]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - fs/xfs/xfs_aops.c
Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tiwai/sound
[mirror_ubuntu-artful-kernel.git] / fs / xfs / xfs_aops.c
CommitLineData
1da177e4 1/*
7b718769
NS
2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
1da177e4 4 *
7b718769
NS
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
1da177e4
LT
7 * published by the Free Software Foundation.
8 *
7b718769
NS
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
1da177e4 13 *
7b718769
NS
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
1da177e4 17 */
1da177e4 18#include "xfs.h"
a844f451 19#include "xfs_bit.h"
1da177e4 20#include "xfs_log.h"
a844f451 21#include "xfs_inum.h"
1da177e4 22#include "xfs_sb.h"
a844f451 23#include "xfs_ag.h"
1da177e4 24#include "xfs_trans.h"
1da177e4
LT
25#include "xfs_mount.h"
26#include "xfs_bmap_btree.h"
1da177e4
LT
27#include "xfs_dinode.h"
28#include "xfs_inode.h"
a844f451 29#include "xfs_alloc.h"
1da177e4
LT
30#include "xfs_error.h"
31#include "xfs_rw.h"
32#include "xfs_iomap.h"
739bfb2a 33#include "xfs_vnodeops.h"
0b1b213f 34#include "xfs_trace.h"
3ed3a434 35#include "xfs_bmap.h"
5a0e3ad6 36#include <linux/gfp.h>
1da177e4 37#include <linux/mpage.h>
10ce4444 38#include <linux/pagevec.h>
1da177e4
LT
39#include <linux/writeback.h>
40
0b1b213f 41void
f51623b2
NS
42xfs_count_page_state(
43 struct page *page,
44 int *delalloc,
f51623b2
NS
45 int *unwritten)
46{
47 struct buffer_head *bh, *head;
48
20cb52eb 49 *delalloc = *unwritten = 0;
f51623b2
NS
50
51 bh = head = page_buffers(page);
52 do {
20cb52eb 53 if (buffer_unwritten(bh))
f51623b2
NS
54 (*unwritten) = 1;
55 else if (buffer_delay(bh))
56 (*delalloc) = 1;
57 } while ((bh = bh->b_this_page) != head);
58}
59
6214ed44
CH
60STATIC struct block_device *
61xfs_find_bdev_for_inode(
046f1685 62 struct inode *inode)
6214ed44 63{
046f1685 64 struct xfs_inode *ip = XFS_I(inode);
6214ed44
CH
65 struct xfs_mount *mp = ip->i_mount;
66
71ddabb9 67 if (XFS_IS_REALTIME_INODE(ip))
6214ed44
CH
68 return mp->m_rtdev_targp->bt_bdev;
69 else
70 return mp->m_ddev_targp->bt_bdev;
71}
72
f6d6d4fc
CH
73/*
74 * We're now finished for good with this ioend structure.
75 * Update the page state via the associated buffer_heads,
76 * release holds on the inode and bio, and finally free
77 * up memory. Do not use the ioend after this.
78 */
0829c360
CH
79STATIC void
80xfs_destroy_ioend(
81 xfs_ioend_t *ioend)
82{
f6d6d4fc
CH
83 struct buffer_head *bh, *next;
84
85 for (bh = ioend->io_buffer_head; bh; bh = next) {
86 next = bh->b_private;
7d04a335 87 bh->b_end_io(bh, !ioend->io_error);
f6d6d4fc 88 }
583fa586 89
c859cdd1 90 if (ioend->io_iocb) {
04f658ee
CH
91 if (ioend->io_isasync) {
92 aio_complete(ioend->io_iocb, ioend->io_error ?
93 ioend->io_error : ioend->io_result, 0);
94 }
c859cdd1
CH
95 inode_dio_done(ioend->io_inode);
96 }
4a06fd26 97
0829c360
CH
98 mempool_free(ioend, xfs_ioend_pool);
99}
100
932640e8
DC
101/*
102 * If the end of the current ioend is beyond the current EOF,
103 * return the new EOF value, otherwise zero.
104 */
105STATIC xfs_fsize_t
106xfs_ioend_new_eof(
107 xfs_ioend_t *ioend)
108{
109 xfs_inode_t *ip = XFS_I(ioend->io_inode);
110 xfs_fsize_t isize;
111 xfs_fsize_t bsize;
112
113 bsize = ioend->io_offset + ioend->io_size;
114 isize = MAX(ip->i_size, ip->i_new_size);
115 isize = MIN(isize, bsize);
116 return isize > ip->i_d.di_size ? isize : 0;
117}
118
fc0063c4
CH
119/*
120 * Fast and loose check if this write could update the on-disk inode size.
121 */
122static inline bool xfs_ioend_is_append(struct xfs_ioend *ioend)
123{
124 return ioend->io_offset + ioend->io_size >
125 XFS_I(ioend->io_inode)->i_d.di_size;
126}
127
ba87ea69 128/*
77d7a0c2
DC
129 * Update on-disk file size now that data has been written to disk. The
130 * current in-memory file size is i_size. If a write is beyond eof i_new_size
131 * will be the intended file size until i_size is updated. If this write does
132 * not extend all the way to the valid file size then restrict this update to
133 * the end of the write.
134 *
135 * This function does not block as blocking on the inode lock in IO completion
136 * can lead to IO completion order dependency deadlocks.. If it can't get the
137 * inode ilock it will return EAGAIN. Callers must handle this.
ba87ea69 138 */
77d7a0c2 139STATIC int
ba87ea69
LM
140xfs_setfilesize(
141 xfs_ioend_t *ioend)
142{
b677c210 143 xfs_inode_t *ip = XFS_I(ioend->io_inode);
ba87ea69 144 xfs_fsize_t isize;
ba87ea69 145
77d7a0c2
DC
146 if (!xfs_ilock_nowait(ip, XFS_ILOCK_EXCL))
147 return EAGAIN;
ba87ea69 148
932640e8
DC
149 isize = xfs_ioend_new_eof(ioend);
150 if (isize) {
55fb25d5 151 trace_xfs_setfilesize(ip, ioend->io_offset, ioend->io_size);
ba87ea69 152 ip->i_d.di_size = isize;
66d834ea 153 xfs_mark_inode_dirty(ip);
ba87ea69
LM
154 }
155
156 xfs_iunlock(ip, XFS_ILOCK_EXCL);
77d7a0c2
DC
157 return 0;
158}
159
160/*
209fb87a 161 * Schedule IO completion handling on the final put of an ioend.
fc0063c4
CH
162 *
163 * If there is no work to do we might as well call it a day and free the
164 * ioend right now.
77d7a0c2
DC
165 */
166STATIC void
167xfs_finish_ioend(
209fb87a 168 struct xfs_ioend *ioend)
77d7a0c2
DC
169{
170 if (atomic_dec_and_test(&ioend->io_remaining)) {
209fb87a
CH
171 if (ioend->io_type == IO_UNWRITTEN)
172 queue_work(xfsconvertd_workqueue, &ioend->io_work);
fc0063c4 173 else if (xfs_ioend_is_append(ioend))
209fb87a 174 queue_work(xfsdatad_workqueue, &ioend->io_work);
fc0063c4
CH
175 else
176 xfs_destroy_ioend(ioend);
77d7a0c2 177 }
ba87ea69
LM
178}
179
0829c360 180/*
5ec4fabb 181 * IO write completion.
f6d6d4fc
CH
182 */
183STATIC void
5ec4fabb 184xfs_end_io(
77d7a0c2 185 struct work_struct *work)
0829c360 186{
77d7a0c2
DC
187 xfs_ioend_t *ioend = container_of(work, xfs_ioend_t, io_work);
188 struct xfs_inode *ip = XFS_I(ioend->io_inode);
69418932 189 int error = 0;
ba87ea69 190
04f658ee 191 if (XFS_FORCED_SHUTDOWN(ip->i_mount)) {
810627d9 192 ioend->io_error = -EIO;
04f658ee
CH
193 goto done;
194 }
195 if (ioend->io_error)
196 goto done;
197
5ec4fabb
CH
198 /*
199 * For unwritten extents we need to issue transactions to convert a
200 * range to normal written extens after the data I/O has finished.
