]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - fs/xfs/xfs_aops.c
Merge tag 'h8300-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/groeck...
[mirror_ubuntu-bionic-kernel.git] / fs / xfs / xfs_aops.c
CommitLineData
1da177e4 1/*
7b718769
NS
2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
1da177e4 4 *
7b718769
NS
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
1da177e4
LT
7 * published by the Free Software Foundation.
8 *
7b718769
NS
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
1da177e4 13 *
7b718769
NS
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
1da177e4 17 */
1da177e4 18#include "xfs.h"
1da177e4
LT
19#include "xfs_log.h"
20#include "xfs_sb.h"
a844f451 21#include "xfs_ag.h"
1da177e4 22#include "xfs_trans.h"
1da177e4
LT
23#include "xfs_mount.h"
24#include "xfs_bmap_btree.h"
1da177e4
LT
25#include "xfs_dinode.h"
26#include "xfs_inode.h"
281627df 27#include "xfs_inode_item.h"
a844f451 28#include "xfs_alloc.h"
1da177e4 29#include "xfs_error.h"
1da177e4 30#include "xfs_iomap.h"
0b1b213f 31#include "xfs_trace.h"
3ed3a434 32#include "xfs_bmap.h"
68988114 33#include "xfs_bmap_util.h"
a27bb332 34#include <linux/aio.h>
5a0e3ad6 35#include <linux/gfp.h>
1da177e4 36#include <linux/mpage.h>
10ce4444 37#include <linux/pagevec.h>
1da177e4
LT
38#include <linux/writeback.h>
39
0b1b213f 40void
f51623b2
NS
41xfs_count_page_state(
42 struct page *page,
43 int *delalloc,
f51623b2
NS
44 int *unwritten)
45{
46 struct buffer_head *bh, *head;
47
20cb52eb 48 *delalloc = *unwritten = 0;
f51623b2
NS
49
50 bh = head = page_buffers(page);
51 do {
20cb52eb 52 if (buffer_unwritten(bh))
f51623b2
NS
53 (*unwritten) = 1;
54 else if (buffer_delay(bh))
55 (*delalloc) = 1;
56 } while ((bh = bh->b_this_page) != head);
57}
58
6214ed44
CH
59STATIC struct block_device *
60xfs_find_bdev_for_inode(
046f1685 61 struct inode *inode)
6214ed44 62{
046f1685 63 struct xfs_inode *ip = XFS_I(inode);
6214ed44
CH
64 struct xfs_mount *mp = ip->i_mount;
65
71ddabb9 66 if (XFS_IS_REALTIME_INODE(ip))
6214ed44
CH
67 return mp->m_rtdev_targp->bt_bdev;
68 else
69 return mp->m_ddev_targp->bt_bdev;
70}
71
f6d6d4fc
CH
72/*
73 * We're now finished for good with this ioend structure.
74 * Update the page state via the associated buffer_heads,
75 * release holds on the inode and bio, and finally free
76 * up memory. Do not use the ioend after this.
77 */
0829c360
CH
78STATIC void
79xfs_destroy_ioend(
80 xfs_ioend_t *ioend)
81{
f6d6d4fc
CH
82 struct buffer_head *bh, *next;
83
84 for (bh = ioend->io_buffer_head; bh; bh = next) {
85 next = bh->b_private;
7d04a335 86 bh->b_end_io(bh, !ioend->io_error);
f6d6d4fc 87 }
583fa586 88
0829c360
CH
89 mempool_free(ioend, xfs_ioend_pool);
90}
91
fc0063c4
CH
92/*
93 * Fast and loose check if this write could update the on-disk inode size.
94 */
95static inline bool xfs_ioend_is_append(struct xfs_ioend *ioend)
96{
97 return ioend->io_offset + ioend->io_size >
98 XFS_I(ioend->io_inode)->i_d.di_size;
99}
100
281627df
CH
101STATIC int
102xfs_setfilesize_trans_alloc(
103 struct xfs_ioend *ioend)
104{
105 struct xfs_mount *mp = XFS_I(ioend->io_inode)->i_mount;
106 struct xfs_trans *tp;
107 int error;
108
109 tp = xfs_trans_alloc(mp, XFS_TRANS_FSYNC_TS);
110
3d3c8b52 111 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_fsyncts, 0, 0);
281627df
CH
112 if (error) {
113 xfs_trans_cancel(tp, 0);
114 return error;
115 }
116
117 ioend->io_append_trans = tp;
118
d9457dc0 119 /*
437a255a 120 * We may pass freeze protection with a transaction. So tell lockdep
d9457dc0
JK
121 * we released it.
122 */
123 rwsem_release(&ioend->io_inode->i_sb->s_writers.lock_map[SB_FREEZE_FS-1],
124 1, _THIS_IP_);
281627df
CH
125 /*
126 * We hand off the transaction to the completion thread now, so
127 * clear the flag here.
128 */
129 current_restore_flags_nested(&tp->t_pflags, PF_FSTRANS);
130 return 0;
131}
132
ba87ea69 133/*
2813d682 134 * Update on-disk file size now that data has been written to disk.
ba87ea69 135 */
281627df 136STATIC int
ba87ea69 137xfs_setfilesize(
aa6bf01d 138 struct xfs_ioend *ioend)
ba87ea69 139{
aa6bf01d 140 struct xfs_inode *ip = XFS_I(ioend->io_inode);
281627df 141 struct xfs_trans *tp = ioend->io_append_trans;
ba87ea69 142 xfs_fsize_t isize;
ba87ea69 143
281627df 144 /*
437a255a
DC
145 * The transaction may have been allocated in the I/O submission thread,
146 * thus we need to mark ourselves as beeing in a transaction manually.
147 * Similarly for freeze protection.
281627df
CH
148 */
149 current_set_flags_nested(&tp->t_pflags, PF_FSTRANS);
437a255a
DC
150 rwsem_acquire_read(&VFS_I(ip)->i_sb->s_writers.lock_map[SB_FREEZE_FS-1],
151 0, 1, _THIS_IP_);
281627df 152
aa6bf01d 153 xfs_ilock(ip, XFS_ILOCK_EXCL);
6923e686 154 isize = xfs_new_eof(ip, ioend->io_offset + ioend->io_size);
281627df
CH
155 if (!isize) {
156 xfs_iunlock(ip, XFS_ILOCK_EXCL);
157 xfs_trans_cancel(tp, 0);
158 return 0;
ba87ea69
LM
159 }
160
281627df
CH
161 trace_xfs_setfilesize(ip, ioend->io_offset, ioend->io_size);
162
163 ip->i_d.di_size = isize;
164 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
165 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
166
167 return xfs_trans_commit(tp, 0);
77d7a0c2
DC
168}
169
170/*
209fb87a 171 * Schedule IO completion handling on the final put of an ioend.
fc0063c4
CH
172 *
173 * If there is no work to do we might as well call it a day and free the
174 * ioend right now.
77d7a0c2
DC
175 */
176STATIC void
177xfs_finish_ioend(
209fb87a 178 struct xfs_ioend *ioend)
77d7a0c2
DC
179{
180 if (atomic_dec_and_test(&ioend->io_remaining)) {
aa6bf01d
CH
181 struct xfs_mount *mp = XFS_I(ioend->io_inode)->i_mount;
182
0d882a36 183 if (ioend->io_type == XFS_IO_UNWRITTEN)
aa6bf01d 184 queue_work(mp->m_unwritten_workqueue, &ioend->io_work);
437a255a
DC
185 else if (ioend->io_append_trans ||
186 (ioend->io_isdirect && xfs_ioend_is_append(ioend)))
aa6bf01d 187 queue_work(mp->m_data_workqueue, &ioend->io_work);
fc0063c4
CH
188 else
189 xfs_destroy_ioend(ioend);
77d7a0c2 190 }
ba87ea69
LM
191}
192
0829c360 193/*
5ec4fabb 194 * IO write completion.
f6d6d4fc
CH
195 */
196STATIC void
5ec4fabb 197xfs_end_io(
77d7a0c2 198 struct work_struct *work)
0829c360 199{
77d7a0c2
DC
200 xfs_ioend_t *ioend = container_of(work, xfs_ioend_t, io_work);
201 struct xfs_inode *ip = XFS_I(ioend->io_inode);
69418932 202 int error = 0;
ba87ea69 203
04f658ee 204 if (XFS_FORCED_SHUTDOWN(ip->i_mount)) {
810627d9 205 ioend->io_error = -EIO;
04f658ee
CH
206 goto done;
207 }
208 if (ioend->io_error)
209 goto done;
210
5ec4fabb
CH
211 /*
212 * For unwritten extents we need to issue transactions to convert a
213 * range to normal written extens after the data I/O has finished.
