]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - fs/xfs/xfs_aops.c
Merge branch 'locking-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[mirror_ubuntu-artful-kernel.git] / fs / xfs / xfs_aops.c
CommitLineData
1da177e4 1/*
7b718769
NS
2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
1da177e4 4 *
7b718769
NS
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
1da177e4
LT
7 * published by the Free Software Foundation.
8 *
7b718769
NS
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
1da177e4 13 *
7b718769
NS
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
1da177e4 17 */
1da177e4 18#include "xfs.h"
70a9883c 19#include "xfs_shared.h"
239880ef
DC
20#include "xfs_format.h"
21#include "xfs_log_format.h"
22#include "xfs_trans_resv.h"
1da177e4 23#include "xfs_mount.h"
1da177e4 24#include "xfs_inode.h"
239880ef 25#include "xfs_trans.h"
281627df 26#include "xfs_inode_item.h"
a844f451 27#include "xfs_alloc.h"
1da177e4 28#include "xfs_error.h"
1da177e4 29#include "xfs_iomap.h"
0b1b213f 30#include "xfs_trace.h"
3ed3a434 31#include "xfs_bmap.h"
68988114 32#include "xfs_bmap_util.h"
a4fbe6ab 33#include "xfs_bmap_btree.h"
ef473667 34#include "xfs_reflink.h"
5a0e3ad6 35#include <linux/gfp.h>
1da177e4 36#include <linux/mpage.h>
10ce4444 37#include <linux/pagevec.h>
1da177e4
LT
38#include <linux/writeback.h>
39
fbcc0256
DC
40/*
41 * structure owned by writepages passed to individual writepage calls
42 */
43struct xfs_writepage_ctx {
44 struct xfs_bmbt_irec imap;
45 bool imap_valid;
46 unsigned int io_type;
fbcc0256
DC
47 struct xfs_ioend *ioend;
48 sector_t last_block;
49};
50
0b1b213f 51void
f51623b2
NS
52xfs_count_page_state(
53 struct page *page,
54 int *delalloc,
f51623b2
NS
55 int *unwritten)
56{
57 struct buffer_head *bh, *head;
58
20cb52eb 59 *delalloc = *unwritten = 0;
f51623b2
NS
60
61 bh = head = page_buffers(page);
62 do {
20cb52eb 63 if (buffer_unwritten(bh))
f51623b2
NS
64 (*unwritten) = 1;
65 else if (buffer_delay(bh))
66 (*delalloc) = 1;
67 } while ((bh = bh->b_this_page) != head);
68}
69
20a90f58 70struct block_device *
6214ed44 71xfs_find_bdev_for_inode(
046f1685 72 struct inode *inode)
6214ed44 73{
046f1685 74 struct xfs_inode *ip = XFS_I(inode);
6214ed44
CH
75 struct xfs_mount *mp = ip->i_mount;
76
71ddabb9 77 if (XFS_IS_REALTIME_INODE(ip))
6214ed44
CH
78 return mp->m_rtdev_targp->bt_bdev;
79 else
80 return mp->m_ddev_targp->bt_bdev;
81}
82
f6d6d4fc 83/*
37992c18
DC
84 * We're now finished for good with this page. Update the page state via the
85 * associated buffer_heads, paying attention to the start and end offsets that
86 * we need to process on the page.
28b783e4
DC
87 *
88 * Landmine Warning: bh->b_end_io() will call end_page_writeback() on the last
89 * buffer in the IO. Once it does this, it is unsafe to access the bufferhead or
90 * the page at all, as we may be racing with memory reclaim and it can free both
91 * the bufferhead chain and the page as it will see the page as clean and
92 * unused.
37992c18
DC
93 */
94static void
95xfs_finish_page_writeback(
96 struct inode *inode,
97 struct bio_vec *bvec,
98 int error)
99{
37992c18 100 unsigned int end = bvec->bv_offset + bvec->bv_len - 1;
28b783e4 101 struct buffer_head *head, *bh, *next;
37992c18 102 unsigned int off = 0;
28b783e4 103 unsigned int bsize;
37992c18
DC
104
105 ASSERT(bvec->bv_offset < PAGE_SIZE);
93407472 106 ASSERT((bvec->bv_offset & (i_blocksize(inode) - 1)) == 0);
37992c18 107 ASSERT(end < PAGE_SIZE);
93407472 108 ASSERT((bvec->bv_len & (i_blocksize(inode) - 1)) == 0);
37992c18
DC
109
110 bh = head = page_buffers(bvec->bv_page);
111
28b783e4 112 bsize = bh->b_size;
37992c18 113 do {
28b783e4 114 next = bh->b_this_page;
37992c18
DC
115 if (off < bvec->bv_offset)
116 goto next_bh;
117 if (off > end)
118 break;
119 bh->b_end_io(bh, !error);
120next_bh:
28b783e4
DC
121 off += bsize;
122 } while ((bh = next) != head);
37992c18
DC
123}
124
125/*
126 * We're now finished for good with this ioend structure. Update the page
127 * state, release holds on bios, and finally free up memory. Do not use the
128 * ioend after this.
f6d6d4fc 129 */
0829c360
CH
130STATIC void
131xfs_destroy_ioend(
0e51a8e1
CH
132 struct xfs_ioend *ioend,
133 int error)
0829c360 134{
37992c18 135 struct inode *inode = ioend->io_inode;
0e51a8e1 136 struct bio *last = ioend->io_bio;
37992c18 137 struct bio *bio, *next;
f6d6d4fc 138
0e51a8e1 139 for (bio = &ioend->io_inline_bio; bio; bio = next) {
37992c18
DC
140 struct bio_vec *bvec;
141 int i;
142
0e51a8e1
CH
143 /*
144 * For the last bio, bi_private points to the ioend, so we
145 * need to explicitly end the iteration here.
146 */
147 if (bio == last)
148 next = NULL;
149 else
150 next = bio->bi_private;
583fa586 151
37992c18
DC
152 /* walk each page on bio, ending page IO on them */
153 bio_for_each_segment_all(bvec, bio, i)
154 xfs_finish_page_writeback(inode, bvec, error);
155
156 bio_put(bio);
f6d6d4fc 157 }
0829c360
CH
158}
159
fc0063c4
CH
160/*
161 * Fast and loose check if this write could update the on-disk inode size.
162 */
163static inline bool xfs_ioend_is_append(struct xfs_ioend *ioend)
164{
165 return ioend->io_offset + ioend->io_size >
166 XFS_I(ioend->io_inode)->i_d.di_size;
167}
168
281627df
CH
169STATIC int
170xfs_setfilesize_trans_alloc(
171 struct xfs_ioend *ioend)
172{
173 struct xfs_mount *mp = XFS_I(ioend->io_inode)->i_mount;
174 struct xfs_trans *tp;
175 int error;
176
253f4911
CH
177 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_fsyncts, 0, 0, 0, &tp);
178 if (error)
281627df 179 return error;
281627df
CH
180
181 ioend->io_append_trans = tp;
182
d9457dc0 183 /*
437a255a 184 * We may pass freeze protection with a transaction. So tell lockdep
d9457dc0
JK
185 * we released it.
186 */
bee9182d 187 __sb_writers_release(ioend->io_inode->i_sb, SB_FREEZE_FS);
281627df
CH
188 /*
189 * We hand off the transaction to the completion thread now, so
190 * clear the flag here.