201 */
04f658ee 202 if (ioend->io_type == IO_UNWRITTEN) {
5ec4fabb
CH
203 error = xfs_iomap_write_unwritten(ip, ioend->io_offset,
204 ioend->io_size);
04f658ee
CH
205 if (error) {
206 ioend->io_error = -error;
207 goto done;
208 }
5ec4fabb 209 }
ba87ea69 210
5ec4fabb
CH
211 /*
212 * We might have to update the on-disk file size after extending
213 * writes.
214 */
a206c817
CH
215 error = xfs_setfilesize(ioend);
216 ASSERT(!error || error == EAGAIN);
77d7a0c2 217
04f658ee 218done:
77d7a0c2
DC
219 /*
220 * If we didn't complete processing of the ioend, requeue it to the
221 * tail of the workqueue for another attempt later. Otherwise destroy
222 * it.
223 */
224 if (error == EAGAIN) {
225 atomic_inc(&ioend->io_remaining);
209fb87a 226 xfs_finish_ioend(ioend);
77d7a0c2
DC
227 /* ensure we don't spin on blocked ioends */
228 delay(1);
fb511f21 229 } else {
77d7a0c2 230 xfs_destroy_ioend(ioend);
fb511f21 231 }
c626d174
DC
232}
233
209fb87a
CH
234/*
235 * Call IO completion handling in caller context on the final put of an ioend.
236 */
237STATIC void
238xfs_finish_ioend_sync(
239 struct xfs_ioend *ioend)
240{
241 if (atomic_dec_and_test(&ioend->io_remaining))
242 xfs_end_io(&ioend->io_work);
243}
244
0829c360
CH
245/*
246 * Allocate and initialise an IO completion structure.
247 * We need to track unwritten extent write completion here initially.
248 * We'll need to extend this for updating the ondisk inode size later
249 * (vs. incore size).
250 */
251STATIC xfs_ioend_t *
252xfs_alloc_ioend(
f6d6d4fc
CH
253 struct inode *inode,
254 unsigned int type)
0829c360
CH
255{
256 xfs_ioend_t *ioend;
257
258 ioend = mempool_alloc(xfs_ioend_pool, GFP_NOFS);
259
260 /*
261 * Set the count to 1 initially, which will prevent an I/O
262 * completion callback from happening before we have started
263 * all the I/O from calling the completion routine too early.
264 */
265 atomic_set(&ioend->io_remaining, 1);
c859cdd1 266 ioend->io_isasync = 0;
7d04a335 267 ioend->io_error = 0;
f6d6d4fc
CH
268 ioend->io_list = NULL;
269 ioend->io_type = type;
b677c210 270 ioend->io_inode = inode;
c1a073bd 271 ioend->io_buffer_head = NULL;
f6d6d4fc 272 ioend->io_buffer_tail = NULL;
0829c360
CH
273 ioend->io_offset = 0;
274 ioend->io_size = 0;
fb511f21
CH
275 ioend->io_iocb = NULL;
276 ioend->io_result = 0;
0829c360 277
5ec4fabb 278 INIT_WORK(&ioend->io_work, xfs_end_io);
0829c360
CH
279 return ioend;
280}
281
1da177e4
LT
282STATIC int
283xfs_map_blocks(
284 struct inode *inode,
285 loff_t offset,
207d0416 286 struct xfs_bmbt_irec *imap,
a206c817
CH
287 int type,
288 int nonblocking)
1da177e4 289{
a206c817
CH
290 struct xfs_inode *ip = XFS_I(inode);
291 struct xfs_mount *mp = ip->i_mount;
ed1e7b7e 292 ssize_t count = 1 << inode->i_blkbits;
a206c817
CH
293 xfs_fileoff_t offset_fsb, end_fsb;
294 int error = 0;
a206c817
CH
295 int bmapi_flags = XFS_BMAPI_ENTIRE;
296 int nimaps = 1;
297
298 if (XFS_FORCED_SHUTDOWN(mp))
299 return -XFS_ERROR(EIO);
300
8ff2957d 301 if (type == IO_UNWRITTEN)
a206c817 302 bmapi_flags |= XFS_BMAPI_IGSTATE;
8ff2957d
CH
303
304 if (!xfs_ilock_nowait(ip, XFS_ILOCK_SHARED)) {
305 if (nonblocking)
306 return -XFS_ERROR(EAGAIN);
307 xfs_ilock(ip, XFS_ILOCK_SHARED);
a206c817
CH
308 }
309
8ff2957d
CH
310 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
311 (ip->i_df.if_flags & XFS_IFEXTENTS));
a206c817 312 ASSERT(offset <= mp->m_maxioffset);
8ff2957d 313
a206c817
CH
314 if (offset + count > mp->m_maxioffset)
315 count = mp->m_maxioffset - offset;
316 end_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)offset + count);
317 offset_fsb = XFS_B_TO_FSBT(mp, offset);
5c8ed202
DC
318 error = xfs_bmapi_read(ip, offset_fsb, end_fsb - offset_fsb,
319 imap, &nimaps, bmapi_flags);
8ff2957d 320 xfs_iunlock(ip, XFS_ILOCK_SHARED);
a206c817 321
8ff2957d
CH
322 if (error)
323 return -XFS_ERROR(error);
a206c817 324
8ff2957d
CH
325 if (type == IO_DELALLOC &&
326 (!nimaps || isnullstartblock(imap->br_startblock))) {
a206c817
CH
327 error = xfs_iomap_write_allocate(ip, offset, count, imap);
328 if (!error)
329 trace_xfs_map_blocks_alloc(ip, offset, count, type, imap);
8ff2957d 330 return -XFS_ERROR(error);
a206c817
CH
331 }
332
8ff2957d
CH
333#ifdef DEBUG
334 if (type == IO_UNWRITTEN) {
335 ASSERT(nimaps);
336 ASSERT(imap->br_startblock != HOLESTARTBLOCK);
337 ASSERT(imap->br_startblock != DELAYSTARTBLOCK);
338 }
339#endif
340 if (nimaps)
341 trace_xfs_map_blocks_found(ip, offset, count, type, imap);
342 return 0;
1da177e4
LT
343}
344
b8f82a4a 345STATIC int
558e6891 346xfs_imap_valid(
8699bb0a 347 struct inode *inode,
207d0416 348 struct xfs_bmbt_irec *imap,
558e6891 349 xfs_off_t offset)
1da177e4 350{
558e6891 351 offset >>= inode->i_blkbits;
8699bb0a 352
558e6891
CH
353 return offset >= imap->br_startoff &&
354 offset < imap->br_startoff + imap->br_blockcount;
1da177e4
LT
355}
356
f6d6d4fc
CH
357/*
358 * BIO completion handler for buffered IO.
