]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - fs/xfs/linux-2.6/xfs_sync.c
xfs: enforce synchronous writes in xfs_bwrite
[mirror_ubuntu-artful-kernel.git] / fs / xfs / linux-2.6 / xfs_sync.c
CommitLineData
fe4fa4b8
DC
1/*
2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
17 */
18#include "xfs.h"
19#include "xfs_fs.h"
20#include "xfs_types.h"
21#include "xfs_bit.h"
22#include "xfs_log.h"
23#include "xfs_inum.h"
24#include "xfs_trans.h"
25#include "xfs_sb.h"
26#include "xfs_ag.h"
27#include "xfs_dir2.h"
28#include "xfs_dmapi.h"
29#include "xfs_mount.h"
30#include "xfs_bmap_btree.h"
31#include "xfs_alloc_btree.h"
32#include "xfs_ialloc_btree.h"
33#include "xfs_btree.h"
34#include "xfs_dir2_sf.h"
35#include "xfs_attr_sf.h"
36#include "xfs_inode.h"
37#include "xfs_dinode.h"
38#include "xfs_error.h"
39#include "xfs_mru_cache.h"
40#include "xfs_filestream.h"
41#include "xfs_vnodeops.h"
42#include "xfs_utils.h"
43#include "xfs_buf_item.h"
44#include "xfs_inode_item.h"
45#include "xfs_rw.h"
7d095257 46#include "xfs_quota.h"
0b1b213f 47#include "xfs_trace.h"
fe4fa4b8 48
a167b17e
DC
49#include <linux/kthread.h>
50#include <linux/freezer.h>
51
5a34d5cd 52
75f3cb13
DC
53STATIC xfs_inode_t *
54xfs_inode_ag_lookup(
55 struct xfs_mount *mp,
56 struct xfs_perag *pag,
57 uint32_t *first_index,
58 int tag)
59{
60 int nr_found;
61 struct xfs_inode *ip;
62
63 /*
64 * use a gang lookup to find the next inode in the tree
65 * as the tree is sparse and a gang lookup walks to find
66 * the number of objects requested.
67 */
75f3cb13
DC
68 if (tag == XFS_ICI_NO_TAG) {
69 nr_found = radix_tree_gang_lookup(&pag->pag_ici_root,
70 (void **)&ip, *first_index, 1);
71 } else {
72 nr_found = radix_tree_gang_lookup_tag(&pag->pag_ici_root,
73 (void **)&ip, *first_index, 1, tag);
74 }
75 if (!nr_found)
c8e20be0 76 return NULL;
75f3cb13
DC
77
78 /*
79 * Update the index for the next lookup. Catch overflows
80 * into the next AG range which can occur if we have inodes
81 * in the last block of the AG and we are currently
82 * pointing to the last inode.
83 */
84 *first_index = XFS_INO_TO_AGINO(mp, ip->i_ino + 1);
85 if (*first_index < XFS_INO_TO_AGINO(mp, ip->i_ino))
c8e20be0 86 return NULL;
75f3cb13 87 return ip;
75f3cb13
DC
88}
89
90STATIC int
91xfs_inode_ag_walk(
92 struct xfs_mount *mp,
5017e97d 93 struct xfs_perag *pag,
75f3cb13
DC
94 int (*execute)(struct xfs_inode *ip,
95 struct xfs_perag *pag, int flags),
96 int flags,
c8e20be0 97 int tag,
9bf729c0
DC
98 int exclusive,
99 int *nr_to_scan)
75f3cb13 100{
75f3cb13
DC
101 uint32_t first_index;
102 int last_error = 0;
103 int skipped;
104
105restart:
106 skipped = 0;
107 first_index = 0;
108 do {
109 int error = 0;
110 xfs_inode_t *ip;
111
c8e20be0
DC
112 if (exclusive)
113 write_lock(&pag->pag_ici_lock);
114 else
115 read_lock(&pag->pag_ici_lock);
75f3cb13 116 ip = xfs_inode_ag_lookup(mp, pag, &first_index, tag);
c8e20be0
DC
117 if (!ip) {
118 if (exclusive)
119 write_unlock(&pag->pag_ici_lock);
120 else
121 read_unlock(&pag->pag_ici_lock);
75f3cb13 122 break;
c8e20be0 123 }
75f3cb13 124
c8e20be0 125 /* execute releases pag->pag_ici_lock */
