]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - fs/xfs/xfs_aops.c
page_writeback: revive cancel_dirty_page() in a restricted form
[mirror_ubuntu-bionic-kernel.git] / fs / xfs / xfs_aops.c
CommitLineData
1da177e4 1/*
7b718769
NS
2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
1da177e4 4 *
7b718769
NS
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
1da177e4
LT
7 * published by the Free Software Foundation.
8 *
7b718769
NS
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
1da177e4 13 *
7b718769
NS
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
1da177e4 17 */
1da177e4 18#include "xfs.h"
70a9883c 19#include "xfs_shared.h"
239880ef
DC
20#include "xfs_format.h"
21#include "xfs_log_format.h"
22#include "xfs_trans_resv.h"
1da177e4 23#include "xfs_mount.h"
1da177e4 24#include "xfs_inode.h"
239880ef 25#include "xfs_trans.h"
281627df 26#include "xfs_inode_item.h"
a844f451 27#include "xfs_alloc.h"
1da177e4 28#include "xfs_error.h"
1da177e4 29#include "xfs_iomap.h"
0b1b213f 30#include "xfs_trace.h"
3ed3a434 31#include "xfs_bmap.h"
68988114 32#include "xfs_bmap_util.h"
a4fbe6ab 33#include "xfs_bmap_btree.h"
5a0e3ad6 34#include <linux/gfp.h>
1da177e4 35#include <linux/mpage.h>
10ce4444 36#include <linux/pagevec.h>
1da177e4
LT
37#include <linux/writeback.h>
38
0b1b213f 39void
f51623b2
NS
40xfs_count_page_state(
41 struct page *page,
42 int *delalloc,
f51623b2
NS
43 int *unwritten)
44{
45 struct buffer_head *bh, *head;
46
20cb52eb 47 *delalloc = *unwritten = 0;
f51623b2
NS
48
49 bh = head = page_buffers(page);
50 do {
20cb52eb 51 if (buffer_unwritten(bh))
f51623b2
NS
52 (*unwritten) = 1;
53 else if (buffer_delay(bh))
54 (*delalloc) = 1;
55 } while ((bh = bh->b_this_page) != head);
56}
57
6214ed44
CH
58STATIC struct block_device *
59xfs_find_bdev_for_inode(
046f1685 60 struct inode *inode)
6214ed44 61{
046f1685 62 struct xfs_inode *ip = XFS_I(inode);
6214ed44
CH
63 struct xfs_mount *mp = ip->i_mount;
64
71ddabb9 65 if (XFS_IS_REALTIME_INODE(ip))
6214ed44
CH
66 return mp->m_rtdev_targp->bt_bdev;
67 else
68 return mp->m_ddev_targp->bt_bdev;
69}
70
f6d6d4fc
CH
71/*
72 * We're now finished for good with this ioend structure.
73 * Update the page state via the associated buffer_heads,
74 * release holds on the inode and bio, and finally free
75 * up memory. Do not use the ioend after this.
76 */
0829c360
CH
77STATIC void
78xfs_destroy_ioend(
79 xfs_ioend_t *ioend)
80{
f6d6d4fc
CH
81 struct buffer_head *bh, *next;
82
83 for (bh = ioend->io_buffer_head; bh; bh = next) {
84 next = bh->b_private;
7d04a335 85 bh->b_end_io(bh, !ioend->io_error);
f6d6d4fc 86 }
583fa586 87
0829c360
CH
88 mempool_free(ioend, xfs_ioend_pool);
89}
90
fc0063c4
CH
91/*
92 * Fast and loose check if this write could update the on-disk inode size.