359 */
782e3b3b 360STATIC void
f6d6d4fc
CH
361xfs_end_bio(
362 struct bio *bio,
f6d6d4fc
CH
363 int error)
364{
365 xfs_ioend_t *ioend = bio->bi_private;
366
f6d6d4fc 367 ASSERT(atomic_read(&bio->bi_cnt) >= 1);
7d04a335 368 ioend->io_error = test_bit(BIO_UPTODATE, &bio->bi_flags) ? 0 : error;
f6d6d4fc
CH
369
370 /* Toss bio and pass work off to an xfsdatad thread */
f6d6d4fc
CH
371 bio->bi_private = NULL;
372 bio->bi_end_io = NULL;
f6d6d4fc 373 bio_put(bio);
7d04a335 374
209fb87a 375 xfs_finish_ioend(ioend);
f6d6d4fc
CH
376}
377
378STATIC void
379xfs_submit_ioend_bio(
06342cf8
CH
380 struct writeback_control *wbc,
381 xfs_ioend_t *ioend,
382 struct bio *bio)
f6d6d4fc
CH
383{
384 atomic_inc(&ioend->io_remaining);
f6d6d4fc
CH
385 bio->bi_private = ioend;
386 bio->bi_end_io = xfs_end_bio;
387
932640e8
DC
388 /*
389 * If the I/O is beyond EOF we mark the inode dirty immediately
390 * but don't update the inode size until I/O completion.
391 */
392 if (xfs_ioend_new_eof(ioend))
66d834ea 393 xfs_mark_inode_dirty(XFS_I(ioend->io_inode));
932640e8 394
721a9602 395 submit_bio(wbc->sync_mode == WB_SYNC_ALL ? WRITE_SYNC : WRITE, bio);
f6d6d4fc
CH
396}
397
398STATIC struct bio *
399xfs_alloc_ioend_bio(
400 struct buffer_head *bh)
401{
f6d6d4fc 402 int nvecs = bio_get_nr_vecs(bh->b_bdev);
221cb251 403 struct bio *bio = bio_alloc(GFP_NOIO, nvecs);
f6d6d4fc
CH
404
405 ASSERT(bio->bi_private == NULL);
406 bio->bi_sector = bh->b_blocknr * (bh->b_size >> 9);
407 bio->bi_bdev = bh->b_bdev;
f6d6d4fc
CH
408 return bio;
409}
410
411STATIC void
412xfs_start_buffer_writeback(
413 struct buffer_head *bh)
414{
415 ASSERT(buffer_mapped(bh));
416 ASSERT(buffer_locked(bh));
417 ASSERT(!buffer_delay(bh));
418 ASSERT(!buffer_unwritten(bh));
419
420 mark_buffer_async_write(bh);
421 set_buffer_uptodate(bh);
422 clear_buffer_dirty(bh);
423}
424
425STATIC void
426xfs_start_page_writeback(
427 struct page *page,
f6d6d4fc
CH
428 int clear_dirty,
429 int buffers)
430{
431 ASSERT(PageLocked(page));
432 ASSERT(!PageWriteback(page));
f6d6d4fc 433 if (clear_dirty)
92132021
DC
434 clear_page_dirty_for_io(page);
435 set_page_writeback(page);
f6d6d4fc 436 unlock_page(page);
1f7decf6
FW
437 /* If no buffers on the page are to be written, finish it here */
438 if (!buffers)
f6d6d4fc 439 end_page_writeback(page);
f6d6d4fc
CH
440}
441
442static inline int bio_add_buffer(struct bio *bio, struct buffer_head *bh)
443{
444 return bio_add_page(bio, bh->b_page, bh->b_size, bh_offset(bh));
445}
446
447/*
d88992f6
DC
448 * Submit all of the bios for all of the ioends we have saved up, covering the
449 * initial writepage page and also any probed pages.
450 *
451 * Because we may have multiple ioends spanning a page, we need to start
452 * writeback on all the buffers before we submit them for I/O. If we mark the
453 * buffers as we got, then we can end up with a page that only has buffers
454 * marked async write and I/O complete on can occur before we mark the other
455 * buffers async write.
456 *
457 * The end result of this is that we trip a bug in end_page_writeback() because
458 * we call it twice for the one page as the code in end_buffer_async_write()
459 * assumes that all buffers on the page are started at the same time.
460 *
461 * The fix is two passes across the ioend list - one to start writeback on the
c41564b5 462 * buffer_heads, and then submit them for I/O on the second pass.
f6d6d4fc
CH
463 */
464STATIC void
465xfs_submit_ioend(
06342cf8 466 struct writeback_control *wbc,
f6d6d4fc
CH
467 xfs_ioend_t *ioend)
468{
d88992f6 469 xfs_ioend_t *head = ioend;
f6d6d4fc
CH
470 xfs_ioend_t *next;
471 struct buffer_head *bh;
472 struct bio *bio;
473 sector_t lastblock = 0;
474
d88992f6
DC
475 /* Pass 1 - start writeback */
476 do {
477 next = ioend->io_list;
221cb251 478 for (bh = ioend->io_buffer_head; bh; bh = bh->b_private)
d88992f6 479 xfs_start_buffer_writeback(bh);
d88992f6
DC
480 } while ((ioend = next) != NULL);
481
482 /* Pass 2 - submit I/O */
483 ioend = head;
f6d6d4fc
CH
484 do {
485 next = ioend->io_list;
486 bio = NULL;
487
488 for (bh = ioend->io_buffer_head; bh; bh = bh->b_private) {
f6d6d4fc
CH
489
490 if (!bio) {
491 retry:
492 bio = xfs_alloc_ioend_bio(bh);
493 } else if (bh->b_blocknr != lastblock + 1) {
06342cf8 494 xfs_submit_ioend_bio(wbc, ioend, bio);
f6d6d4fc
CH
495 goto retry;
496 }
497
498 if (bio_add_buffer(bio, bh) != bh->b_size) {
06342cf8 499 xfs_submit_ioend_bio(wbc, ioend, bio);
f6d6d4fc
CH
500 goto retry;
501 }
502
503 lastblock = bh->b_blocknr;
504 }
505 if (bio)
06342cf8 506 xfs_submit_ioend_bio(wbc, ioend, bio);
209fb87a 507 xfs_finish_ioend(ioend);
f6d6d4fc
CH
508 } while ((ioend = next) != NULL);
509}
510
511/*
512 * Cancel submission of all buffer_heads so far in this endio.
513 * Toss the endio too. Only ever called for the initial page
514 * in a writepage request, so only ever one page.
515 */
516STATIC void
517xfs_cancel_ioend(
518 xfs_ioend_t *ioend)
519{
520 xfs_ioend_t *next;
521 struct buffer_head *bh, *next_bh;
522
523 do {
524 next = ioend->io_list;
525 bh = ioend->io_buffer_head;
526 do {
527 next_bh = bh->b_private;
528 clear_buffer_async_write(bh);
529 unlock_buffer(bh);
530 } while ((bh = next_bh) != NULL);
531
f6d6d4fc
CH
532 mempool_free(ioend, xfs_ioend_pool);
533 } while ((ioend = next) != NULL);
534}
535
536/*
537 * Test to see if we've been building up a completion structure for
538 * earlier buffers -- if so, we try to append to this ioend if we
539 * can, otherwise we finish off any current ioend and start another.
540 * Return true if we've finished the given ioend.