75f3cb13
DC
126 error = execute(ip, pag, flags);
127 if (error == EAGAIN) {
128 skipped++;
129 continue;
130 }
131 if (error)
132 last_error = error;
c8e20be0
DC
133
134 /* bail out if the filesystem is corrupted. */
75f3cb13
DC
135 if (error == EFSCORRUPTED)
136 break;
137
9bf729c0 138 } while ((*nr_to_scan)--);
75f3cb13
DC
139
140 if (skipped) {
141 delay(1);
142 goto restart;
143 }
75f3cb13
DC
144 return last_error;
145}
146
fe588ed3 147int
75f3cb13
DC
148xfs_inode_ag_iterator(
149 struct xfs_mount *mp,
150 int (*execute)(struct xfs_inode *ip,
151 struct xfs_perag *pag, int flags),
152 int flags,
c8e20be0 153 int tag,
9bf729c0
DC
154 int exclusive,
155 int *nr_to_scan)
75f3cb13
DC
156{
157 int error = 0;
158 int last_error = 0;
159 xfs_agnumber_t ag;
9bf729c0 160 int nr;
75f3cb13 161
9bf729c0 162 nr = nr_to_scan ? *nr_to_scan : INT_MAX;
75f3cb13 163 for (ag = 0; ag < mp->m_sb.sb_agcount; ag++) {
5017e97d
DC
164 struct xfs_perag *pag;
165
166 pag = xfs_perag_get(mp, ag);
167 if (!pag->pag_ici_init) {
168 xfs_perag_put(pag);
75f3cb13 169 continue;
5017e97d
DC
170 }
171 error = xfs_inode_ag_walk(mp, pag, execute, flags, tag,
9bf729c0 172 exclusive, &nr);
5017e97d 173 xfs_perag_put(pag);
75f3cb13
DC
174 if (error) {
175 last_error = error;
176 if (error == EFSCORRUPTED)
177 break;
178 }
9bf729c0
DC
179 if (nr <= 0)
180 break;
75f3cb13 181 }
9bf729c0
DC
182 if (nr_to_scan)
183 *nr_to_scan = nr;
75f3cb13
DC
184 return XFS_ERROR(last_error);
185}
186
1da8eeca 187/* must be called with pag_ici_lock held and releases it */
fe588ed3 188int
1da8eeca
DC
189xfs_sync_inode_valid(
190 struct xfs_inode *ip,
191 struct xfs_perag *pag)
192{
193 struct inode *inode = VFS_I(ip);
018027be 194 int error = EFSCORRUPTED;
1da8eeca
DC
195
196 /* nothing to sync during shutdown */
018027be
DC
197 if (XFS_FORCED_SHUTDOWN(ip->i_mount))
198 goto out_unlock;
1da8eeca 199
018027be
DC
200 /* avoid new or reclaimable inodes. Leave for reclaim code to flush */
201 error = ENOENT;
202 if (xfs_iflags_test(ip, XFS_INEW | XFS_IRECLAIMABLE | XFS_IRECLAIM))
203 goto out_unlock;
1da8eeca 204
018027be
DC
205 /* If we can't grab the inode, it must on it's way to reclaim. */
206 if (!igrab(inode))
207 goto out_unlock;
208
209 if (is_bad_inode(inode)) {
1da8eeca 210 IRELE(ip);
018027be 211 goto out_unlock;
1da8eeca
DC
212 }
213
018027be
DC
214 /* inode is valid */
215 error = 0;
216out_unlock:
217 read_unlock(&pag->pag_ici_lock);
218 return error;
1da8eeca
DC
219}
220
5a34d5cd
DC
221STATIC int
222xfs_sync_inode_data(
223 struct xfs_inode *ip,
75f3cb13 224 struct xfs_perag *pag,
5a34d5cd
DC
225 int flags)
226{
227 struct inode *inode = VFS_I(ip);
228 struct address_space *mapping = inode->i_mapping;
229 int error = 0;
230
75f3cb13
DC
231 error = xfs_sync_inode_valid(ip, pag);
232 if (error)
233 return error;
234
5a34d5cd
DC
235 if (!mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
236 goto out_wait;
237
238 if (!xfs_ilock_nowait(ip, XFS_IOLOCK_SHARED)) {
239 if (flags & SYNC_TRYLOCK)
240 goto out_wait;
241 xfs_ilock(ip, XFS_IOLOCK_SHARED);
242 }
243
244 error = xfs_flush_pages(ip, 0, -1, (flags & SYNC_WAIT) ?