214 */
0d882a36 215 if (ioend->io_type == XFS_IO_UNWRITTEN) {
437a255a
DC
216 error = xfs_iomap_write_unwritten(ip, ioend->io_offset,
217 ioend->io_size);
218 } else if (ioend->io_isdirect && xfs_ioend_is_append(ioend)) {
281627df 219 /*
437a255a
DC
220 * For direct I/O we do not know if we need to allocate blocks
221 * or not so we can't preallocate an append transaction as that
222 * results in nested reservations and log space deadlocks. Hence
223 * allocate the transaction here. While this is sub-optimal and
224 * can block IO completion for some time, we're stuck with doing
225 * it this way until we can pass the ioend to the direct IO
226 * allocation callbacks and avoid nesting that way.
281627df 227 */
437a255a
DC
228 error = xfs_setfilesize_trans_alloc(ioend);
229 if (error)
04f658ee 230 goto done;
437a255a 231 error = xfs_setfilesize(ioend);
281627df
CH
232 } else if (ioend->io_append_trans) {
233 error = xfs_setfilesize(ioend);
84803fb7 234 } else {
281627df 235 ASSERT(!xfs_ioend_is_append(ioend));
5ec4fabb 236 }
ba87ea69 237
04f658ee 238done:
437a255a
DC
239 if (error)
240 ioend->io_error = -error;
aa6bf01d 241 xfs_destroy_ioend(ioend);
c626d174
DC
242}
243
209fb87a
CH
244/*
245 * Call IO completion handling in caller context on the final put of an ioend.
246 */
247STATIC void
248xfs_finish_ioend_sync(
249 struct xfs_ioend *ioend)
250{
251 if (atomic_dec_and_test(&ioend->io_remaining))
252 xfs_end_io(&ioend->io_work);
253}
254
0829c360
CH
255/*
256 * Allocate and initialise an IO completion structure.
257 * We need to track unwritten extent write completion here initially.
258 * We'll need to extend this for updating the ondisk inode size later
259 * (vs. incore size).
260 */
261STATIC xfs_ioend_t *
262xfs_alloc_ioend(
f6d6d4fc
CH
263 struct inode *inode,
264 unsigned int type)
0829c360
CH
265{
266 xfs_ioend_t *ioend;
267
268 ioend = mempool_alloc(xfs_ioend_pool, GFP_NOFS);
269
270 /*
271 * Set the count to 1 initially, which will prevent an I/O
272 * completion callback from happening before we have started
273 * all the I/O from calling the completion routine too early.
274 */
275 atomic_set(&ioend->io_remaining, 1);
281627df 276 ioend->io_isdirect = 0;
7d04a335 277 ioend->io_error = 0;
f6d6d4fc
CH
278 ioend->io_list = NULL;
279 ioend->io_type = type;
b677c210 280 ioend->io_inode = inode;
c1a073bd 281 ioend->io_buffer_head = NULL;
f6d6d4fc 282 ioend->io_buffer_tail = NULL;
0829c360
CH
283 ioend->io_offset = 0;
284 ioend->io_size = 0;
281627df 285 ioend->io_append_trans = NULL;
0829c360 286
5ec4fabb 287 INIT_WORK(&ioend->io_work, xfs_end_io);
0829c360
CH
288 return ioend;
289}
290
1da177e4
LT
291STATIC int
292xfs_map_blocks(
293 struct inode *inode,
294 loff_t offset,
207d0416 295 struct xfs_bmbt_irec *imap,
a206c817
CH
296 int type,
297 int nonblocking)
1da177e4 298{
a206c817
CH
299 struct xfs_inode *ip = XFS_I(inode);
300 struct xfs_mount *mp = ip->i_mount;
ed1e7b7e 301 ssize_t count = 1 << inode->i_blkbits;
a206c817
CH
302 xfs_fileoff_t offset_fsb, end_fsb;
303 int error = 0;
a206c817
CH
304 int bmapi_flags = XFS_BMAPI_ENTIRE;
305 int nimaps = 1;
306
307 if (XFS_FORCED_SHUTDOWN(mp))
308 return -XFS_ERROR(EIO);
309
0d882a36 310 if (type == XFS_IO_UNWRITTEN)
a206c817 311 bmapi_flags |= XFS_BMAPI_IGSTATE;
8ff2957d
CH
312
313 if (!xfs_ilock_nowait(ip, XFS_ILOCK_SHARED)) {
314 if (nonblocking)
315 return -XFS_ERROR(EAGAIN);
316 xfs_ilock(ip, XFS_ILOCK_SHARED);
a206c817
CH
317 }
318
8ff2957d
CH
319 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
320 (ip->i_df.if_flags & XFS_IFEXTENTS));
d2c28191 321 ASSERT(offset <= mp->m_super->s_maxbytes);
8ff2957d 322
d2c28191
DC
323 if (offset + count > mp->m_super->s_maxbytes)
324 count = mp->m_super->s_maxbytes - offset;
a206c817
CH
325 end_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)offset + count);
326 offset_fsb = XFS_B_TO_FSBT(mp, offset);
5c8ed202
DC
327 error = xfs_bmapi_read(ip, offset_fsb, end_fsb - offset_fsb,
328 imap, &nimaps, bmapi_flags);
8ff2957d 329 xfs_iunlock(ip, XFS_ILOCK_SHARED);
a206c817 330
8ff2957d
CH
331 if (error)
332 return -XFS_ERROR(error);
a206c817 333
0d882a36 334 if (type == XFS_IO_DELALLOC &&
8ff2957d 335 (!nimaps || isnullstartblock(imap->br_startblock))) {
a206c817
CH
336 error = xfs_iomap_write_allocate(ip, offset, count, imap);
337 if (!error)
338 trace_xfs_map_blocks_alloc(ip, offset, count, type, imap);
8ff2957d 339 return -XFS_ERROR(error);
a206c817
CH
340 }
341
8ff2957d 342#ifdef DEBUG
0d882a36 343 if (type == XFS_IO_UNWRITTEN) {
8ff2957d
CH
344 ASSERT(nimaps);
345 ASSERT(imap->br_startblock != HOLESTARTBLOCK);
346 ASSERT(imap->br_startblock != DELAYSTARTBLOCK);
347 }
348#endif
349 if (nimaps)
350 trace_xfs_map_blocks_found(ip, offset, count, type, imap);
351 return 0;
1da177e4
LT
352}
353
b8f82a4a 354STATIC int
558e6891 355xfs_imap_valid(
8699bb0a 356 struct inode *inode,
207d0416 357 struct xfs_bmbt_irec *imap,
558e6891 358 xfs_off_t offset)
1da177e4 359{
558e6891 360 offset >>= inode->i_blkbits;
8699bb0a 361
558e6891
CH
362 return offset >= imap->br_startoff &&
363 offset < imap->br_startoff + imap->br_blockcount;
1da177e4
LT
364}
365
f6d6d4fc
CH
366/*
367 * BIO completion handler for buffered IO.
368 */
782e3b3b 369STATIC void
f6d6d4fc
CH
370xfs_end_bio(
371 struct bio *bio,
f6d6d4fc
CH
372 int error)
373{
374 xfs_ioend_t *ioend = bio->bi_private;
375
f6d6d4fc 376 ASSERT(atomic_read(&bio->bi_cnt) >= 1);
7d04a335 377 ioend->io_error = test_bit(BIO_UPTODATE, &bio->bi_flags) ? 0 : error;
f6d6d4fc
CH
378
379 /* Toss bio and pass work off to an xfsdatad thread */
f6d6d4fc
CH
380 bio->bi_private = NULL;
381 bio->bi_end_io = NULL;
f6d6d4fc 382 bio_put(bio);
7d04a335 383
209fb87a 384 xfs_finish_ioend(ioend);
f6d6d4fc
CH
385}
386
387STATIC void
388xfs_submit_ioend_bio(
06342cf8
CH
389 struct writeback_control *wbc,
390 xfs_ioend_t *ioend,
391 struct bio *bio)
f6d6d4fc
CH
392{
393 atomic_inc(&ioend->io_remaining);
f6d6d4fc
CH
394 bio->bi_private = ioend;
395 bio->bi_end_io = xfs_end_bio;
721a9602 396 submit_bio(wbc->sync_mode == WB_SYNC_ALL ? WRITE_SYNC : WRITE, bio);
f6d6d4fc
CH
397}
398
399STATIC struct bio *
400xfs_alloc_ioend_bio(
401 struct buffer_head *bh)
402{
f6d6d4fc 403 int nvecs = bio_get_nr_vecs(bh->b_bdev);
221cb251 404 struct bio *bio = bio_alloc(GFP_NOIO, nvecs);
f6d6d4fc
CH
405
406 ASSERT(bio->bi_private == NULL);
407 bio->bi_sector = bh->b_blocknr * (bh->b_size >> 9);
408 bio->bi_bdev = bh->b_bdev;
f6d6d4fc
CH
409 return bio;
410}
411
412STATIC void
413xfs_start_buffer_writeback(
414 struct buffer_head *bh)
415{
416 ASSERT(buffer_mapped(bh));
417 ASSERT(buffer_locked(bh));
418 ASSERT(!buffer_delay(bh));
419 ASSERT(!buffer_unwritten(bh));
420
421 mark_buffer_async_write(bh);
422 set_buffer_uptodate(bh);
423 clear_buffer_dirty(bh);
424}
425
426STATIC void
427xfs_start_page_writeback(
428 struct page *page,
f6d6d4fc
CH
429 int clear_dirty,
430 int buffers)
431{
432 ASSERT(PageLocked(page));
433 ASSERT(!PageWriteback(page));
f6d6d4fc 434 if (clear_dirty)
92132021
DC
435 clear_page_dirty_for_io(page);
436 set_page_writeback(page);
f6d6d4fc 437 unlock_page(page);
1f7decf6
FW
438 /* If no buffers on the page are to be written, finish it here */
439 if (!buffers)
f6d6d4fc 440 end_page_writeback(page);
f6d6d4fc
CH
441}
442
c7c1a7d8 443static inline int xfs_bio_add_buffer(struct bio *bio, struct buffer_head *bh)
f6d6d4fc
CH
444{
445 return bio_add_page(bio, bh->b_page, bh->b_size, bh_offset(bh));
446}
447
448/*
d88992f6
DC
449 * Submit all of the bios for all of the ioends we have saved up, covering the
450 * initial writepage page and also any probed pages.