541 */
542STATIC void
543xfs_add_to_ioend(
544 struct inode *inode,
545 struct buffer_head *bh,
7336cea8 546 xfs_off_t offset,
f6d6d4fc
CH
547 unsigned int type,
548 xfs_ioend_t **result,
549 int need_ioend)
550{
551 xfs_ioend_t *ioend = *result;
552
553 if (!ioend || need_ioend || type != ioend->io_type) {
554 xfs_ioend_t *previous = *result;
f6d6d4fc 555
f6d6d4fc
CH
556 ioend = xfs_alloc_ioend(inode, type);
557 ioend->io_offset = offset;
558 ioend->io_buffer_head = bh;
559 ioend->io_buffer_tail = bh;
560 if (previous)
561 previous->io_list = ioend;
562 *result = ioend;
563 } else {
564 ioend->io_buffer_tail->b_private = bh;
565 ioend->io_buffer_tail = bh;
566 }
567
568 bh->b_private = NULL;
569 ioend->io_size += bh->b_size;
570}
571
87cbc49c
NS
572STATIC void
573xfs_map_buffer(
046f1685 574 struct inode *inode,
87cbc49c 575 struct buffer_head *bh,
207d0416 576 struct xfs_bmbt_irec *imap,
046f1685 577 xfs_off_t offset)
87cbc49c
NS
578{
579 sector_t bn;
8699bb0a 580 struct xfs_mount *m = XFS_I(inode)->i_mount;
207d0416
CH
581 xfs_off_t iomap_offset = XFS_FSB_TO_B(m, imap->br_startoff);
582 xfs_daddr_t iomap_bn = xfs_fsb_to_db(XFS_I(inode), imap->br_startblock);
87cbc49c 583
207d0416
CH
584 ASSERT(imap->br_startblock != HOLESTARTBLOCK);
585 ASSERT(imap->br_startblock != DELAYSTARTBLOCK);
87cbc49c 586
e513182d 587 bn = (iomap_bn >> (inode->i_blkbits - BBSHIFT)) +
8699bb0a 588 ((offset - iomap_offset) >> inode->i_blkbits);
87cbc49c 589
046f1685 590 ASSERT(bn || XFS_IS_REALTIME_INODE(XFS_I(inode)));
87cbc49c
NS
591
592 bh->b_blocknr = bn;
593 set_buffer_mapped(bh);
594}
595
1da177e4
LT
596STATIC void
597xfs_map_at_offset(
046f1685 598 struct inode *inode,
1da177e4 599 struct buffer_head *bh,
207d0416 600 struct xfs_bmbt_irec *imap,
046f1685 601 xfs_off_t offset)
1da177e4 602{
207d0416
CH
603 ASSERT(imap->br_startblock != HOLESTARTBLOCK);
604 ASSERT(imap->br_startblock != DELAYSTARTBLOCK);
1da177e4 605
207d0416 606 xfs_map_buffer(inode, bh, imap, offset);
1da177e4
LT
607 set_buffer_mapped(bh);
608 clear_buffer_delay(bh);
f6d6d4fc 609 clear_buffer_unwritten(bh);
1da177e4
LT
610}
611
1da177e4 612/*
10ce4444
CH
613 * Test if a given page is suitable for writing as part of an unwritten
614 * or delayed allocate extent.
1da177e4 615 */
10ce4444
CH
616STATIC int
617xfs_is_delayed_page(
618 struct page *page,
f6d6d4fc 619 unsigned int type)
1da177e4 620{
1da177e4 621 if (PageWriteback(page))
10ce4444 622 return 0;
1da177e4
LT
623
624 if (page->mapping && page_has_buffers(page)) {
625 struct buffer_head *bh, *head;
626 int acceptable = 0;
627
628 bh = head = page_buffers(page);
629 do {
f6d6d4fc 630 if (buffer_unwritten(bh))
34a52c6c 631 acceptable = (type == IO_UNWRITTEN);
f6d6d4fc 632 else if (buffer_delay(bh))
a206c817 633 acceptable = (type == IO_DELALLOC);
2ddee844 634 else if (buffer_dirty(bh) && buffer_mapped(bh))
a206c817 635 acceptable = (type == IO_OVERWRITE);
f6d6d4fc 636 else
1da177e4 637 break;
1da177e4
LT
638 } while ((bh = bh->b_this_page) != head);
639
640 if (acceptable)
10ce4444 641 return 1;
1da177e4
LT
642 }
643
10ce4444 644 return 0;
1da177e4
LT
645}
646
1da177e4
LT
647/*
648 * Allocate & map buffers for page given the extent map. Write it out.
649 * except for the original page of a writepage, this is called on
650 * delalloc/unwritten pages only, for the original page it is possible
651 * that the page has no mapping at all.
652 */
f6d6d4fc 653STATIC int
1da177e4
LT
654xfs_convert_page(
655 struct inode *inode,
656 struct page *page,
10ce4444 657 loff_t tindex,
207d0416 658 struct xfs_bmbt_irec *imap,
f6d6d4fc 659 xfs_ioend_t **ioendp,
2fa24f92 660 struct writeback_control *wbc)
1da177e4 661{
f6d6d4fc 662 struct buffer_head *bh, *head;
9260dc6b
CH
663 xfs_off_t end_offset;
664 unsigned long p_offset;
f6d6d4fc 665 unsigned int type;
24e17b5f 666 int len, page_dirty;
f6d6d4fc 667 int count = 0, done = 0, uptodate = 1;
9260dc6b 668 xfs_off_t offset = page_offset(page);
1da177e4 669
10ce4444
CH
670 if (page->index != tindex)
671 goto fail;
529ae9aa 672 if (!trylock_page(page))
10ce4444
CH
673 goto fail;
674 if (PageWriteback(page))
675 goto fail_unlock_page;
676 if (page->mapping != inode->i_mapping)
677 goto fail_unlock_page;
678 if (!xfs_is_delayed_page(page, (*ioendp)->io_type))
679 goto fail_unlock_page;
680
24e17b5f
NS
681 /*
682 * page_dirty is initially a count of buffers on the page before
c41564b5 683 * EOF and is decremented as we move each into a cleanable state.
9260dc6b
CH
684 *
685 * Derivation:
686 *
687 * End offset is the highest offset that this page should represent.
688 * If we are on the last page, (end_offset & (PAGE_CACHE_SIZE - 1))
689 * will evaluate non-zero and be less than PAGE_CACHE_SIZE and
690 * hence give us the correct page_dirty count. On any other page,
691 * it will be zero and in that case we need page_dirty to be the
692 * count of buffers on the page.
24e17b5f 693 */
9260dc6b
CH
694 end_offset = min_t(unsigned long long,
695 (xfs_off_t)(page->index + 1) << PAGE_CACHE_SHIFT,
696 i_size_read(inode));
697
24e17b5f 698 len = 1 << inode->i_blkbits;
9260dc6b
CH
699 p_offset = min_t(unsigned long, end_offset & (PAGE_CACHE_SIZE - 1),
700 PAGE_CACHE_SIZE);
701 p_offset = p_offset ? roundup(p_offset, len) : PAGE_CACHE_SIZE;
702 page_dirty = p_offset / len;
24e17b5f 703
1da177e4
LT
704 bh = head = page_buffers(page);
705 do {
9260dc6b 706 if (offset >= end_offset)
1da177e4 707 break;
f6d6d4fc
CH
708 if (!buffer_uptodate(bh))
709 uptodate = 0;
710 if (!(PageUptodate(page) || buffer_uptodate(bh))) {
711 done = 1;
1da177e4 712 continue;
f6d6d4fc
CH
713 }
714
2fa24f92
CH
715 if (buffer_unwritten(bh) || buffer_delay(bh) ||
716 buffer_mapped(bh)) {
9260dc6b 717 if (buffer_unwritten(bh))
34a52c6c 718 type = IO_UNWRITTEN;
2fa24f92 719 else if (buffer_delay(bh))
a206c817 720 type = IO_DELALLOC;
2fa24f92
CH
721 else
722 type = IO_OVERWRITE;
9260dc6b 723
558e6891 724 if (!xfs_imap_valid(inode, imap, offset)) {
f6d6d4fc 725 done = 1;
9260dc6b
CH
726 continue;
727 }
728
ecff71e6
CH
729 lock_buffer(bh);
730 if (type != IO_OVERWRITE)
2fa24f92 731 xfs_map_at_offset(inode, bh, imap, offset);
89f3b363
CH
732 xfs_add_to_ioend(inode, bh, offset, type,
733 ioendp, done);
734
9260dc6b
CH
735 page_dirty--;
736 count++;
737 } else {
2fa24f92 738 done = 1;
1da177e4 739 }
7336cea8 740 } while (offset += len, (bh = bh->b_this_page) != head);
1da177e4 741
f6d6d4fc
CH
742 if (uptodate && bh == head)
743 SetPageUptodate(page);
744
89f3b363 745 if (count) {
efceab1d
DC
746 if (--wbc->nr_to_write <= 0 &&
747 wbc->sync_mode == WB_SYNC_NONE)
89f3b363 748 done = 1;
1da177e4 749 }
89f3b363 750 xfs_start_page_writeback(page, !page_dirty, count);
f6d6d4fc
CH
751
752 return done;
10ce4444
CH
753 fail_unlock_page:
754 unlock_page(page);
755 fail:
756 return 1;
1da177e4
LT
757}
758
759/*
760 * Convert & write out a cluster of pages in the same extent as defined
761 * by mp and following the start page.
