc 326 xfs_sync_data(mp, SYNC_WAIT);
7d095257 327 xfs_qm_sync(mp, SYNC_WAIT);
e9f1c6ee 328
a4e4c4f4 329 /* write superblock and hoover up shutdown errors */
df308bcf
CH
330 error = xfs_sync_fsdata(mp);
331
332 /* make sure all delwri buffers are written out */
333 xfs_flush_buftarg(mp->m_ddev_targp, 1);
334
335 /* mark the log as covered if needed */
336 if (xfs_log_need_covered(mp))
1a387d3b 337 error2 = xfs_fs_log_dummy(mp, SYNC_WAIT);
e9f1c6ee 338
a4e4c4f4 339 /* flush data-only devices */
e9f1c6ee
DC
340 if (mp->m_rtdev_targp)
341 XFS_bflush(mp->m_rtdev_targp);
342
df308bcf 343 return error ? error : error2;
2af75df7
CH
344}
345
76bf105c
DC
346STATIC void
347xfs_quiesce_fs(
348 struct xfs_mount *mp)
349{
350 int count = 0, pincount;
351
c854363e 352 xfs_reclaim_inodes(mp, 0);
76bf105c 353 xfs_flush_buftarg(mp->m_ddev_targp, 0);
76bf105c
DC
354
355 /*
356 * This loop must run at least twice. The first instance of the loop
357 * will flush most meta data but that will generate more meta data
358 * (typically directory updates). Which then must be flushed and
c854363e
DC
359 * logged before we can write the unmount record. We also so sync
360 * reclaim of inodes to catch any that the above delwri flush skipped.
76bf105c
DC
361 */
362 do {
c854363e 363 xfs_reclaim_inodes(mp, SYNC_WAIT);
075fe102 364 xfs_sync_attr(mp, SYNC_WAIT);
76bf105c
DC
365 pincount = xfs_flush_buftarg(mp->m_ddev_targp, 1);
366 if (!pincount) {
367 delay(50);
368 count++;
369 }
370 } while (count < 2);
371}
372
373/*
374 * Second stage of a quiesce. The data is already synced, now we have to take
375 * care of the metadata. New transactions are already blocked, so we need to
376 * wait for any remaining transactions to drain out before proceding.
377 */
378void
379xfs_quiesce_attr(
380 struct xfs_mount *mp)
381{
382 int error = 0;
383
384 /* wait for all modifications to complete */
385 while (atomic_read(&mp->m_active_trans) > 0)
386 delay(100);
387
388 /* flush inodes and push all remaining buffers out to disk */
389 xfs_quiesce_fs(mp);
390
5e106572
FB
391 /*
392 * Just warn here till VFS can correctly support
393 * read-only remount without racing.
394 */
395 WARN_ON(atomic_read(&mp->m_active_trans) != 0);
76bf105c
DC
396
397 /* Push the superblock and write an unmount record */
398 error = xfs_log_sbcount(mp, 1);
399 if (error)
400 xfs_fs_cmn_err(CE_WARN, mp,
401 "xfs_attr_quiesce: failed to log sb changes. "
402 "Frozen image may not be consistent.");
403 xfs_log_unmount_write(mp);
404 xfs_unmountfs_writesb(mp);
405}
406
a167b17e
DC
407/*
408 * Enqueue a work item to be picked up by the vfs xfssyncd thread.
409 * Doing this has two advantages:
410 * - It saves on stack space, which is tight in certain situations
411 * - It can be used (with care) as a mechanism to avoid deadlocks.
412 * Flushing while allocating in a full filesystem requires both.
413 */
414STATIC void
415xfs_syncd_queue_work(
416 struct xfs_mount *mp,
417 void *data,
e43afd72
DC
418 void (*syncer)(struct xfs_mount *, void *),
419 struct completion *completion)
a167b17e 420{
a8d770d9 421 struct xfs_sync_work *work;
a167b17e 422
a8d770d9 423 work = kmem_alloc(sizeof(struct xfs_sync_work), KM_SLEEP);
a167b17e
DC
424 INIT_LIST_HEAD(&work->w_list);
425 work->w_syncer = syncer;
426 work->w_data = data;
427 work->w_mount = mp;
e43afd72 428 work->w_completion = completion;
a167b17e
DC
429 spin_lock(&mp->m_sync_lock);
430 list_add_tail(&work->w_list, &mp->m_sync_list);
431 spin_unlock(&mp->m_sync_lock);
432 wake_up_process(mp->m_sync_task);
433}
434
435/*
436 * Flush delayed allocate data, attempting to free up reserved space
437 * from existing allocations. At this point a new allocation attempt
438 * has failed with ENOSPC and we are in the process of scratching our
439 * heads, looking about for more room...
