]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - fs/xfs/xfs_aops.c
Merge tag 'fscache-fixes-20141013' of git://git.kernel.org/pub/scm/linux/kernel/git...
[mirror_ubuntu-zesty-kernel.git] / fs / xfs / xfs_aops.c
CommitLineData
1da177e4 1/*
7b718769
NS
2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
1da177e4 4 *
7b718769
NS
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
1da177e4
LT
7 * published by the Free Software Foundation.
8 *
7b718769
NS
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
1da177e4 13 *
7b718769
NS
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
1da177e4 17 */
1da177e4 18#include "xfs.h"
70a9883c 19#include "xfs_shared.h"
239880ef
DC
20#include "xfs_format.h"
21#include "xfs_log_format.h"
22#include "xfs_trans_resv.h"
1da177e4 23#include "xfs_sb.h"
a844f451 24#include "xfs_ag.h"
1da177e4 25#include "xfs_mount.h"
1da177e4 26#include "xfs_inode.h"
239880ef 27#include "xfs_trans.h"
281627df 28#include "xfs_inode_item.h"
a844f451 29#include "xfs_alloc.h"
1da177e4 30#include "xfs_error.h"
1da177e4 31#include "xfs_iomap.h"
0b1b213f 32#include "xfs_trace.h"
3ed3a434 33#include "xfs_bmap.h"
68988114 34#include "xfs_bmap_util.h"
a4fbe6ab
DC
35#include "xfs_bmap_btree.h"
36#include "xfs_dinode.h"
a27bb332 37#include <linux/aio.h>
5a0e3ad6 38#include <linux/gfp.h>
1da177e4 39#include <linux/mpage.h>
10ce4444 40#include <linux/pagevec.h>
1da177e4
LT
41#include <linux/writeback.h>
42
0b1b213f 43void
f51623b2
NS
44xfs_count_page_state(
45 struct page *page,
46 int *delalloc,
f51623b2
NS
47 int *unwritten)
48{
49 struct buffer_head *bh, *head;
50
20cb52eb 51 *delalloc = *unwritten = 0;
f51623b2
NS
52
53 bh = head = page_buffers(page);
54 do {
20cb52eb 55 if (buffer_unwritten(bh))
f51623b2
NS
56 (*unwritten) = 1;
57 else if (buffer_delay(bh))
58 (*delalloc) = 1;
59 } while ((bh = bh->b_this_page) != head);
60}
61
6214ed44
CH
62STATIC struct block_device *
63xfs_find_bdev_for_inode(
046f1685 64 struct inode *inode)
6214ed44 65{
046f1685 66 struct xfs_inode *ip = XFS_I(inode);
6214ed44
CH
67 struct xfs_mount *mp = ip->i_mount;
68
71ddabb9 69 if (XFS_IS_REALTIME_INODE(ip))
6214ed44
CH
70 return mp->m_rtdev_targp->bt_bdev;
71 else
72 return mp->m_ddev_targp->bt_bdev;
73}
74
f6d6d4fc
CH
75/*
76 * We're now finished for good with this ioend structure.
77 * Update the page state via the associated buffer_heads,
78 * release holds on the inode and bio, and finally free
79 * up memory. Do not use the ioend after this.
80 */
0829c360
CH
81STATIC void
82xfs_destroy_ioend(
83 xfs_ioend_t *ioend)
84{
f6d6d4fc
CH
85 struct buffer_head *bh, *next;
86
87 for (bh = ioend->io_buffer_head; bh; bh = next) {
88 next = bh->b_private;
7d04a335 89 bh->b_end_io(bh, !ioend->io_error);
f6d6d4fc 90 }
583fa586 91
0829c360
CH
92 mempool_free(ioend, xfs_ioend_pool);
93}
94
fc0063c4
CH
95/*
96 * Fast and loose check if this write could update the on-disk inode size.
97 */
98static inline bool xfs_ioend_is_append(struct xfs_ioend *ioend)
99{
100 return ioend->io_offset + ioend->io_size >
101 XFS_I(ioend->io_inode)->i_d.di_size;
102}
103
281627df
CH
104STATIC int
105xfs_setfilesize_trans_alloc(
106 struct xfs_ioend *ioend)
107{
108 struct xfs_mount *mp = XFS_I(ioend->io_inode)->i_mount;
109 struct xfs_trans *tp;
110 int error;
111
112 tp = xfs_trans_alloc(mp, XFS_TRANS_FSYNC_TS);
113
3d3c8b52 114 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_fsyncts, 0, 0);
281627df
CH
115 if (error) {
116 xfs_trans_cancel(tp, 0);
117 return error;
118 }
119
120 ioend->io_append_trans = tp;
121
d9457dc0 122 /*
437a255a 123 * We may pass freeze protection with a transaction. So tell lockdep
d9457dc0
JK
124 * we released it.
125 */
126 rwsem_release(&ioend->io_inode->i_sb->s_writers.lock_map[SB_FREEZE_FS-1],
127 1, _THIS_IP_);
281627df
CH
128 /*
129 * We hand off the transaction to the completion thread now, so
130 * clear the flag here.
131 */
132 current_restore_flags_nested(&tp->t_pflags, PF_FSTRANS);
133 return 0;
134}
135
ba87ea69 136/*
2813d682 137 * Update on-disk file size now that data has been written to disk.
ba87ea69 138 */
281627df 139STATIC int
ba87ea69 140xfs_setfilesize(
aa6bf01d 141 struct xfs_ioend *ioend)
ba87ea69 142{
aa6bf01d 143 struct xfs_inode *ip = XFS_I(ioend->io_inode);
281627df 144 struct xfs_trans *tp = ioend->io_append_trans;
ba87ea69 145 xfs_fsize_t isize;
ba87ea69 146
281627df 147 /*
437a255a
DC
148 * The transaction may have been allocated in the I/O submission thread,
149 * thus we need to mark ourselves as beeing in a transaction manually.
150 * Similarly for freeze protection.
281627df
CH
151 */
152 current_set_flags_nested(&tp->t_pflags, PF_FSTRANS);
437a255a
DC
153 rwsem_acquire_read(&VFS_I(ip)->i_sb->s_writers.lock_map[SB_FREEZE_FS-1],
154 0, 1, _THIS_IP_);
281627df 155
aa6bf01d 156 xfs_ilock(ip, XFS_ILOCK_EXCL);
6923e686 157 isize = xfs_new_eof(ip, ioend->io_offset + ioend->io_size);
281627df
CH
158 if (!isize) {
159 xfs_iunlock(ip, XFS_ILOCK_EXCL);
160 xfs_trans_cancel(tp, 0);
161 return 0;
ba87ea69
LM
162 }
163
281627df
CH
164 trace_xfs_setfilesize(ip, ioend->io_offset, ioend->io_size);
165
166 ip->i_d.di_size = isize;
167 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
168 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
169
170 return xfs_trans_commit(tp, 0);
77d7a0c2
DC
171}
172
173/*
209fb87a 174 * Schedule IO completion handling on the final put of an ioend.
fc0063c4
CH
175 *
176 * If there is no work to do we might as well call it a day and free the
177 * ioend right now.
77d7a0c2
DC
178 */
179STATIC void
180xfs_finish_ioend(
209fb87a 181 struct xfs_ioend *ioend)
77d7a0c2
DC
182{
183 if (atomic_dec_and_test(&ioend->io_remaining)) {
aa6bf01d
CH
184 struct xfs_mount *mp = XFS_I(ioend->io_inode)->i_mount;
185
0d882a36 186 if (ioend->io_type == XFS_IO_UNWRITTEN)
aa6bf01d 187 queue_work(mp->m_unwritten_workqueue, &ioend->io_work);
437a255a
DC
188 else if (ioend->io_append_trans ||
189 (ioend->io_isdirect && xfs_ioend_is_append(ioend)))
aa6bf01d 190 queue_work(mp->m_data_workqueue, &ioend->io_work);
fc0063c4
CH
191 else
192 xfs_destroy_ioend(ioend);
77d7a0c2 193 }
ba87ea69
LM
194}
195
0829c360 196/*
5ec4fabb 197 * IO write completion.
f6d6d4fc
CH
198 */
199STATIC void
5ec4fabb 200xfs_end_io(
77d7a0c2 201 struct work_struct *work)
0829c360 202{
77d7a0c2
DC
203 xfs_ioend_t *ioend = container_of(work, xfs_ioend_t, io_work);
204 struct xfs_inode *ip = XFS_I(ioend->io_inode);
69418932 205 int error = 0;
ba87ea69 206
04f658ee 207 if (XFS_FORCED_SHUTDOWN(ip->i_mount)) {
810627d9 208 ioend->io_error = -EIO;
04f658ee
CH
209 goto done;
210 }
211 if (ioend->io_error)
212 goto done;
213
5ec4fabb
CH
214 /*
215 * For unwritten extents we need to issue transactions to convert a
216 * range to normal written extens after the data I/O has finished.
217 */
0d882a36 218 if (ioend->io_type == XFS_IO_UNWRITTEN) {
437a255a
DC
219 error = xfs_iomap_write_unwritten(ip, ioend->io_offset,
220 ioend->io_size);
221 } else if (ioend->io_isdirect && xfs_ioend_is_append(ioend)) {
281627df 222 /*
437a255a
DC
223 * For direct I/O we do not know if we need to allocate blocks
224 * or not so we can't preallocate an append transaction as that
225 * results in nested reservations and log space deadlocks. Hence
226 * allocate the transaction here. While this is sub-optimal and
227 * can block IO completion for some time, we're stuck with doing
228 * it this way until we can pass the ioend to the direct IO
229 * allocation callbacks and avoid nesting that way.