762 */
763STATIC void
764xfs_cluster_write(
765 struct inode *inode,
766 pgoff_t tindex,
207d0416 767 struct xfs_bmbt_irec *imap,
f6d6d4fc 768 xfs_ioend_t **ioendp,
1da177e4 769 struct writeback_control *wbc,
1da177e4
LT
770 pgoff_t tlast)
771{
10ce4444
CH
772 struct pagevec pvec;
773 int done = 0, i;
1da177e4 774
10ce4444
CH
775 pagevec_init(&pvec, 0);
776 while (!done && tindex <= tlast) {
777 unsigned len = min_t(pgoff_t, PAGEVEC_SIZE, tlast - tindex + 1);
778
779 if (!pagevec_lookup(&pvec, inode->i_mapping, tindex, len))
1da177e4 780 break;
10ce4444
CH
781
782 for (i = 0; i < pagevec_count(&pvec); i++) {
783 done = xfs_convert_page(inode, pvec.pages[i], tindex++,
2fa24f92 784 imap, ioendp, wbc);
10ce4444
CH
785 if (done)
786 break;
787 }
788
789 pagevec_release(&pvec);
790 cond_resched();
1da177e4
LT
791 }
792}
793
3ed3a434
DC
794STATIC void
795xfs_vm_invalidatepage(
796 struct page *page,
797 unsigned long offset)
798{
799 trace_xfs_invalidatepage(page->mapping->host, page, offset);
800 block_invalidatepage(page, offset);
801}
802
803/*
804 * If the page has delalloc buffers on it, we need to punch them out before we
805 * invalidate the page. If we don't, we leave a stale delalloc mapping on the
806 * inode that can trip a BUG() in xfs_get_blocks() later on if a direct IO read
807 * is done on that same region - the delalloc extent is returned when none is
808 * supposed to be there.
809 *
810 * We prevent this by truncating away the delalloc regions on the page before
811 * invalidating it. Because they are delalloc, we can do this without needing a
812 * transaction. Indeed - if we get ENOSPC errors, we have to be able to do this
813 * truncation without a transaction as there is no space left for block
814 * reservation (typically why we see a ENOSPC in writeback).
815 *
816 * This is not a performance critical path, so for now just do the punching a
817 * buffer head at a time.
818 */
819STATIC void
820xfs_aops_discard_page(
821 struct page *page)
822{
823 struct inode *inode = page->mapping->host;
824 struct xfs_inode *ip = XFS_I(inode);
825 struct buffer_head *bh, *head;
826 loff_t offset = page_offset(page);
3ed3a434 827
a206c817 828 if (!xfs_is_delayed_page(page, IO_DELALLOC))
3ed3a434
DC
829 goto out_invalidate;
830
e8c3753c
DC
831 if (XFS_FORCED_SHUTDOWN(ip->i_mount))
832 goto out_invalidate;
833
4f10700a 834 xfs_alert(ip->i_mount,
3ed3a434
DC
835 "page discard on page %p, inode 0x%llx, offset %llu.",
836 page, ip->i_ino, offset);
837
838 xfs_ilock(ip, XFS_ILOCK_EXCL);
839 bh = head = page_buffers(page);
840 do {
3ed3a434 841 int error;
c726de44 842 xfs_fileoff_t start_fsb;
3ed3a434
DC
843
844 if (!buffer_delay(bh))
845 goto next_buffer;
846
c726de44
DC
847 start_fsb = XFS_B_TO_FSBT(ip->i_mount, offset);
848 error = xfs_bmap_punch_delalloc_range(ip, start_fsb, 1);
3ed3a434
DC
849 if (error) {
850 /* something screwed, just bail */
e8c3753c 851 if (!XFS_FORCED_SHUTDOWN(ip->i_mount)) {
4f10700a 852 xfs_alert(ip->i_mount,
3ed3a434 853 "page discard unable to remove delalloc mapping.");
e8c3753c 854 }
3ed3a434
DC
855 break;
856 }
857next_buffer:
c726de44 858 offset += 1 << inode->i_blkbits;
3ed3a434
DC
859
860 } while ((bh = bh->b_this_page) != head);
861
862 xfs_iunlock(ip, XFS_ILOCK_EXCL);
863out_invalidate:
864 xfs_vm_invalidatepage(page, 0);
865 return;
866}
867
1da177e4 868/*
89f3b363
CH
869 * Write out a dirty page.
870 *
871 * For delalloc space on the page we need to allocate space and flush it.
872 * For unwritten space on the page we need to start the conversion to
873 * regular allocated space.
89f3b363 874 * For any other dirty buffer heads on the page we should flush them.
1da177e4 875 */
1da177e4 876STATIC int
89f3b363
CH
877xfs_vm_writepage(
878 struct page *page,
879 struct writeback_control *wbc)
1da177e4 880{
89f3b363 881 struct inode *inode = page->mapping->host;
f6d6d4fc 882 struct buffer_head *bh, *head;
207d0416 883 struct xfs_bmbt_irec imap;
f6d6d4fc 884 xfs_ioend_t *ioend = NULL, *iohead = NULL;
1da177e4 885 loff_t offset;
f6d6d4fc 886 unsigned int type;
1da177e4 887 __uint64_t end_offset;
bd1556a1 888 pgoff_t end_index, last_index;
ed1e7b7e 889 ssize_t len;
a206c817 890 int err, imap_valid = 0, uptodate = 1;
89f3b363 891 int count = 0;
a206c817 892 int nonblocking = 0;
89f3b363
CH
893
894 trace_xfs_writepage(inode, page, 0);
895
20cb52eb
CH
896 ASSERT(page_has_buffers(page));
897
89f3b363
CH
898 /*
899 * Refuse to write the page out if we are called from reclaim context.
900 *
d4f7a5cb
CH
901 * This avoids stack overflows when called from deeply used stacks in
902 * random callers for direct reclaim or memcg reclaim. We explicitly
903 * allow reclaim from kswapd as the stack usage there is relatively low.
89f3b363 904 *
94054fa3
MG
905 * This should never happen except in the case of a VM regression so
906 * warn about it.
89f3b363 907 */
94054fa3
MG
908 if (WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD)) ==
909 PF_MEMALLOC))
b5420f23 910 goto redirty;
1da177e4 911
89f3b363 912 /*
680a647b
CH
913 * Given that we do not allow direct reclaim to call us, we should
914 * never be called while in a filesystem transaction.