440 */
441STATIC void
a8d770d9 442xfs_flush_inodes_work(
a167b17e
DC
443 struct xfs_mount *mp,
444 void *arg)
445{
446 struct inode *inode = arg;
075fe102 447 xfs_sync_data(mp, SYNC_TRYLOCK);
b0710ccc 448 xfs_sync_data(mp, SYNC_TRYLOCK | SYNC_WAIT);
a167b17e
DC
449 iput(inode);
450}
451
452void
a8d770d9 453xfs_flush_inodes(
a167b17e
DC
454 xfs_inode_t *ip)
455{
456 struct inode *inode = VFS_I(ip);
e43afd72 457 DECLARE_COMPLETION_ONSTACK(completion);
a167b17e
DC
458
459 igrab(inode);
e43afd72
DC
460 xfs_syncd_queue_work(ip->i_mount, inode, xfs_flush_inodes_work, &completion);
461 wait_for_completion(&completion);
a14a348b 462 xfs_log_force(ip->i_mount, XFS_LOG_SYNC);
a167b17e
DC
463}
464
aacaa880 465/*
df308bcf
CH
466 * Every sync period we need to unpin all items, reclaim inodes and sync
467 * disk quotas. We might need to cover the log to indicate that the
1a387d3b 468 * filesystem is idle and not frozen.
aacaa880 469 */
a167b17e
DC
470STATIC void
471xfs_sync_worker(
472 struct xfs_mount *mp,
473 void *unused)
474{
475 int error;
476
aacaa880 477 if (!(mp->m_flags & XFS_MOUNT_RDONLY)) {
a14a348b 478 xfs_log_force(mp, 0);
c854363e 479 xfs_reclaim_inodes(mp, 0);
aacaa880 480 /* dgc: errors ignored here */
8b5403a6 481 error = xfs_qm_sync(mp, SYNC_TRYLOCK);
1a387d3b
DC
482 if (mp->m_super->s_frozen == SB_UNFROZEN &&
483 xfs_log_need_covered(mp))
484 error = xfs_fs_log_dummy(mp, 0);
aacaa880 485 }
a167b17e
DC
486 mp->m_sync_seq++;
487 wake_up(&mp->m_wait_single_sync_task);
488}
489
490STATIC int
491xfssyncd(
492 void *arg)
493{
494 struct xfs_mount *mp = arg;
495 long timeleft;
a8d770d9 496 xfs_sync_work_t *work, *n;
a167b17e
DC
497 LIST_HEAD (tmp);
498
499 set_freezable();
500 timeleft = xfs_syncd_centisecs * msecs_to_jiffies(10);
501 for (;;) {
20f6b2c7
DC
502 if (list_empty(&mp->m_sync_list))
503 timeleft = schedule_timeout_interruptible(timeleft);
a167b17e
DC
504 /* swsusp */
505 try_to_freeze();
506 if (kthread_should_stop() && list_empty(&mp->m_sync_list))
507 break;
508
509 spin_lock(&mp->m_sync_lock);
510 /*
511 * We can get woken by laptop mode, to do a sync -
512 * that's the (only!) case where the list would be
513 * empty with time remaining.