93 */
94static inline bool xfs_ioend_is_append(struct xfs_ioend *ioend)
95{
96 return ioend->io_offset + ioend->io_size >
97 XFS_I(ioend->io_inode)->i_d.di_size;
98}
99
281627df
CH
100STATIC int
101xfs_setfilesize_trans_alloc(
102 struct xfs_ioend *ioend)
103{
104 struct xfs_mount *mp = XFS_I(ioend->io_inode)->i_mount;
105 struct xfs_trans *tp;
106 int error;
107
108 tp = xfs_trans_alloc(mp, XFS_TRANS_FSYNC_TS);
109
3d3c8b52 110 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_fsyncts, 0, 0);
281627df
CH
111 if (error) {
112 xfs_trans_cancel(tp, 0);
113 return error;
114 }
115
116 ioend->io_append_trans = tp;
117
d9457dc0 118 /*
437a255a 119 * We may pass freeze protection with a transaction. So tell lockdep
d9457dc0
JK
120 * we released it.
121 */
122 rwsem_release(&ioend->io_inode->i_sb->s_writers.lock_map[SB_FREEZE_FS-1],
123 1, _THIS_IP_);
281627df
CH
124 /*
125 * We hand off the transaction to the completion thread now, so
126 * clear the flag here.
127 */
128 current_restore_flags_nested(&tp->t_pflags, PF_FSTRANS);
129 return 0;
130}
131
ba87ea69 132/*
2813d682 133 * Update on-disk file size now that data has been written to disk.
ba87ea69 134 */
281627df 135STATIC int
ba87ea69 136xfs_setfilesize(
2ba66237
CH
137 struct xfs_inode *ip,
138 struct xfs_trans *tp,
139 xfs_off_t offset,
140 size_t size)
ba87ea69 141{
ba87ea69 142 xfs_fsize_t isize;
ba87ea69 143
aa6bf01d 144 xfs_ilock(ip, XFS_ILOCK_EXCL);
2ba66237 145 isize = xfs_new_eof(ip, offset + size);
281627df
CH
146 if (!isize) {
147 xfs_iunlock(ip, XFS_ILOCK_EXCL);
148 xfs_trans_cancel(tp, 0);
149 return 0;
ba87ea69
LM
150 }
151
2ba66237 152 trace_xfs_setfilesize(ip, offset, size);
281627df
CH
153
154 ip->i_d.di_size = isize;
155 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
156 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
157
158 return xfs_trans_commit(tp, 0);
77d7a0c2
DC
159}
160
2ba66237
CH
161STATIC int
162xfs_setfilesize_ioend(
163 struct xfs_ioend *ioend)
164{
165 struct xfs_inode *ip = XFS_I(ioend->io_inode);
166 struct xfs_trans *tp = ioend->io_append_trans;
167
168 /*
169 * The transaction may have been allocated in the I/O submission thread,
170 * thus we need to mark ourselves as being in a transaction manually.
171 * Similarly for freeze protection.
172 */
173 current_set_flags_nested(&tp->t_pflags, PF_FSTRANS);
174 rwsem_acquire_read(&VFS_I(ip)->i_sb->s_writers.lock_map[SB_FREEZE_FS-1],
175 0, 1, _THIS_IP_);
176
177 return xfs_setfilesize(ip, tp, ioend->io_offset, ioend->io_size);
178}
179
77d7a0c2 180/*
209fb87a 181 * Schedule IO completion handling on the final put of an ioend.
fc0063c4
CH
182 *
183 * If there is no work to do we might as well call it a day and free the
184 * ioend right now.
77d7a0c2
DC
185 */
186STATIC void
187xfs_finish_ioend(
209fb87a 188 struct xfs_ioend *ioend)
77d7a0c2
DC
189{
190 if (atomic_dec_and_test(&ioend->io_remaining)) {
aa6bf01d
CH
191 struct xfs_mount *mp = XFS_I(ioend->io_inode)->i_mount;
192
0d882a36 193 if (ioend->io_type == XFS_IO_UNWRITTEN)
aa6bf01d 194 queue_work(mp->m_unwritten_workqueue, &ioend->io_work);
2ba66237 195 else if (ioend->io_append_trans)
aa6bf01d 196 queue_work(mp->m_data_workqueue, &ioend->io_work);
fc0063c4
CH
197 else
198 xfs_destroy_ioend(ioend);
77d7a0c2 199 }
ba87ea69
LM
200}
201
0829c360 202/*
5ec4fabb 203 * IO write completion.