89f3b363 915 */
680a647b 916 if (WARN_ON(current->flags & PF_FSTRANS))
b5420f23 917 goto redirty;
89f3b363 918
1da177e4
LT
919 /* Is this page beyond the end of the file? */
920 offset = i_size_read(inode);
921 end_index = offset >> PAGE_CACHE_SHIFT;
922 last_index = (offset - 1) >> PAGE_CACHE_SHIFT;
923 if (page->index >= end_index) {
924 if ((page->index >= end_index + 1) ||
925 !(i_size_read(inode) & (PAGE_CACHE_SIZE - 1))) {
89f3b363 926 unlock_page(page);
19d5bcf3 927 return 0;
1da177e4
LT
928 }
929 }
930
f6d6d4fc 931 end_offset = min_t(unsigned long long,
20cb52eb
CH
932 (xfs_off_t)(page->index + 1) << PAGE_CACHE_SHIFT,
933 offset);
24e17b5f 934 len = 1 << inode->i_blkbits;
24e17b5f 935
24e17b5f 936 bh = head = page_buffers(page);
f6d6d4fc 937 offset = page_offset(page);
a206c817
CH
938 type = IO_OVERWRITE;
939
dbcdde3e 940 if (wbc->sync_mode == WB_SYNC_NONE)
a206c817 941 nonblocking = 1;
f6d6d4fc 942
1da177e4 943 do {
6ac7248e
CH
944 int new_ioend = 0;
945
1da177e4
LT
946 if (offset >= end_offset)
947 break;
948 if (!buffer_uptodate(bh))
949 uptodate = 0;
1da177e4 950
3d9b02e3 951 /*
ece413f5
CH
952 * set_page_dirty dirties all buffers in a page, independent
953 * of their state. The dirty state however is entirely
954 * meaningless for holes (!mapped && uptodate), so skip
955 * buffers covering holes here.
3d9b02e3
ES
956 */
957 if (!buffer_mapped(bh) && buffer_uptodate(bh)) {
3d9b02e3
ES
958 imap_valid = 0;
959 continue;
960 }
961
aeea1b1f
CH
962 if (buffer_unwritten(bh)) {
963 if (type != IO_UNWRITTEN) {
964 type = IO_UNWRITTEN;
965 imap_valid = 0;
1da177e4 966 }
aeea1b1f
CH
967 } else if (buffer_delay(bh)) {
968 if (type != IO_DELALLOC) {
969 type = IO_DELALLOC;
970 imap_valid = 0;
1da177e4 971 }
89f3b363 972 } else if (buffer_uptodate(bh)) {
a206c817
CH
973 if (type != IO_OVERWRITE) {
974 type = IO_OVERWRITE;
85da94c6
CH
975 imap_valid = 0;
976 }
aeea1b1f
CH
977 } else {
978 if (PageUptodate(page)) {
979 ASSERT(buffer_mapped(bh));
980 imap_valid = 0;
6c4fe19f 981 }
aeea1b1f
CH
982 continue;
983 }
d5cb48aa 984
aeea1b1f
CH
985 if (imap_valid)
986 imap_valid = xfs_imap_valid(inode, &imap, offset);
987 if (!imap_valid) {
988 /*
989 * If we didn't have a valid mapping then we need to
990 * put the new mapping into a separate ioend structure.
991 * This ensures non-contiguous extents always have
992 * separate ioends, which is particularly important
993 * for unwritten extent conversion at I/O completion
994 * time.
995 */
996 new_ioend = 1;
997 err = xfs_map_blocks(inode, offset, &imap, type,
998 nonblocking);
999 if (err)
1000 goto error;
1001 imap_valid = xfs_imap_valid(inode, &imap, offset);
1002 }
1003 if (imap_valid) {
ecff71e6
CH
1004 lock_buffer(bh);
1005 if (type != IO_OVERWRITE)
aeea1b1f
CH
1006 xfs_map_at_offset(inode, bh, &imap, offset);
1007 xfs_add_to_ioend(inode, bh, offset, type, &ioend,
1008 new_ioend);
1009 count++;
1da177e4 1010 }
f6d6d4fc
CH
1011
1012 if (!iohead)
1013 iohead = ioend;
1014
1015 } while (offset += len, ((bh = bh->b_this_page) != head));
1da177e4
LT
1016
1017 if (uptodate && bh == head)
1018 SetPageUptodate(page);
1019
89f3b363 1020 xfs_start_page_writeback(page, 1, count);
1da177e4 1021
558e6891 1022 if (ioend && imap_valid) {
bd1556a1
CH
1023 xfs_off_t end_index;
1024
1025 end_index = imap.br_startoff + imap.br_blockcount;
1026
1027 /* to bytes */
1028 end_index <<= inode->i_blkbits;
1029
1030 /* to pages */
1031 end_index = (end_index - 1) >> PAGE_CACHE_SHIFT;
1032
1033 /* check against file size */
1034 if (end_index > last_index)
1035 end_index = last_index;
8699bb0a 1036
207d0416 1037 xfs_cluster_write(inode, page->index + 1, &imap, &ioend,
2fa24f92 1038 wbc, end_index);
1da177e4
LT
1039 }
1040
f6d6d4fc 1041 if (iohead)
06342cf8 1042 xfs_submit_ioend(wbc, iohead);
f6d6d4fc 1043
89f3b363 1044 return 0;
1da177e4
LT
1045
1046error:
f6d6d4fc
CH
1047 if (iohead)
1048 xfs_cancel_ioend(iohead);
1da177e4 1049
b5420f23
CH
1050 if (err == -EAGAIN)
1051 goto redirty;
1052
20cb52eb 1053 xfs_aops_discard_page(page);
89f3b363
CH
1054 ClearPageUptodate(page);
1055 unlock_page(page);
1da177e4 1056 return err;
f51623b2 1057
b5420f23 1058redirty:
f51623b2
NS
1059 redirty_page_for_writepage(wbc, page);
1060 unlock_page(page);
1061 return 0;
f51623b2
NS
1062}
1063
7d4fb40a
NS
1064STATIC int
1065xfs_vm_writepages(
1066 struct address_space *mapping,
1067 struct writeback_control *wbc)
1068{
b3aea4ed 1069 xfs_iflags_clear(XFS_I(mapping->host), XFS_ITRUNCATED);
7d4fb40a
NS
1070 return generic_writepages(mapping, wbc);
1071}
1072
f51623b2
NS
1073/*
1074 * Called to move a page into cleanable state - and from there
89f3b363 1075 * to be released. The page should already be clean. We always
f51623b2
NS
1076 * have buffer heads in this call.
1077 *
89f3b363 1078 * Returns 1 if the page is ok to release, 0 otherwise.