514 */
515 if (!timeleft || list_empty(&mp->m_sync_list)) {
516 if (!timeleft)
517 timeleft = xfs_syncd_centisecs *
518 msecs_to_jiffies(10);
519 INIT_LIST_HEAD(&mp->m_sync_work.w_list);
520 list_add_tail(&mp->m_sync_work.w_list,
521 &mp->m_sync_list);
522 }
20f6b2c7 523 list_splice_init(&mp->m_sync_list, &tmp);
a167b17e
DC
524 spin_unlock(&mp->m_sync_lock);
525
526 list_for_each_entry_safe(work, n, &tmp, w_list) {
527 (*work->w_syncer)(mp, work->w_data);
528 list_del(&work->w_list);
529 if (work == &mp->m_sync_work)
530 continue;
e43afd72
DC
531 if (work->w_completion)
532 complete(work->w_completion);
a167b17e
DC
533 kmem_free(work);
534 }
535 }
536
537 return 0;
538}
539
540int
541xfs_syncd_init(
542 struct xfs_mount *mp)
543{
544 mp->m_sync_work.w_syncer = xfs_sync_worker;
545 mp->m_sync_work.w_mount = mp;
e43afd72 546 mp->m_sync_work.w_completion = NULL;
e2a07812 547 mp->m_sync_task = kthread_run(xfssyncd, mp, "xfssyncd/%s", mp->m_fsname);
a167b17e
DC
548 if (IS_ERR(mp->m_sync_task))
549 return -PTR_ERR(mp->m_sync_task);
550 return 0;
551}
552
553void
554xfs_syncd_stop(
555 struct xfs_mount *mp)
556{
557 kthread_stop(mp->m_sync_task);
558}
559
bc990f5c
CH
560void
561__xfs_inode_set_reclaim_tag(
562 struct xfs_perag *pag,
563 struct xfs_inode *ip)
564{
565 radix_tree_tag_set(&pag->pag_ici_root,
566 XFS_INO_TO_AGINO(ip->i_mount, ip->i_ino),
567 XFS_ICI_RECLAIM_TAG);
16fd5367
DC
568
569 if (!pag->pag_ici_reclaimable) {
570 /* propagate the reclaim tag up into the perag radix tree */
571 spin_lock(&ip->i_mount->m_perag_lock);
572 radix_tree_tag_set(&ip->i_mount->m_perag_tree,
573 XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino),
574 XFS_ICI_RECLAIM_TAG);
575 spin_unlock(&ip->i_mount->m_perag_lock);
576 trace_xfs_perag_set_reclaim(ip->i_mount, pag->pag_agno,
577 -1, _RET_IP_);
578 }
9bf729c0 579 pag->pag_ici_reclaimable++;
bc990f5c
CH
580}
581
11654513
DC
582/*
583 * We set the inode flag atomically with the radix tree tag.
584 * Once we get tag lookups on the radix tree, this inode flag
585 * can go away.
586 */
396beb85
DC
587void
588xfs_inode_set_reclaim_tag(
589 xfs_inode_t *ip)
590{
5017e97d
DC
591 struct xfs_mount *mp = ip->i_mount;
592 struct xfs_perag *pag;
396beb85 593
5017e97d 594 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
f1f724e4 595 write_lock(&pag->pag_ici_lock);
396beb85 596 spin_lock(&ip->i_flags_lock);
bc990f5c 597 __xfs_inode_set_reclaim_tag(pag, ip);
11654513 598 __xfs_iflags_set(ip, XFS_IRECLAIMABLE);
396beb85 599 spin_unlock(&ip->i_flags_lock);
f1f724e4 600 write_unlock(&pag->pag_ici_lock);
5017e97d 601 xfs_perag_put(pag);
396beb85
DC
602}
603
081003ff
JW
604STATIC void
605__xfs_inode_clear_reclaim(
396beb85
DC
606 xfs_perag_t *pag,
607 xfs_inode_t *ip)
608{
9bf729c0 609 pag->pag_ici_reclaimable--;
16fd5367
DC
610 if (!pag->pag_ici_reclaimable) {
611 /* clear the reclaim tag from the perag radix tree */
612 spin_lock(&ip->i_mount->m_perag_lock);
613 radix_tree_tag_clear(&ip->i_mount->m_perag_tree,
614 XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino),
615 XFS_ICI_RECLAIM_TAG);
616 spin_unlock(&ip->i_mount->m_perag_lock);
617 trace_xfs_perag_clear_reclaim(ip->i_mount, pag->pag_agno,
618 -1, _RET_IP_);
619 }
396beb85
DC
620}
621
081003ff
JW
622void
623__xfs_inode_clear_reclaim_tag(
624 xfs_mount_t *mp,
625 xfs_perag_t *pag,
626 xfs_inode_t *ip)
627{
628 radix_tree_tag_clear(&pag->pag_ici_root,
629 XFS_INO_TO_AGINO(mp, ip->i_ino), XFS_ICI_RECLAIM_TAG);
630 __xfs_inode_clear_reclaim(pag, ip);
631}
632
777df5af
DC
633/*
634 * Inodes in different states need to be treated differently, and the return
635 * value of xfs_iflush is not sufficient to get this right. The following table
636 * lists the inode states and the reclaim actions necessary for non-blocking
637 * reclaim:
638 *
639 *
640 * inode state iflush ret required action
641 * --------------- ---------- ---------------
642 * bad - reclaim
643 * shutdown EIO unpin and reclaim
644 * clean, unpinned 0 reclaim
645 * stale, unpinned 0 reclaim
c854363e
DC
646 * clean, pinned(*) 0 requeue
647 * stale, pinned EAGAIN requeue
648 * dirty, delwri ok 0 requeue
649 * dirty, delwri blocked EAGAIN requeue
650 * dirty, sync flush 0 reclaim
777df5af
DC
651 *
652 * (*) dgc: I don't think the clean, pinned state is possible but it gets
653 * handled anyway given the order of checks implemented.