f6d6d4fc
CH
204 */
205STATIC void
5ec4fabb 206xfs_end_io(
77d7a0c2 207 struct work_struct *work)
0829c360 208{
77d7a0c2
DC
209 xfs_ioend_t *ioend = container_of(work, xfs_ioend_t, io_work);
210 struct xfs_inode *ip = XFS_I(ioend->io_inode);
69418932 211 int error = 0;
ba87ea69 212
04f658ee 213 if (XFS_FORCED_SHUTDOWN(ip->i_mount)) {
810627d9 214 ioend->io_error = -EIO;
04f658ee
CH
215 goto done;
216 }
217 if (ioend->io_error)
218 goto done;
219
5ec4fabb
CH
220 /*
221 * For unwritten extents we need to issue transactions to convert a
222 * range to normal written extens after the data I/O has finished.
223 */
0d882a36 224 if (ioend->io_type == XFS_IO_UNWRITTEN) {
437a255a
DC
225 error = xfs_iomap_write_unwritten(ip, ioend->io_offset,
226 ioend->io_size);
281627df 227 } else if (ioend->io_append_trans) {
2ba66237 228 error = xfs_setfilesize_ioend(ioend);
84803fb7 229 } else {
281627df 230 ASSERT(!xfs_ioend_is_append(ioend));
5ec4fabb 231 }
ba87ea69 232
04f658ee 233done:
437a255a 234 if (error)
2451337d 235 ioend->io_error = error;
aa6bf01d 236 xfs_destroy_ioend(ioend);
c626d174
DC
237}
238
0829c360
CH
239/*
240 * Allocate and initialise an IO completion structure.
241 * We need to track unwritten extent write completion here initially.
242 * We'll need to extend this for updating the ondisk inode size later
243 * (vs. incore size).
244 */
245STATIC xfs_ioend_t *
246xfs_alloc_ioend(
f6d6d4fc
CH
247 struct inode *inode,
248 unsigned int type)
0829c360
CH
249{
250 xfs_ioend_t *ioend;
251
252 ioend = mempool_alloc(xfs_ioend_pool, GFP_NOFS);
253
254 /*
255 * Set the count to 1 initially, which will prevent an I/O
256 * completion callback from happening before we have started
257 * all the I/O from calling the completion routine too early.
258 */
259 atomic_set(&ioend->io_remaining, 1);
7d04a335 260 ioend->io_error = 0;
f6d6d4fc
CH
261 ioend->io_list = NULL;
262 ioend->io_type = type;
b677c210 263 ioend->io_inode = inode;
c1a073bd 264 ioend->io_buffer_head = NULL;
f6d6d4fc 265 ioend->io_buffer_tail = NULL;
0829c360
CH
266 ioend->io_offset = 0;
267 ioend->io_size = 0;
281627df 268 ioend->io_append_trans = NULL;
0829c360 269
5ec4fabb 270 INIT_WORK(&ioend->io_work, xfs_end_io);
0829c360
CH
271 return ioend;
272}
273
1da177e4
LT
274STATIC int
275xfs_map_blocks(
276 struct inode *inode,
277 loff_t offset,
207d0416 278 struct xfs_bmbt_irec *imap,
a206c817
CH
279 int type,