191 */
192 current_restore_flags_nested(&tp->t_pflags, PF_FSTRANS);
193 return 0;
194}
195
ba87ea69 196/*
2813d682 197 * Update on-disk file size now that data has been written to disk.
ba87ea69 198 */
281627df 199STATIC int
e372843a 200__xfs_setfilesize(
2ba66237
CH
201 struct xfs_inode *ip,
202 struct xfs_trans *tp,
203 xfs_off_t offset,
204 size_t size)
ba87ea69 205{
ba87ea69 206 xfs_fsize_t isize;
ba87ea69 207
aa6bf01d 208 xfs_ilock(ip, XFS_ILOCK_EXCL);
2ba66237 209 isize = xfs_new_eof(ip, offset + size);
281627df
CH
210 if (!isize) {
211 xfs_iunlock(ip, XFS_ILOCK_EXCL);
4906e215 212 xfs_trans_cancel(tp);
281627df 213 return 0;
ba87ea69
LM
214 }
215
2ba66237 216 trace_xfs_setfilesize(ip, offset, size);
281627df
CH
217
218 ip->i_d.di_size = isize;
219 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
220 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
221
70393313 222 return xfs_trans_commit(tp);
77d7a0c2
DC
223}
224
e372843a
CH
225int
226xfs_setfilesize(
227 struct xfs_inode *ip,
228 xfs_off_t offset,
229 size_t size)
230{
231 struct xfs_mount *mp = ip->i_mount;
232 struct xfs_trans *tp;
233 int error;
234
235 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_fsyncts, 0, 0, 0, &tp);
236 if (error)
237 return error;
238
239 return __xfs_setfilesize(ip, tp, offset, size);
240}
241
2ba66237
CH
242STATIC int
243xfs_setfilesize_ioend(
0e51a8e1
CH
244 struct xfs_ioend *ioend,
245 int error)
2ba66237
CH
246{
247 struct xfs_inode *ip = XFS_I(ioend->io_inode);
248 struct xfs_trans *tp = ioend->io_append_trans;
249
250 /*
251 * The transaction may have been allocated in the I/O submission thread,
252 * thus we need to mark ourselves as being in a transaction manually.
253 * Similarly for freeze protection.
254 */
255 current_set_flags_nested(&tp->t_pflags, PF_FSTRANS);
bee9182d 256 __sb_writers_acquired(VFS_I(ip)->i_sb, SB_FREEZE_FS);
2ba66237 257
5cb13dcd 258 /* we abort the update if there was an IO error */
0e51a8e1 259 if (error) {
5cb13dcd 260 xfs_trans_cancel(tp);
0e51a8e1 261 return error;
5cb13dcd
Z
262 }
263
e372843a 264 return __xfs_setfilesize(ip, tp, ioend->io_offset, ioend->io_size);
2ba66237
CH
265}
266
0829c360 267/*
5ec4fabb 268 * IO write completion.
f6d6d4fc
CH
269 */
270STATIC void
5ec4fabb 271xfs_end_io(
77d7a0c2 272 struct work_struct *work)
0829c360 273{
0e51a8e1
CH
274 struct xfs_ioend *ioend =
275 container_of(work, struct xfs_ioend, io_work);
276 struct xfs_inode *ip = XFS_I(ioend->io_inode);
277 int error = ioend->io_bio->bi_error;
ba87ea69 278
af055e37
BF
279 /*
280 * Set an error if the mount has shut down and proceed with end I/O
281 * processing so it can perform whatever cleanups are necessary.
282 */
283 if (XFS_FORCED_SHUTDOWN(ip->i_mount))
0e51a8e1 284 error = -EIO;
04f658ee 285
43caeb18
DW
286 /*
287 * For a CoW extent, we need to move the mapping from the CoW fork
288 * to the data fork. If instead an error happened, just dump the
289 * new blocks.
290 */
291 if (ioend->io_type == XFS_IO_COW) {
292 if (error)
293 goto done;
294 if (ioend->io_bio->bi_error) {
295 error = xfs_reflink_cancel_cow_range(ip,
296 ioend->io_offset, ioend->io_size);
297 goto done;
298 }
299 error = xfs_reflink_end_cow(ip, ioend->io_offset,
300 ioend->io_size);
301 if (error)
302 goto done;
303 }
304
5ec4fabb
CH
305 /*
306 * For unwritten extents we need to issue transactions to convert a
307 * range to normal written extens after the data I/O has finished.
5cb13dcd
Z
308 * Detecting and handling completion IO errors is done individually
309 * for each case as different cleanup operations need to be performed
310 * on error.
5ec4fabb 311 */
0d882a36 312 if (ioend->io_type == XFS_IO_UNWRITTEN) {
0e51a8e1 313 if (error)
5cb13dcd 314 goto done;
437a255a
DC
315 error = xfs_iomap_write_unwritten(ip, ioend->io_offset,
316 ioend->io_size);
281627df 317 } else if (ioend->io_append_trans) {
0e51a8e1 318 error = xfs_setfilesize_ioend(ioend, error);
84803fb7 319 } else {
43caeb18
DW
320 ASSERT(!xfs_ioend_is_append(ioend) ||
321 ioend->io_type == XFS_IO_COW);
5ec4fabb 322 }
ba87ea69 323
04f658ee 324done:
0e51a8e1 325 xfs_destroy_ioend(ioend, error);
c626d174
DC
326}
327
0e51a8e1
CH
328STATIC void
329xfs_end_bio(
330 struct bio *bio)
0829c360 331{
0e51a8e1
CH
332 struct xfs_ioend *ioend = bio->bi_private;
333 struct xfs_mount *mp = XFS_I(ioend->io_inode)->i_mount;
0829c360 334
43caeb18 335 if (ioend->io_type == XFS_IO_UNWRITTEN || ioend->io_type == XFS_IO_COW)
0e51a8e1
CH
336 queue_work(mp->m_unwritten_workqueue, &ioend->io_work);
337 else if (ioend->io_append_trans)
338 queue_work(mp->m_data_workqueue, &ioend->io_work);
339 else
340 xfs_destroy_ioend(ioend, bio->bi_error);
0829c360
CH
341}
342
1da177e4
LT
343STATIC int
344xfs_map_blocks(
345 struct inode *inode,
346 loff_t offset,
207d0416 347 struct xfs_bmbt_irec *imap,
988ef927 348 int type)
1da177e4 349{
a206c817
CH
350 struct xfs_inode *ip = XFS_I(inode);
351 struct xfs_mount *mp = ip->i_mount;
93407472 352 ssize_t count = i_blocksize(inode);
a206c817
CH
353 xfs_fileoff_t offset_fsb, end_fsb;
354 int error = 0;
a206c817
CH
355 int bmapi_flags = XFS_BMAPI_ENTIRE;
356 int nimaps = 1;
357
358 if (XFS_FORCED_SHUTDOWN(mp))
b474c7ae 359 return -EIO;
a206c817 360
ef473667 361 ASSERT(type != XFS_IO_COW);
0d882a36 362 if (type == XFS_IO_UNWRITTEN)
a206c817 363 bmapi_flags |= XFS_BMAPI_IGSTATE;
8ff2957d 364
988ef927 365 xfs_ilock(ip, XFS_ILOCK_SHARED);
8ff2957d
CH
366 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
367 (ip->i_df.if_flags & XFS_IFEXTENTS));
d2c28191 368 ASSERT(offset <= mp->m_super->s_maxbytes);
8ff2957d 369
d2c28191
DC
370 if (offset + count > mp->m_super->s_maxbytes)
371 count = mp->m_super->s_maxbytes - offset;
a206c817
CH
372 end_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)offset + count);
373 offset_fsb = XFS_B_TO_FSBT(mp, offset);
5c8ed202
DC
374 error = xfs_bmapi_read(ip, offset_fsb, end_fsb - offset_fsb,
375 imap, &nimaps, bmapi_flags);
ef473667
DW
376 /*
377 * Truncate an overwrite extent if there's a pending CoW
378 * reservation before the end of this extent. This forces us
379 * to come back to writepage to take care of the CoW.