281627df 230 */
437a255a
DC
231 error = xfs_setfilesize_trans_alloc(ioend);
232 if (error)
04f658ee 233 goto done;
437a255a 234 error = xfs_setfilesize(ioend);
281627df
CH
235 } else if (ioend->io_append_trans) {
236 error = xfs_setfilesize(ioend);
84803fb7 237 } else {
281627df 238 ASSERT(!xfs_ioend_is_append(ioend));
5ec4fabb 239 }
ba87ea69 240
04f658ee 241done:
437a255a 242 if (error)
2451337d 243 ioend->io_error = error;
aa6bf01d 244 xfs_destroy_ioend(ioend);
c626d174
DC
245}
246
209fb87a
CH
247/*
248 * Call IO completion handling in caller context on the final put of an ioend.
249 */
250STATIC void
251xfs_finish_ioend_sync(
252 struct xfs_ioend *ioend)
253{
254 if (atomic_dec_and_test(&ioend->io_remaining))
255 xfs_end_io(&ioend->io_work);
256}
257
0829c360
CH
258/*
259 * Allocate and initialise an IO completion structure.
260 * We need to track unwritten extent write completion here initially.
261 * We'll need to extend this for updating the ondisk inode size later
262 * (vs. incore size).
263 */
264STATIC xfs_ioend_t *
265xfs_alloc_ioend(
f6d6d4fc
CH
266 struct inode *inode,
267 unsigned int type)
0829c360
CH
268{
269 xfs_ioend_t *ioend;
270
271 ioend = mempool_alloc(xfs_ioend_pool, GFP_NOFS);
272
273 /*
274 * Set the count to 1 initially, which will prevent an I/O
275 * completion callback from happening before we have started
276 * all the I/O from calling the completion routine too early.
277 */
278 atomic_set(&ioend->io_remaining, 1);
281627df 279 ioend->io_isdirect = 0;
7d04a335 280 ioend->io_error = 0;
f6d6d4fc
CH
281 ioend->io_list = NULL;
282 ioend->io_type = type;
b677c210 283 ioend->io_inode = inode;
c1a073bd 284 ioend->io_buffer_head = NULL;
f6d6d4fc 285 ioend->io_buffer_tail = NULL;
0829c360
CH
286 ioend->io_offset = 0;
287 ioend->io_size = 0;
281627df 288 ioend->io_append_trans = NULL;
0829c360 289
5ec4fabb 290 INIT_WORK(&ioend->io_work, xfs_end_io);
0829c360
CH
291 return ioend;
292}
293
1da177e4
LT
294STATIC int
295xfs_map_blocks(
296 struct inode *inode,
297 loff_t offset,
207d0416 298 struct xfs_bmbt_irec *imap,
a206c817
CH
299 int type,
300 int nonblocking)
1da177e4 301{
a206c817
CH
302 struct xfs_inode *ip = XFS_I(inode);
303 struct xfs_mount *mp = ip->i_mount;
ed1e7b7e 304 ssize_t count = 1 << inode->i_blkbits;
a206c817
CH
305 xfs_fileoff_t offset_fsb, end_fsb;
306 int error = 0;
a206c817
CH
307 int bmapi_flags = XFS_BMAPI_ENTIRE;
308 int nimaps = 1;
309
310 if (XFS_FORCED_SHUTDOWN(mp))
b474c7ae 311 return -EIO;
a206c817 312
0d882a36 313 if (type == XFS_IO_UNWRITTEN)
a206c817 314 bmapi_flags |= XFS_BMAPI_IGSTATE;
8ff2957d
CH
315
316 if (!xfs_ilock_nowait(ip, XFS_ILOCK_SHARED)) {
317 if (nonblocking)
b474c7ae 318 return -EAGAIN;
8ff2957d 319 xfs_ilock(ip, XFS_ILOCK_SHARED);
a206c817
CH
320 }
321
8ff2957d
CH
322 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
323 (ip->i_df.if_flags & XFS_IFEXTENTS));
d2c28191 324 ASSERT(offset <= mp->m_super->s_maxbytes);
8ff2957d 325
d2c28191
DC
326 if (offset + count > mp->m_super->s_maxbytes)
327 count = mp->m_super->s_maxbytes - offset;
a206c817
CH
328 end_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)offset + count);
329 offset_fsb = XFS_B_TO_FSBT(mp, offset);
5c8ed202
DC
330 error = xfs_bmapi_read(ip, offset_fsb, end_fsb - offset_fsb,
331 imap, &nimaps, bmapi_flags);
8ff2957d 332 xfs_iunlock(ip, XFS_ILOCK_SHARED);
a206c817 333
8ff2957d 334 if (error)
2451337d 335 return error;
a206c817 336
0d882a36 337 if (type == XFS_IO_DELALLOC &&
8ff2957d 338 (!nimaps || isnullstartblock(imap->br_startblock))) {
0799a3e8 339 error = xfs_iomap_write_allocate(ip, offset, imap);
a206c817
CH
340 if (!error)
341 trace_xfs_map_blocks_alloc(ip, offset, count, type, imap);
2451337d 342 return error;
a206c817
CH
343 }
344
8ff2957d 345#ifdef DEBUG
0d882a36 346 if (type == XFS_IO_UNWRITTEN) {
8ff2957d
CH
347 ASSERT(nimaps);
348 ASSERT(imap->br_startblock != HOLESTARTBLOCK);
349 ASSERT(imap->br_startblock != DELAYSTARTBLOCK);
350 }
351#endif
352 if (nimaps)
353 trace_xfs_map_blocks_found(ip, offset, count, type, imap);
354 return 0;
1da177e4
LT
355}
356
b8f82a4a 357STATIC int
558e6891 358xfs_imap_valid(
8699bb0a 359 struct inode *inode,
207d0416 360 struct xfs_bmbt_irec *imap,
558e6891 361 xfs_off_t offset)
1da177e4 362{
558e6891 363 offset >>= inode->i_blkbits;
8699bb0a 364
558e6891
CH
365 return offset >= imap->br_startoff &&
366 offset < imap->br_startoff + imap->br_blockcount;
1da177e4
LT
367}
368
f6d6d4fc
CH
369/*
370 * BIO completion handler for buffered IO.
371 */
782e3b3b 372STATIC void
f6d6d4fc
CH
373xfs_end_bio(
374 struct bio *bio,
f6d6d4fc
CH
375 int error)
376{
377 xfs_ioend_t *ioend = bio->bi_private;
378
f6d6d4fc 379 ASSERT(atomic_read(&bio->bi_cnt) >= 1);
7d04a335 380 ioend->io_error = test_bit(BIO_UPTODATE, &bio->bi_flags) ? 0 : error;
f6d6d4fc
CH
381
382 /* Toss bio and pass work off to an xfsdatad thread */
f6d6d4fc
CH
383 bio->bi_private = NULL;
384 bio->bi_end_io = NULL;
f6d6d4fc 385 bio_put(bio);
7d04a335 386
209fb87a 387 xfs_finish_ioend(ioend);
f6d6d4fc
CH
388}
389
390STATIC void
391xfs_submit_ioend_bio(
06342cf8
CH
392 struct writeback_control *wbc,
393 xfs_ioend_t *ioend,
394 struct bio *bio)
f6d6d4fc
CH
395{
396 atomic_inc(&ioend->io_remaining);
f6d6d4fc
CH
397 bio->bi_private = ioend;
398 bio->bi_end_io = xfs_end_bio;
721a9602 399 submit_bio(wbc->sync_mode == WB_SYNC_ALL ? WRITE_SYNC : WRITE, bio);
f6d6d4fc
CH
400}
401
402STATIC struct bio *
403xfs_alloc_ioend_bio(
404 struct buffer_head *bh)
405{
f6d6d4fc 406 int nvecs = bio_get_nr_vecs(bh->b_bdev);
221cb251 407 struct bio *bio = bio_alloc(GFP_NOIO, nvecs);
f6d6d4fc
CH
408
409 ASSERT(bio->bi_private == NULL);
4f024f37 410 bio->bi_iter.bi_sector = bh->b_blocknr * (bh->b_size >> 9);
f6d6d4fc 411 bio->bi_bdev = bh->b_bdev;
f6d6d4fc
CH
412 return bio;
413}
414
415STATIC void
416xfs_start_buffer_writeback(
417 struct buffer_head *bh)
418{
419 ASSERT(buffer_mapped(bh));
420 ASSERT(buffer_locked(bh));
421 ASSERT(!buffer_delay(bh));
422 ASSERT(!buffer_unwritten(bh));
423
424 mark_buffer_async_write(bh);
425 set_buffer_uptodate(bh);
426 clear_buffer_dirty(bh);
427}
428
429STATIC void
430xfs_start_page_writeback(
431 struct page *page,
f6d6d4fc
CH
432 int clear_dirty,
433 int buffers)
434{
435 ASSERT(PageLocked(page));
436 ASSERT(!PageWriteback(page));
0d085a52
DC
437
438 /*
439 * if the page was not fully cleaned, we need to ensure that the higher
440 * layers come back to it correctly. That means we need to keep the page
441 * dirty, and for WB_SYNC_ALL writeback we need to ensure the
442 * PAGECACHE_TAG_TOWRITE index mark is not removed so another attempt to
443 * write this page in this writeback sweep will be made.
444 */
445 if (clear_dirty) {
92132021 446 clear_page_dirty_for_io(page);
0d085a52
DC
447 set_page_writeback(page);
448 } else
449 set_page_writeback_keepwrite(page);
450
f6d6d4fc 451 unlock_page(page);
0d085a52 452
1f7decf6
FW
453 /* If no buffers on the page are to be written, finish it here */
454 if (!buffers)
f6d6d4fc 455 end_page_writeback(page);
f6d6d4fc
CH
456}
457
c7c1a7d8 458static inline int xfs_bio_add_buffer(struct bio *bio, struct buffer_head *bh)
f6d6d4fc
CH
459{
460 return bio_add_page(bio, bh->b_page, bh->b_size, bh_offset(bh));
461}
462
463/*
d88992f6
DC
464 * Submit all of the bios for all of the ioends we have saved up, covering the
465 * initial writepage page and also any probed pages.