280 int nonblocking)
1da177e4 281{
a206c817
CH
282 struct xfs_inode *ip = XFS_I(inode);
283 struct xfs_mount *mp = ip->i_mount;
ed1e7b7e 284 ssize_t count = 1 << inode->i_blkbits;
a206c817
CH
285 xfs_fileoff_t offset_fsb, end_fsb;
286 int error = 0;
a206c817
CH
287 int bmapi_flags = XFS_BMAPI_ENTIRE;
288 int nimaps = 1;
289
290 if (XFS_FORCED_SHUTDOWN(mp))
b474c7ae 291 return -EIO;
a206c817 292
0d882a36 293 if (type == XFS_IO_UNWRITTEN)
a206c817 294 bmapi_flags |= XFS_BMAPI_IGSTATE;
8ff2957d
CH
295
296 if (!xfs_ilock_nowait(ip, XFS_ILOCK_SHARED)) {
297 if (nonblocking)
b474c7ae 298 return -EAGAIN;
8ff2957d 299 xfs_ilock(ip, XFS_ILOCK_SHARED);
a206c817
CH
300 }
301
8ff2957d
CH
302 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
303 (ip->i_df.if_flags & XFS_IFEXTENTS));
d2c28191 304 ASSERT(offset <= mp->m_super->s_maxbytes);
8ff2957d 305
d2c28191
DC
306 if (offset + count > mp->m_super->s_maxbytes)
307 count = mp->m_super->s_maxbytes - offset;
a206c817
CH
308 end_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)offset + count);
309 offset_fsb = XFS_B_TO_FSBT(mp, offset);
5c8ed202
DC
310 error = xfs_bmapi_read(ip, offset_fsb, end_fsb - offset_fsb,
311 imap, &nimaps, bmapi_flags);
8ff2957d 312 xfs_iunlock(ip, XFS_ILOCK_SHARED);
a206c817 313
8ff2957d 314 if (error)
2451337d 315 return error;
a206c817 316
0d882a36 317 if (type == XFS_IO_DELALLOC &&
8ff2957d 318 (!nimaps || isnullstartblock(imap->br_startblock))) {
0799a3e8 319 error = xfs_iomap_write_allocate(ip, offset, imap);
a206c817
CH
320 if (!error)
321 trace_xfs_map_blocks_alloc(ip, offset, count, type, imap);
2451337d 322 return error;
a206c817
CH
323 }
324
8ff2957d 325#ifdef DEBUG
0d882a36 326 if (type == XFS_IO_UNWRITTEN) {
8ff2957d
CH
327 ASSERT(nimaps);
328 ASSERT(imap->br_startblock != HOLESTARTBLOCK);
329 ASSERT(imap->br_startblock != DELAYSTARTBLOCK);
330 }
331#endif
332 if (nimaps)
333 trace_xfs_map_blocks_found(ip, offset, count, type, imap);
334 return 0;
1da177e4
LT
335}
336
b8f82a4a 337STATIC int
558e6891 338xfs_imap_valid(
8699bb0a 339 struct inode *inode,
207d0416 340 struct xfs_bmbt_irec *imap,
558e6891 341 xfs_off_t offset)
1da177e4 342{
558e6891 343 offset >>= inode->i_blkbits;
8699bb0a 344
558e6891
CH
345 return offset >= imap->br_startoff &&
346 offset < imap->br_startoff + imap->br_blockcount;
1da177e4
LT
347}
348
f6d6d4fc
CH
349/*
350 * BIO completion handler for buffered IO.