380 */
381 if (nimaps && type == XFS_IO_OVERWRITE)
382 xfs_reflink_trim_irec_to_next_cow(ip, offset_fsb, imap);
8ff2957d 383 xfs_iunlock(ip, XFS_ILOCK_SHARED);
a206c817 384
8ff2957d 385 if (error)
2451337d 386 return error;
a206c817 387
0d882a36 388 if (type == XFS_IO_DELALLOC &&
8ff2957d 389 (!nimaps || isnullstartblock(imap->br_startblock))) {
60b4984f
DW
390 error = xfs_iomap_write_allocate(ip, XFS_DATA_FORK, offset,
391 imap);
a206c817 392 if (!error)
ef473667 393 trace_xfs_map_blocks_alloc(ip, offset, count, type, imap);
2451337d 394 return error;
a206c817
CH
395 }
396
8ff2957d 397#ifdef DEBUG
0d882a36 398 if (type == XFS_IO_UNWRITTEN) {
8ff2957d
CH
399 ASSERT(nimaps);
400 ASSERT(imap->br_startblock != HOLESTARTBLOCK);
401 ASSERT(imap->br_startblock != DELAYSTARTBLOCK);
402 }
403#endif
404 if (nimaps)
405 trace_xfs_map_blocks_found(ip, offset, count, type, imap);
406 return 0;
1da177e4
LT
407}
408
fbcc0256 409STATIC bool
558e6891 410xfs_imap_valid(
8699bb0a 411 struct inode *inode,
207d0416 412 struct xfs_bmbt_irec *imap,
558e6891 413 xfs_off_t offset)
1da177e4 414{
558e6891 415 offset >>= inode->i_blkbits;
8699bb0a 416
558e6891
CH
417 return offset >= imap->br_startoff &&
418 offset < imap->br_startoff + imap->br_blockcount;
1da177e4
LT
419}
420
f6d6d4fc
CH
421STATIC void
422xfs_start_buffer_writeback(
423 struct buffer_head *bh)
424{
425 ASSERT(buffer_mapped(bh));
426 ASSERT(buffer_locked(bh));
427 ASSERT(!buffer_delay(bh));
428 ASSERT(!buffer_unwritten(bh));
429
430 mark_buffer_async_write(bh);
431 set_buffer_uptodate(bh);
432 clear_buffer_dirty(bh);
433}
434
435STATIC void
436xfs_start_page_writeback(
437 struct page *page,
e10de372 438 int clear_dirty)
f6d6d4fc
CH
439{
440 ASSERT(PageLocked(page));
441 ASSERT(!PageWriteback(page));
0d085a52
DC
442
443 /*
444 * if the page was not fully cleaned, we need to ensure that the higher
445 * layers come back to it correctly. That means we need to keep the page
446 * dirty, and for WB_SYNC_ALL writeback we need to ensure the
447 * PAGECACHE_TAG_TOWRITE index mark is not removed so another attempt to
448 * write this page in this writeback sweep will be made.
449 */
450 if (clear_dirty) {
92132021 451 clear_page_dirty_for_io(page);
0d085a52
DC
452 set_page_writeback(page);
453 } else
454 set_page_writeback_keepwrite(page);
455
f6d6d4fc 456 unlock_page(page);
f6d6d4fc
CH
457}
458
c7c1a7d8 459static inline int xfs_bio_add_buffer(struct bio *bio, struct buffer_head *bh)
f6d6d4fc
CH
460{
461 return bio_add_page(bio, bh->b_page, bh->b_size, bh_offset(bh));
462}
463
464/*
bb18782a
DC
465 * Submit the bio for an ioend. We are passed an ioend with a bio attached to
466 * it, and we submit that bio. The ioend may be used for multiple bio
467 * submissions, so we only want to allocate an append transaction for the ioend
468 * once. In the case of multiple bio submission, each bio will take an IO
469 * reference to the ioend to ensure that the ioend completion is only done once
470 * all bios have been submitted and the ioend is really done.
7bf7f352
DC
471 *
472 * If @fail is non-zero, it means that we have a situation where some part of
473 * the submission process has failed after we have marked paged for writeback
bb18782a
DC
474 * and unlocked them. In this situation, we need to fail the bio and ioend
475 * rather than submit it to IO. This typically only happens on a filesystem
476 * shutdown.
f6d6d4fc 477 */
e10de372 478STATIC int
f6d6d4fc 479xfs_submit_ioend(
06342cf8 480 struct writeback_control *wbc,
0e51a8e1 481 struct xfs_ioend *ioend,
e10de372 482 int status)
f6d6d4fc 483{
5eda4300
DW
484 /* Convert CoW extents to regular */
485 if (!status && ioend->io_type == XFS_IO_COW) {
486 status = xfs_reflink_convert_cow(XFS_I(ioend->io_inode),
487 ioend->io_offset, ioend->io_size);
488 }
489
e10de372
DC
490 /* Reserve log space if we might write beyond the on-disk inode size. */
491 if (!status &&
0e51a8e1 492 ioend->io_type != XFS_IO_UNWRITTEN &&
bb18782a
DC
493 xfs_ioend_is_append(ioend) &&
494 !ioend->io_append_trans)
e10de372 495 status = xfs_setfilesize_trans_alloc(ioend);
bb18782a 496
0e51a8e1
CH
497 ioend->io_bio->bi_private = ioend;
498 ioend->io_bio->bi_end_io = xfs_end_bio;
7637241e 499 ioend->io_bio->bi_opf = REQ_OP_WRITE | wbc_to_write_flags(wbc);
70fd7614 500
e10de372
DC
501 /*
502 * If we are failing the IO now, just mark the ioend with an
503 * error and finish it. This will run IO completion immediately
504 * as there is only one reference to the ioend at this point in
505 * time.
506 */
507 if (status) {
0e51a8e1
CH
508 ioend->io_bio->bi_error = status;
509 bio_endio(ioend->io_bio);
e10de372
DC
510 return status;
511 }
d88992f6 512
4e49ea4a 513 submit_bio(ioend->io_bio);
e10de372 514 return 0;
f6d6d4fc 515}
f6d6d4fc 516
0e51a8e1
CH
517static void
518xfs_init_bio_from_bh(
519 struct bio *bio,
520 struct buffer_head *bh)
521{
522 bio->bi_iter.bi_sector = bh->b_blocknr * (bh->b_size >> 9);
523 bio->bi_bdev = bh->b_bdev;
524}
7bf7f352 525
0e51a8e1
CH
526static struct xfs_ioend *
527xfs_alloc_ioend(
528 struct inode *inode,
529 unsigned int type,
530 xfs_off_t offset,
531 struct buffer_head *bh)
532{
533 struct xfs_ioend *ioend;
534 struct bio *bio;
f6d6d4fc 535
0e51a8e1
CH
536 bio = bio_alloc_bioset(GFP_NOFS, BIO_MAX_PAGES, xfs_ioend_bioset);
537 xfs_init_bio_from_bh(bio, bh);
538
539 ioend = container_of(bio, struct xfs_ioend, io_inline_bio);
540 INIT_LIST_HEAD(&ioend->io_list);
541 ioend->io_type = type;
542 ioend->io_inode = inode;
543 ioend->io_size = 0;
544 ioend->io_offset = offset;
545 INIT_WORK(&ioend->io_work, xfs_end_io);
546 ioend->io_append_trans = NULL;
547 ioend->io_bio = bio;
548 return ioend;
549}
550
551/*
552 * Allocate a new bio, and chain the old bio to the new one.
553 *
554 * Note that we have to do perform the chaining in this unintuitive order
555 * so that the bi_private linkage is set up in the right direction for the
556 * traversal in xfs_destroy_ioend().