0cadda1c 245 0 : XBF_ASYNC, FI_NONE);
5a34d5cd
DC
246 xfs_iunlock(ip, XFS_IOLOCK_SHARED);
247
248 out_wait:
b0710ccc 249 if (flags & SYNC_WAIT)
5a34d5cd 250 xfs_ioend_wait(ip);
75f3cb13 251 IRELE(ip);
5a34d5cd
DC
252 return error;
253}
254
845b6d0c
CH
255STATIC int
256xfs_sync_inode_attr(
257 struct xfs_inode *ip,
75f3cb13 258 struct xfs_perag *pag,
845b6d0c
CH
259 int flags)
260{
261 int error = 0;
262
75f3cb13
DC
263 error = xfs_sync_inode_valid(ip, pag);
264 if (error)
265 return error;
266
845b6d0c
CH
267 xfs_ilock(ip, XFS_ILOCK_SHARED);
268 if (xfs_inode_clean(ip))
269 goto out_unlock;
270 if (!xfs_iflock_nowait(ip)) {
271 if (!(flags & SYNC_WAIT))
272 goto out_unlock;
273 xfs_iflock(ip);
274 }
275
276 if (xfs_inode_clean(ip)) {
277 xfs_ifunlock(ip);
278 goto out_unlock;
279 }
280
c854363e 281 error = xfs_iflush(ip, flags);
845b6d0c
CH
282
283 out_unlock:
284 xfs_iunlock(ip, XFS_ILOCK_SHARED);
75f3cb13 285 IRELE(ip);
845b6d0c
CH
286 return error;
287}
288
075fe102
CH
289/*
290 * Write out pagecache data for the whole filesystem.
291 */
683a8970 292int
075fe102
CH
293xfs_sync_data(
294 struct xfs_mount *mp,
295 int flags)
683a8970 296{
075fe102 297 int error;
fe4fa4b8 298
b0710ccc 299 ASSERT((flags & ~(SYNC_TRYLOCK|SYNC_WAIT)) == 0);
fe4fa4b8 300
075fe102 301 error = xfs_inode_ag_iterator(mp, xfs_sync_inode_data, flags,
9bf729c0 302 XFS_ICI_NO_TAG, 0, NULL);
075fe102
CH
303 if (error)
304 return XFS_ERROR(error);
e9f1c6ee 305
a14a348b 306 xfs_log_force(mp, (flags & SYNC_WAIT) ? XFS_LOG_SYNC : 0);
075fe102
CH
307 return 0;
308}
e9f1c6ee 309
075fe102
CH
310/*
311 * Write out inode metadata (attributes) for the whole filesystem.
312 */
313int
314xfs_sync_attr(
315 struct xfs_mount *mp,
316 int flags)
317{
318 ASSERT((flags & ~SYNC_WAIT) == 0);
75f3cb13 319
075fe102 320 return xfs_inode_ag_iterator(mp, xfs_sync_inode_attr, flags,
9bf729c0 321 XFS_ICI_NO_TAG, 0, NULL);
fe4fa4b8
DC
322}
323
2af75df7
CH
324STATIC int
325xfs_commit_dummy_trans(
326 struct xfs_mount *mp,
dce5065a 327 uint flags)
2af75df7
CH
328{
329 struct xfs_inode *ip = mp->m_rootip;
330 struct xfs_trans *tp;
331 int error;
332
333 /*
334 * Put a dummy transaction in the log to tell recovery
335 * that all others are OK.
336 */
337 tp = xfs_trans_alloc(mp, XFS_TRANS_DUMMY1);
338 error = xfs_trans_reserve(tp, 0, XFS_ICHANGE_LOG_RES(mp), 0, 0, 0);
339 if (error) {
340 xfs_trans_cancel(tp, 0);
341 return error;
342 }
343
344 xfs_ilock(ip, XFS_ILOCK_EXCL);
345
346 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
347 xfs_trans_ihold(tp, ip);
348 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
2af75df7 349 error = xfs_trans_commit(tp, 0);
2af75df7
CH
350 xfs_iunlock(ip, XFS_ILOCK_EXCL);
351
dce5065a 352 /* the log force ensures this transaction is pushed to disk */
a14a348b 353 xfs_log_force(mp, (flags & SYNC_WAIT) ? XFS_LOG_SYNC : 0);
dce5065a 354 return error;
2af75df7
CH
355}
356
5d77c0dc 357STATIC int
2af75df7 358xfs_sync_fsdata(
df308bcf 359 struct xfs_mount *mp)
2af75df7
CH
360{
361 struct xfs_buf *bp;
2af75df7
CH
362
363 /*
df308bcf
CH
364 * If the buffer is pinned then push on the log so we won't get stuck
365 * waiting in the write for someone, maybe ourselves, to flush the log.
366 *
367 * Even though we just pushed the log above, we did not have the
368 * superblock buffer locked at that point so it can become pinned in
369 * between there and here.