654 *
c854363e
DC
655 * As can be seen from the table, the return value of xfs_iflush() is not
656 * sufficient to correctly decide the reclaim action here. The checks in
657 * xfs_iflush() might look like duplicates, but they are not.
658 *
659 * Also, because we get the flush lock first, we know that any inode that has
660 * been flushed delwri has had the flush completed by the time we check that
661 * the inode is clean. The clean inode check needs to be done before flushing
662 * the inode delwri otherwise we would loop forever requeuing clean inodes as
663 * we cannot tell apart a successful delwri flush and a clean inode from the
664 * return value of xfs_iflush().
665 *
666 * Note that because the inode is flushed delayed write by background
667 * writeback, the flush lock may already be held here and waiting on it can
668 * result in very long latencies. Hence for sync reclaims, where we wait on the
669 * flush lock, the caller should push out delayed write inodes first before
670 * trying to reclaim them to minimise the amount of time spent waiting. For
671 * background relaim, we just requeue the inode for the next pass.
672 *
777df5af
DC
673 * Hence the order of actions after gaining the locks should be:
674 * bad => reclaim
675 * shutdown => unpin and reclaim
c854363e
DC
676 * pinned, delwri => requeue
677 * pinned, sync => unpin
777df5af
DC
678 * stale => reclaim
679 * clean => reclaim
c854363e
DC
680 * dirty, delwri => flush and requeue
681 * dirty, sync => flush, wait and reclaim
777df5af 682 */
75f3cb13 683STATIC int
c8e20be0 684xfs_reclaim_inode(
75f3cb13
DC
685 struct xfs_inode *ip,
686 struct xfs_perag *pag,
c8e20be0 687 int sync_mode)
fce08f2f 688{
c854363e 689 int error = 0;
777df5af 690
c8e20be0
DC
691 /*
692 * The radix tree lock here protects a thread in xfs_iget from racing
693 * with us starting reclaim on the inode. Once we have the
694 * XFS_IRECLAIM flag set it will not touch us.