557 */
558static void
559xfs_chain_bio(
560 struct xfs_ioend *ioend,
561 struct writeback_control *wbc,
562 struct buffer_head *bh)
563{
564 struct bio *new;
565
566 new = bio_alloc(GFP_NOFS, BIO_MAX_PAGES);
567 xfs_init_bio_from_bh(new, bh);
568
569 bio_chain(ioend->io_bio, new);
570 bio_get(ioend->io_bio); /* for xfs_destroy_ioend */
7637241e 571 ioend->io_bio->bi_opf = REQ_OP_WRITE | wbc_to_write_flags(wbc);
4e49ea4a 572 submit_bio(ioend->io_bio);
0e51a8e1 573 ioend->io_bio = new;
f6d6d4fc
CH
574}
575
576/*
577 * Test to see if we've been building up a completion structure for
578 * earlier buffers -- if so, we try to append to this ioend if we
579 * can, otherwise we finish off any current ioend and start another.
e10de372
DC
580 * Return the ioend we finished off so that the caller can submit it
581 * once it has finished processing the dirty page.
f6d6d4fc
CH
582 */
583STATIC void
584xfs_add_to_ioend(
585 struct inode *inode,
586 struct buffer_head *bh,
7336cea8 587 xfs_off_t offset,
e10de372 588 struct xfs_writepage_ctx *wpc,
bb18782a 589 struct writeback_control *wbc,
e10de372 590 struct list_head *iolist)
f6d6d4fc 591{
fbcc0256 592 if (!wpc->ioend || wpc->io_type != wpc->ioend->io_type ||
0df61da8
DW
593 bh->b_blocknr != wpc->last_block + 1 ||
594 offset != wpc->ioend->io_offset + wpc->ioend->io_size) {
e10de372
DC
595 if (wpc->ioend)
596 list_add(&wpc->ioend->io_list, iolist);
0e51a8e1 597 wpc->ioend = xfs_alloc_ioend(inode, wpc->io_type, offset, bh);
f6d6d4fc
CH
598 }
599
0e51a8e1
CH
600 /*
601 * If the buffer doesn't fit into the bio we need to allocate a new
602 * one. This shouldn't happen more than once for a given buffer.
603 */
604 while (xfs_bio_add_buffer(wpc->ioend->io_bio, bh) != bh->b_size)
605 xfs_chain_bio(wpc->ioend, wbc, bh);
bb18782a 606
fbcc0256
DC
607 wpc->ioend->io_size += bh->b_size;
608 wpc->last_block = bh->b_blocknr;
e10de372 609 xfs_start_buffer_writeback(bh);
f6d6d4fc
CH
610}
611
87cbc49c
NS
612STATIC void
613xfs_map_buffer(
046f1685 614 struct inode *inode,
87cbc49c 615 struct buffer_head *bh,
207d0416 616 struct xfs_bmbt_irec *imap,
046f1685 617 xfs_off_t offset)
87cbc49c
NS
618{
619 sector_t bn;
8699bb0a 620 struct xfs_mount *m = XFS_I(inode)->i_mount;
207d0416
CH
621 xfs_off_t iomap_offset = XFS_FSB_TO_B(m, imap->br_startoff);
622 xfs_daddr_t iomap_bn = xfs_fsb_to_db(XFS_I(inode), imap->br_startblock);
87cbc49c 623
207d0416
CH
624 ASSERT(imap->br_startblock != HOLESTARTBLOCK);
625 ASSERT(imap->br_startblock != DELAYSTARTBLOCK);
87cbc49c 626
e513182d 627 bn = (iomap_bn >> (inode->i_blkbits - BBSHIFT)) +
8699bb0a 628 ((offset - iomap_offset) >> inode->i_blkbits);
87cbc49c 629
046f1685 630 ASSERT(bn || XFS_IS_REALTIME_INODE(XFS_I(inode)));
87cbc49c
NS
631
632 bh->b_blocknr = bn;
633 set_buffer_mapped(bh);
634}
635
1da177e4
LT
636STATIC void
637xfs_map_at_offset(
046f1685 638 struct inode *inode,
1da177e4 639 struct buffer_head *bh,
207d0416 640 struct xfs_bmbt_irec *imap,
046f1685 641 xfs_off_t offset)
1da177e4 642{
207d0416
CH
643 ASSERT(imap->br_startblock != HOLESTARTBLOCK);
644 ASSERT(imap->br_startblock != DELAYSTARTBLOCK);
1da177e4 645
207d0416 646 xfs_map_buffer(inode, bh, imap, offset);
1da177e4
LT
647 set_buffer_mapped(bh);
648 clear_buffer_delay(bh);
f6d6d4fc 649 clear_buffer_unwritten(bh);
1da177e4
LT
650}
651
1da177e4 652/*
a49935f2
DC
653 * Test if a given page contains at least one buffer of a given @type.
654 * If @check_all_buffers is true, then we walk all the buffers in the page to
655 * try to find one of the type passed in. If it is not set, then the caller only
656 * needs to check the first buffer on the page for a match.
1da177e4 657 */
a49935f2 658STATIC bool
6ffc4db5 659xfs_check_page_type(
10ce4444 660 struct page *page,
a49935f2
DC
661 unsigned int type,
662 bool check_all_buffers)
1da177e4 663{
a49935f2
DC
664 struct buffer_head *bh;
665 struct buffer_head *head;
1da177e4 666
a49935f2
DC
667 if (PageWriteback(page))
668 return false;
669 if (!page->mapping)
670 return false;
671 if (!page_has_buffers(page))
672 return false;
1da177e4 673
a49935f2
DC
674 bh = head = page_buffers(page);
675 do {
676 if (buffer_unwritten(bh)) {
677 if (type == XFS_IO_UNWRITTEN)
678 return true;
679 } else if (buffer_delay(bh)) {
805eeb8e 680 if (type == XFS_IO_DELALLOC)
a49935f2
DC
681 return true;
682 } else if (buffer_dirty(bh) && buffer_mapped(bh)) {
805eeb8e 683 if (type == XFS_IO_OVERWRITE)
a49935f2
DC
684 return true;
685 }
1da177e4 686
a49935f2
DC
687 /* If we are only checking the first buffer, we are done now. */
688 if (!check_all_buffers)
689 break;
690 } while ((bh = bh->b_this_page) != head);
1da177e4 691
a49935f2 692 return false;
1da177e4
LT
693}
694
3ed3a434
DC
695STATIC void
696xfs_vm_invalidatepage(
697 struct page *page,
d47992f8
LC
698 unsigned int offset,
699 unsigned int length)
3ed3a434 700{
34097dfe
LC
701 trace_xfs_invalidatepage(page->mapping->host, page, offset,
702 length);
703 block_invalidatepage(page, offset, length);
3ed3a434
DC
704}
705
706/*
707 * If the page has delalloc buffers on it, we need to punch them out before we
708 * invalidate the page. If we don't, we leave a stale delalloc mapping on the
709 * inode that can trip a BUG() in xfs_get_blocks() later on if a direct IO read
710 * is done on that same region - the delalloc extent is returned when none is
711 * supposed to be there.
712 *
713 * We prevent this by truncating away the delalloc regions on the page before
714 * invalidating it. Because they are delalloc, we can do this without needing a
715 * transaction. Indeed - if we get ENOSPC errors, we have to be able to do this
716 * truncation without a transaction as there is no space left for block
717 * reservation (typically why we see a ENOSPC in writeback).
718 *
719 * This is not a performance critical path, so for now just do the punching a
720 * buffer head at a time.