2af75df7 370 */
df308bcf
CH
371 bp = xfs_getsb(mp, 0);
372 if (XFS_BUF_ISPINNED(bp))
373 xfs_log_force(mp, 0);
2af75df7 374
df308bcf 375 return xfs_bwrite(mp, bp);
e9f1c6ee
DC
376}
377
378/*
a4e4c4f4
DC
379 * When remounting a filesystem read-only or freezing the filesystem, we have
380 * two phases to execute. This first phase is syncing the data before we
381 * quiesce the filesystem, and the second is flushing all the inodes out after
382 * we've waited for all the transactions created by the first phase to
383 * complete. The second phase ensures that the inodes are written to their
384 * location on disk rather than just existing in transactions in the log. This
385 * means after a quiesce there is no log replay required to write the inodes to
386 * disk (this is the main difference between a sync and a quiesce).
387 */
388/*
389 * First stage of freeze - no writers will make progress now we are here,
e9f1c6ee
DC
390 * so we flush delwri and delalloc buffers here, then wait for all I/O to
391 * complete. Data is frozen at that point. Metadata is not frozen,
a4e4c4f4
DC
392 * transactions can still occur here so don't bother flushing the buftarg
393 * because it'll just get dirty again.
e9f1c6ee
DC
394 */
395int
396xfs_quiesce_data(
397 struct xfs_mount *mp)
398{
df308bcf 399 int error, error2 = 0;
e9f1c6ee
DC
400
401 /* push non-blocking */
075fe102 402 xfs_sync_data(mp, 0);
8b5403a6 403 xfs_qm_sync(mp, SYNC_TRYLOCK);
e9f1c6ee 404
c90b07e8 405 /* push and block till complete */
b0710ccc 406 xfs_sync_data(mp, SYNC_WAIT);
7d095257 407 xfs_qm_sync(mp, SYNC_WAIT);
e9f1c6ee 408
a4e4c4f4 409 /* write superblock and hoover up shutdown errors */
df308bcf
CH
410 error = xfs_sync_fsdata(mp);
411
412 /* make sure all delwri buffers are written out */
413 xfs_flush_buftarg(mp->m_ddev_targp, 1);
414
415 /* mark the log as covered if needed */
416 if (xfs_log_need_covered(mp))
417 error2 = xfs_commit_dummy_trans(mp, SYNC_WAIT);
e9f1c6ee 418
a4e4c4f4 419 /* flush data-only devices */
e9f1c6ee
DC
420 if (mp->m_rtdev_targp)
421 XFS_bflush(mp->m_rtdev_targp);
422
df308bcf 423 return error ? error : error2;
2af75df7
CH
424}
425
76bf105c
DC
426STATIC void
427xfs_quiesce_fs(
428 struct xfs_mount *mp)
429{
430 int count = 0, pincount;
431
c854363e 432 xfs_reclaim_inodes(mp, 0);
76bf105c 433 xfs_flush_buftarg(mp->m_ddev_targp, 0);
76bf105c
DC
434
435 /*
436 * This loop must run at least twice. The first instance of the loop
437 * will flush most meta data but that will generate more meta data
438 * (typically directory updates). Which then must be flushed and
c854363e
DC
439 * logged before we can write the unmount record. We also so sync
440 * reclaim of inodes to catch any that the above delwri flush skipped.
76bf105c
DC
441 */
442 do {
c854363e 443 xfs_reclaim_inodes(mp, SYNC_WAIT);
075fe102 444 xfs_sync_attr(mp, SYNC_WAIT);
76bf105c
DC
445 pincount = xfs_flush_buftarg(mp->m_ddev_targp, 1);
446 if (!pincount) {
447 delay(50);
448 count++;
449 }
450 } while (count < 2);
451}
452
453/*
454 * Second stage of a quiesce. The data is already synced, now we have to take
455 * care of the metadata. New transactions are already blocked, so we need to
456 * wait for any remaining transactions to drain out before proceding.
457 */
458void
459xfs_quiesce_attr(
460 struct xfs_mount *mp)
461{
462 int error = 0;
463
464 /* wait for all modifications to complete */
465 while (atomic_read(&mp->m_active_trans) > 0)
466 delay(100);
467
468 /* flush inodes and push all remaining buffers out to disk */
469 xfs_quiesce_fs(mp);
470
5e106572
FB
471 /*
472 * Just warn here till VFS can correctly support
473 * read-only remount without racing.