466 *
467 * Because we may have multiple ioends spanning a page, we need to start
468 * writeback on all the buffers before we submit them for I/O. If we mark the
469 * buffers as we got, then we can end up with a page that only has buffers
470 * marked async write and I/O complete on can occur before we mark the other
471 * buffers async write.
472 *
473 * The end result of this is that we trip a bug in end_page_writeback() because
474 * we call it twice for the one page as the code in end_buffer_async_write()
475 * assumes that all buffers on the page are started at the same time.
476 *
477 * The fix is two passes across the ioend list - one to start writeback on the
c41564b5 478 * buffer_heads, and then submit them for I/O on the second pass.
7bf7f352
DC
479 *
480 * If @fail is non-zero, it means that we have a situation where some part of
481 * the submission process has failed after we have marked paged for writeback
482 * and unlocked them. In this situation, we need to fail the ioend chain rather
483 * than submit it to IO. This typically only happens on a filesystem shutdown.
f6d6d4fc
CH
484 */
485STATIC void
486xfs_submit_ioend(
06342cf8 487 struct writeback_control *wbc,
7bf7f352
DC
488 xfs_ioend_t *ioend,
489 int fail)
f6d6d4fc 490{
d88992f6 491 xfs_ioend_t *head = ioend;
f6d6d4fc
CH
492 xfs_ioend_t *next;
493 struct buffer_head *bh;
494 struct bio *bio;
495 sector_t lastblock = 0;
496
d88992f6
DC
497 /* Pass 1 - start writeback */
498 do {
499 next = ioend->io_list;
221cb251 500 for (bh = ioend->io_buffer_head; bh; bh = bh->b_private)
d88992f6 501 xfs_start_buffer_writeback(bh);
d88992f6
DC
502 } while ((ioend = next) != NULL);
503
504 /* Pass 2 - submit I/O */
505 ioend = head;
f6d6d4fc
CH
506 do {
507 next = ioend->io_list;
508 bio = NULL;
509
7bf7f352
DC
510 /*
511 * If we are failing the IO now, just mark the ioend with an
512 * error and finish it. This will run IO completion immediately
513 * as there is only one reference to the ioend at this point in
514 * time.
515 */
516 if (fail) {
2451337d 517 ioend->io_error = fail;
7bf7f352
DC
518 xfs_finish_ioend(ioend);
519 continue;
520 }
521
f6d6d4fc 522 for (bh = ioend->io_buffer_head; bh; bh = bh->b_private) {
f6d6d4fc
CH
523
524 if (!bio) {
525 retry:
526 bio = xfs_alloc_ioend_bio(bh);
527 } else if (bh->b_blocknr != lastblock + 1) {
06342cf8 528 xfs_submit_ioend_bio(wbc, ioend, bio);
f6d6d4fc
CH
529 goto retry;
530 }
531
c7c1a7d8 532 if (xfs_bio_add_buffer(bio, bh) != bh->b_size) {
06342cf8 533 xfs_submit_ioend_bio(wbc, ioend, bio);
f6d6d4fc
CH
534 goto retry;
535 }
536
537 lastblock = bh->b_blocknr;
538 }
539 if (bio)
06342cf8 540 xfs_submit_ioend_bio(wbc, ioend, bio);
209fb87a 541 xfs_finish_ioend(ioend);
f6d6d4fc
CH
542 } while ((ioend = next) != NULL);
543}
544
545/*
546 * Cancel submission of all buffer_heads so far in this endio.
547 * Toss the endio too. Only ever called for the initial page
548 * in a writepage request, so only ever one page.
549 */
550STATIC void
551xfs_cancel_ioend(
552 xfs_ioend_t *ioend)
553{
554 xfs_ioend_t *next;
555 struct buffer_head *bh, *next_bh;
556
557 do {
558 next = ioend->io_list;
559 bh = ioend->io_buffer_head;
560 do {
561 next_bh = bh->b_private;
562 clear_buffer_async_write(bh);
07d08681
BF
563 /*
564 * The unwritten flag is cleared when added to the
565 * ioend. We're not submitting for I/O so mark the
566 * buffer unwritten again for next time around.
567 */
568 if (ioend->io_type == XFS_IO_UNWRITTEN)
569 set_buffer_unwritten(bh);
f6d6d4fc
CH
570 unlock_buffer(bh);
571 } while ((bh = next_bh) != NULL);
572
f6d6d4fc
CH
573 mempool_free(ioend, xfs_ioend_pool);
574 } while ((ioend = next) != NULL);
575}
576
577/*
578 * Test to see if we've been building up a completion structure for
579 * earlier buffers -- if so, we try to append to this ioend if we
580 * can, otherwise we finish off any current ioend and start another.
581 * Return true if we've finished the given ioend.
582 */
583STATIC void
584xfs_add_to_ioend(
585 struct inode *inode,
586 struct buffer_head *bh,
7336cea8 587 xfs_off_t offset,
f6d6d4fc
CH
588 unsigned int type,
589 xfs_ioend_t **result,
590 int need_ioend)
591{
592 xfs_ioend_t *ioend = *result;
593
594 if (!ioend || need_ioend || type != ioend->io_type) {
595 xfs_ioend_t *previous = *result;
f6d6d4fc 596
f6d6d4fc
CH
597 ioend = xfs_alloc_ioend(inode, type);
598 ioend->io_offset = offset;
599 ioend->io_buffer_head = bh;
600 ioend->io_buffer_tail = bh;
601 if (previous)
602 previous->io_list = ioend;
603 *result = ioend;
604 } else {
605 ioend->io_buffer_tail->b_private = bh;
606 ioend->io_buffer_tail = bh;
607 }
608
609 bh->b_private = NULL;
610 ioend->io_size += bh->b_size;
611}
612
87cbc49c
NS
613STATIC void
614xfs_map_buffer(
046f1685 615 struct inode *inode,
87cbc49c 616 struct buffer_head *bh,
207d0416 617 struct xfs_bmbt_irec *imap,
046f1685 618 xfs_off_t offset)
87cbc49c
NS
619{
620 sector_t bn;
8699bb0a 621 struct xfs_mount *m = XFS_I(inode)->i_mount;
207d0416
CH
622 xfs_off_t iomap_offset = XFS_FSB_TO_B(m, imap->br_startoff);
623 xfs_daddr_t iomap_bn = xfs_fsb_to_db(XFS_I(inode), imap->br_startblock);
87cbc49c 624
207d0416
CH
625 ASSERT(imap->br_startblock != HOLESTARTBLOCK);
626 ASSERT(imap->br_startblock != DELAYSTARTBLOCK);
87cbc49c 627
e513182d 628 bn = (iomap_bn >> (inode->i_blkbits - BBSHIFT)) +
8699bb0a 629 ((offset - iomap_offset) >> inode->i_blkbits);
87cbc49c 630
046f1685 631 ASSERT(bn || XFS_IS_REALTIME_INODE(XFS_I(inode)));
87cbc49c
NS
632
633 bh->b_blocknr = bn;
634 set_buffer_mapped(bh);
635}
636
1da177e4
LT
637STATIC void
638xfs_map_at_offset(
046f1685 639 struct inode *inode,
1da177e4 640 struct buffer_head *bh,
207d0416 641 struct xfs_bmbt_irec *imap,
046f1685 642 xfs_off_t offset)
1da177e4 643{
207d0416
CH
644 ASSERT(imap->br_startblock != HOLESTARTBLOCK);
645 ASSERT(imap->br_startblock != DELAYSTARTBLOCK);
1da177e4 646
207d0416 647 xfs_map_buffer(inode, bh, imap, offset);
1da177e4
LT
648 set_buffer_mapped(bh);
649 clear_buffer_delay(bh);
f6d6d4fc 650 clear_buffer_unwritten(bh);
1da177e4
LT
651}
652
1da177e4 653/*
a49935f2
DC
654 * Test if a given page contains at least one buffer of a given @type.
655 * If @check_all_buffers is true, then we walk all the buffers in the page to
656 * try to find one of the type passed in. If it is not set, then the caller only
657 * needs to check the first buffer on the page for a match.
1da177e4 658 */
a49935f2 659STATIC bool
6ffc4db5 660xfs_check_page_type(
10ce4444 661 struct page *page,
a49935f2
DC
662 unsigned int type,
663 bool check_all_buffers)
1da177e4 664{
a49935f2
DC
665 struct buffer_head *bh;
666 struct buffer_head *head;
1da177e4 667
a49935f2
DC
668 if (PageWriteback(page))
669 return false;
670 if (!page->mapping)
671 return false;
672 if (!page_has_buffers(page))
673 return false;
1da177e4 674
a49935f2
DC
675 bh = head = page_buffers(page);
676 do {
677 if (buffer_unwritten(bh)) {
678 if (type == XFS_IO_UNWRITTEN)
679 return true;
680 } else if (buffer_delay(bh)) {
805eeb8e 681 if (type == XFS_IO_DELALLOC)
a49935f2
DC
682 return true;
683 } else if (buffer_dirty(bh) && buffer_mapped(bh)) {
805eeb8e 684 if (type == XFS_IO_OVERWRITE)
a49935f2
DC
685 return true;
686 }
1da177e4 687
a49935f2
DC
688 /* If we are only checking the first buffer, we are done now. */
689 if (!check_all_buffers)
690 break;
691 } while ((bh = bh->b_this_page) != head);
1da177e4 692
a49935f2 693 return false;
1da177e4
LT
694}
695
1da177e4
LT
696/*
697 * Allocate & map buffers for page given the extent map. Write it out.
698 * except for the original page of a writepage, this is called on
699 * delalloc/unwritten pages only, for the original page it is possible
700 * that the page has no mapping at all.