451 *
452 * Because we may have multiple ioends spanning a page, we need to start
453 * writeback on all the buffers before we submit them for I/O. If we mark the
454 * buffers as we got, then we can end up with a page that only has buffers
455 * marked async write and I/O complete on can occur before we mark the other
456 * buffers async write.
457 *
458 * The end result of this is that we trip a bug in end_page_writeback() because
459 * we call it twice for the one page as the code in end_buffer_async_write()
460 * assumes that all buffers on the page are started at the same time.
461 *
462 * The fix is two passes across the ioend list - one to start writeback on the
c41564b5 463 * buffer_heads, and then submit them for I/O on the second pass.
7bf7f352
DC
464 *
465 * If @fail is non-zero, it means that we have a situation where some part of
466 * the submission process has failed after we have marked paged for writeback
467 * and unlocked them. In this situation, we need to fail the ioend chain rather
468 * than submit it to IO. This typically only happens on a filesystem shutdown.
f6d6d4fc
CH
469 */
470STATIC void
471xfs_submit_ioend(
06342cf8 472 struct writeback_control *wbc,
7bf7f352
DC
473 xfs_ioend_t *ioend,
474 int fail)
f6d6d4fc 475{
d88992f6 476 xfs_ioend_t *head = ioend;
f6d6d4fc
CH
477 xfs_ioend_t *next;
478 struct buffer_head *bh;
479 struct bio *bio;
480 sector_t lastblock = 0;
481
d88992f6
DC
482 /* Pass 1 - start writeback */
483 do {
484 next = ioend->io_list;
221cb251 485 for (bh = ioend->io_buffer_head; bh; bh = bh->b_private)
d88992f6 486 xfs_start_buffer_writeback(bh);
d88992f6
DC
487 } while ((ioend = next) != NULL);
488
489 /* Pass 2 - submit I/O */
490 ioend = head;
f6d6d4fc
CH
491 do {
492 next = ioend->io_list;
493 bio = NULL;
494
7bf7f352
DC
495 /*
496 * If we are failing the IO now, just mark the ioend with an
497 * error and finish it. This will run IO completion immediately
498 * as there is only one reference to the ioend at this point in
499 * time.
500 */
501 if (fail) {
502 ioend->io_error = -fail;
503 xfs_finish_ioend(ioend);
504 continue;
505 }
506
f6d6d4fc 507 for (bh = ioend->io_buffer_head; bh; bh = bh->b_private) {
f6d6d4fc
CH
508
509 if (!bio) {
510 retry:
511 bio = xfs_alloc_ioend_bio(bh);
512 } else if (bh->b_blocknr != lastblock + 1) {
06342cf8 513 xfs_submit_ioend_bio(wbc, ioend, bio);
f6d6d4fc
CH
514 goto retry;
515 }
516
c7c1a7d8 517 if (xfs_bio_add_buffer(bio, bh) != bh->b_size) {
06342cf8 518 xfs_submit_ioend_bio(wbc, ioend, bio);
f6d6d4fc
CH
519 goto retry;
520 }
521
522 lastblock = bh->b_blocknr;
523 }
524 if (bio)
06342cf8 525 xfs_submit_ioend_bio(wbc, ioend, bio);
209fb87a 526 xfs_finish_ioend(ioend);
f6d6d4fc
CH
527 } while ((ioend = next) != NULL);
528}
529
530/*
531 * Cancel submission of all buffer_heads so far in this endio.
532 * Toss the endio too. Only ever called for the initial page
533 * in a writepage request, so only ever one page.
534 */
535STATIC void
536xfs_cancel_ioend(
537 xfs_ioend_t *ioend)
538{
539 xfs_ioend_t *next;
540 struct buffer_head *bh, *next_bh;
541
542 do {
543 next = ioend->io_list;
544 bh = ioend->io_buffer_head;
545 do {
546 next_bh = bh->b_private;
547 clear_buffer_async_write(bh);
548 unlock_buffer(bh);
549 } while ((bh = next_bh) != NULL);
550
f6d6d4fc
CH
551 mempool_free(ioend, xfs_ioend_pool);
552 } while ((ioend = next) != NULL);
553}
554
555/*
556 * Test to see if we've been building up a completion structure for
557 * earlier buffers -- if so, we try to append to this ioend if we
558 * can, otherwise we finish off any current ioend and start another.
559 * Return true if we've finished the given ioend.
560 */
561STATIC void
562xfs_add_to_ioend(
563 struct inode *inode,
564 struct buffer_head *bh,
7336cea8 565 xfs_off_t offset,
f6d6d4fc
CH
566 unsigned int type,
567 xfs_ioend_t **result,
568 int need_ioend)
569{
570 xfs_ioend_t *ioend = *result;
571
572 if (!ioend || need_ioend || type != ioend->io_type) {
573 xfs_ioend_t *previous = *result;
f6d6d4fc 574
f6d6d4fc
CH
575 ioend = xfs_alloc_ioend(inode, type);
576 ioend->io_offset = offset;
577 ioend->io_buffer_head = bh;
578 ioend->io_buffer_tail = bh;
579 if (previous)
580 previous->io_list = ioend;
581 *result = ioend;
582 } else {
583 ioend->io_buffer_tail->b_private = bh;
584 ioend->io_buffer_tail = bh;
585 }
586
587 bh->b_private = NULL;
588 ioend->io_size += bh->b_size;
589}
590
87cbc49c
NS
591STATIC void
592xfs_map_buffer(
046f1685 593 struct inode *inode,
87cbc49c 594 struct buffer_head *bh,
207d0416 595 struct xfs_bmbt_irec *imap,
046f1685 596 xfs_off_t offset)
87cbc49c
NS
597{
598 sector_t bn;
8699bb0a 599 struct xfs_mount *m = XFS_I(inode)->i_mount;
207d0416
CH
600 xfs_off_t iomap_offset = XFS_FSB_TO_B(m, imap->br_startoff);
601 xfs_daddr_t iomap_bn = xfs_fsb_to_db(XFS_I(inode), imap->br_startblock);
87cbc49c 602
207d0416
CH
603 ASSERT(imap->br_startblock != HOLESTARTBLOCK);
604 ASSERT(imap->br_startblock != DELAYSTARTBLOCK);
87cbc49c 605
e513182d 606 bn = (iomap_bn >> (inode->i_blkbits - BBSHIFT)) +
8699bb0a 607 ((offset - iomap_offset) >> inode->i_blkbits);
87cbc49c 608
046f1685 609 ASSERT(bn || XFS_IS_REALTIME_INODE(XFS_I(inode)));
87cbc49c
NS
610
611 bh->b_blocknr = bn;
612 set_buffer_mapped(bh);
613}
614
1da177e4
LT
615STATIC void
616xfs_map_at_offset(
046f1685 617 struct inode *inode,
1da177e4 618 struct buffer_head *bh,
207d0416 619 struct xfs_bmbt_irec *imap,
046f1685 620 xfs_off_t offset)
1da177e4 621{
207d0416
CH
622 ASSERT(imap->br_startblock != HOLESTARTBLOCK);
623 ASSERT(imap->br_startblock != DELAYSTARTBLOCK);
1da177e4 624
207d0416 625 xfs_map_buffer(inode, bh, imap, offset);
1da177e4
LT
626 set_buffer_mapped(bh);
627 clear_buffer_delay(bh);
f6d6d4fc 628 clear_buffer_unwritten(bh);
1da177e4
LT
629}
630
1da177e4 631/*
10ce4444
CH
632 * Test if a given page is suitable for writing as part of an unwritten
633 * or delayed allocate extent.