721 */
722STATIC void
723xfs_aops_discard_page(
724 struct page *page)
725{
726 struct inode *inode = page->mapping->host;
727 struct xfs_inode *ip = XFS_I(inode);
728 struct buffer_head *bh, *head;
729 loff_t offset = page_offset(page);
3ed3a434 730
a49935f2 731 if (!xfs_check_page_type(page, XFS_IO_DELALLOC, true))
3ed3a434
DC
732 goto out_invalidate;
733
e8c3753c
DC
734 if (XFS_FORCED_SHUTDOWN(ip->i_mount))
735 goto out_invalidate;
736
4f10700a 737 xfs_alert(ip->i_mount,
3ed3a434
DC
738 "page discard on page %p, inode 0x%llx, offset %llu.",
739 page, ip->i_ino, offset);
740
741 xfs_ilock(ip, XFS_ILOCK_EXCL);
742 bh = head = page_buffers(page);
743 do {
3ed3a434 744 int error;
c726de44 745 xfs_fileoff_t start_fsb;
3ed3a434
DC
746
747 if (!buffer_delay(bh))
748 goto next_buffer;
749
c726de44
DC
750 start_fsb = XFS_B_TO_FSBT(ip->i_mount, offset);
751 error = xfs_bmap_punch_delalloc_range(ip, start_fsb, 1);
3ed3a434
DC
752 if (error) {
753 /* something screwed, just bail */
e8c3753c 754 if (!XFS_FORCED_SHUTDOWN(ip->i_mount)) {
4f10700a 755 xfs_alert(ip->i_mount,
3ed3a434 756 "page discard unable to remove delalloc mapping.");
e8c3753c 757 }
3ed3a434
DC
758 break;
759 }
760next_buffer:
93407472 761 offset += i_blocksize(inode);
3ed3a434
DC
762
763 } while ((bh = bh->b_this_page) != head);
764
765 xfs_iunlock(ip, XFS_ILOCK_EXCL);
766out_invalidate:
09cbfeaf 767 xfs_vm_invalidatepage(page, 0, PAGE_SIZE);
3ed3a434
DC
768 return;
769}
770
ef473667
DW
771static int
772xfs_map_cow(
773 struct xfs_writepage_ctx *wpc,
774 struct inode *inode,
775 loff_t offset,
776 unsigned int *new_type)
777{
778 struct xfs_inode *ip = XFS_I(inode);
779 struct xfs_bmbt_irec imap;
092d5d9d 780 bool is_cow = false;
ef473667
DW
781 int error;
782
783 /*
784 * If we already have a valid COW mapping keep using it.
785 */
786 if (wpc->io_type == XFS_IO_COW) {
787 wpc->imap_valid = xfs_imap_valid(inode, &wpc->imap, offset);
788 if (wpc->imap_valid) {
789 *new_type = XFS_IO_COW;
790 return 0;
791 }
792 }
793
794 /*
795 * Else we need to check if there is a COW mapping at this offset.
796 */
797 xfs_ilock(ip, XFS_ILOCK_SHARED);
092d5d9d 798 is_cow = xfs_reflink_find_cow_mapping(ip, offset, &imap);
ef473667
DW
799 xfs_iunlock(ip, XFS_ILOCK_SHARED);
800
801 if (!is_cow)
802 return 0;
803
804 /*
805 * And if the COW mapping has a delayed extent here we need to
806 * allocate real space for it now.
807 */
092d5d9d 808 if (isnullstartblock(imap.br_startblock)) {
ef473667
DW
809 error = xfs_iomap_write_allocate(ip, XFS_COW_FORK, offset,
810 &imap);
811 if (error)
812 return error;
813 }
814
815 wpc->io_type = *new_type = XFS_IO_COW;
816 wpc->imap_valid = true;
817 wpc->imap = imap;
818 return 0;
819}
820
e10de372
DC
821/*
822 * We implement an immediate ioend submission policy here to avoid needing to
823 * chain multiple ioends and hence nest mempool allocations which can violate
824 * forward progress guarantees we need to provide. The current ioend we are
825 * adding buffers to is cached on the writepage context, and if the new buffer
826 * does not append to the cached ioend it will create a new ioend and cache that
827 * instead.
828 *
829 * If a new ioend is created and cached, the old ioend is returned and queued
830 * locally for submission once the entire page is processed or an error has been
831 * detected. While ioends are submitted immediately after they are completed,
832 * batching optimisations are provided by higher level block plugging.
833 *
834 * At the end of a writeback pass, there will be a cached ioend remaining on the
835 * writepage context that the caller will need to submit.
836 */
bfce7d2e
DC
837static int
838xfs_writepage_map(
839 struct xfs_writepage_ctx *wpc,
e10de372 840 struct writeback_control *wbc,
bfce7d2e
DC
841 struct inode *inode,
842 struct page *page,
843 loff_t offset,
844 __uint64_t end_offset)
845{
e10de372
DC
846 LIST_HEAD(submit_list);
847 struct xfs_ioend *ioend, *next;
bfce7d2e 848 struct buffer_head *bh, *head;
93407472 849 ssize_t len = i_blocksize(inode);
bfce7d2e 850 int error = 0;
bfce7d2e 851 int count = 0;
e10de372 852 int uptodate = 1;
ef473667 853 unsigned int new_type;
bfce7d2e
DC
854
855 bh = head = page_buffers(page);
856 offset = page_offset(page);
bfce7d2e
DC
857 do {
858 if (offset >= end_offset)
859 break;
860 if (!buffer_uptodate(bh))
861 uptodate = 0;
862
863 /*
864 * set_page_dirty dirties all buffers in a page, independent
865 * of their state. The dirty state however is entirely
866 * meaningless for holes (!mapped && uptodate), so skip
867 * buffers covering holes here.
868 */
869 if (!buffer_mapped(bh) && buffer_uptodate(bh)) {
870 wpc->imap_valid = false;
871 continue;
872 }
873
ef473667
DW
874 if (buffer_unwritten(bh))
875 new_type = XFS_IO_UNWRITTEN;
876 else if (buffer_delay(bh))
877 new_type = XFS_IO_DELALLOC;
878 else if (buffer_uptodate(bh))
879 new_type = XFS_IO_OVERWRITE;
880 else {
bfce7d2e
DC
881 if (PageUptodate(page))
882 ASSERT(buffer_mapped(bh));
883 /*
884 * This buffer is not uptodate and will not be
885 * written to disk. Ensure that we will put any
886 * subsequent writeable buffers into a new
887 * ioend.
888 */
889 wpc->imap_valid = false;
890 continue;
891 }
892
ef473667
DW
893 if (xfs_is_reflink_inode(XFS_I(inode))) {
894 error = xfs_map_cow(wpc, inode, offset, &new_type);
895 if (error)
896 goto out;
897 }
898
899 if (wpc->io_type != new_type) {
900 wpc->io_type = new_type;
901 wpc->imap_valid = false;
902 }
903
bfce7d2e
DC
904 if (wpc->imap_valid)
905 wpc->imap_valid = xfs_imap_valid(inode, &wpc->imap,
906 offset);
907 if (!wpc->imap_valid) {
908 error = xfs_map_blocks(inode, offset, &wpc->imap,
909 wpc->io_type);
910 if (error)
e10de372 911 goto out;
bfce7d2e
DC
912 wpc->imap_valid = xfs_imap_valid(inode, &wpc->imap,
913 offset);
914 }
915 if (wpc->imap_valid) {
916 lock_buffer(bh);
917 if (wpc->io_type != XFS_IO_OVERWRITE)
918 xfs_map_at_offset(inode, bh, &wpc->imap, offset);
bb18782a 919 xfs_add_to_ioend(inode, bh, offset, wpc, wbc, &submit_list);
bfce7d2e
DC
920 count++;
921 }
922
bfce7d2e
DC
923 } while (offset += len, ((bh = bh->b_this_page) != head));
924
925 if (uptodate && bh == head)
926 SetPageUptodate(page);
927
e10de372 928 ASSERT(wpc->ioend || list_empty(&submit_list));
bfce7d2e 929
e10de372 930out:
bfce7d2e 931 /*
e10de372
DC
932 * On error, we have to fail the ioend here because we have locked
933 * buffers in the ioend. If we don't do this, we'll deadlock
934 * invalidating the page as that tries to lock the buffers on the page.