f51623b2
NS
1079 */
1080STATIC int
238f4c54 1081xfs_vm_releasepage(
f51623b2
NS
1082 struct page *page,
1083 gfp_t gfp_mask)
1084{
20cb52eb 1085 int delalloc, unwritten;
f51623b2 1086
89f3b363 1087 trace_xfs_releasepage(page->mapping->host, page, 0);
238f4c54 1088
20cb52eb 1089 xfs_count_page_state(page, &delalloc, &unwritten);
f51623b2 1090
89f3b363 1091 if (WARN_ON(delalloc))
f51623b2 1092 return 0;
89f3b363 1093 if (WARN_ON(unwritten))
f51623b2
NS
1094 return 0;
1095
f51623b2
NS
1096 return try_to_free_buffers(page);
1097}
1098
1da177e4 1099STATIC int
c2536668 1100__xfs_get_blocks(
1da177e4
LT
1101 struct inode *inode,
1102 sector_t iblock,
1da177e4
LT
1103 struct buffer_head *bh_result,
1104 int create,
f2bde9b8 1105 int direct)
1da177e4 1106{
a206c817
CH
1107 struct xfs_inode *ip = XFS_I(inode);
1108 struct xfs_mount *mp = ip->i_mount;
1109 xfs_fileoff_t offset_fsb, end_fsb;
1110 int error = 0;
1111 int lockmode = 0;
207d0416 1112 struct xfs_bmbt_irec imap;
a206c817 1113 int nimaps = 1;
fdc7ed75
NS
1114 xfs_off_t offset;
1115 ssize_t size;
207d0416 1116 int new = 0;
a206c817
CH
1117
1118 if (XFS_FORCED_SHUTDOWN(mp))
1119 return -XFS_ERROR(EIO);
1da177e4 1120
fdc7ed75 1121 offset = (xfs_off_t)iblock << inode->i_blkbits;
c2536668
NS
1122 ASSERT(bh_result->b_size >= (1 << inode->i_blkbits));
1123 size = bh_result->b_size;
364f358a
LM
1124
1125 if (!create && direct && offset >= i_size_read(inode))
1126 return 0;
1127
a206c817
CH
1128 if (create) {
1129 lockmode = XFS_ILOCK_EXCL;
1130 xfs_ilock(ip, lockmode);
1131 } else {
1132 lockmode = xfs_ilock_map_shared(ip);
1133 }
f2bde9b8 1134
a206c817
CH
1135 ASSERT(offset <= mp->m_maxioffset);
1136 if (offset + size > mp->m_maxioffset)
1137 size = mp->m_maxioffset - offset;
1138 end_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)offset + size);
1139 offset_fsb = XFS_B_TO_FSBT(mp, offset);
1140
5c8ed202
DC
1141 error = xfs_bmapi_read(ip, offset_fsb, end_fsb - offset_fsb,
1142 &imap, &nimaps, XFS_BMAPI_ENTIRE);
1da177e4 1143 if (error)
a206c817
CH
1144 goto out_unlock;
1145
1146 if (create &&
1147 (!nimaps ||
1148 (imap.br_startblock == HOLESTARTBLOCK ||
1149 imap.br_startblock == DELAYSTARTBLOCK))) {
1150 if (direct) {
1151 error = xfs_iomap_write_direct(ip, offset, size,
1152 &imap, nimaps);
1153 } else {
1154 error = xfs_iomap_write_delay(ip, offset, size, &imap);
1155 }
1156 if (error)
1157 goto out_unlock;
1158
1159 trace_xfs_get_blocks_alloc(ip, offset, size, 0, &imap);
1160 } else if (nimaps) {
1161 trace_xfs_get_blocks_found(ip, offset, size, 0, &imap);
1162 } else {
1163 trace_xfs_get_blocks_notfound(ip, offset, size);
1164 goto out_unlock;
1165 }
1166 xfs_iunlock(ip, lockmode);
1da177e4 1167
207d0416
CH
1168 if (imap.br_startblock != HOLESTARTBLOCK &&
1169 imap.br_startblock != DELAYSTARTBLOCK) {
87cbc49c
NS
1170 /*
1171 * For unwritten extents do not report a disk address on
1da177e4
LT
1172 * the read case (treat as if we're reading into a hole).
1173 */
207d0416
CH
1174 if (create || !ISUNWRITTEN(&imap))
1175 xfs_map_buffer(inode, bh_result, &imap, offset);
1176 if (create && ISUNWRITTEN(&imap)) {
1da177e4
LT
1177 if (direct)
1178 bh_result->b_private = inode;
1179 set_buffer_unwritten(bh_result);
1da177e4
LT
1180 }
1181 }
1182
c2536668
NS
1183 /*
1184 * If this is a realtime file, data may be on a different device.
1185 * to that pointed to from the buffer_head b_bdev currently.
1186 */
046f1685 1187 bh_result->b_bdev = xfs_find_bdev_for_inode(inode);
1da177e4 1188
c2536668 1189 /*
549054af
DC
1190 * If we previously allocated a block out beyond eof and we are now
1191 * coming back to use it then we will need to flag it as new even if it
1192 * has a disk address.
1193 *
1194 * With sub-block writes into unwritten extents we also need to mark
1195 * the buffer as new so that the unwritten parts of the buffer gets
1196 * correctly zeroed.
1da177e4
LT
1197 */
1198 if (create &&
1199 ((!buffer_mapped(bh_result) && !buffer_uptodate(bh_result)) ||
549054af 1200 (offset >= i_size_read(inode)) ||
207d0416 1201 (new || ISUNWRITTEN(&imap))))
1da177e4 1202 set_buffer_new(bh_result);
1da177e4 1203
207d0416 1204 if (imap.br_startblock == DELAYSTARTBLOCK) {
1da177e4
LT
1205 BUG_ON(direct);
1206 if (create) {
1207 set_buffer_uptodate(bh_result);
1208 set_buffer_mapped(bh_result);
1209 set_buffer_delay(bh_result);
1210 }
1211 }
1212
2b8f12b7
CH
1213 /*
1214 * If this is O_DIRECT or the mpage code calling tell them how large
1215 * the mapping is, so that we can avoid repeated get_blocks calls.
1216 */
c2536668 1217 if (direct || size > (1 << inode->i_blkbits)) {
2b8f12b7
CH
1218 xfs_off_t mapping_size;
1219
1220 mapping_size = imap.br_startoff + imap.br_blockcount - iblock;
1221 mapping_size <<= inode->i_blkbits;
1222
1223 ASSERT(mapping_size > 0);
1224 if (mapping_size > size)
1225 mapping_size = size;
1226 if (mapping_size > LONG_MAX)
1227 mapping_size = LONG_MAX;
1228
1229 bh_result->b_size = mapping_size;
1da177e4
LT
1230 }
1231
1232 return 0;
a206c817
CH
1233
1234out_unlock:
1235 xfs_iunlock(ip, lockmode);
1236 return -error;
1da177e4
LT
1237}
1238
1239int
c2536668 1240xfs_get_blocks(
1da177e4
LT
1241 struct inode *inode,
1242 sector_t iblock,
1243 struct buffer_head *bh_result,
1244 int create)
1245{
f2bde9b8 1246 return __xfs_get_blocks(inode, iblock, bh_result, create, 0);
1da177e4
LT
1247}
1248
1249STATIC int
e4c573bb 1250xfs_get_blocks_direct(
1da177e4
LT
1251 struct inode *inode,
1252 sector_t iblock,
1da177e4
LT
1253 struct buffer_head *bh_result,
1254 int create)
1255{
f2bde9b8 1256 return __xfs_get_blocks(inode, iblock, bh_result, create, 1);
1da177e4
LT
1257}
1258
209fb87a
CH
1259/*
1260 * Complete a direct I/O write request.
1261 *
1262 * If the private argument is non-NULL __xfs_get_blocks signals us that we
1263 * need to issue a transaction to convert the range from unwritten to written
1264 * extents. In case this is regular synchronous I/O we just call xfs_end_io
25985edc 1265 * to do this and we are done. But in case this was a successful AIO
209fb87a
CH
1266 * request this handler is called from interrupt context, from which we
1267 * can't start transactions. In that case offload the I/O completion to
1268 * the workqueues we also use for buffered I/O completion.