695 */
696 spin_lock(&ip->i_flags_lock);
697 ASSERT_ALWAYS(__xfs_iflags_test(ip, XFS_IRECLAIMABLE));
698 if (__xfs_iflags_test(ip, XFS_IRECLAIM)) {
699 /* ignore as it is already under reclaim */
700 spin_unlock(&ip->i_flags_lock);
701 write_unlock(&pag->pag_ici_lock);
75f3cb13 702 return 0;
fce08f2f 703 }
c8e20be0
DC
704 __xfs_iflags_set(ip, XFS_IRECLAIM);
705 spin_unlock(&ip->i_flags_lock);
706 write_unlock(&pag->pag_ici_lock);
707
c8e20be0 708 xfs_ilock(ip, XFS_ILOCK_EXCL);
c854363e
DC
709 if (!xfs_iflock_nowait(ip)) {
710 if (!(sync_mode & SYNC_WAIT))
711 goto out;
712 xfs_iflock(ip);
713 }
7a3be02b 714
777df5af
DC
715 if (is_bad_inode(VFS_I(ip)))
716 goto reclaim;
717 if (XFS_FORCED_SHUTDOWN(ip->i_mount)) {
718 xfs_iunpin_wait(ip);
719 goto reclaim;
720 }
c854363e
DC
721 if (xfs_ipincount(ip)) {
722 if (!(sync_mode & SYNC_WAIT)) {
723 xfs_ifunlock(ip);
724 goto out;
725 }
777df5af 726 xfs_iunpin_wait(ip);
c854363e 727 }
777df5af
DC
728 if (xfs_iflags_test(ip, XFS_ISTALE))
729 goto reclaim;
730 if (xfs_inode_clean(ip))
731 goto reclaim;
732
733 /* Now we have an inode that needs flushing */
734 error = xfs_iflush(ip, sync_mode);
c854363e
DC
735 if (sync_mode & SYNC_WAIT) {
736 xfs_iflock(ip);
737 goto reclaim;
c8e20be0
DC
738 }
739
c854363e
DC
740 /*
741 * When we have to flush an inode but don't have SYNC_WAIT set, we
742 * flush the inode out using a delwri buffer and wait for the next
743 * call into reclaim to find it in a clean state instead of waiting for
744 * it now. We also don't return errors here - if the error is transient
745 * then the next reclaim pass will flush the inode, and if the error
f1d486a3 746 * is permanent then the next sync reclaim will reclaim the inode and
c854363e
DC
747 * pass on the error.
748 */
f1d486a3 749 if (error && error != EAGAIN && !XFS_FORCED_SHUTDOWN(ip->i_mount)) {
c854363e
DC
750 xfs_fs_cmn_err(CE_WARN, ip->i_mount,
751 "inode 0x%llx background reclaim flush failed with %d",
752 (long long)ip->i_ino, error);
753 }
754out:
755 xfs_iflags_clear(ip, XFS_IRECLAIM);
756 xfs_iunlock(ip, XFS_ILOCK_EXCL);
757 /*
758 * We could return EAGAIN here to make reclaim rescan the inode tree in
759 * a short while. However, this just burns CPU time scanning the tree
760 * waiting for IO to complete and xfssyncd never goes back to the idle
761 * state. Instead, return 0 to let the next scheduled background reclaim
762 * attempt to reclaim the inode again.
763 */
764 return 0;
765
777df5af
DC
766reclaim:
767 xfs_ifunlock(ip);
c8e20be0 768 xfs_iunlock(ip, XFS_ILOCK_EXCL);
2f11feab
DC
769
770 XFS_STATS_INC(xs_ig_reclaims);
771 /*
772 * Remove the inode from the per-AG radix tree.
773 *
774 * Because radix_tree_delete won't complain even if the item was never
775 * added to the tree assert that it's been there before to catch
776 * problems with the inode life time early on.
777 */
778 write_lock(&pag->pag_ici_lock);
779 if (!radix_tree_delete(&pag->pag_ici_root,
780 XFS_INO_TO_AGINO(ip->i_mount, ip->i_ino)))
781 ASSERT(0);
081003ff 782 __xfs_inode_clear_reclaim(pag, ip);
2f11feab
DC
783 write_unlock(&pag->pag_ici_lock);
784
785 /*
786 * Here we do an (almost) spurious inode lock in order to coordinate
787 * with inode cache radix tree lookups. This is because the lookup
788 * can reference the inodes in the cache without taking references.
789 *
790 * We make that OK here by ensuring that we wait until the inode is
791 * unlocked after the lookup before we go ahead and free it. We get
792 * both the ilock and the iolock because the code may need to drop the
793 * ilock one but will still hold the iolock.
794 */
795 xfs_ilock(ip, XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL);
796 xfs_qm_dqdetach(ip);
797 xfs_iunlock(ip, XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL);
798
799 xfs_inode_free(ip);
c854363e
DC
800 return error;
801
7a3be02b
DC
802}
803
65d0f205
DC
804/*
805 * Walk the AGs and reclaim the inodes in them. Even if the filesystem is
806 * corrupted, we still want to try to reclaim all the inodes. If we don't,
807 * then a shut down during filesystem unmount reclaim walk leak all the
808 * unreclaimed inodes.