935 * Also, because we may have set pages under writeback, we have to make
936 * sure we run IO completion to mark the error state of the IO
937 * appropriately, so we can't cancel the ioend directly here. That means
938 * we have to mark this page as under writeback if we included any
939 * buffers from it in the ioend chain so that completion treats it
940 * correctly.
bfce7d2e 941 *
e10de372
DC
942 * If we didn't include the page in the ioend, the on error we can
943 * simply discard and unlock it as there are no other users of the page
944 * or it's buffers right now. The caller will still need to trigger
945 * submission of outstanding ioends on the writepage context so they are
946 * treated correctly on error.
bfce7d2e 947 */
e10de372
DC
948 if (count) {
949 xfs_start_page_writeback(page, !error);
950
951 /*
952 * Preserve the original error if there was one, otherwise catch
953 * submission errors here and propagate into subsequent ioend
954 * submissions.
955 */
956 list_for_each_entry_safe(ioend, next, &submit_list, io_list) {
957 int error2;
958
959 list_del_init(&ioend->io_list);
960 error2 = xfs_submit_ioend(wbc, ioend, error);
961 if (error2 && !error)
962 error = error2;
963 }
964 } else if (error) {
bfce7d2e
DC
965 xfs_aops_discard_page(page);
966 ClearPageUptodate(page);
967 unlock_page(page);
e10de372
DC
968 } else {
969 /*
970 * We can end up here with no error and nothing to write if we
971 * race with a partial page truncate on a sub-page block sized
972 * filesystem. In that case we need to mark the page clean.
973 */
974 xfs_start_page_writeback(page, 1);
975 end_page_writeback(page);
bfce7d2e 976 }
e10de372 977
bfce7d2e
DC
978 mapping_set_error(page->mapping, error);
979 return error;
980}
981
1da177e4 982/*
89f3b363
CH
983 * Write out a dirty page.
984 *
985 * For delalloc space on the page we need to allocate space and flush it.
986 * For unwritten space on the page we need to start the conversion to
987 * regular allocated space.
89f3b363 988 * For any other dirty buffer heads on the page we should flush them.
1da177e4 989 */
1da177e4 990STATIC int
fbcc0256 991xfs_do_writepage(
89f3b363 992 struct page *page,
fbcc0256
DC
993 struct writeback_control *wbc,
994 void *data)
1da177e4 995{
fbcc0256 996 struct xfs_writepage_ctx *wpc = data;
89f3b363 997 struct inode *inode = page->mapping->host;
1da177e4 998 loff_t offset;
1da177e4 999 __uint64_t end_offset;
ad68972a 1000 pgoff_t end_index;
89f3b363 1001
34097dfe 1002 trace_xfs_writepage(inode, page, 0, 0);
89f3b363 1003
20cb52eb
CH
1004 ASSERT(page_has_buffers(page));
1005
89f3b363
CH
1006 /*
1007 * Refuse to write the page out if we are called from reclaim context.
1008 *
d4f7a5cb
CH
1009 * This avoids stack overflows when called from deeply used stacks in
1010 * random callers for direct reclaim or memcg reclaim. We explicitly
1011 * allow reclaim from kswapd as the stack usage there is relatively low.
89f3b363 1012 *
94054fa3
MG
1013 * This should never happen except in the case of a VM regression so
1014 * warn about it.
89f3b363 1015 */
94054fa3
MG
1016 if (WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD)) ==
1017 PF_MEMALLOC))
b5420f23 1018 goto redirty;
1da177e4 1019
89f3b363 1020 /*
680a647b
CH
1021 * Given that we do not allow direct reclaim to call us, we should
1022 * never be called while in a filesystem transaction.
89f3b363 1023 */
448011e2 1024 if (WARN_ON_ONCE(current->flags & PF_FSTRANS))
b5420f23 1025 goto redirty;
89f3b363 1026
8695d27e 1027 /*
ad68972a
DC
1028 * Is this page beyond the end of the file?
1029 *
8695d27e
JL
1030 * The page index is less than the end_index, adjust the end_offset
1031 * to the highest offset that this page should represent.
1032 * -----------------------------------------------------
1033 * | file mapping | <EOF> |
1034 * -----------------------------------------------------
1035 * | Page ... | Page N-2 | Page N-1 | Page N | |
1036 * ^--------------------------------^----------|--------
1037 * | desired writeback range | see else |
1038 * ---------------------------------^------------------|
1039 */
ad68972a 1040 offset = i_size_read(inode);
09cbfeaf 1041 end_index = offset >> PAGE_SHIFT;
8695d27e 1042 if (page->index < end_index)
09cbfeaf 1043 end_offset = (xfs_off_t)(page->index + 1) << PAGE_SHIFT;
8695d27e
JL
1044 else {
1045 /*
1046 * Check whether the page to write out is beyond or straddles
1047 * i_size or not.
1048 * -------------------------------------------------------
1049 * | file mapping | <EOF> |
1050 * -------------------------------------------------------
1051 * | Page ... | Page N-2 | Page N-1 | Page N | Beyond |
1052 * ^--------------------------------^-----------|---------
1053 * | | Straddles |
1054 * ---------------------------------^-----------|--------|
1055 */
09cbfeaf 1056 unsigned offset_into_page = offset & (PAGE_SIZE - 1);
6b7a03f0
CH
1057
1058 /*
ff9a28f6
JK
1059 * Skip the page if it is fully outside i_size, e.g. due to a
1060 * truncate operation that is in progress. We must redirty the
1061 * page so that reclaim stops reclaiming it. Otherwise
1062 * xfs_vm_releasepage() is called on it and gets confused.
8695d27e
JL
1063 *
1064 * Note that the end_index is unsigned long, it would overflow
1065 * if the given offset is greater than 16TB on 32-bit system
1066 * and if we do check the page is fully outside i_size or not
1067 * via "if (page->index >= end_index + 1)" as "end_index + 1"
1068 * will be evaluated to 0. Hence this page will be redirtied
1069 * and be written out repeatedly which would result in an
1070 * infinite loop, the user program that perform this operation
1071 * will hang. Instead, we can verify this situation by checking
1072 * if the page to write is totally beyond the i_size or if it's
1073 * offset is just equal to the EOF.
6b7a03f0 1074 */
8695d27e
JL
1075 if (page->index > end_index ||
1076 (page->index == end_index && offset_into_page == 0))
ff9a28f6 1077 goto redirty;
6b7a03f0
CH
1078
1079 /*
1080 * The page straddles i_size. It must be zeroed out on each
1081 * and every writepage invocation because it may be mmapped.
1082 * "A file is mapped in multiples of the page size. For a file
8695d27e 1083 * that is not a multiple of the page size, the remaining
6b7a03f0
CH
1084 * memory is zeroed when mapped, and writes to that region are
1085 * not written out to the file."