474 */
475 WARN_ON(atomic_read(&mp->m_active_trans) != 0);
76bf105c
DC
476
477 /* Push the superblock and write an unmount record */
478 error = xfs_log_sbcount(mp, 1);
479 if (error)
480 xfs_fs_cmn_err(CE_WARN, mp,
481 "xfs_attr_quiesce: failed to log sb changes. "
482 "Frozen image may not be consistent.");
483 xfs_log_unmount_write(mp);
484 xfs_unmountfs_writesb(mp);
485}
486
a167b17e
DC
487/*
488 * Enqueue a work item to be picked up by the vfs xfssyncd thread.
489 * Doing this has two advantages:
490 * - It saves on stack space, which is tight in certain situations
491 * - It can be used (with care) as a mechanism to avoid deadlocks.
492 * Flushing while allocating in a full filesystem requires both.
493 */
494STATIC void
495xfs_syncd_queue_work(
496 struct xfs_mount *mp,
497 void *data,
e43afd72
DC
498 void (*syncer)(struct xfs_mount *, void *),
499 struct completion *completion)
a167b17e 500{
a8d770d9 501 struct xfs_sync_work *work;
a167b17e 502
a8d770d9 503 work = kmem_alloc(sizeof(struct xfs_sync_work), KM_SLEEP);
a167b17e
DC
504 INIT_LIST_HEAD(&work->w_list);
505 work->w_syncer = syncer;
506 work->w_data = data;
507 work->w_mount = mp;
e43afd72 508 work->w_completion = completion;
a167b17e
DC
509 spin_lock(&mp->m_sync_lock);
510 list_add_tail(&work->w_list, &mp->m_sync_list);
511 spin_unlock(&mp->m_sync_lock);
512 wake_up_process(mp->m_sync_task);
513}
514
515/*
516 * Flush delayed allocate data, attempting to free up reserved space
517 * from existing allocations. At this point a new allocation attempt
518 * has failed with ENOSPC and we are in the process of scratching our
519 * heads, looking about for more room...
520 */
521STATIC void
a8d770d9 522xfs_flush_inodes_work(
a167b17e
DC
523 struct xfs_mount *mp,
524 void *arg)
525{
526 struct inode *inode = arg;
075fe102 527 xfs_sync_data(mp, SYNC_TRYLOCK);
b0710ccc 528 xfs_sync_data(mp, SYNC_TRYLOCK | SYNC_WAIT);
a167b17e
DC
529 iput(inode);
530}
531
532void
a8d770d9 533xfs_flush_inodes(
a167b17e
DC
534 xfs_inode_t *ip)
535{
536 struct inode *inode = VFS_I(ip);
e43afd72 537 DECLARE_COMPLETION_ONSTACK(completion);
a167b17e
DC
538
539 igrab(inode);
e43afd72
DC
540 xfs_syncd_queue_work(ip->i_mount, inode, xfs_flush_inodes_work, &completion);
541 wait_for_completion(&completion);
a14a348b 542 xfs_log_force(ip->i_mount, XFS_LOG_SYNC);
a167b17e
DC
543}
544
aacaa880 545/*
df308bcf
CH
546 * Every sync period we need to unpin all items, reclaim inodes and sync
547 * disk quotas. We might need to cover the log to indicate that the
548 * filesystem is idle.
aacaa880 549 */
a167b17e
DC
550STATIC void
551xfs_sync_worker(
552 struct xfs_mount *mp,
553 void *unused)
554{
555 int error;
556
aacaa880 557 if (!(mp->m_flags & XFS_MOUNT_RDONLY)) {
a14a348b 558 xfs_log_force(mp, 0);
c854363e 559 xfs_reclaim_inodes(mp, 0);
aacaa880 560 /* dgc: errors ignored here */
8b5403a6 561 error = xfs_qm_sync(mp, SYNC_TRYLOCK);
df308bcf
CH
562 if (xfs_log_need_covered(mp))
563 error = xfs_commit_dummy_trans(mp, 0);
aacaa880 564 }
a167b17e
DC
565 mp->m_sync_seq++;
566 wake_up(&mp->m_wait_single_sync_task);
567}
568
569STATIC int
570xfssyncd(
571 void *arg)
572{
573 struct xfs_mount *mp = arg;
574 long timeleft;
a8d770d9 575 xfs_sync_work_t *work, *n;
a167b17e
DC
576 LIST_HEAD (tmp);
577
578 set_freezable();
579 timeleft = xfs_syncd_centisecs * msecs_to_jiffies(10);
580 for (;;) {
20f6b2c7
DC
581 if (list_empty(&mp->m_sync_list))
582 timeleft = schedule_timeout_interruptible(timeleft);
a167b17e
DC
583 /* swsusp */
584 try_to_freeze();
585 if (kthread_should_stop() && list_empty(&mp->m_sync_list))
586 break;
587
588 spin_lock(&mp->m_sync_lock);
589 /*
590 * We can get woken by laptop mode, to do a sync -
591 * that's the (only!) case where the list would be
592 * empty with time remaining.