809 */
810int
811xfs_reclaim_inodes_ag(
812 struct xfs_mount *mp,
813 int flags,
814 int *nr_to_scan)
815{
816 struct xfs_perag *pag;
817 int error = 0;
818 int last_error = 0;
819 xfs_agnumber_t ag;
820
821 ag = 0;
822 while ((pag = xfs_perag_get_tag(mp, ag, XFS_ICI_RECLAIM_TAG))) {
823 unsigned long first_index = 0;
824 int done = 0;
825
826 ag = pag->pag_agno + 1;
827
828 do {
829 struct xfs_inode *ip;
830 int nr_found;
831
832 write_lock(&pag->pag_ici_lock);
833 nr_found = radix_tree_gang_lookup_tag(&pag->pag_ici_root,
834 (void **)&ip, first_index, 1,
835 XFS_ICI_RECLAIM_TAG);
836 if (!nr_found) {
837 write_unlock(&pag->pag_ici_lock);
838 break;
839 }
840
841 /*
842 * Update the index for the next lookup. Catch overflows
843 * into the next AG range which can occur if we have inodes
844 * in the last block of the AG and we are currently
845 * pointing to the last inode.
846 */
847 first_index = XFS_INO_TO_AGINO(mp, ip->i_ino + 1);
848 if (first_index < XFS_INO_TO_AGINO(mp, ip->i_ino))
849 done = 1;
850
851 error = xfs_reclaim_inode(ip, pag, flags);
852 if (error && last_error != EFSCORRUPTED)
853 last_error = error;
854
855 } while (!done && (*nr_to_scan)--);
856
857 xfs_perag_put(pag);
858 }
859 return XFS_ERROR(last_error);
860}
861
7a3be02b
DC
862int
863xfs_reclaim_inodes(
864 xfs_mount_t *mp,
7a3be02b
DC
865 int mode)
866{
65d0f205
DC
867 int nr_to_scan = INT_MAX;
868
869 return xfs_reclaim_inodes_ag(mp, mode, &nr_to_scan);
9bf729c0
DC
870}
871
872/*
873 * Shrinker infrastructure.
9bf729c0 874 */
9bf729c0
DC
875static int
876xfs_reclaim_inode_shrink(
7f8275d0 877 struct shrinker *shrink,
9bf729c0
DC
878 int nr_to_scan,
879 gfp_t gfp_mask)
880{
881 struct xfs_mount *mp;
882 struct xfs_perag *pag;
883 xfs_agnumber_t ag;
16fd5367 884 int reclaimable;
9bf729c0 885
70e60ce7 886 mp = container_of(shrink, struct xfs_mount, m_inode_shrink);
9bf729c0
DC
887 if (nr_to_scan) {
888 if (!(gfp_mask & __GFP_FS))
889 return -1;
890
65d0f205
DC
891 xfs_reclaim_inodes_ag(mp, 0, &nr_to_scan);
892 /* terminate if we don't exhaust the scan */
70e60ce7
DC
893 if (nr_to_scan > 0)
894 return -1;
895 }
9bf729c0 896
16fd5367
DC
897 reclaimable = 0;
898 ag = 0;
65d0f205
DC
899 while ((pag = xfs_perag_get_tag(mp, ag, XFS_ICI_RECLAIM_TAG))) {
900 ag = pag->pag_agno + 1;
70e60ce7
DC
901 reclaimable += pag->pag_ici_reclaimable;
902 xfs_perag_put(pag);
9bf729c0 903 }
9bf729c0
DC
904 return reclaimable;
905}
906
9bf729c0
DC
907void
908xfs_inode_shrinker_register(
909 struct xfs_mount *mp)
910{
70e60ce7
DC
911 mp->m_inode_shrink.shrink = xfs_reclaim_inode_shrink;
912 mp->m_inode_shrink.seeks = DEFAULT_SEEKS;
913 register_shrinker(&mp->m_inode_shrink);
9bf729c0
DC
914}
915
916void
917xfs_inode_shrinker_unregister(
918 struct xfs_mount *mp)
919{
70e60ce7 920 unregister_shrinker(&mp->m_inode_shrink);
fce08f2f 921}