1da177e4 634 */
10ce4444 635STATIC int
6ffc4db5 636xfs_check_page_type(
10ce4444 637 struct page *page,
f6d6d4fc 638 unsigned int type)
1da177e4 639{
1da177e4 640 if (PageWriteback(page))
10ce4444 641 return 0;
1da177e4
LT
642
643 if (page->mapping && page_has_buffers(page)) {
644 struct buffer_head *bh, *head;
645 int acceptable = 0;
646
647 bh = head = page_buffers(page);
648 do {
f6d6d4fc 649 if (buffer_unwritten(bh))
0d882a36 650 acceptable += (type == XFS_IO_UNWRITTEN);
f6d6d4fc 651 else if (buffer_delay(bh))
0d882a36 652 acceptable += (type == XFS_IO_DELALLOC);
2ddee844 653 else if (buffer_dirty(bh) && buffer_mapped(bh))
0d882a36 654 acceptable += (type == XFS_IO_OVERWRITE);
f6d6d4fc 655 else
1da177e4 656 break;
1da177e4
LT
657 } while ((bh = bh->b_this_page) != head);
658
659 if (acceptable)
10ce4444 660 return 1;
1da177e4
LT
661 }
662
10ce4444 663 return 0;
1da177e4
LT
664}
665
1da177e4
LT
666/*
667 * Allocate & map buffers for page given the extent map. Write it out.
668 * except for the original page of a writepage, this is called on
669 * delalloc/unwritten pages only, for the original page it is possible
670 * that the page has no mapping at all.
671 */
f6d6d4fc 672STATIC int
1da177e4
LT
673xfs_convert_page(
674 struct inode *inode,
675 struct page *page,
10ce4444 676 loff_t tindex,
207d0416 677 struct xfs_bmbt_irec *imap,
f6d6d4fc 678 xfs_ioend_t **ioendp,
2fa24f92 679 struct writeback_control *wbc)
1da177e4 680{
f6d6d4fc 681 struct buffer_head *bh, *head;
9260dc6b
CH
682 xfs_off_t end_offset;
683 unsigned long p_offset;
f6d6d4fc 684 unsigned int type;
24e17b5f 685 int len, page_dirty;
f6d6d4fc 686 int count = 0, done = 0, uptodate = 1;
9260dc6b 687 xfs_off_t offset = page_offset(page);
1da177e4 688
10ce4444
CH
689 if (page->index != tindex)
690 goto fail;
529ae9aa 691 if (!trylock_page(page))
10ce4444
CH
692 goto fail;
693 if (PageWriteback(page))
694 goto fail_unlock_page;
695 if (page->mapping != inode->i_mapping)
696 goto fail_unlock_page;
6ffc4db5 697 if (!xfs_check_page_type(page, (*ioendp)->io_type))
10ce4444
CH
698 goto fail_unlock_page;
699
24e17b5f
NS
700 /*
701 * page_dirty is initially a count of buffers on the page before
c41564b5 702 * EOF and is decremented as we move each into a cleanable state.
9260dc6b
CH
703 *
704 * Derivation:
705 *
706 * End offset is the highest offset that this page should represent.
707 * If we are on the last page, (end_offset & (PAGE_CACHE_SIZE - 1))
708 * will evaluate non-zero and be less than PAGE_CACHE_SIZE and
709 * hence give us the correct page_dirty count. On any other page,
710 * it will be zero and in that case we need page_dirty to be the
711 * count of buffers on the page.
24e17b5f 712 */
9260dc6b
CH
713 end_offset = min_t(unsigned long long,
714 (xfs_off_t)(page->index + 1) << PAGE_CACHE_SHIFT,
715 i_size_read(inode));
716
480d7467
DC
717 /*
718 * If the current map does not span the entire page we are about to try
719 * to write, then give up. The only way we can write a page that spans
720 * multiple mappings in a single writeback iteration is via the
721 * xfs_vm_writepage() function. Data integrity writeback requires the
722 * entire page to be written in a single attempt, otherwise the part of
723 * the page we don't write here doesn't get written as part of the data
724 * integrity sync.
725 *
726 * For normal writeback, we also don't attempt to write partial pages
727 * here as it simply means that write_cache_pages() will see it under
728 * writeback and ignore the page until some point in the future, at
729 * which time this will be the only page in the file that needs
730 * writeback. Hence for more optimal IO patterns, we should always
731 * avoid partial page writeback due to multiple mappings on a page here.
732 */
733 if (!xfs_imap_valid(inode, imap, end_offset))
734 goto fail_unlock_page;
735
24e17b5f 736 len = 1 << inode->i_blkbits;
9260dc6b
CH
737 p_offset = min_t(unsigned long, end_offset & (PAGE_CACHE_SIZE - 1),
738 PAGE_CACHE_SIZE);
739 p_offset = p_offset ? roundup(p_offset, len) : PAGE_CACHE_SIZE;
740 page_dirty = p_offset / len;
24e17b5f 741
1da177e4
LT
742 bh = head = page_buffers(page);
743 do {
9260dc6b 744 if (offset >= end_offset)
1da177e4 745 break;
f6d6d4fc
CH
746 if (!buffer_uptodate(bh))
747 uptodate = 0;
748 if (!(PageUptodate(page) || buffer_uptodate(bh))) {
749 done = 1;
1da177e4 750 continue;
f6d6d4fc
CH
751 }
752
2fa24f92
CH
753 if (buffer_unwritten(bh) || buffer_delay(bh) ||
754 buffer_mapped(bh)) {
9260dc6b 755 if (buffer_unwritten(bh))
0d882a36 756 type = XFS_IO_UNWRITTEN;
2fa24f92 757 else if (buffer_delay(bh))
0d882a36 758 type = XFS_IO_DELALLOC;
2fa24f92 759 else
0d882a36 760 type = XFS_IO_OVERWRITE;
9260dc6b 761
558e6891 762 if (!xfs_imap_valid(inode, imap, offset)) {
f6d6d4fc 763 done = 1;
9260dc6b
CH
764 continue;
765 }
766
ecff71e6 767 lock_buffer(bh);
0d882a36 768 if (type != XFS_IO_OVERWRITE)
2fa24f92 769 xfs_map_at_offset(inode, bh, imap, offset);
89f3b363
CH
770 xfs_add_to_ioend(inode, bh, offset, type,
771 ioendp, done);
772
9260dc6b
CH
773 page_dirty--;
774 count++;
775 } else {
2fa24f92 776 done = 1;
1da177e4 777 }
7336cea8 778 } while (offset += len, (bh = bh->b_this_page) != head);
1da177e4 779
f6d6d4fc
CH
780 if (uptodate && bh == head)
781 SetPageUptodate(page);
782
89f3b363 783 if (count) {
efceab1d
DC
784 if (--wbc->nr_to_write <= 0 &&
785 wbc->sync_mode == WB_SYNC_NONE)
89f3b363 786 done = 1;
1da177e4 787 }
89f3b363 788 xfs_start_page_writeback(page, !page_dirty, count);
f6d6d4fc
CH
789
790 return done;
10ce4444
CH
791 fail_unlock_page:
792 unlock_page(page);
793 fail:
794 return 1;
1da177e4
LT
795}
796
797/*
798 * Convert & write out a cluster of pages in the same extent as defined
799 * by mp and following the start page.
800 */
801STATIC void
802xfs_cluster_write(
803 struct inode *inode,
804 pgoff_t tindex,
207d0416 805 struct xfs_bmbt_irec *imap,
f6d6d4fc 806 xfs_ioend_t **ioendp,
1da177e4 807 struct writeback_control *wbc,
1da177e4
LT
808 pgoff_t tlast)
809{
10ce4444
CH
810 struct pagevec pvec;
811 int done = 0, i;
1da177e4 812
10ce4444
CH
813 pagevec_init(&pvec, 0);
814 while (!done && tindex <= tlast) {
815 unsigned len = min_t(pgoff_t, PAGEVEC_SIZE, tlast - tindex + 1);
816
817 if (!pagevec_lookup(&pvec, inode->i_mapping, tindex, len))
1da177e4 818 break;
10ce4444
CH
819
820 for (i = 0; i < pagevec_count(&pvec); i++) {
821 done = xfs_convert_page(inode, pvec.pages[i], tindex++,
2fa24f92 822 imap, ioendp, wbc);
10ce4444
CH
823 if (done)
824 break;
825 }
826
827 pagevec_release(&pvec);
828 cond_resched();
1da177e4
LT
829 }
830}
831
3ed3a434
DC
832STATIC void
833xfs_vm_invalidatepage(
834 struct page *page,
d47992f8
LC
835 unsigned int offset,
836 unsigned int length)
3ed3a434 837{
34097dfe
LC
838 trace_xfs_invalidatepage(page->mapping->host, page, offset,
839 length);
840 block_invalidatepage(page, offset, length);
3ed3a434
DC
841}
842
843/*
844 * If the page has delalloc buffers on it, we need to punch them out before we
845 * invalidate the page. If we don't, we leave a stale delalloc mapping on the
846 * inode that can trip a BUG() in xfs_get_blocks() later on if a direct IO read
847 * is done on that same region - the delalloc extent is returned when none is
848 * supposed to be there.