1269 */
f0973863 1270STATIC void
209fb87a
CH
1271xfs_end_io_direct_write(
1272 struct kiocb *iocb,
1273 loff_t offset,
1274 ssize_t size,
1275 void *private,
1276 int ret,
1277 bool is_async)
f0973863 1278{
209fb87a 1279 struct xfs_ioend *ioend = iocb->private;
f0973863
CH
1280
1281 /*
209fb87a
CH
1282 * blockdev_direct_IO can return an error even after the I/O
1283 * completion handler was called. Thus we need to protect
1284 * against double-freeing.
f0973863 1285 */
209fb87a
CH
1286 iocb->private = NULL;
1287
ba87ea69
LM
1288 ioend->io_offset = offset;
1289 ioend->io_size = size;
c859cdd1
CH
1290 ioend->io_iocb = iocb;
1291 ioend->io_result = ret;
209fb87a
CH
1292 if (private && size > 0)
1293 ioend->io_type = IO_UNWRITTEN;
1294
1295 if (is_async) {
c859cdd1 1296 ioend->io_isasync = 1;
209fb87a 1297 xfs_finish_ioend(ioend);
f0973863 1298 } else {
209fb87a 1299 xfs_finish_ioend_sync(ioend);
f0973863 1300 }
f0973863
CH
1301}
1302
1da177e4 1303STATIC ssize_t
e4c573bb 1304xfs_vm_direct_IO(
1da177e4
LT
1305 int rw,
1306 struct kiocb *iocb,
1307 const struct iovec *iov,
1308 loff_t offset,
1309 unsigned long nr_segs)
1310{
209fb87a
CH
1311 struct inode *inode = iocb->ki_filp->f_mapping->host;
1312 struct block_device *bdev = xfs_find_bdev_for_inode(inode);
1313 ssize_t ret;
1314
1315 if (rw & WRITE) {
a206c817 1316 iocb->private = xfs_alloc_ioend(inode, IO_DIRECT);
209fb87a 1317
eafdc7d1
CH
1318 ret = __blockdev_direct_IO(rw, iocb, inode, bdev, iov,
1319 offset, nr_segs,
1320 xfs_get_blocks_direct,
1321 xfs_end_io_direct_write, NULL, 0);
209fb87a
CH
1322 if (ret != -EIOCBQUEUED && iocb->private)
1323 xfs_destroy_ioend(iocb->private);
1324 } else {
eafdc7d1
CH
1325 ret = __blockdev_direct_IO(rw, iocb, inode, bdev, iov,
1326 offset, nr_segs,
1327 xfs_get_blocks_direct,
1328 NULL, NULL, 0);
209fb87a 1329 }
f0973863 1330
f0973863 1331 return ret;
1da177e4
LT
1332}
1333
fa9b227e
CH
1334STATIC void
1335xfs_vm_write_failed(
1336 struct address_space *mapping,
1337 loff_t to)
1338{
1339 struct inode *inode = mapping->host;
1340
1341 if (to > inode->i_size) {
c726de44
DC
1342 /*
1343 * punch out the delalloc blocks we have already allocated. We
1344 * don't call xfs_setattr() to do this as we may be in the
1345 * middle of a multi-iovec write and so the vfs inode->i_size
1346 * will not match the xfs ip->i_size and so it will zero too
1347 * much. Hence we jus truncate the page cache to zero what is
1348 * necessary and punch the delalloc blocks directly.
1349 */
1350 struct xfs_inode *ip = XFS_I(inode);
1351 xfs_fileoff_t start_fsb;
1352 xfs_fileoff_t end_fsb;
1353 int error;
1354
1355 truncate_pagecache(inode, to, inode->i_size);
1356
1357 /*
1358 * Check if there are any blocks that are outside of i_size
1359 * that need to be trimmed back.
1360 */
1361 start_fsb = XFS_B_TO_FSB(ip->i_mount, inode->i_size) + 1;
1362 end_fsb = XFS_B_TO_FSB(ip->i_mount, to);
1363 if (end_fsb <= start_fsb)
1364 return;
1365
1366 xfs_ilock(ip, XFS_ILOCK_EXCL);
1367 error = xfs_bmap_punch_delalloc_range(ip, start_fsb,
1368 end_fsb - start_fsb);
1369 if (error) {
1370 /* something screwed, just bail */
1371 if (!XFS_FORCED_SHUTDOWN(ip->i_mount)) {
4f10700a 1372 xfs_alert(ip->i_mount,
c726de44
DC
1373 "xfs_vm_write_failed: unable to clean up ino %lld",
1374 ip->i_ino);
1375 }
1376 }
1377 xfs_iunlock(ip, XFS_ILOCK_EXCL);
fa9b227e
CH
1378 }
1379}
1380
f51623b2 1381STATIC int
d79689c7 1382xfs_vm_write_begin(
f51623b2 1383 struct file *file,
d79689c7
NP
1384 struct address_space *mapping,
1385 loff_t pos,
1386 unsigned len,
1387 unsigned flags,
1388 struct page **pagep,
1389 void **fsdata)
f51623b2 1390{
155130a4
CH
1391 int ret;
1392
1393 ret = block_write_begin(mapping, pos, len, flags | AOP_FLAG_NOFS,
1394 pagep, xfs_get_blocks);
fa9b227e
CH
1395 if (unlikely(ret))
1396 xfs_vm_write_failed(mapping, pos + len);
1397 return ret;
1398}
1399
1400STATIC int
1401xfs_vm_write_end(
1402 struct file *file,
1403 struct address_space *mapping,
1404 loff_t pos,
1405 unsigned len,
1406 unsigned copied,
1407 struct page *page,
1408 void *fsdata)
1409{
1410 int ret;
155130a4 1411
fa9b227e
CH
1412 ret = generic_write_end(file, mapping, pos, len, copied, page, fsdata);
1413 if (unlikely(ret < len))
1414 xfs_vm_write_failed(mapping, pos + len);
155130a4 1415 return ret;
f51623b2 1416}
1da177e4
LT
1417
1418STATIC sector_t
e4c573bb 1419xfs_vm_bmap(
1da177e4
LT
1420 struct address_space *mapping,
1421 sector_t block)
1422{
1423 struct inode *inode = (struct inode *)mapping->host;
739bfb2a 1424 struct xfs_inode *ip = XFS_I(inode);
1da177e4 1425
cca28fb8 1426 trace_xfs_vm_bmap(XFS_I(inode));
126468b1 1427 xfs_ilock(ip, XFS_IOLOCK_SHARED);
739bfb2a 1428 xfs_flush_pages(ip, (xfs_off_t)0, -1, 0, FI_REMAPF);
126468b1 1429 xfs_iunlock(ip, XFS_IOLOCK_SHARED);
c2536668 1430 return generic_block_bmap(mapping, block, xfs_get_blocks);
1da177e4
LT
1431}
1432
1433STATIC int
e4c573bb 1434xfs_vm_readpage(
1da177e4
LT
1435 struct file *unused,
1436 struct page *page)
1437{
c2536668 1438 return mpage_readpage(page, xfs_get_blocks);
1da177e4
LT
1439}
1440
1441STATIC int
e4c573bb 1442xfs_vm_readpages(
1da177e4
LT
1443 struct file *unused,
1444 struct address_space *mapping,
1445 struct list_head *pages,
1446 unsigned nr_pages)
1447{
c2536668 1448 return mpage_readpages(mapping, pages, nr_pages, xfs_get_blocks);
1da177e4
LT
1449}
1450
f5e54d6e 1451const struct address_space_operations xfs_address_space_operations = {
e4c573bb
NS
1452 .readpage = xfs_vm_readpage,
1453 .readpages = xfs_vm_readpages,
1454 .writepage = xfs_vm_writepage,
7d4fb40a 1455 .writepages = xfs_vm_writepages,
238f4c54
NS
1456 .releasepage = xfs_vm_releasepage,
1457 .invalidatepage = xfs_vm_invalidatepage,
d79689c7 1458 .write_begin = xfs_vm_write_begin,
fa9b227e 1459 .write_end = xfs_vm_write_end,
e4c573bb
NS
1460 .bmap = xfs_vm_bmap,
1461 .direct_IO = xfs_vm_direct_IO,
e965f963 1462 .migratepage = buffer_migrate_page,
bddaafa1 1463 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 1464 .error_remove_page = generic_error_remove_page,
1da177e4 1465};