1086 */
09cbfeaf 1087 zero_user_segment(page, offset_into_page, PAGE_SIZE);
8695d27e
JL
1088
1089 /* Adjust the end_offset to the end of file */
1090 end_offset = offset;
1da177e4
LT
1091 }
1092
e10de372 1093 return xfs_writepage_map(wpc, wbc, inode, page, offset, end_offset);
f51623b2 1094
b5420f23 1095redirty:
f51623b2
NS
1096 redirty_page_for_writepage(wbc, page);
1097 unlock_page(page);
1098 return 0;
f51623b2
NS
1099}
1100
fbcc0256
DC
1101STATIC int
1102xfs_vm_writepage(
1103 struct page *page,
1104 struct writeback_control *wbc)
1105{
1106 struct xfs_writepage_ctx wpc = {
1107 .io_type = XFS_IO_INVALID,
1108 };
1109 int ret;
1110
1111 ret = xfs_do_writepage(page, wbc, &wpc);
e10de372
DC
1112 if (wpc.ioend)
1113 ret = xfs_submit_ioend(wbc, wpc.ioend, ret);
1114 return ret;
fbcc0256
DC
1115}
1116
7d4fb40a
NS
1117STATIC int
1118xfs_vm_writepages(
1119 struct address_space *mapping,
1120 struct writeback_control *wbc)
1121{
fbcc0256
DC
1122 struct xfs_writepage_ctx wpc = {
1123 .io_type = XFS_IO_INVALID,
1124 };
1125 int ret;
1126
b3aea4ed 1127 xfs_iflags_clear(XFS_I(mapping->host), XFS_ITRUNCATED);
7f6d5b52
RZ
1128 if (dax_mapping(mapping))
1129 return dax_writeback_mapping_range(mapping,
1130 xfs_find_bdev_for_inode(mapping->host), wbc);
1131
fbcc0256 1132 ret = write_cache_pages(mapping, wbc, xfs_do_writepage, &wpc);
e10de372
DC
1133 if (wpc.ioend)
1134 ret = xfs_submit_ioend(wbc, wpc.ioend, ret);
1135 return ret;
7d4fb40a
NS
1136}
1137
f51623b2
NS
1138/*
1139 * Called to move a page into cleanable state - and from there
89f3b363 1140 * to be released. The page should already be clean. We always
f51623b2
NS
1141 * have buffer heads in this call.
1142 *
89f3b363 1143 * Returns 1 if the page is ok to release, 0 otherwise.
f51623b2
NS
1144 */
1145STATIC int
238f4c54 1146xfs_vm_releasepage(
f51623b2
NS
1147 struct page *page,
1148 gfp_t gfp_mask)
1149{
20cb52eb 1150 int delalloc, unwritten;
f51623b2 1151
34097dfe 1152 trace_xfs_releasepage(page->mapping->host, page, 0, 0);
238f4c54 1153
99579cce
BF
1154 /*
1155 * mm accommodates an old ext3 case where clean pages might not have had
1156 * the dirty bit cleared. Thus, it can send actual dirty pages to
1157 * ->releasepage() via shrink_active_list(). Conversely,
1158 * block_invalidatepage() can send pages that are still marked dirty
1159 * but otherwise have invalidated buffers.
1160 *
0a417b8d
JK
1161 * We want to release the latter to avoid unnecessary buildup of the
1162 * LRU, skip the former and warn if we've left any lingering
1163 * delalloc/unwritten buffers on clean pages. Skip pages with delalloc
1164 * or unwritten buffers and warn if the page is not dirty. Otherwise
1165 * try to release the buffers.
99579cce 1166 */
20cb52eb 1167 xfs_count_page_state(page, &delalloc, &unwritten);
f51623b2 1168
0a417b8d
JK
1169 if (delalloc) {
1170 WARN_ON_ONCE(!PageDirty(page));
f51623b2 1171 return 0;
0a417b8d
JK
1172 }
1173 if (unwritten) {
1174 WARN_ON_ONCE(!PageDirty(page));
f51623b2 1175 return 0;
0a417b8d 1176 }
f51623b2 1177
f51623b2
NS
1178 return try_to_free_buffers(page);
1179}
1180
1fdca9c2
DC
1181/*
1182 * If this is O_DIRECT or the mpage code calling tell them how large the mapping
1183 * is, so that we can avoid repeated get_blocks calls.
1184 *
1185 * If the mapping spans EOF, then we have to break the mapping up as the mapping
1186 * for blocks beyond EOF must be marked new so that sub block regions can be
1187 * correctly zeroed. We can't do this for mappings within EOF unless the mapping
1188 * was just allocated or is unwritten, otherwise the callers would overwrite
1189 * existing data with zeros. Hence we have to split the mapping into a range up
1190 * to and including EOF, and a second mapping for beyond EOF.
1191 */
1192static void
1193xfs_map_trim_size(
1194 struct inode *inode,
1195 sector_t iblock,
1196 struct buffer_head *bh_result,
1197 struct xfs_bmbt_irec *imap,
1198 xfs_off_t offset,
1199 ssize_t size)
1200{
1201 xfs_off_t mapping_size;
1202
1203 mapping_size = imap->br_startoff + imap->br_blockcount - iblock;
1204 mapping_size <<= inode->i_blkbits;
1205
1206 ASSERT(mapping_size > 0);
1207 if (mapping_size > size)
1208 mapping_size = size;
1209 if (offset < i_size_read(inode) &&
1210 offset + mapping_size >= i_size_read(inode)) {
1211 /* limit mapping to block that spans EOF */
1212 mapping_size = roundup_64(i_size_read(inode) - offset,
93407472 1213 i_blocksize(inode));
1fdca9c2
DC
1214 }
1215 if (mapping_size > LONG_MAX)
1216 mapping_size = LONG_MAX;
1217
1218 bh_result->b_size = mapping_size;
1219}
1220
0613f16c 1221static int
acdda3aa 1222xfs_get_blocks(
1da177e4
LT
1223 struct inode *inode,
1224 sector_t iblock,
1da177e4 1225 struct buffer_head *bh_result,
acdda3aa 1226 int create)
1da177e4 1227{
a206c817
CH
1228 struct xfs_inode *ip = XFS_I(inode);
1229 struct xfs_mount *mp = ip->i_mount;
1230 xfs_fileoff_t offset_fsb, end_fsb;
1231 int error = 0;
1232 int lockmode = 0;
207d0416 1233 struct xfs_bmbt_irec imap;
a206c817 1234 int nimaps = 1;
fdc7ed75
NS
1235 xfs_off_t offset;
1236 ssize_t size;
a206c817 1237
acdda3aa 1238 BUG_ON(create);
6e8a27a8 1239
a206c817 1240 if (XFS_FORCED_SHUTDOWN(mp))
b474c7ae 1241 return -EIO;
1da177e4 1242
fdc7ed75 1243 offset = (xfs_off_t)iblock << inode->i_blkbits;
93407472 1244 ASSERT(bh_result->b_size >= i_blocksize(inode));
c2536668 1245 size = bh_result->b_size;
364f358a 1246
acdda3aa 1247 if (offset >= i_size_read(inode))
364f358a
LM
1248 return 0;
1249
507630b2
DC
1250 /*
1251 * Direct I/O is usually done on preallocated files, so try getting
6e8a27a8 1252 * a block mapping without an exclusive lock first.
507630b2 1253 */
6e8a27a8 1254 lockmode = xfs_ilock_data_map_shared(ip);
f2bde9b8 1255
d2c28191
DC
1256 ASSERT(offset <= mp->m_super->s_maxbytes);
1257 if (offset + size > mp->m_super->s_maxbytes)
1258 size = mp->m_super->s_maxbytes - offset;
a206c817
CH
1259 end_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)offset + size);
1260 offset_fsb = XFS_B_TO_FSBT(mp, offset);
1261
acdda3aa
CH
1262 error = xfs_bmapi_read(ip, offset_fsb, end_fsb - offset_fsb,
1263 &imap, &nimaps, XFS_BMAPI_ENTIRE);
1da177e4 1264 if (error)
a206c817
CH
1265 goto out_unlock;
1266
acdda3aa 1267 if (nimaps) {
d5cc2e3f
DC
1268 trace_xfs_get_blocks_found(ip, offset, size,
1269 ISUNWRITTEN(&imap) ? XFS_IO_UNWRITTEN
1270 : XFS_IO_OVERWRITE, &imap);
507630b2 1271 xfs_iunlock(ip, lockmode);
a206c817
CH
1272 } else {
1273 trace_xfs_get_blocks_notfound(ip, offset, size);
1274 goto out_unlock;
1275 }
1da177e4 1276
1fdca9c2 1277 /* trim mapping down to size requested */
6e8a27a8 1278 xfs_map_trim_size(inode, iblock, bh_result, &imap, offset, size);
1fdca9c2 1279
a719370b
DC
1280 /*
1281 * For unwritten extents do not report a disk address in the buffered
1282 * read case (treat as if we're reading into a hole).