849 *
850 * We prevent this by truncating away the delalloc regions on the page before
851 * invalidating it. Because they are delalloc, we can do this without needing a
852 * transaction. Indeed - if we get ENOSPC errors, we have to be able to do this
853 * truncation without a transaction as there is no space left for block
854 * reservation (typically why we see a ENOSPC in writeback).
855 *
856 * This is not a performance critical path, so for now just do the punching a
857 * buffer head at a time.
858 */
859STATIC void
860xfs_aops_discard_page(
861 struct page *page)
862{
863 struct inode *inode = page->mapping->host;
864 struct xfs_inode *ip = XFS_I(inode);
865 struct buffer_head *bh, *head;
866 loff_t offset = page_offset(page);
3ed3a434 867
0d882a36 868 if (!xfs_check_page_type(page, XFS_IO_DELALLOC))
3ed3a434
DC
869 goto out_invalidate;
870
e8c3753c
DC
871 if (XFS_FORCED_SHUTDOWN(ip->i_mount))
872 goto out_invalidate;
873
4f10700a 874 xfs_alert(ip->i_mount,
3ed3a434
DC
875 "page discard on page %p, inode 0x%llx, offset %llu.",
876 page, ip->i_ino, offset);
877
878 xfs_ilock(ip, XFS_ILOCK_EXCL);
879 bh = head = page_buffers(page);
880 do {
3ed3a434 881 int error;
c726de44 882 xfs_fileoff_t start_fsb;
3ed3a434
DC
883
884 if (!buffer_delay(bh))
885 goto next_buffer;
886
c726de44
DC
887 start_fsb = XFS_B_TO_FSBT(ip->i_mount, offset);
888 error = xfs_bmap_punch_delalloc_range(ip, start_fsb, 1);
3ed3a434
DC
889 if (error) {
890 /* something screwed, just bail */
e8c3753c 891 if (!XFS_FORCED_SHUTDOWN(ip->i_mount)) {
4f10700a 892 xfs_alert(ip->i_mount,
3ed3a434 893 "page discard unable to remove delalloc mapping.");
e8c3753c 894 }
3ed3a434
DC
895 break;
896 }
897next_buffer:
c726de44 898 offset += 1 << inode->i_blkbits;
3ed3a434
DC
899
900 } while ((bh = bh->b_this_page) != head);
901
902 xfs_iunlock(ip, XFS_ILOCK_EXCL);
903out_invalidate:
d47992f8 904 xfs_vm_invalidatepage(page, 0, PAGE_CACHE_SIZE);
3ed3a434
DC
905 return;
906}
907
1da177e4 908/*
89f3b363
CH
909 * Write out a dirty page.
910 *
911 * For delalloc space on the page we need to allocate space and flush it.
912 * For unwritten space on the page we need to start the conversion to
913 * regular allocated space.
89f3b363 914 * For any other dirty buffer heads on the page we should flush them.
1da177e4 915 */
1da177e4 916STATIC int
89f3b363
CH
917xfs_vm_writepage(
918 struct page *page,
919 struct writeback_control *wbc)
1da177e4 920{
89f3b363 921 struct inode *inode = page->mapping->host;
f6d6d4fc 922 struct buffer_head *bh, *head;
207d0416 923 struct xfs_bmbt_irec imap;
f6d6d4fc 924 xfs_ioend_t *ioend = NULL, *iohead = NULL;
1da177e4 925 loff_t offset;
f6d6d4fc 926 unsigned int type;
1da177e4 927 __uint64_t end_offset;
bd1556a1 928 pgoff_t end_index, last_index;
ed1e7b7e 929 ssize_t len;
a206c817 930 int err, imap_valid = 0, uptodate = 1;
89f3b363 931 int count = 0;
a206c817 932 int nonblocking = 0;
89f3b363 933
34097dfe 934 trace_xfs_writepage(inode, page, 0, 0);
89f3b363 935
20cb52eb
CH
936 ASSERT(page_has_buffers(page));
937
89f3b363
CH
938 /*
939 * Refuse to write the page out if we are called from reclaim context.
940 *
d4f7a5cb
CH
941 * This avoids stack overflows when called from deeply used stacks in
942 * random callers for direct reclaim or memcg reclaim. We explicitly
943 * allow reclaim from kswapd as the stack usage there is relatively low.
89f3b363 944 *
94054fa3
MG
945 * This should never happen except in the case of a VM regression so
946 * warn about it.
89f3b363 947 */
94054fa3
MG
948 if (WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD)) ==
949 PF_MEMALLOC))
b5420f23 950 goto redirty;
1da177e4 951
89f3b363 952 /*
680a647b
CH
953 * Given that we do not allow direct reclaim to call us, we should
954 * never be called while in a filesystem transaction.
89f3b363 955 */
680a647b 956 if (WARN_ON(current->flags & PF_FSTRANS))
b5420f23 957 goto redirty;
89f3b363 958
1da177e4
LT
959 /* Is this page beyond the end of the file? */
960 offset = i_size_read(inode);
961 end_index = offset >> PAGE_CACHE_SHIFT;
962 last_index = (offset - 1) >> PAGE_CACHE_SHIFT;
963 if (page->index >= end_index) {
6b7a03f0
CH
964 unsigned offset_into_page = offset & (PAGE_CACHE_SIZE - 1);
965
966 /*
ff9a28f6
JK
967 * Skip the page if it is fully outside i_size, e.g. due to a
968 * truncate operation that is in progress. We must redirty the
969 * page so that reclaim stops reclaiming it. Otherwise
970 * xfs_vm_releasepage() is called on it and gets confused.
6b7a03f0 971 */
ff9a28f6
JK
972 if (page->index >= end_index + 1 || offset_into_page == 0)
973 goto redirty;
6b7a03f0
CH
974
975 /*
976 * The page straddles i_size. It must be zeroed out on each
977 * and every writepage invocation because it may be mmapped.
978 * "A file is mapped in multiples of the page size. For a file
979 * that is not a multiple of the page size, the remaining
980 * memory is zeroed when mapped, and writes to that region are
981 * not written out to the file."
982 */
983 zero_user_segment(page, offset_into_page, PAGE_CACHE_SIZE);
1da177e4
LT
984 }
985
f6d6d4fc 986 end_offset = min_t(unsigned long long,
20cb52eb
CH
987 (xfs_off_t)(page->index + 1) << PAGE_CACHE_SHIFT,
988 offset);
24e17b5f 989 len = 1 << inode->i_blkbits;
24e17b5f 990
24e17b5f 991 bh = head = page_buffers(page);
f6d6d4fc 992 offset = page_offset(page);
0d882a36 993 type = XFS_IO_OVERWRITE;
a206c817 994
dbcdde3e 995 if (wbc->sync_mode == WB_SYNC_NONE)
a206c817 996 nonblocking = 1;
f6d6d4fc 997
1da177e4 998 do {
6ac7248e
CH
999 int new_ioend = 0;
1000
1da177e4
LT
1001 if (offset >= end_offset)
1002 break;
1003 if (!buffer_uptodate(bh))
1004 uptodate = 0;
1da177e4 1005
3d9b02e3 1006 /*
ece413f5
CH
1007 * set_page_dirty dirties all buffers in a page, independent
1008 * of their state. The dirty state however is entirely
1009 * meaningless for holes (!mapped && uptodate), so skip
1010 * buffers covering holes here.
3d9b02e3
ES
1011 */
1012 if (!buffer_mapped(bh) && buffer_uptodate(bh)) {
3d9b02e3
ES
1013 imap_valid = 0;
1014 continue;
1015 }
1016
aeea1b1f 1017 if (buffer_unwritten(bh)) {
0d882a36
AR
1018 if (type != XFS_IO_UNWRITTEN) {
1019 type = XFS_IO_UNWRITTEN;
aeea1b1f 1020 imap_valid = 0;
1da177e4 1021 }
aeea1b1f 1022 } else if (buffer_delay(bh)) {
0d882a36
AR
1023 if (type != XFS_IO_DELALLOC) {
1024 type = XFS_IO_DELALLOC;
aeea1b1f 1025 imap_valid = 0;
1da177e4 1026 }
89f3b363 1027 } else if (buffer_uptodate(bh)) {
0d882a36
AR
1028 if (type != XFS_IO_OVERWRITE) {
1029 type = XFS_IO_OVERWRITE;
85da94c6
CH
1030 imap_valid = 0;
1031 }
aeea1b1f 1032 } else {
7d0fa3ec 1033 if (PageUptodate(page))
aeea1b1f 1034 ASSERT(buffer_mapped(bh));
7d0fa3ec
AR
1035 /*
1036 * This buffer is not uptodate and will not be
1037 * written to disk. Ensure that we will put any
1038 * subsequent writeable buffers into a new
1039 * ioend.