593 */
594 if (!timeleft || list_empty(&mp->m_sync_list)) {
595 if (!timeleft)
596 timeleft = xfs_syncd_centisecs *
597 msecs_to_jiffies(10);
598 INIT_LIST_HEAD(&mp->m_sync_work.w_list);
599 list_add_tail(&mp->m_sync_work.w_list,
600 &mp->m_sync_list);
601 }
20f6b2c7 602 list_splice_init(&mp->m_sync_list, &tmp);
a167b17e
DC
603 spin_unlock(&mp->m_sync_lock);
604
605 list_for_each_entry_safe(work, n, &tmp, w_list) {
606 (*work->w_syncer)(mp, work->w_data);
607 list_del(&work->w_list);
608 if (work == &mp->m_sync_work)
609 continue;
e43afd72
DC
610 if (work->w_completion)
611 complete(work->w_completion);
a167b17e
DC
612 kmem_free(work);
613 }
614 }
615
616 return 0;
617}
618
619int
620xfs_syncd_init(
621 struct xfs_mount *mp)
622{
623 mp->m_sync_work.w_syncer = xfs_sync_worker;
624 mp->m_sync_work.w_mount = mp;
e43afd72 625 mp->m_sync_work.w_completion = NULL;
e2a07812 626 mp->m_sync_task = kthread_run(xfssyncd, mp, "xfssyncd/%s", mp->m_fsname);
a167b17e
DC
627 if (IS_ERR(mp->m_sync_task))
628 return -PTR_ERR(mp->m_sync_task);
629 return 0;
630}
631
632void
633xfs_syncd_stop(
634 struct xfs_mount *mp)
635{
636 kthread_stop(mp->m_sync_task);
637}
638
bc990f5c
CH
639void
640__xfs_inode_set_reclaim_tag(
641 struct xfs_perag *pag,
642 struct xfs_inode *ip)
643{
644 radix_tree_tag_set(&pag->pag_ici_root,
645 XFS_INO_TO_AGINO(ip->i_mount, ip->i_ino),
646 XFS_ICI_RECLAIM_TAG);
9bf729c0 647 pag->pag_ici_reclaimable++;
bc990f5c
CH
648}
649
11654513
DC
650/*
651 * We set the inode flag atomically with the radix tree tag.
652 * Once we get tag lookups on the radix tree, this inode flag
653 * can go away.
654 */
396beb85
DC
655void
656xfs_inode_set_reclaim_tag(
657 xfs_inode_t *ip)
658{
5017e97d
DC
659 struct xfs_mount *mp = ip->i_mount;
660 struct xfs_perag *pag;
396beb85 661
5017e97d 662 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
f1f724e4 663 write_lock(&pag->pag_ici_lock);
396beb85 664 spin_lock(&ip->i_flags_lock);
bc990f5c 665 __xfs_inode_set_reclaim_tag(pag, ip);
11654513 666 __xfs_iflags_set(ip, XFS_IRECLAIMABLE);
396beb85 667 spin_unlock(&ip->i_flags_lock);
f1f724e4 668 write_unlock(&pag->pag_ici_lock);
5017e97d 669 xfs_perag_put(pag);
396beb85
DC
670}
671
672void
673__xfs_inode_clear_reclaim_tag(
674 xfs_mount_t *mp,
675 xfs_perag_t *pag,
676 xfs_inode_t *ip)
677{
678 radix_tree_tag_clear(&pag->pag_ici_root,
679 XFS_INO_TO_AGINO(mp, ip->i_ino), XFS_ICI_RECLAIM_TAG);
9bf729c0 680 pag->pag_ici_reclaimable--;
396beb85
DC
681}
682
777df5af
DC
683/*
684 * Inodes in different states need to be treated differently, and the return
685 * value of xfs_iflush is not sufficient to get this right. The following table
686 * lists the inode states and the reclaim actions necessary for non-blocking
687 * reclaim:
688 *
689 *
690 * inode state iflush ret required action
691 * --------------- ---------- ---------------
692 * bad - reclaim
693 * shutdown EIO unpin and reclaim
694 * clean, unpinned 0 reclaim
695 * stale, unpinned 0 reclaim
c854363e
DC
696 * clean, pinned(*) 0 requeue
697 * stale, pinned EAGAIN requeue
698 * dirty, delwri ok 0 requeue
699 * dirty, delwri blocked EAGAIN requeue
700 * dirty, sync flush 0 reclaim
777df5af
DC
701 *
702 * (*) dgc: I don't think the clean, pinned state is possible but it gets
703 * handled anyway given the order of checks implemented.