1283 */
207d0416 1284 if (imap.br_startblock != HOLESTARTBLOCK &&
a719370b 1285 imap.br_startblock != DELAYSTARTBLOCK &&
acdda3aa 1286 !ISUNWRITTEN(&imap))
a719370b 1287 xfs_map_buffer(inode, bh_result, &imap, offset);
1da177e4 1288
c2536668
NS
1289 /*
1290 * If this is a realtime file, data may be on a different device.
1291 * to that pointed to from the buffer_head b_bdev currently.
1292 */
046f1685 1293 bh_result->b_bdev = xfs_find_bdev_for_inode(inode);
1da177e4 1294 return 0;
a206c817
CH
1295
1296out_unlock:
1297 xfs_iunlock(ip, lockmode);
2451337d 1298 return error;
1da177e4
LT
1299}
1300
c19b104a
CH
1301STATIC ssize_t
1302xfs_vm_direct_IO(
6e1ba0bc 1303 struct kiocb *iocb,
c8b8e32d 1304 struct iov_iter *iter)
6e1ba0bc 1305{
58e59854 1306 /*
fa8d972d 1307 * We just need the method present so that open/fcntl allow direct I/O.
58e59854 1308 */
fa8d972d 1309 return -EINVAL;
f51623b2 1310}
1da177e4
LT
1311
1312STATIC sector_t
e4c573bb 1313xfs_vm_bmap(
1da177e4
LT
1314 struct address_space *mapping,
1315 sector_t block)
1316{
1317 struct inode *inode = (struct inode *)mapping->host;
739bfb2a 1318 struct xfs_inode *ip = XFS_I(inode);
1da177e4 1319
cca28fb8 1320 trace_xfs_vm_bmap(XFS_I(inode));
db1327b1
DW
1321
1322 /*
1323 * The swap code (ab-)uses ->bmap to get a block mapping and then
1324 * bypasseѕ the file system for actual I/O. We really can't allow
1325 * that on reflinks inodes, so we have to skip out here. And yes,
1326 * 0 is the magic code for a bmap error..
1327 */
65523218 1328 if (xfs_is_reflink_inode(ip))
db1327b1 1329 return 0;
65523218 1330
4bc1ea6b 1331 filemap_write_and_wait(mapping);
c2536668 1332 return generic_block_bmap(mapping, block, xfs_get_blocks);
1da177e4
LT
1333}
1334
1335STATIC int
e4c573bb 1336xfs_vm_readpage(
1da177e4
LT
1337 struct file *unused,
1338 struct page *page)
1339{
121e213e 1340 trace_xfs_vm_readpage(page->mapping->host, 1);
c2536668 1341 return mpage_readpage(page, xfs_get_blocks);
1da177e4
LT
1342}
1343
1344STATIC int
e4c573bb 1345xfs_vm_readpages(
1da177e4
LT
1346 struct file *unused,
1347 struct address_space *mapping,
1348 struct list_head *pages,
1349 unsigned nr_pages)
1350{
121e213e 1351 trace_xfs_vm_readpages(mapping->host, nr_pages);
c2536668 1352 return mpage_readpages(mapping, pages, nr_pages, xfs_get_blocks);
1da177e4
LT
1353}
1354
22e757a4
DC
1355/*
1356 * This is basically a copy of __set_page_dirty_buffers() with one
1357 * small tweak: buffers beyond EOF do not get marked dirty. If we mark them
1358 * dirty, we'll never be able to clean them because we don't write buffers
1359 * beyond EOF, and that means we can't invalidate pages that span EOF
1360 * that have been marked dirty. Further, the dirty state can leak into
1361 * the file interior if the file is extended, resulting in all sorts of
1362 * bad things happening as the state does not match the underlying data.
1363 *
1364 * XXX: this really indicates that bufferheads in XFS need to die. Warts like
1365 * this only exist because of bufferheads and how the generic code manages them.
1366 */
1367STATIC int
1368xfs_vm_set_page_dirty(
1369 struct page *page)
1370{
1371 struct address_space *mapping = page->mapping;
1372 struct inode *inode = mapping->host;
1373 loff_t end_offset;
1374 loff_t offset;
1375 int newly_dirty;
1376
1377 if (unlikely(!mapping))
1378 return !TestSetPageDirty(page);
1379
1380 end_offset = i_size_read(inode);
1381 offset = page_offset(page);
1382
1383 spin_lock(&mapping->private_lock);
1384 if (page_has_buffers(page)) {
1385 struct buffer_head *head = page_buffers(page);
1386 struct buffer_head *bh = head;
1387
1388 do {
1389 if (offset < end_offset)
1390 set_buffer_dirty(bh);
1391 bh = bh->b_this_page;
93407472 1392 offset += i_blocksize(inode);
22e757a4
DC
1393 } while (bh != head);
1394 }
c4843a75 1395 /*
81f8c3a4
JW
1396 * Lock out page->mem_cgroup migration to keep PageDirty
1397 * synchronized with per-memcg dirty page counters.
c4843a75 1398 */
62cccb8c 1399 lock_page_memcg(page);
22e757a4
DC
1400 newly_dirty = !TestSetPageDirty(page);
1401 spin_unlock(&mapping->private_lock);
1402
1403 if (newly_dirty) {
1404 /* sigh - __set_page_dirty() is static, so copy it here, too */
1405 unsigned long flags;
1406
1407 spin_lock_irqsave(&mapping->tree_lock, flags);
1408 if (page->mapping) { /* Race with truncate? */
1409 WARN_ON_ONCE(!PageUptodate(page));
62cccb8c 1410 account_page_dirtied(page, mapping);
22e757a4
DC
1411 radix_tree_tag_set(&mapping->page_tree,
1412 page_index(page), PAGECACHE_TAG_DIRTY);
1413 }
1414 spin_unlock_irqrestore(&mapping->tree_lock, flags);
22e757a4 1415 }
62cccb8c 1416 unlock_page_memcg(page);
c4843a75
GT
1417 if (newly_dirty)
1418 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
22e757a4
DC
1419 return newly_dirty;
1420}
1421
f5e54d6e 1422const struct address_space_operations xfs_address_space_operations = {
e4c573bb
NS
1423 .readpage = xfs_vm_readpage,
1424 .readpages = xfs_vm_readpages,
1425 .writepage = xfs_vm_writepage,
7d4fb40a 1426 .writepages = xfs_vm_writepages,
22e757a4 1427 .set_page_dirty = xfs_vm_set_page_dirty,
238f4c54
NS
1428 .releasepage = xfs_vm_releasepage,
1429 .invalidatepage = xfs_vm_invalidatepage,
e4c573bb
NS
1430 .bmap = xfs_vm_bmap,
1431 .direct_IO = xfs_vm_direct_IO,
e965f963 1432 .migratepage = buffer_migrate_page,
bddaafa1 1433 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 1434 .error_remove_page = generic_error_remove_page,
1da177e4 1435};