1040 */
1041 imap_valid = 0;
aeea1b1f
CH
1042 continue;
1043 }
d5cb48aa 1044
aeea1b1f
CH
1045 if (imap_valid)
1046 imap_valid = xfs_imap_valid(inode, &imap, offset);
1047 if (!imap_valid) {
1048 /*
1049 * If we didn't have a valid mapping then we need to
1050 * put the new mapping into a separate ioend structure.
1051 * This ensures non-contiguous extents always have
1052 * separate ioends, which is particularly important
1053 * for unwritten extent conversion at I/O completion
1054 * time.
1055 */
1056 new_ioend = 1;
1057 err = xfs_map_blocks(inode, offset, &imap, type,
1058 nonblocking);
1059 if (err)
1060 goto error;
1061 imap_valid = xfs_imap_valid(inode, &imap, offset);
1062 }
1063 if (imap_valid) {
ecff71e6 1064 lock_buffer(bh);
0d882a36 1065 if (type != XFS_IO_OVERWRITE)
aeea1b1f
CH
1066 xfs_map_at_offset(inode, bh, &imap, offset);
1067 xfs_add_to_ioend(inode, bh, offset, type, &ioend,
1068 new_ioend);
1069 count++;
1da177e4 1070 }
f6d6d4fc
CH
1071
1072 if (!iohead)
1073 iohead = ioend;
1074
1075 } while (offset += len, ((bh = bh->b_this_page) != head));
1da177e4
LT
1076
1077 if (uptodate && bh == head)
1078 SetPageUptodate(page);
1079
89f3b363 1080 xfs_start_page_writeback(page, 1, count);
1da177e4 1081
7bf7f352
DC
1082 /* if there is no IO to be submitted for this page, we are done */
1083 if (!ioend)
1084 return 0;
1085
1086 ASSERT(iohead);
1087
1088 /*
1089 * Any errors from this point onwards need tobe reported through the IO
1090 * completion path as we have marked the initial page as under writeback
1091 * and unlocked it.
1092 */
1093 if (imap_valid) {
bd1556a1
CH
1094 xfs_off_t end_index;
1095
1096 end_index = imap.br_startoff + imap.br_blockcount;
1097
1098 /* to bytes */
1099 end_index <<= inode->i_blkbits;
1100
1101 /* to pages */
1102 end_index = (end_index - 1) >> PAGE_CACHE_SHIFT;
1103
1104 /* check against file size */
1105 if (end_index > last_index)
1106 end_index = last_index;
8699bb0a 1107
207d0416 1108 xfs_cluster_write(inode, page->index + 1, &imap, &ioend,
2fa24f92 1109 wbc, end_index);
1da177e4
LT
1110 }
1111
281627df 1112
7bf7f352
DC
1113 /*
1114 * Reserve log space if we might write beyond the on-disk inode size.
1115 */
1116 err = 0;
1117 if (ioend->io_type != XFS_IO_UNWRITTEN && xfs_ioend_is_append(ioend))
1118 err = xfs_setfilesize_trans_alloc(ioend);
1119
1120 xfs_submit_ioend(wbc, iohead, err);
f6d6d4fc 1121
89f3b363 1122 return 0;
1da177e4
LT
1123
1124error:
f6d6d4fc
CH
1125 if (iohead)
1126 xfs_cancel_ioend(iohead);
1da177e4 1127
b5420f23
CH
1128 if (err == -EAGAIN)
1129 goto redirty;
1130
20cb52eb 1131 xfs_aops_discard_page(page);
89f3b363
CH
1132 ClearPageUptodate(page);
1133 unlock_page(page);
1da177e4 1134 return err;
f51623b2 1135
b5420f23 1136redirty:
f51623b2
NS
1137 redirty_page_for_writepage(wbc, page);
1138 unlock_page(page);
1139 return 0;
f51623b2
NS
1140}
1141
7d4fb40a
NS
1142STATIC int
1143xfs_vm_writepages(
1144 struct address_space *mapping,
1145 struct writeback_control *wbc)
1146{
b3aea4ed 1147 xfs_iflags_clear(XFS_I(mapping->host), XFS_ITRUNCATED);
7d4fb40a
NS
1148 return generic_writepages(mapping, wbc);
1149}
1150
f51623b2
NS
1151/*
1152 * Called to move a page into cleanable state - and from there
89f3b363 1153 * to be released. The page should already be clean. We always
f51623b2
NS
1154 * have buffer heads in this call.
1155 *
89f3b363 1156 * Returns 1 if the page is ok to release, 0 otherwise.
f51623b2
NS
1157 */
1158STATIC int
238f4c54 1159xfs_vm_releasepage(
f51623b2
NS
1160 struct page *page,
1161 gfp_t gfp_mask)
1162{
20cb52eb 1163 int delalloc, unwritten;
f51623b2 1164
34097dfe 1165 trace_xfs_releasepage(page->mapping->host, page, 0, 0);
238f4c54 1166
20cb52eb 1167 xfs_count_page_state(page, &delalloc, &unwritten);
f51623b2 1168
89f3b363 1169 if (WARN_ON(delalloc))
f51623b2 1170 return 0;
89f3b363 1171 if (WARN_ON(unwritten))
f51623b2
NS
1172 return 0;
1173
f51623b2
NS
1174 return try_to_free_buffers(page);
1175}
1176
1da177e4 1177STATIC int
c2536668 1178__xfs_get_blocks(
1da177e4
LT
1179 struct inode *inode,
1180 sector_t iblock,
1da177e4
LT
1181 struct buffer_head *bh_result,
1182 int create,
f2bde9b8 1183 int direct)
1da177e4 1184{
a206c817
CH
1185 struct xfs_inode *ip = XFS_I(inode);
1186 struct xfs_mount *mp = ip->i_mount;
1187 xfs_fileoff_t offset_fsb, end_fsb;
1188 int error = 0;
1189 int lockmode = 0;
207d0416 1190 struct xfs_bmbt_irec imap;
a206c817 1191 int nimaps = 1;
fdc7ed75
NS
1192 xfs_off_t offset;
1193 ssize_t size;
207d0416 1194 int new = 0;
a206c817
CH
1195
1196 if (XFS_FORCED_SHUTDOWN(mp))
1197 return -XFS_ERROR(EIO);
1da177e4 1198
fdc7ed75 1199 offset = (xfs_off_t)iblock << inode->i_blkbits;
c2536668
NS
1200 ASSERT(bh_result->b_size >= (1 << inode->i_blkbits));
1201 size = bh_result->b_size;
364f358a
LM
1202
1203 if (!create && direct && offset >= i_size_read(inode))
1204 return 0;
1205
507630b2
DC
1206 /*
1207 * Direct I/O is usually done on preallocated files, so try getting
1208 * a block mapping without an exclusive lock first. For buffered
1209 * writes we already have the exclusive iolock anyway, so avoiding
1210 * a lock roundtrip here by taking the ilock exclusive from the
1211 * beginning is a useful micro optimization.
1212 */
1213 if (create && !direct) {
a206c817
CH
1214 lockmode = XFS_ILOCK_EXCL;
1215 xfs_ilock(ip, lockmode);
1216 } else {
1217 lockmode = xfs_ilock_map_shared(ip);
1218 }
f2bde9b8 1219
d2c28191
DC
1220 ASSERT(offset <= mp->m_super->s_maxbytes);
1221 if (offset + size > mp->m_super->s_maxbytes)
1222 size = mp->m_super->s_maxbytes - offset;
a206c817
CH
1223 end_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)offset + size);
1224 offset_fsb = XFS_B_TO_FSBT(mp, offset);
1225
5c8ed202
DC
1226 error = xfs_bmapi_read(ip, offset_fsb, end_fsb - offset_fsb,
1227 &imap, &nimaps, XFS_BMAPI_ENTIRE);
1da177e4 1228 if (error)
a206c817
CH
1229 goto out_unlock;
1230
1231 if (create &&
1232 (!nimaps ||
1233 (imap.br_startblock == HOLESTARTBLOCK ||
1234 imap.br_startblock == DELAYSTARTBLOCK))) {
aff3a9ed 1235 if (direct || xfs_get_extsz_hint(ip)) {
507630b2
DC
1236 /*
1237 * Drop the ilock in preparation for starting the block
1238 * allocation transaction. It will be retaken
1239 * exclusively inside xfs_iomap_write_direct for the
1240 * actual allocation.
1241 */
1242 xfs_iunlock(ip, lockmode);
a206c817
CH
1243 error = xfs_iomap_write_direct(ip, offset, size,
1244 &imap, nimaps);
507630b2
DC
1245 if (error)
1246 return -error;
d3bc815a 1247 new = 1;
a206c817 1248 } else {
507630b2
DC
1249 /*
1250 * Delalloc reservations do not require a transaction,
d3bc815a
DC
1251 * we can go on without dropping the lock here. If we
1252 * are allocating a new delalloc block, make sure that
1253 * we set the new flag so that we mark the buffer new so
1254 * that we know that it is newly allocated if the write
1255 * fails.