701 */
f6d6d4fc 702STATIC int
1da177e4
LT
703xfs_convert_page(
704 struct inode *inode,
705 struct page *page,
10ce4444 706 loff_t tindex,
207d0416 707 struct xfs_bmbt_irec *imap,
f6d6d4fc 708 xfs_ioend_t **ioendp,
2fa24f92 709 struct writeback_control *wbc)
1da177e4 710{
f6d6d4fc 711 struct buffer_head *bh, *head;
9260dc6b
CH
712 xfs_off_t end_offset;
713 unsigned long p_offset;
f6d6d4fc 714 unsigned int type;
24e17b5f 715 int len, page_dirty;
f6d6d4fc 716 int count = 0, done = 0, uptodate = 1;
9260dc6b 717 xfs_off_t offset = page_offset(page);
1da177e4 718
10ce4444
CH
719 if (page->index != tindex)
720 goto fail;
529ae9aa 721 if (!trylock_page(page))
10ce4444
CH
722 goto fail;
723 if (PageWriteback(page))
724 goto fail_unlock_page;
725 if (page->mapping != inode->i_mapping)
726 goto fail_unlock_page;
a49935f2 727 if (!xfs_check_page_type(page, (*ioendp)->io_type, false))
10ce4444
CH
728 goto fail_unlock_page;
729
24e17b5f
NS
730 /*
731 * page_dirty is initially a count of buffers on the page before
c41564b5 732 * EOF and is decremented as we move each into a cleanable state.
9260dc6b
CH
733 *
734 * Derivation:
735 *
736 * End offset is the highest offset that this page should represent.
737 * If we are on the last page, (end_offset & (PAGE_CACHE_SIZE - 1))
738 * will evaluate non-zero and be less than PAGE_CACHE_SIZE and
739 * hence give us the correct page_dirty count. On any other page,
740 * it will be zero and in that case we need page_dirty to be the
741 * count of buffers on the page.
24e17b5f 742 */
9260dc6b
CH
743 end_offset = min_t(unsigned long long,
744 (xfs_off_t)(page->index + 1) << PAGE_CACHE_SHIFT,
745 i_size_read(inode));
746
480d7467
DC
747 /*
748 * If the current map does not span the entire page we are about to try
749 * to write, then give up. The only way we can write a page that spans
750 * multiple mappings in a single writeback iteration is via the
751 * xfs_vm_writepage() function. Data integrity writeback requires the
752 * entire page to be written in a single attempt, otherwise the part of
753 * the page we don't write here doesn't get written as part of the data
754 * integrity sync.
755 *
756 * For normal writeback, we also don't attempt to write partial pages
757 * here as it simply means that write_cache_pages() will see it under
758 * writeback and ignore the page until some point in the future, at
759 * which time this will be the only page in the file that needs
760 * writeback. Hence for more optimal IO patterns, we should always
761 * avoid partial page writeback due to multiple mappings on a page here.
762 */
763 if (!xfs_imap_valid(inode, imap, end_offset))
764 goto fail_unlock_page;
765
24e17b5f 766 len = 1 << inode->i_blkbits;
9260dc6b
CH
767 p_offset = min_t(unsigned long, end_offset & (PAGE_CACHE_SIZE - 1),
768 PAGE_CACHE_SIZE);
769 p_offset = p_offset ? roundup(p_offset, len) : PAGE_CACHE_SIZE;
770 page_dirty = p_offset / len;
24e17b5f 771
a49935f2
DC
772 /*
773 * The moment we find a buffer that doesn't match our current type
774 * specification or can't be written, abort the loop and start
775 * writeback. As per the above xfs_imap_valid() check, only
776 * xfs_vm_writepage() can handle partial page writeback fully - we are
777 * limited here to the buffers that are contiguous with the current
778 * ioend, and hence a buffer we can't write breaks that contiguity and
779 * we have to defer the rest of the IO to xfs_vm_writepage().
780 */
1da177e4
LT
781 bh = head = page_buffers(page);
782 do {
9260dc6b 783 if (offset >= end_offset)
1da177e4 784 break;
f6d6d4fc
CH
785 if (!buffer_uptodate(bh))
786 uptodate = 0;
787 if (!(PageUptodate(page) || buffer_uptodate(bh))) {
788 done = 1;
a49935f2 789 break;
f6d6d4fc
CH
790 }
791
2fa24f92
CH
792 if (buffer_unwritten(bh) || buffer_delay(bh) ||
793 buffer_mapped(bh)) {
9260dc6b 794 if (buffer_unwritten(bh))
0d882a36 795 type = XFS_IO_UNWRITTEN;
2fa24f92 796 else if (buffer_delay(bh))
0d882a36 797 type = XFS_IO_DELALLOC;
2fa24f92 798 else
0d882a36 799 type = XFS_IO_OVERWRITE;
9260dc6b 800
a49935f2
DC
801 /*
802 * imap should always be valid because of the above
803 * partial page end_offset check on the imap.
804 */
805 ASSERT(xfs_imap_valid(inode, imap, offset));
9260dc6b 806
ecff71e6 807 lock_buffer(bh);
0d882a36 808 if (type != XFS_IO_OVERWRITE)
2fa24f92 809 xfs_map_at_offset(inode, bh, imap, offset);
89f3b363
CH
810 xfs_add_to_ioend(inode, bh, offset, type,
811 ioendp, done);
812
9260dc6b
CH
813 page_dirty--;
814 count++;
815 } else {
2fa24f92 816 done = 1;
a49935f2 817 break;
1da177e4 818 }
7336cea8 819 } while (offset += len, (bh = bh->b_this_page) != head);
1da177e4 820
f6d6d4fc
CH
821 if (uptodate && bh == head)
822 SetPageUptodate(page);
823
89f3b363 824 if (count) {
efceab1d
DC
825 if (--wbc->nr_to_write <= 0 &&
826 wbc->sync_mode == WB_SYNC_NONE)
89f3b363 827 done = 1;
1da177e4 828 }
89f3b363 829 xfs_start_page_writeback(page, !page_dirty, count);
f6d6d4fc
CH
830
831 return done;
10ce4444
CH
832 fail_unlock_page:
833 unlock_page(page);
834 fail:
835 return 1;
1da177e4
LT
836}
837
838/*
839 * Convert & write out a cluster of pages in the same extent as defined
840 * by mp and following the start page.
841 */
842STATIC void
843xfs_cluster_write(
844 struct inode *inode,
845 pgoff_t tindex,
207d0416 846 struct xfs_bmbt_irec *imap,
f6d6d4fc 847 xfs_ioend_t **ioendp,
1da177e4 848 struct writeback_control *wbc,
1da177e4
LT
849 pgoff_t tlast)
850{
10ce4444
CH
851 struct pagevec pvec;
852 int done = 0, i;
1da177e4 853
10ce4444
CH
854 pagevec_init(&pvec, 0);
855 while (!done && tindex <= tlast) {
856 unsigned len = min_t(pgoff_t, PAGEVEC_SIZE, tlast - tindex + 1);
857
858 if (!pagevec_lookup(&pvec, inode->i_mapping, tindex, len))
1da177e4 859 break;
10ce4444
CH
860
861 for (i = 0; i < pagevec_count(&pvec); i++) {
862 done = xfs_convert_page(inode, pvec.pages[i], tindex++,
2fa24f92 863 imap, ioendp, wbc);
10ce4444
CH
864 if (done)
865 break;
866 }
867
868 pagevec_release(&pvec);
869 cond_resched();
1da177e4
LT
870 }
871}
872
3ed3a434
DC
873STATIC void
874xfs_vm_invalidatepage(
875 struct page *page,
d47992f8
LC
876 unsigned int offset,
877 unsigned int length)
3ed3a434 878{
34097dfe
LC
879 trace_xfs_invalidatepage(page->mapping->host, page, offset,
880 length);
881 block_invalidatepage(page, offset, length);
3ed3a434
DC
882}
883
884/*
885 * If the page has delalloc buffers on it, we need to punch them out before we
886 * invalidate the page. If we don't, we leave a stale delalloc mapping on the
887 * inode that can trip a BUG() in xfs_get_blocks() later on if a direct IO read
888 * is done on that same region - the delalloc extent is returned when none is
889 * supposed to be there.
890 *
891 * We prevent this by truncating away the delalloc regions on the page before
892 * invalidating it. Because they are delalloc, we can do this without needing a
893 * transaction. Indeed - if we get ENOSPC errors, we have to be able to do this
894 * truncation without a transaction as there is no space left for block
895 * reservation (typically why we see a ENOSPC in writeback).
896 *
897 * This is not a performance critical path, so for now just do the punching a
898 * buffer head at a time.
899 */
900STATIC void
901xfs_aops_discard_page(
902 struct page *page)
903{
904 struct inode *inode = page->mapping->host;
905 struct xfs_inode *ip = XFS_I(inode);
906 struct buffer_head *bh, *head;
907 loff_t offset = page_offset(page);
3ed3a434 908
a49935f2 909 if (!xfs_check_page_type(page, XFS_IO_DELALLOC, true))
3ed3a434
DC
910 goto out_invalidate;
911
e8c3753c
DC
912 if (XFS_FORCED_SHUTDOWN(ip->i_mount))
913 goto out_invalidate;
914
4f10700a 915 xfs_alert(ip->i_mount,
3ed3a434
DC
916 "page discard on page %p, inode 0x%llx, offset %llu.",
917 page, ip->i_ino, offset);
918
919 xfs_ilock(ip, XFS_ILOCK_EXCL);
920 bh = head = page_buffers(page);
921 do {
3ed3a434 922 int error;
c726de44 923 xfs_fileoff_t start_fsb;
3ed3a434
DC
924
925 if (!buffer_delay(bh))
926 goto next_buffer;
927
c726de44
DC
928 start_fsb = XFS_B_TO_FSBT(ip->i_mount, offset);
929 error = xfs_bmap_punch_delalloc_range(ip, start_fsb, 1);
3ed3a434
DC
930 if (error) {
931 /* something screwed, just bail */
e8c3753c 932 if (!XFS_FORCED_SHUTDOWN(ip->i_mount)) {
4f10700a 933 xfs_alert(ip->i_mount,
3ed3a434 934 "page discard unable to remove delalloc mapping.");
e8c3753c 935 }
3ed3a434
DC
936 break;
937 }
938next_buffer:
c726de44 939 offset += 1 << inode->i_blkbits;
3ed3a434
DC
940
941 } while ((bh = bh->b_this_page) != head);
942
943 xfs_iunlock(ip, XFS_ILOCK_EXCL);
944out_invalidate:
d47992f8 945 xfs_vm_invalidatepage(page, 0, PAGE_CACHE_SIZE);
3ed3a434
DC
946 return;
947}
948
1da177e4 949/*
89f3b363
CH
950 * Write out a dirty page.