704 *
c854363e
DC
705 * As can be seen from the table, the return value of xfs_iflush() is not
706 * sufficient to correctly decide the reclaim action here. The checks in
707 * xfs_iflush() might look like duplicates, but they are not.
708 *
709 * Also, because we get the flush lock first, we know that any inode that has
710 * been flushed delwri has had the flush completed by the time we check that
711 * the inode is clean. The clean inode check needs to be done before flushing
712 * the inode delwri otherwise we would loop forever requeuing clean inodes as
713 * we cannot tell apart a successful delwri flush and a clean inode from the
714 * return value of xfs_iflush().
715 *
716 * Note that because the inode is flushed delayed write by background
717 * writeback, the flush lock may already be held here and waiting on it can
718 * result in very long latencies. Hence for sync reclaims, where we wait on the
719 * flush lock, the caller should push out delayed write inodes first before
720 * trying to reclaim them to minimise the amount of time spent waiting. For
721 * background relaim, we just requeue the inode for the next pass.
722 *
777df5af
DC
723 * Hence the order of actions after gaining the locks should be:
724 * bad => reclaim
725 * shutdown => unpin and reclaim
c854363e
DC
726 * pinned, delwri => requeue
727 * pinned, sync => unpin
777df5af
DC
728 * stale => reclaim
729 * clean => reclaim
c854363e
DC
730 * dirty, delwri => flush and requeue
731 * dirty, sync => flush, wait and reclaim
777df5af 732 */
75f3cb13 733STATIC int
c8e20be0 734xfs_reclaim_inode(
75f3cb13
DC
735 struct xfs_inode *ip,
736 struct xfs_perag *pag,
c8e20be0 737 int sync_mode)
fce08f2f 738{
c854363e 739 int error = 0;
777df5af 740
c8e20be0
DC
741 /*
742 * The radix tree lock here protects a thread in xfs_iget from racing
743 * with us starting reclaim on the inode. Once we have the
744 * XFS_IRECLAIM flag set it will not touch us.
745 */
746 spin_lock(&ip->i_flags_lock);
747 ASSERT_ALWAYS(__xfs_iflags_test(ip, XFS_IRECLAIMABLE));
748 if (__xfs_iflags_test(ip, XFS_IRECLAIM)) {
749 /* ignore as it is already under reclaim */
750 spin_unlock(&ip->i_flags_lock);
751 write_unlock(&pag->pag_ici_lock);
75f3cb13 752 return 0;
fce08f2f 753 }
c8e20be0
DC
754 __xfs_iflags_set(ip, XFS_IRECLAIM);
755 spin_unlock(&ip->i_flags_lock);
756 write_unlock(&pag->pag_ici_lock);
757
c8e20be0 758 xfs_ilock(ip, XFS_ILOCK_EXCL);
c854363e
DC
759 if (!xfs_iflock_nowait(ip)) {
760 if (!(sync_mode & SYNC_WAIT))
761 goto out;
762 xfs_iflock(ip);
763 }
7a3be02b 764
777df5af
DC
765 if (is_bad_inode(VFS_I(ip)))
766 goto reclaim;
767 if (XFS_FORCED_SHUTDOWN(ip->i_mount)) {
768 xfs_iunpin_wait(ip);
769 goto reclaim;
770 }
c854363e
DC
771 if (xfs_ipincount(ip)) {
772 if (!(sync_mode & SYNC_WAIT)) {
773 xfs_ifunlock(ip);
774 goto out;
775 }
777df5af 776 xfs_iunpin_wait(ip);
c854363e 777 }
777df5af
DC
778 if (xfs_iflags_test(ip, XFS_ISTALE))
779 goto reclaim;
780 if (xfs_inode_clean(ip))
781 goto reclaim;
782
783 /* Now we have an inode that needs flushing */
784 error = xfs_iflush(ip, sync_mode);
c854363e
DC
785 if (sync_mode & SYNC_WAIT) {
786 xfs_iflock(ip);
787 goto reclaim;
c8e20be0
DC
788 }
789
c854363e
DC
790 /*
791 * When we have to flush an inode but don't have SYNC_WAIT set, we
792 * flush the inode out using a delwri buffer and wait for the next
793 * call into reclaim to find it in a clean state instead of waiting for
794 * it now. We also don't return errors here - if the error is transient
795 * then the next reclaim pass will flush the inode, and if the error
f1d486a3 796 * is permanent then the next sync reclaim will reclaim the inode and
c854363e
DC
797 * pass on the error.