507630b2 1256 */
d3bc815a
DC
1257 if (nimaps && imap.br_startblock == HOLESTARTBLOCK)
1258 new = 1;
a206c817 1259 error = xfs_iomap_write_delay(ip, offset, size, &imap);
507630b2
DC
1260 if (error)
1261 goto out_unlock;
1262
1263 xfs_iunlock(ip, lockmode);
a206c817 1264 }
a206c817
CH
1265
1266 trace_xfs_get_blocks_alloc(ip, offset, size, 0, &imap);
1267 } else if (nimaps) {
1268 trace_xfs_get_blocks_found(ip, offset, size, 0, &imap);
507630b2 1269 xfs_iunlock(ip, lockmode);
a206c817
CH
1270 } else {
1271 trace_xfs_get_blocks_notfound(ip, offset, size);
1272 goto out_unlock;
1273 }
1da177e4 1274
207d0416
CH
1275 if (imap.br_startblock != HOLESTARTBLOCK &&
1276 imap.br_startblock != DELAYSTARTBLOCK) {
87cbc49c
NS
1277 /*
1278 * For unwritten extents do not report a disk address on
1da177e4
LT
1279 * the read case (treat as if we're reading into a hole).
1280 */
207d0416
CH
1281 if (create || !ISUNWRITTEN(&imap))
1282 xfs_map_buffer(inode, bh_result, &imap, offset);
1283 if (create && ISUNWRITTEN(&imap)) {
7b7a8665 1284 if (direct) {
1da177e4 1285 bh_result->b_private = inode;
7b7a8665
CH
1286 set_buffer_defer_completion(bh_result);
1287 }
1da177e4 1288 set_buffer_unwritten(bh_result);
1da177e4
LT
1289 }
1290 }
1291
c2536668
NS
1292 /*
1293 * If this is a realtime file, data may be on a different device.
1294 * to that pointed to from the buffer_head b_bdev currently.
1295 */
046f1685 1296 bh_result->b_bdev = xfs_find_bdev_for_inode(inode);
1da177e4 1297
c2536668 1298 /*
549054af
DC
1299 * If we previously allocated a block out beyond eof and we are now
1300 * coming back to use it then we will need to flag it as new even if it
1301 * has a disk address.
1302 *
1303 * With sub-block writes into unwritten extents we also need to mark
1304 * the buffer as new so that the unwritten parts of the buffer gets
1305 * correctly zeroed.
1da177e4
LT
1306 */
1307 if (create &&
1308 ((!buffer_mapped(bh_result) && !buffer_uptodate(bh_result)) ||
549054af 1309 (offset >= i_size_read(inode)) ||
207d0416 1310 (new || ISUNWRITTEN(&imap))))
1da177e4 1311 set_buffer_new(bh_result);
1da177e4 1312
207d0416 1313 if (imap.br_startblock == DELAYSTARTBLOCK) {
1da177e4
LT
1314 BUG_ON(direct);
1315 if (create) {
1316 set_buffer_uptodate(bh_result);
1317 set_buffer_mapped(bh_result);
1318 set_buffer_delay(bh_result);
1319 }
1320 }
1321
2b8f12b7
CH
1322 /*
1323 * If this is O_DIRECT or the mpage code calling tell them how large
1324 * the mapping is, so that we can avoid repeated get_blocks calls.
1325 */
c2536668 1326 if (direct || size > (1 << inode->i_blkbits)) {
2b8f12b7
CH
1327 xfs_off_t mapping_size;
1328
1329 mapping_size = imap.br_startoff + imap.br_blockcount - iblock;
1330 mapping_size <<= inode->i_blkbits;
1331
1332 ASSERT(mapping_size > 0);
1333 if (mapping_size > size)
1334 mapping_size = size;
1335 if (mapping_size > LONG_MAX)
1336 mapping_size = LONG_MAX;
1337
1338 bh_result->b_size = mapping_size;
1da177e4
LT
1339 }
1340
1341 return 0;
a206c817
CH
1342
1343out_unlock:
1344 xfs_iunlock(ip, lockmode);
1345 return -error;
1da177e4
LT
1346}
1347
1348int
c2536668 1349xfs_get_blocks(
1da177e4
LT
1350 struct inode *inode,
1351 sector_t iblock,
1352 struct buffer_head *bh_result,
1353 int create)
1354{
f2bde9b8 1355 return __xfs_get_blocks(inode, iblock, bh_result, create, 0);
1da177e4
LT
1356}
1357
1358STATIC int
e4c573bb 1359xfs_get_blocks_direct(
1da177e4
LT
1360 struct inode *inode,
1361 sector_t iblock,
1da177e4
LT
1362 struct buffer_head *bh_result,
1363 int create)
1364{
f2bde9b8 1365 return __xfs_get_blocks(inode, iblock, bh_result, create, 1);
1da177e4
LT
1366}
1367
209fb87a
CH
1368/*
1369 * Complete a direct I/O write request.
1370 *
1371 * If the private argument is non-NULL __xfs_get_blocks signals us that we
1372 * need to issue a transaction to convert the range from unwritten to written
1373 * extents. In case this is regular synchronous I/O we just call xfs_end_io
25985edc 1374 * to do this and we are done. But in case this was a successful AIO
209fb87a
CH
1375 * request this handler is called from interrupt context, from which we
1376 * can't start transactions. In that case offload the I/O completion to
1377 * the workqueues we also use for buffered I/O completion.
1378 */
f0973863 1379STATIC void
209fb87a
CH
1380xfs_end_io_direct_write(
1381 struct kiocb *iocb,
1382 loff_t offset,
1383 ssize_t size,
7b7a8665 1384 void *private)
f0973863 1385{
209fb87a 1386 struct xfs_ioend *ioend = iocb->private;
f0973863 1387
2813d682
CH
1388 /*
1389 * While the generic direct I/O code updates the inode size, it does
1390 * so only after the end_io handler is called, which means our
1391 * end_io handler thinks the on-disk size is outside the in-core
1392 * size. To prevent this just update it a little bit earlier here.
1393 */
1394 if (offset + size > i_size_read(ioend->io_inode))
1395 i_size_write(ioend->io_inode, offset + size);
1396
f0973863 1397 /*
209fb87a
CH
1398 * blockdev_direct_IO can return an error even after the I/O
1399 * completion handler was called. Thus we need to protect
1400 * against double-freeing.
f0973863 1401 */
209fb87a
CH
1402 iocb->private = NULL;
1403
ba87ea69
LM
1404 ioend->io_offset = offset;
1405 ioend->io_size = size;
209fb87a 1406 if (private && size > 0)
0d882a36 1407 ioend->io_type = XFS_IO_UNWRITTEN;
209fb87a 1408
7b7a8665 1409 xfs_finish_ioend_sync(ioend);
f0973863
CH
1410}
1411
1da177e4 1412STATIC ssize_t
e4c573bb 1413xfs_vm_direct_IO(
1da177e4
LT
1414 int rw,
1415 struct kiocb *iocb,
1416 const struct iovec *iov,
1417 loff_t offset,
1418 unsigned long nr_segs)
1419{
209fb87a
CH
1420 struct inode *inode = iocb->ki_filp->f_mapping->host;
1421 struct block_device *bdev = xfs_find_bdev_for_inode(inode);
281627df 1422 struct xfs_ioend *ioend = NULL;
209fb87a
CH
1423 ssize_t ret;
1424
1425 if (rw & WRITE) {
281627df
CH
1426 size_t size = iov_length(iov, nr_segs);
1427
1428 /*
437a255a
DC
1429 * We cannot preallocate a size update transaction here as we
1430 * don't know whether allocation is necessary or not. Hence we
1431 * can only tell IO completion that one is necessary if we are
1432 * not doing unwritten extent conversion.
281627df 1433 */
0d882a36 1434 iocb->private = ioend = xfs_alloc_ioend(inode, XFS_IO_DIRECT);
437a255a 1435 if (offset + size > XFS_I(inode)->i_d.di_size)
281627df 1436 ioend->io_isdirect = 1;
209fb87a 1437
eafdc7d1
CH
1438 ret = __blockdev_direct_IO(rw, iocb, inode, bdev, iov,
1439 offset, nr_segs,
1440 xfs_get_blocks_direct,
1441 xfs_end_io_direct_write, NULL, 0);
209fb87a 1442 if (ret != -EIOCBQUEUED && iocb->private)
437a255a 1443 goto out_destroy_ioend;
209fb87a 1444 } else {
eafdc7d1
CH
1445 ret = __blockdev_direct_IO(rw, iocb, inode, bdev, iov,
1446 offset, nr_segs,
1447 xfs_get_blocks_direct,
1448 NULL, NULL, 0);
209fb87a 1449 }
f0973863 1450
f0973863 1451 return ret;
281627df 1452
281627df
CH
1453out_destroy_ioend:
1454 xfs_destroy_ioend(ioend);
1455 return ret;
1da177e4
LT
1456}
1457
d3bc815a
DC
1458/*
1459 * Punch out the delalloc blocks we have already allocated.