951 *
952 * For delalloc space on the page we need to allocate space and flush it.
953 * For unwritten space on the page we need to start the conversion to
954 * regular allocated space.
89f3b363 955 * For any other dirty buffer heads on the page we should flush them.
1da177e4 956 */
1da177e4 957STATIC int
89f3b363
CH
958xfs_vm_writepage(
959 struct page *page,
960 struct writeback_control *wbc)
1da177e4 961{
89f3b363 962 struct inode *inode = page->mapping->host;
f6d6d4fc 963 struct buffer_head *bh, *head;
207d0416 964 struct xfs_bmbt_irec imap;
f6d6d4fc 965 xfs_ioend_t *ioend = NULL, *iohead = NULL;
1da177e4 966 loff_t offset;
f6d6d4fc 967 unsigned int type;
1da177e4 968 __uint64_t end_offset;
bd1556a1 969 pgoff_t end_index, last_index;
ed1e7b7e 970 ssize_t len;
a206c817 971 int err, imap_valid = 0, uptodate = 1;
89f3b363 972 int count = 0;
a206c817 973 int nonblocking = 0;
89f3b363 974
34097dfe 975 trace_xfs_writepage(inode, page, 0, 0);
89f3b363 976
20cb52eb
CH
977 ASSERT(page_has_buffers(page));
978
89f3b363
CH
979 /*
980 * Refuse to write the page out if we are called from reclaim context.
981 *
d4f7a5cb
CH
982 * This avoids stack overflows when called from deeply used stacks in
983 * random callers for direct reclaim or memcg reclaim. We explicitly
984 * allow reclaim from kswapd as the stack usage there is relatively low.
89f3b363 985 *
94054fa3
MG
986 * This should never happen except in the case of a VM regression so
987 * warn about it.
89f3b363 988 */
94054fa3
MG
989 if (WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD)) ==
990 PF_MEMALLOC))
b5420f23 991 goto redirty;
1da177e4 992
89f3b363 993 /*
680a647b
CH
994 * Given that we do not allow direct reclaim to call us, we should
995 * never be called while in a filesystem transaction.
89f3b363 996 */
448011e2 997 if (WARN_ON_ONCE(current->flags & PF_FSTRANS))
b5420f23 998 goto redirty;
89f3b363 999
1da177e4
LT
1000 /* Is this page beyond the end of the file? */
1001 offset = i_size_read(inode);
1002 end_index = offset >> PAGE_CACHE_SHIFT;
1003 last_index = (offset - 1) >> PAGE_CACHE_SHIFT;
8695d27e
JL
1004
1005 /*
1006 * The page index is less than the end_index, adjust the end_offset
1007 * to the highest offset that this page should represent.
1008 * -----------------------------------------------------
1009 * | file mapping | <EOF> |
1010 * -----------------------------------------------------
1011 * | Page ... | Page N-2 | Page N-1 | Page N | |
1012 * ^--------------------------------^----------|--------
1013 * | desired writeback range | see else |
1014 * ---------------------------------^------------------|
1015 */
1016 if (page->index < end_index)
1017 end_offset = (xfs_off_t)(page->index + 1) << PAGE_CACHE_SHIFT;
1018 else {
1019 /*
1020 * Check whether the page to write out is beyond or straddles
1021 * i_size or not.
1022 * -------------------------------------------------------
1023 * | file mapping | <EOF> |
1024 * -------------------------------------------------------
1025 * | Page ... | Page N-2 | Page N-1 | Page N | Beyond |
1026 * ^--------------------------------^-----------|---------
1027 * | | Straddles |
1028 * ---------------------------------^-----------|--------|
1029 */
6b7a03f0
CH
1030 unsigned offset_into_page = offset & (PAGE_CACHE_SIZE - 1);
1031
1032 /*
ff9a28f6
JK
1033 * Skip the page if it is fully outside i_size, e.g. due to a
1034 * truncate operation that is in progress. We must redirty the
1035 * page so that reclaim stops reclaiming it. Otherwise
1036 * xfs_vm_releasepage() is called on it and gets confused.
8695d27e
JL
1037 *
1038 * Note that the end_index is unsigned long, it would overflow
1039 * if the given offset is greater than 16TB on 32-bit system
1040 * and if we do check the page is fully outside i_size or not
1041 * via "if (page->index >= end_index + 1)" as "end_index + 1"
1042 * will be evaluated to 0. Hence this page will be redirtied
1043 * and be written out repeatedly which would result in an
1044 * infinite loop, the user program that perform this operation
1045 * will hang. Instead, we can verify this situation by checking
1046 * if the page to write is totally beyond the i_size or if it's
1047 * offset is just equal to the EOF.
6b7a03f0 1048 */
8695d27e
JL
1049 if (page->index > end_index ||
1050 (page->index == end_index && offset_into_page == 0))
ff9a28f6 1051 goto redirty;
6b7a03f0
CH
1052
1053 /*
1054 * The page straddles i_size. It must be zeroed out on each
1055 * and every writepage invocation because it may be mmapped.
1056 * "A file is mapped in multiples of the page size. For a file
8695d27e 1057 * that is not a multiple of the page size, the remaining
6b7a03f0
CH
1058 * memory is zeroed when mapped, and writes to that region are
1059 * not written out to the file."
1060 */
1061 zero_user_segment(page, offset_into_page, PAGE_CACHE_SIZE);
8695d27e
JL
1062
1063 /* Adjust the end_offset to the end of file */
1064 end_offset = offset;
1da177e4
LT
1065 }
1066
24e17b5f 1067 len = 1 << inode->i_blkbits;
24e17b5f 1068
24e17b5f 1069 bh = head = page_buffers(page);
f6d6d4fc 1070 offset = page_offset(page);
0d882a36 1071 type = XFS_IO_OVERWRITE;
a206c817 1072
dbcdde3e 1073 if (wbc->sync_mode == WB_SYNC_NONE)
a206c817 1074 nonblocking = 1;
f6d6d4fc 1075
1da177e4 1076 do {
6ac7248e
CH
1077 int new_ioend = 0;
1078
1da177e4
LT
1079 if (offset >= end_offset)
1080 break;
1081 if (!buffer_uptodate(bh))
1082 uptodate = 0;
1da177e4 1083
3d9b02e3 1084 /*
ece413f5
CH
1085 * set_page_dirty dirties all buffers in a page, independent
1086 * of their state. The dirty state however is entirely
1087 * meaningless for holes (!mapped && uptodate), so skip
1088 * buffers covering holes here.
3d9b02e3
ES
1089 */
1090 if (!buffer_mapped(bh) && buffer_uptodate(bh)) {
3d9b02e3
ES
1091 imap_valid = 0;
1092 continue;
1093 }
1094
aeea1b1f 1095 if (buffer_unwritten(bh)) {
0d882a36
AR
1096 if (type != XFS_IO_UNWRITTEN) {
1097 type = XFS_IO_UNWRITTEN;
aeea1b1f 1098 imap_valid = 0;
1da177e4 1099 }
aeea1b1f 1100 } else if (buffer_delay(bh)) {
0d882a36
AR
1101 if (type != XFS_IO_DELALLOC) {
1102 type = XFS_IO_DELALLOC;
aeea1b1f 1103 imap_valid = 0;
1da177e4 1104 }
89f3b363 1105 } else if (buffer_uptodate(bh)) {
0d882a36
AR
1106 if (type != XFS_IO_OVERWRITE) {
1107 type = XFS_IO_OVERWRITE;
85da94c6
CH
1108 imap_valid = 0;
1109 }
aeea1b1f 1110 } else {
7d0fa3ec 1111 if (PageUptodate(page))
aeea1b1f 1112 ASSERT(buffer_mapped(bh));
7d0fa3ec
AR
1113 /*
1114 * This buffer is not uptodate and will not be
1115 * written to disk. Ensure that we will put any
1116 * subsequent writeable buffers into a new
1117 * ioend.
1118 */
1119 imap_valid = 0;
aeea1b1f
CH
1120 continue;
1121 }
d5cb48aa 1122
aeea1b1f
CH
1123 if (imap_valid)
1124 imap_valid = xfs_imap_valid(inode, &imap, offset);
1125 if (!imap_valid) {
1126 /*
1127 * If we didn't have a valid mapping then we need to
1128 * put the new mapping into a separate ioend structure.
1129 * This ensures non-contiguous extents always have
1130 * separate ioends, which is particularly important
1131 * for unwritten extent conversion at I/O completion
1132 * time.
1133 */
1134 new_ioend = 1;
1135 err = xfs_map_blocks(inode, offset, &imap, type,
1136 nonblocking);
1137 if (err)
1138 goto error;
1139 imap_valid = xfs_imap_valid(inode, &imap, offset);
1140 }
1141 if (imap_valid) {
ecff71e6 1142 lock_buffer(bh);
0d882a36 1143 if (type != XFS_IO_OVERWRITE)
aeea1b1f
CH
1144 xfs_map_at_offset(inode, bh, &imap, offset);
1145 xfs_add_to_ioend(inode, bh, offset, type, &ioend,
1146 new_ioend);
1147 count++;
1da177e4 1148 }
f6d6d4fc
CH
1149
1150 if (!iohead)
1151 iohead = ioend;
1152
1153 } while (offset += len, ((bh = bh->b_this_page) != head));
1da177e4
LT
1154
1155 if (uptodate && bh == head)
1156 SetPageUptodate(page);
1157
89f3b363 1158 xfs_start_page_writeback(page, 1, count);
1da177e4 1159
7bf7f352
DC
1160 /* if there is no IO to be submitted for this page, we are done */
1161 if (!ioend)
1162 return 0;
1163
1164 ASSERT(iohead);
1165
1166 /*
1167 * Any errors from this point onwards need tobe reported through the IO
1168 * completion path as we have marked the initial page as under writeback
1169 * and unlocked it.