798 */
f1d486a3 799 if (error && error != EAGAIN && !XFS_FORCED_SHUTDOWN(ip->i_mount)) {
c854363e
DC
800 xfs_fs_cmn_err(CE_WARN, ip->i_mount,
801 "inode 0x%llx background reclaim flush failed with %d",
802 (long long)ip->i_ino, error);
803 }
804out:
805 xfs_iflags_clear(ip, XFS_IRECLAIM);
806 xfs_iunlock(ip, XFS_ILOCK_EXCL);
807 /*
808 * We could return EAGAIN here to make reclaim rescan the inode tree in
809 * a short while. However, this just burns CPU time scanning the tree
810 * waiting for IO to complete and xfssyncd never goes back to the idle
811 * state. Instead, return 0 to let the next scheduled background reclaim
812 * attempt to reclaim the inode again.
813 */
814 return 0;
815
777df5af
DC
816reclaim:
817 xfs_ifunlock(ip);
c8e20be0
DC
818 xfs_iunlock(ip, XFS_ILOCK_EXCL);
819 xfs_ireclaim(ip);
c854363e
DC
820 return error;
821
7a3be02b
DC
822}
823
824int
825xfs_reclaim_inodes(
826 xfs_mount_t *mp,
7a3be02b
DC
827 int mode)
828{
c8e20be0 829 return xfs_inode_ag_iterator(mp, xfs_reclaim_inode, mode,
9bf729c0
DC
830 XFS_ICI_RECLAIM_TAG, 1, NULL);
831}
832
833/*
834 * Shrinker infrastructure.
835 *
836 * This is all far more complex than it needs to be. It adds a global list of
837 * mounts because the shrinkers can only call a global context. We need to make
838 * the shrinkers pass a context to avoid the need for global state.
839 */
840static LIST_HEAD(xfs_mount_list);
841static struct rw_semaphore xfs_mount_list_lock;
842
843static int
844xfs_reclaim_inode_shrink(
845 int nr_to_scan,
846 gfp_t gfp_mask)
847{
848 struct xfs_mount *mp;
849 struct xfs_perag *pag;
850 xfs_agnumber_t ag;
851 int reclaimable = 0;
852
853 if (nr_to_scan) {
854 if (!(gfp_mask & __GFP_FS))
855 return -1;
856
857 down_read(&xfs_mount_list_lock);
858 list_for_each_entry(mp, &xfs_mount_list, m_mplist) {
859 xfs_inode_ag_iterator(mp, xfs_reclaim_inode, 0,
860 XFS_ICI_RECLAIM_TAG, 1, &nr_to_scan);
861 if (nr_to_scan <= 0)
862 break;
863 }
864 up_read(&xfs_mount_list_lock);
865 }
866
867 down_read(&xfs_mount_list_lock);
868 list_for_each_entry(mp, &xfs_mount_list, m_mplist) {
869 for (ag = 0; ag < mp->m_sb.sb_agcount; ag++) {
870
871 pag = xfs_perag_get(mp, ag);
872 if (!pag->pag_ici_init) {
873 xfs_perag_put(pag);
874 continue;
875 }
876 reclaimable += pag->pag_ici_reclaimable;
877 xfs_perag_put(pag);
878 }
879 }
880 up_read(&xfs_mount_list_lock);
881 return reclaimable;
882}
883
884static struct shrinker xfs_inode_shrinker = {
885 .shrink = xfs_reclaim_inode_shrink,
886 .seeks = DEFAULT_SEEKS,
887};
888
889void __init
890xfs_inode_shrinker_init(void)
891{
892 init_rwsem(&xfs_mount_list_lock);
893 register_shrinker(&xfs_inode_shrinker);
894}
895
896void
897xfs_inode_shrinker_destroy(void)
898{
899 ASSERT(list_empty(&xfs_mount_list));
900 unregister_shrinker(&xfs_inode_shrinker);
901}
902
903void
904xfs_inode_shrinker_register(
905 struct xfs_mount *mp)
906{
907 down_write(&xfs_mount_list_lock);
908 list_add_tail(&mp->m_mplist, &xfs_mount_list);
909 up_write(&xfs_mount_list_lock);
910}
911
912void
913xfs_inode_shrinker_unregister(
914 struct xfs_mount *mp)
915{
916 down_write(&xfs_mount_list_lock);
917 list_del(&mp->m_mplist);
918 up_write(&xfs_mount_list_lock);
fce08f2f 919}