1460 *
1461 * Don't bother with xfs_setattr given that nothing can have made it to disk yet
1462 * as the page is still locked at this point.
1463 */
1464STATIC void
1465xfs_vm_kill_delalloc_range(
1466 struct inode *inode,
1467 loff_t start,
1468 loff_t end)
1469{
1470 struct xfs_inode *ip = XFS_I(inode);
1471 xfs_fileoff_t start_fsb;
1472 xfs_fileoff_t end_fsb;
1473 int error;
1474
1475 start_fsb = XFS_B_TO_FSB(ip->i_mount, start);
1476 end_fsb = XFS_B_TO_FSB(ip->i_mount, end);
1477 if (end_fsb <= start_fsb)
1478 return;
1479
1480 xfs_ilock(ip, XFS_ILOCK_EXCL);
1481 error = xfs_bmap_punch_delalloc_range(ip, start_fsb,
1482 end_fsb - start_fsb);
1483 if (error) {
1484 /* something screwed, just bail */
1485 if (!XFS_FORCED_SHUTDOWN(ip->i_mount)) {
1486 xfs_alert(ip->i_mount,
1487 "xfs_vm_write_failed: unable to clean up ino %lld",
1488 ip->i_ino);
1489 }
1490 }
1491 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1492}
1493
fa9b227e
CH
1494STATIC void
1495xfs_vm_write_failed(
d3bc815a
DC
1496 struct inode *inode,
1497 struct page *page,
1498 loff_t pos,
1499 unsigned len)
fa9b227e 1500{
58e59854 1501 loff_t block_offset;
d3bc815a
DC
1502 loff_t block_start;
1503 loff_t block_end;
1504 loff_t from = pos & (PAGE_CACHE_SIZE - 1);
1505 loff_t to = from + len;
1506 struct buffer_head *bh, *head;
fa9b227e 1507
58e59854
JL
1508 /*
1509 * The request pos offset might be 32 or 64 bit, this is all fine
1510 * on 64-bit platform. However, for 64-bit pos request on 32-bit
1511 * platform, the high 32-bit will be masked off if we evaluate the
1512 * block_offset via (pos & PAGE_MASK) because the PAGE_MASK is
1513 * 0xfffff000 as an unsigned long, hence the result is incorrect
1514 * which could cause the following ASSERT failed in most cases.
1515 * In order to avoid this, we can evaluate the block_offset of the
1516 * start of the page by using shifts rather than masks the mismatch
1517 * problem.
1518 */
1519 block_offset = (pos >> PAGE_CACHE_SHIFT) << PAGE_CACHE_SHIFT;
1520
d3bc815a 1521 ASSERT(block_offset + from == pos);
c726de44 1522
d3bc815a
DC
1523 head = page_buffers(page);
1524 block_start = 0;
1525 for (bh = head; bh != head || !block_start;
1526 bh = bh->b_this_page, block_start = block_end,
1527 block_offset += bh->b_size) {
1528 block_end = block_start + bh->b_size;
c726de44 1529
d3bc815a
DC
1530 /* skip buffers before the write */
1531 if (block_end <= from)
1532 continue;
1533
1534 /* if the buffer is after the write, we're done */
1535 if (block_start >= to)
1536 break;
1537
1538 if (!buffer_delay(bh))
1539 continue;
1540
1541 if (!buffer_new(bh) && block_offset < i_size_read(inode))
1542 continue;
1543
1544 xfs_vm_kill_delalloc_range(inode, block_offset,
1545 block_offset + bh->b_size);
fa9b227e 1546 }
d3bc815a 1547
fa9b227e
CH
1548}
1549
d3bc815a
DC
1550/*
1551 * This used to call block_write_begin(), but it unlocks and releases the page
1552 * on error, and we need that page to be able to punch stale delalloc blocks out
1553 * on failure. hence we copy-n-waste it here and call xfs_vm_write_failed() at
1554 * the appropriate point.
1555 */
f51623b2 1556STATIC int
d79689c7 1557xfs_vm_write_begin(
f51623b2 1558 struct file *file,
d79689c7
NP
1559 struct address_space *mapping,
1560 loff_t pos,
1561 unsigned len,
1562 unsigned flags,
1563 struct page **pagep,
1564 void **fsdata)
f51623b2 1565{
d3bc815a
DC
1566 pgoff_t index = pos >> PAGE_CACHE_SHIFT;
1567 struct page *page;
1568 int status;
155130a4 1569
d3bc815a
DC
1570 ASSERT(len <= PAGE_CACHE_SIZE);
1571
1572 page = grab_cache_page_write_begin(mapping, index,
1573 flags | AOP_FLAG_NOFS);
1574 if (!page)
1575 return -ENOMEM;
1576
1577 status = __block_write_begin(page, pos, len, xfs_get_blocks);
1578 if (unlikely(status)) {
1579 struct inode *inode = mapping->host;
1580
1581 xfs_vm_write_failed(inode, page, pos, len);
1582 unlock_page(page);
1583
1584 if (pos + len > i_size_read(inode))
7caef267 1585 truncate_pagecache(inode, i_size_read(inode));
d3bc815a
DC
1586
1587 page_cache_release(page);
1588 page = NULL;
1589 }
1590
1591 *pagep = page;
1592 return status;
fa9b227e
CH
1593}
1594
d3bc815a
DC
1595/*
1596 * On failure, we only need to kill delalloc blocks beyond EOF because they
1597 * will never be written. For blocks within EOF, generic_write_end() zeros them
1598 * so they are safe to leave alone and be written with all the other valid data.
1599 */
fa9b227e
CH
1600STATIC int
1601xfs_vm_write_end(
1602 struct file *file,
1603 struct address_space *mapping,
1604 loff_t pos,
1605 unsigned len,
1606 unsigned copied,
1607 struct page *page,
1608 void *fsdata)
1609{
1610 int ret;
155130a4 1611
d3bc815a
DC
1612 ASSERT(len <= PAGE_CACHE_SIZE);
1613
fa9b227e 1614 ret = generic_write_end(file, mapping, pos, len, copied, page, fsdata);
d3bc815a
DC
1615 if (unlikely(ret < len)) {
1616 struct inode *inode = mapping->host;
1617 size_t isize = i_size_read(inode);
1618 loff_t to = pos + len;
1619
1620 if (to > isize) {
7caef267 1621 truncate_pagecache(inode, isize);
d3bc815a
DC
1622 xfs_vm_kill_delalloc_range(inode, isize, to);
1623 }
1624 }
155130a4 1625 return ret;
f51623b2 1626}
1da177e4
LT
1627
1628STATIC sector_t
e4c573bb 1629xfs_vm_bmap(
1da177e4
LT
1630 struct address_space *mapping,
1631 sector_t block)
1632{
1633 struct inode *inode = (struct inode *)mapping->host;
739bfb2a 1634 struct xfs_inode *ip = XFS_I(inode);
1da177e4 1635
cca28fb8 1636 trace_xfs_vm_bmap(XFS_I(inode));
126468b1 1637 xfs_ilock(ip, XFS_IOLOCK_SHARED);
4bc1ea6b 1638 filemap_write_and_wait(mapping);
126468b1 1639 xfs_iunlock(ip, XFS_IOLOCK_SHARED);
c2536668 1640 return generic_block_bmap(mapping, block, xfs_get_blocks);
1da177e4
LT
1641}
1642
1643STATIC int
e4c573bb 1644xfs_vm_readpage(
1da177e4
LT
1645 struct file *unused,
1646 struct page *page)
1647{
c2536668 1648 return mpage_readpage(page, xfs_get_blocks);
1da177e4
LT
1649}
1650
1651STATIC int
e4c573bb 1652xfs_vm_readpages(
1da177e4
LT
1653 struct file *unused,
1654 struct address_space *mapping,
1655 struct list_head *pages,
1656 unsigned nr_pages)
1657{
c2536668 1658 return mpage_readpages(mapping, pages, nr_pages, xfs_get_blocks);
1da177e4
LT
1659}
1660
f5e54d6e 1661const struct address_space_operations xfs_address_space_operations = {
e4c573bb
NS
1662 .readpage = xfs_vm_readpage,
1663 .readpages = xfs_vm_readpages,
1664 .writepage = xfs_vm_writepage,
7d4fb40a 1665 .writepages = xfs_vm_writepages,
238f4c54
NS
1666 .releasepage = xfs_vm_releasepage,
1667 .invalidatepage = xfs_vm_invalidatepage,
d79689c7 1668 .write_begin = xfs_vm_write_begin,
fa9b227e 1669 .write_end = xfs_vm_write_end,
e4c573bb
NS
1670 .bmap = xfs_vm_bmap,
1671 .direct_IO = xfs_vm_direct_IO,
e965f963 1672 .migratepage = buffer_migrate_page,
bddaafa1 1673 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 1674 .error_remove_page = generic_error_remove_page,
1da177e4 1675};