1170 */
1171 if (imap_valid) {
bd1556a1
CH
1172 xfs_off_t end_index;
1173
1174 end_index = imap.br_startoff + imap.br_blockcount;
1175
1176 /* to bytes */
1177 end_index <<= inode->i_blkbits;
1178
1179 /* to pages */
1180 end_index = (end_index - 1) >> PAGE_CACHE_SHIFT;
1181
1182 /* check against file size */
1183 if (end_index > last_index)
1184 end_index = last_index;
8699bb0a 1185
207d0416 1186 xfs_cluster_write(inode, page->index + 1, &imap, &ioend,
2fa24f92 1187 wbc, end_index);
1da177e4
LT
1188 }
1189
281627df 1190
7bf7f352
DC
1191 /*
1192 * Reserve log space if we might write beyond the on-disk inode size.
1193 */
1194 err = 0;
1195 if (ioend->io_type != XFS_IO_UNWRITTEN && xfs_ioend_is_append(ioend))
1196 err = xfs_setfilesize_trans_alloc(ioend);
1197
1198 xfs_submit_ioend(wbc, iohead, err);
f6d6d4fc 1199
89f3b363 1200 return 0;
1da177e4
LT
1201
1202error:
f6d6d4fc
CH
1203 if (iohead)
1204 xfs_cancel_ioend(iohead);
1da177e4 1205
b5420f23
CH
1206 if (err == -EAGAIN)
1207 goto redirty;
1208
20cb52eb 1209 xfs_aops_discard_page(page);
89f3b363
CH
1210 ClearPageUptodate(page);
1211 unlock_page(page);
1da177e4 1212 return err;
f51623b2 1213
b5420f23 1214redirty:
f51623b2
NS
1215 redirty_page_for_writepage(wbc, page);
1216 unlock_page(page);
1217 return 0;
f51623b2
NS
1218}
1219
7d4fb40a
NS
1220STATIC int
1221xfs_vm_writepages(
1222 struct address_space *mapping,
1223 struct writeback_control *wbc)
1224{
b3aea4ed 1225 xfs_iflags_clear(XFS_I(mapping->host), XFS_ITRUNCATED);
7d4fb40a
NS
1226 return generic_writepages(mapping, wbc);
1227}
1228
f51623b2
NS
1229/*
1230 * Called to move a page into cleanable state - and from there
89f3b363 1231 * to be released. The page should already be clean. We always
f51623b2
NS
1232 * have buffer heads in this call.
1233 *
89f3b363 1234 * Returns 1 if the page is ok to release, 0 otherwise.
f51623b2
NS
1235 */
1236STATIC int
238f4c54 1237xfs_vm_releasepage(
f51623b2
NS
1238 struct page *page,
1239 gfp_t gfp_mask)
1240{
20cb52eb 1241 int delalloc, unwritten;
f51623b2 1242
34097dfe 1243 trace_xfs_releasepage(page->mapping->host, page, 0, 0);
238f4c54 1244
20cb52eb 1245 xfs_count_page_state(page, &delalloc, &unwritten);
f51623b2 1246
448011e2 1247 if (WARN_ON_ONCE(delalloc))
f51623b2 1248 return 0;
448011e2 1249 if (WARN_ON_ONCE(unwritten))
f51623b2
NS
1250 return 0;
1251
f51623b2
NS
1252 return try_to_free_buffers(page);
1253}
1254
1da177e4 1255STATIC int
c2536668 1256__xfs_get_blocks(
1da177e4
LT
1257 struct inode *inode,
1258 sector_t iblock,
1da177e4
LT
1259 struct buffer_head *bh_result,
1260 int create,
f2bde9b8 1261 int direct)
1da177e4 1262{
a206c817
CH
1263 struct xfs_inode *ip = XFS_I(inode);
1264 struct xfs_mount *mp = ip->i_mount;
1265 xfs_fileoff_t offset_fsb, end_fsb;
1266 int error = 0;
1267 int lockmode = 0;
207d0416 1268 struct xfs_bmbt_irec imap;
a206c817 1269 int nimaps = 1;
fdc7ed75
NS
1270 xfs_off_t offset;
1271 ssize_t size;
207d0416 1272 int new = 0;
a206c817
CH
1273
1274 if (XFS_FORCED_SHUTDOWN(mp))
b474c7ae 1275 return -EIO;
1da177e4 1276
fdc7ed75 1277 offset = (xfs_off_t)iblock << inode->i_blkbits;
c2536668
NS
1278 ASSERT(bh_result->b_size >= (1 << inode->i_blkbits));
1279 size = bh_result->b_size;
364f358a
LM
1280
1281 if (!create && direct && offset >= i_size_read(inode))
1282 return 0;
1283
507630b2
DC
1284 /*
1285 * Direct I/O is usually done on preallocated files, so try getting
1286 * a block mapping without an exclusive lock first. For buffered
1287 * writes we already have the exclusive iolock anyway, so avoiding
1288 * a lock roundtrip here by taking the ilock exclusive from the
1289 * beginning is a useful micro optimization.
1290 */
1291 if (create && !direct) {
a206c817
CH
1292 lockmode = XFS_ILOCK_EXCL;
1293 xfs_ilock(ip, lockmode);
1294 } else {
309ecac8 1295 lockmode = xfs_ilock_data_map_shared(ip);
a206c817 1296 }
f2bde9b8 1297
d2c28191
DC
1298 ASSERT(offset <= mp->m_super->s_maxbytes);
1299 if (offset + size > mp->m_super->s_maxbytes)
1300 size = mp->m_super->s_maxbytes - offset;
a206c817
CH
1301 end_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)offset + size);
1302 offset_fsb = XFS_B_TO_FSBT(mp, offset);
1303
5c8ed202
DC
1304 error = xfs_bmapi_read(ip, offset_fsb, end_fsb - offset_fsb,
1305 &imap, &nimaps, XFS_BMAPI_ENTIRE);
1da177e4 1306 if (error)
a206c817
CH
1307 goto out_unlock;
1308
1309 if (create &&
1310 (!nimaps ||
1311 (imap.br_startblock == HOLESTARTBLOCK ||
1312 imap.br_startblock == DELAYSTARTBLOCK))) {
aff3a9ed 1313 if (direct || xfs_get_extsz_hint(ip)) {
507630b2
DC
1314 /*
1315 * Drop the ilock in preparation for starting the block
1316 * allocation transaction. It will be retaken
1317 * exclusively inside xfs_iomap_write_direct for the
1318 * actual allocation.
1319 */
1320 xfs_iunlock(ip, lockmode);
a206c817
CH
1321 error = xfs_iomap_write_direct(ip, offset, size,
1322 &imap, nimaps);
507630b2 1323 if (error)
2451337d 1324 return error;
d3bc815a 1325 new = 1;
a206c817 1326 } else {
507630b2
DC
1327 /*
1328 * Delalloc reservations do not require a transaction,
d3bc815a
DC
1329 * we can go on without dropping the lock here. If we
1330 * are allocating a new delalloc block, make sure that
1331 * we set the new flag so that we mark the buffer new so
1332 * that we know that it is newly allocated if the write
1333 * fails.
507630b2 1334 */
d3bc815a
DC
1335 if (nimaps && imap.br_startblock == HOLESTARTBLOCK)
1336 new = 1;
a206c817 1337 error = xfs_iomap_write_delay(ip, offset, size, &imap);
507630b2
DC
1338 if (error)
1339 goto out_unlock;
1340
1341 xfs_iunlock(ip, lockmode);
a206c817 1342 }
a206c817
CH
1343
1344 trace_xfs_get_blocks_alloc(ip, offset, size, 0, &imap);
1345 } else if (nimaps) {
1346 trace_xfs_get_blocks_found(ip, offset, size, 0, &imap);
507630b2 1347 xfs_iunlock(ip, lockmode);
a206c817
CH
1348 } else {
1349 trace_xfs_get_blocks_notfound(ip, offset, size);
1350 goto out_unlock;
1351 }
1da177e4 1352
207d0416
CH
1353 if (imap.br_startblock != HOLESTARTBLOCK &&
1354 imap.br_startblock != DELAYSTARTBLOCK) {
87cbc49c
NS
1355 /*
1356 * For unwritten extents do not report a disk address on
1da177e4
LT
1357 * the read case (treat as if we're reading into a hole).
1358 */
207d0416
CH
1359 if (create || !ISUNWRITTEN(&imap))
1360 xfs_map_buffer(inode, bh_result, &imap, offset);
1361 if (create && ISUNWRITTEN(&imap)) {
7b7a8665 1362 if (direct) {
1da177e4 1363 bh_result->b_private = inode;
7b7a8665
CH
1364 set_buffer_defer_completion(bh_result);
1365 }
1da177e4 1366 set_buffer_unwritten(bh_result);
1da177e4
LT
1367 }
1368 }
1369
c2536668
NS
1370 /*
1371 * If this is a realtime file, data may be on a different device.
1372 * to that pointed to from the buffer_head b_bdev currently.
1373 */
046f1685 1374 bh_result->b_bdev = xfs_find_bdev_for_inode(inode);
1da177e4 1375
c2536668 1376 /*
549054af
DC
1377 * If we previously allocated a block out beyond eof and we are now
1378 * coming back to use it then we will need to flag it as new even if it
1379 * has a disk address.
1380 *
1381 * With sub-block writes into unwritten extents we also need to mark
1382 * the buffer as new so that the unwritten parts of the buffer gets
1383 * correctly zeroed.
1da177e4
LT
1384 */
1385 if (create &&
1386 ((!buffer_mapped(bh_result) && !buffer_uptodate(bh_result)) ||
549054af 1387 (offset >= i_size_read(inode)) ||
207d0416 1388 (new || ISUNWRITTEN(&imap))))
1da177e4 1389 set_buffer_new(bh_result);
1da177e4 1390
207d0416 1391 if (imap.br_startblock == DELAYSTARTBLOCK) {
1da177e4
LT
1392 BUG_ON(direct);
1393 if (create) {
1394 set_buffer_uptodate(bh_result);
1395 set_buffer_mapped(bh_result);
1396 set_buffer_delay(bh_result);
1397 }
1398 }
1399
2b8f12b7
CH
1400 /*
1401 * If this is O_DIRECT or the mpage code calling tell them how large
1402 * the mapping is, so that we can avoid repeated get_blocks calls.
0e1f789d
DC
1403 *
1404 * If the mapping spans EOF, then we have to break the mapping up as the
1405 * mapping for blocks beyond EOF must be marked new so that sub block
1406 * regions can be correctly zeroed. We can't do this for mappings within
1407 * EOF unless the mapping was just allocated or is unwritten, otherwise
1408 * the callers would overwrite existing data with zeros. Hence we have
1409 * to split the mapping into a range up to and including EOF, and a
1410 * second mapping for beyond EOF.
2b8f12b7 1411 */
c2536668 1412 if (direct || size > (1 << inode->i_blkbits)) {
2b8f12b7
CH
1413 xfs_off_t mapping_size;
1414
1415 mapping_size = imap.br_startoff + imap.br_blockcount - iblock;
1416 mapping_size <<= inode->i_blkbits;
1417
1418 ASSERT(mapping_size > 0);
1419 if (mapping_size > size)
1420 mapping_size = size;
0e1f789d
DC
1421 if (offset < i_size_read(inode) &&
1422 offset + mapping_size >= i_size_read(inode)) {
1423 /* limit mapping to block that spans EOF */
1424 mapping_size = roundup_64(i_size_read(inode) - offset,
1425 1 << inode->i_blkbits);
1426 }
2b8f12b7
CH
1427 if (mapping_size > LONG_MAX)
1428 mapping_size = LONG_MAX;
1429
1430 bh_result->b_size = mapping_size;
1da177e4
LT
1431 }
1432
1433 return 0;
a206c817
CH
1434
1435out_unlock:
1436 xfs_iunlock(ip, lockmode);
2451337d 1437 return error;
1da177e4
LT
1438}
1439
1440int
c2536668 1441xfs_get_blocks(
1da177e4
LT
1442 struct inode *inode,
1443 sector_t iblock,
1444 struct buffer_head *bh_result,
1445 int create)
1446{
f2bde9b8 1447 return __xfs_get_blocks(inode, iblock, bh_result, create, 0);
1da177e4
LT
1448}
1449
1450STATIC int
e4c573bb 1451xfs_get_blocks_direct(
1da177e4
LT
1452 struct inode *inode,
1453 sector_t iblock,
1da177e4
LT
1454 struct buffer_head *bh_result,
1455 int create)
1456{
f2bde9b8 1457 return __xfs_get_blocks(inode, iblock, bh_result, create, 1);
1da177e4
LT
1458}
1459
209fb87a
CH
1460/*
1461 * Complete a direct I/O write request.
1462 *
1463 * If the private argument is non-NULL __xfs_get_blocks signals us that we
1464 * need to issue a transaction to convert the range from unwritten to written
1465 * extents. In case this is regular synchronous I/O we just call xfs_end_io
25985edc 1466 * to do this and we are done. But in case this was a successful AIO
209fb87a
CH
1467 * request this handler is called from interrupt context, from which we
1468 * can't start transactions. In that case offload the I/O completion to
1469 * the workqueues we also use for buffered I/O completion.
1470 */
f0973863 1471STATIC void
209fb87a
CH
1472xfs_end_io_direct_write(
1473 struct kiocb *iocb,
1474 loff_t offset,
1475 ssize_t size,
7b7a8665 1476 void *private)
f0973863 1477{
209fb87a 1478 struct xfs_ioend *ioend = iocb->private;
f0973863 1479
2813d682
CH
1480 /*
1481 * While the generic direct I/O code updates the inode size, it does
1482 * so only after the end_io handler is called, which means our
1483 * end_io handler thinks the on-disk size is outside the in-core
1484 * size. To prevent this just update it a little bit earlier here.
1485 */
1486 if (offset + size > i_size_read(ioend->io_inode))
1487 i_size_write(ioend->io_inode, offset + size);
1488
f0973863 1489 /*
209fb87a
CH
1490 * blockdev_direct_IO can return an error even after the I/O
1491 * completion handler was called. Thus we need to protect
1492 * against double-freeing.
f0973863 1493 */
209fb87a
CH
1494 iocb->private = NULL;
1495
ba87ea69
LM
1496 ioend->io_offset = offset;
1497 ioend->io_size = size;
209fb87a 1498 if (private && size > 0)
0d882a36 1499 ioend->io_type = XFS_IO_UNWRITTEN;
209fb87a 1500
7b7a8665 1501 xfs_finish_ioend_sync(ioend);
f0973863
CH
1502}
1503
1da177e4 1504STATIC ssize_t
e4c573bb 1505xfs_vm_direct_IO(
1da177e4
LT
1506 int rw,
1507 struct kiocb *iocb,
d8d3d94b
AV
1508 struct iov_iter *iter,
1509 loff_t offset)
1da177e4 1510{
209fb87a
CH
1511 struct inode *inode = iocb->ki_filp->f_mapping->host;
1512 struct block_device *bdev = xfs_find_bdev_for_inode(inode);
281627df 1513 struct xfs_ioend *ioend = NULL;
209fb87a
CH
1514 ssize_t ret;
1515
1516 if (rw & WRITE) {
a6cbcd4a 1517 size_t size = iov_iter_count(iter);
281627df
CH
1518
1519 /*
437a255a
DC
1520 * We cannot preallocate a size update transaction here as we
1521 * don't know whether allocation is necessary or not. Hence we
1522 * can only tell IO completion that one is necessary if we are
1523 * not doing unwritten extent conversion.
281627df 1524 */
0d882a36 1525 iocb->private = ioend = xfs_alloc_ioend(inode, XFS_IO_DIRECT);
437a255a 1526 if (offset + size > XFS_I(inode)->i_d.di_size)
281627df 1527 ioend->io_isdirect = 1;
209fb87a 1528
31b14039
AV
1529 ret = __blockdev_direct_IO(rw, iocb, inode, bdev, iter,
1530 offset, xfs_get_blocks_direct,
9862f62f
CH
1531 xfs_end_io_direct_write, NULL,
1532 DIO_ASYNC_EXTEND);
209fb87a 1533 if (ret != -EIOCBQUEUED && iocb->private)
437a255a 1534 goto out_destroy_ioend;
209fb87a 1535 } else {
31b14039
AV
1536 ret = __blockdev_direct_IO(rw, iocb, inode, bdev, iter,
1537 offset, xfs_get_blocks_direct,
eafdc7d1 1538 NULL, NULL, 0);
209fb87a 1539 }
f0973863 1540
f0973863 1541 return ret;
281627df 1542
281627df
CH
1543out_destroy_ioend:
1544 xfs_destroy_ioend(ioend);
1545 return ret;
1da177e4
LT
1546}
1547
d3bc815a
DC
1548/*
1549 * Punch out the delalloc blocks we have already allocated.
1550 *
1551 * Don't bother with xfs_setattr given that nothing can have made it to disk yet
1552 * as the page is still locked at this point.
1553 */
1554STATIC void
1555xfs_vm_kill_delalloc_range(
1556 struct inode *inode,
1557 loff_t start,
1558 loff_t end)
1559{
1560 struct xfs_inode *ip = XFS_I(inode);
1561 xfs_fileoff_t start_fsb;
1562 xfs_fileoff_t end_fsb;
1563 int error;
1564
1565 start_fsb = XFS_B_TO_FSB(ip->i_mount, start);
1566 end_fsb = XFS_B_TO_FSB(ip->i_mount, end);
1567 if (end_fsb <= start_fsb)
1568 return;
1569
1570 xfs_ilock(ip, XFS_ILOCK_EXCL);
1571 error = xfs_bmap_punch_delalloc_range(ip, start_fsb,
1572 end_fsb - start_fsb);
1573 if (error) {
1574 /* something screwed, just bail */
1575 if (!XFS_FORCED_SHUTDOWN(ip->i_mount)) {
1576 xfs_alert(ip->i_mount,
1577 "xfs_vm_write_failed: unable to clean up ino %lld",
1578 ip->i_ino);
1579 }
1580 }
1581 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1582}
1583
fa9b227e
CH
1584STATIC void
1585xfs_vm_write_failed(
d3bc815a
DC
1586 struct inode *inode,
1587 struct page *page,
1588 loff_t pos,
1589 unsigned len)
fa9b227e 1590{
58e59854 1591 loff_t block_offset;
d3bc815a
DC
1592 loff_t block_start;
1593 loff_t block_end;
1594 loff_t from = pos & (PAGE_CACHE_SIZE - 1);
1595 loff_t to = from + len;
1596 struct buffer_head *bh, *head;
fa9b227e 1597
58e59854
JL
1598 /*
1599 * The request pos offset might be 32 or 64 bit, this is all fine
1600 * on 64-bit platform. However, for 64-bit pos request on 32-bit
1601 * platform, the high 32-bit will be masked off if we evaluate the
1602 * block_offset via (pos & PAGE_MASK) because the PAGE_MASK is
1603 * 0xfffff000 as an unsigned long, hence the result is incorrect
1604 * which could cause the following ASSERT failed in most cases.
1605 * In order to avoid this, we can evaluate the block_offset of the
1606 * start of the page by using shifts rather than masks the mismatch
1607 * problem.
1608 */
1609 block_offset = (pos >> PAGE_CACHE_SHIFT) << PAGE_CACHE_SHIFT;
1610
d3bc815a 1611 ASSERT(block_offset + from == pos);
c726de44 1612
d3bc815a
DC
1613 head = page_buffers(page);
1614 block_start = 0;
1615 for (bh = head; bh != head || !block_start;
1616 bh = bh->b_this_page, block_start = block_end,
1617 block_offset += bh->b_size) {
1618 block_end = block_start + bh->b_size;
c726de44 1619
d3bc815a
DC
1620 /* skip buffers before the write */
1621 if (block_end <= from)
1622 continue;
1623
1624 /* if the buffer is after the write, we're done */
1625 if (block_start >= to)
1626 break;
1627
1628 if (!buffer_delay(bh))
1629 continue;
1630
1631 if (!buffer_new(bh) && block_offset < i_size_read(inode))
1632 continue;
1633
1634 xfs_vm_kill_delalloc_range(inode, block_offset,
1635 block_offset + bh->b_size);
4ab9ed57
DC
1636
1637 /*
1638 * This buffer does not contain data anymore. make sure anyone
1639 * who finds it knows that for certain.
1640 */
1641 clear_buffer_delay(bh);
1642 clear_buffer_uptodate(bh);
1643 clear_buffer_mapped(bh);
1644 clear_buffer_new(bh);
1645 clear_buffer_dirty(bh);
fa9b227e 1646 }
d3bc815a 1647
fa9b227e
CH
1648}
1649
d3bc815a
DC
1650/*
1651 * This used to call block_write_begin(), but it unlocks and releases the page
1652 * on error, and we need that page to be able to punch stale delalloc blocks out
1653 * on failure. hence we copy-n-waste it here and call xfs_vm_write_failed() at
1654 * the appropriate point.
1655 */
f51623b2 1656STATIC int
d79689c7 1657xfs_vm_write_begin(
f51623b2 1658 struct file *file,
d79689c7
NP
1659 struct address_space *mapping,
1660 loff_t pos,
1661 unsigned len,
1662 unsigned flags,
1663 struct page **pagep,
1664 void **fsdata)
f51623b2 1665{
d3bc815a
DC
1666 pgoff_t index = pos >> PAGE_CACHE_SHIFT;
1667 struct page *page;
1668 int status;
155130a4 1669
d3bc815a
DC
1670 ASSERT(len <= PAGE_CACHE_SIZE);
1671
ad22c7a0 1672 page = grab_cache_page_write_begin(mapping, index, flags);
d3bc815a
DC
1673 if (!page)
1674 return -ENOMEM;
1675
1676 status = __block_write_begin(page, pos, len, xfs_get_blocks);
1677 if (unlikely(status)) {
1678 struct inode *inode = mapping->host;
72ab70a1 1679 size_t isize = i_size_read(inode);
d3bc815a
DC
1680
1681 xfs_vm_write_failed(inode, page, pos, len);
1682 unlock_page(page);
1683
72ab70a1
DC
1684 /*
1685 * If the write is beyond EOF, we only want to kill blocks
1686 * allocated in this write, not blocks that were previously
1687 * written successfully.
1688 */
1689 if (pos + len > isize) {
1690 ssize_t start = max_t(ssize_t, pos, isize);
1691
1692 truncate_pagecache_range(inode, start, pos + len);
1693 }
d3bc815a
DC
1694
1695 page_cache_release(page);
1696 page = NULL;
1697 }
1698
1699 *pagep = page;
1700 return status;
fa9b227e
CH
1701}
1702
d3bc815a 1703/*
aad3f375
DC
1704 * On failure, we only need to kill delalloc blocks beyond EOF in the range of
1705 * this specific write because they will never be written. Previous writes
1706 * beyond EOF where block allocation succeeded do not need to be trashed, so
1707 * only new blocks from this write should be trashed. For blocks within
1708 * EOF, generic_write_end() zeros them so they are safe to leave alone and be
1709 * written with all the other valid data.
d3bc815a 1710 */
fa9b227e
CH
1711STATIC int
1712xfs_vm_write_end(
1713 struct file *file,
1714 struct address_space *mapping,
1715 loff_t pos,
1716 unsigned len,
1717 unsigned copied,
1718 struct page *page,
1719 void *fsdata)
1720{
1721 int ret;
155130a4 1722
d3bc815a
DC
1723 ASSERT(len <= PAGE_CACHE_SIZE);
1724
fa9b227e 1725 ret = generic_write_end(file, mapping, pos, len, copied, page, fsdata);
d3bc815a
DC
1726 if (unlikely(ret < len)) {
1727 struct inode *inode = mapping->host;
1728 size_t isize = i_size_read(inode);
1729 loff_t to = pos + len;
1730
1731 if (to > isize) {
aad3f375
DC
1732 /* only kill blocks in this write beyond EOF */
1733 if (pos > isize)
1734 isize = pos;
d3bc815a 1735 xfs_vm_kill_delalloc_range(inode, isize, to);
aad3f375 1736 truncate_pagecache_range(inode, isize, to);
d3bc815a
DC
1737 }
1738 }
155130a4 1739 return ret;
f51623b2 1740}
1da177e4
LT
1741
1742STATIC sector_t
e4c573bb 1743xfs_vm_bmap(
1da177e4
LT
1744 struct address_space *mapping,
1745 sector_t block)
1746{
1747 struct inode *inode = (struct inode *)mapping->host;
739bfb2a 1748 struct xfs_inode *ip = XFS_I(inode);
1da177e4 1749
cca28fb8 1750 trace_xfs_vm_bmap(XFS_I(inode));
126468b1 1751 xfs_ilock(ip, XFS_IOLOCK_SHARED);
4bc1ea6b 1752 filemap_write_and_wait(mapping);
126468b1 1753 xfs_iunlock(ip, XFS_IOLOCK_SHARED);
c2536668 1754 return generic_block_bmap(mapping, block, xfs_get_blocks);
1da177e4
LT
1755}
1756
1757STATIC int
e4c573bb 1758xfs_vm_readpage(
1da177e4
LT
1759 struct file *unused,
1760 struct page *page)
1761{
c2536668 1762 return mpage_readpage(page, xfs_get_blocks);
1da177e4
LT
1763}
1764
1765STATIC int
e4c573bb 1766xfs_vm_readpages(
1da177e4
LT
1767 struct file *unused,
1768 struct address_space *mapping,
1769 struct list_head *pages,
1770 unsigned nr_pages)
1771{
c2536668 1772 return mpage_readpages(mapping, pages, nr_pages, xfs_get_blocks);
1da177e4
LT
1773}
1774
22e757a4
DC
1775/*
1776 * This is basically a copy of __set_page_dirty_buffers() with one
1777 * small tweak: buffers beyond EOF do not get marked dirty. If we mark them
1778 * dirty, we'll never be able to clean them because we don't write buffers
1779 * beyond EOF, and that means we can't invalidate pages that span EOF
1780 * that have been marked dirty. Further, the dirty state can leak into
1781 * the file interior if the file is extended, resulting in all sorts of
1782 * bad things happening as the state does not match the underlying data.
1783 *
1784 * XXX: this really indicates that bufferheads in XFS need to die. Warts like
1785 * this only exist because of bufferheads and how the generic code manages them.
1786 */
1787STATIC int
1788xfs_vm_set_page_dirty(
1789 struct page *page)
1790{
1791 struct address_space *mapping = page->mapping;
1792 struct inode *inode = mapping->host;
1793 loff_t end_offset;
1794 loff_t offset;
1795 int newly_dirty;
1796
1797 if (unlikely(!mapping))
1798 return !TestSetPageDirty(page);
1799
1800 end_offset = i_size_read(inode);
1801 offset = page_offset(page);
1802
1803 spin_lock(&mapping->private_lock);
1804 if (page_has_buffers(page)) {
1805 struct buffer_head *head = page_buffers(page);
1806 struct buffer_head *bh = head;
1807
1808 do {
1809 if (offset < end_offset)
1810 set_buffer_dirty(bh);
1811 bh = bh->b_this_page;
1812 offset += 1 << inode->i_blkbits;
1813 } while (bh != head);
1814 }
1815 newly_dirty = !TestSetPageDirty(page);
1816 spin_unlock(&mapping->private_lock);
1817
1818 if (newly_dirty) {
1819 /* sigh - __set_page_dirty() is static, so copy it here, too */
1820 unsigned long flags;
1821
1822 spin_lock_irqsave(&mapping->tree_lock, flags);
1823 if (page->mapping) { /* Race with truncate? */
1824 WARN_ON_ONCE(!PageUptodate(page));
1825 account_page_dirtied(page, mapping);
1826 radix_tree_tag_set(&mapping->page_tree,
1827 page_index(page), PAGECACHE_TAG_DIRTY);
1828 }
1829 spin_unlock_irqrestore(&mapping->tree_lock, flags);
1830 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
1831 }
1832 return newly_dirty;
1833}
1834
f5e54d6e 1835const struct address_space_operations xfs_address_space_operations = {
e4c573bb
NS
1836 .readpage = xfs_vm_readpage,
1837 .readpages = xfs_vm_readpages,
1838 .writepage = xfs_vm_writepage,
7d4fb40a 1839 .writepages = xfs_vm_writepages,
22e757a4 1840 .set_page_dirty = xfs_vm_set_page_dirty,
238f4c54
NS
1841 .releasepage = xfs_vm_releasepage,
1842 .invalidatepage = xfs_vm_invalidatepage,
d79689c7 1843 .write_begin = xfs_vm_write_begin,
fa9b227e 1844 .write_end = xfs_vm_write_end,
e4c573bb
NS
1845 .bmap = xfs_vm_bmap,
1846 .direct_IO = xfs_vm_direct_IO,
e965f963 1847 .migratepage = buffer_migrate_page,
bddaafa1 1848 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 1849 .error_remove_page = generic_error_remove_page,
1da177e4 1850};