351 */
782e3b3b 352STATIC void
f6d6d4fc
CH
353xfs_end_bio(
354 struct bio *bio,
f6d6d4fc
CH
355 int error)
356{
357 xfs_ioend_t *ioend = bio->bi_private;
358
7d04a335 359 ioend->io_error = test_bit(BIO_UPTODATE, &bio->bi_flags) ? 0 : error;
f6d6d4fc
CH
360
361 /* Toss bio and pass work off to an xfsdatad thread */
f6d6d4fc
CH
362 bio->bi_private = NULL;
363 bio->bi_end_io = NULL;
f6d6d4fc 364 bio_put(bio);
7d04a335 365
209fb87a 366 xfs_finish_ioend(ioend);
f6d6d4fc
CH
367}
368
369STATIC void
370xfs_submit_ioend_bio(
06342cf8
CH
371 struct writeback_control *wbc,
372 xfs_ioend_t *ioend,
373 struct bio *bio)
f6d6d4fc
CH
374{
375 atomic_inc(&ioend->io_remaining);
f6d6d4fc
CH
376 bio->bi_private = ioend;
377 bio->bi_end_io = xfs_end_bio;
721a9602 378 submit_bio(wbc->sync_mode == WB_SYNC_ALL ? WRITE_SYNC : WRITE, bio);
f6d6d4fc
CH
379}
380
381STATIC struct bio *
382xfs_alloc_ioend_bio(
383 struct buffer_head *bh)
384{
f6d6d4fc 385 int nvecs = bio_get_nr_vecs(bh->b_bdev);
221cb251 386 struct bio *bio = bio_alloc(GFP_NOIO, nvecs);
f6d6d4fc
CH
387
388 ASSERT(bio->bi_private == NULL);
4f024f37 389 bio->bi_iter.bi_sector = bh->b_blocknr * (bh->b_size >> 9);
f6d6d4fc 390 bio->bi_bdev = bh->b_bdev;
f6d6d4fc
CH
391 return bio;
392}
393
394STATIC void
395xfs_start_buffer_writeback(
396 struct buffer_head *bh)
397{
398 ASSERT(buffer_mapped(bh));
399 ASSERT(buffer_locked(bh));
400 ASSERT(!buffer_delay(bh));
401 ASSERT(!buffer_unwritten(bh));
402
403 mark_buffer_async_write(bh);
404 set_buffer_uptodate(bh);
405 clear_buffer_dirty(bh);
406}
407
408STATIC void
409xfs_start_page_writeback(
410 struct page *page,
f6d6d4fc
CH
411 int clear_dirty,
412 int buffers)
413{
414 ASSERT(PageLocked(page));
415 ASSERT(!PageWriteback(page));
0d085a52
DC
416
417 /*
418 * if the page was not fully cleaned, we need to ensure that the higher
419 * layers come back to it correctly. That means we need to keep the page
420 * dirty, and for WB_SYNC_ALL writeback we need to ensure the
421 * PAGECACHE_TAG_TOWRITE index mark is not removed so another attempt to
422 * write this page in this writeback sweep will be made.
423 */
424 if (clear_dirty) {
92132021 425 clear_page_dirty_for_io(page);
0d085a52
DC
426 set_page_writeback(page);
427 } else
428 set_page_writeback_keepwrite(page);
429
f6d6d4fc 430 unlock_page(page);
0d085a52 431
1f7decf6
FW
432 /* If no buffers on the page are to be written, finish it here */
433 if (!buffers)
f6d6d4fc 434 end_page_writeback(page);
f6d6d4fc
CH
435}
436
c7c1a7d8 437static inline int xfs_bio_add_buffer(struct bio *bio, struct buffer_head *bh)
f6d6d4fc
CH
438{
439 return bio_add_page(bio, bh->b_page, bh->b_size, bh_offset(bh));
440}
441
442/*
d88992f6
DC
443 * Submit all of the bios for all of the ioends we have saved up, covering the
444 * initial writepage page and also any probed pages.
445 *
446 * Because we may have multiple ioends spanning a page, we need to start
447 * writeback on all the buffers before we submit them for I/O. If we mark the
448 * buffers as we got, then we can end up with a page that only has buffers
449 * marked async write and I/O complete on can occur before we mark the other
450 * buffers async write.
451 *
452 * The end result of this is that we trip a bug in end_page_writeback() because
453 * we call it twice for the one page as the code in end_buffer_async_write()
454 * assumes that all buffers on the page are started at the same time.
455 *
456 * The fix is two passes across the ioend list - one to start writeback on the
c41564b5 457 * buffer_heads, and then submit them for I/O on the second pass.
7bf7f352
DC
458 *
459 * If @fail is non-zero, it means that we have a situation where some part of
460 * the submission process has failed after we have marked paged for writeback
461 * and unlocked them. In this situation, we need to fail the ioend chain rather
462 * than submit it to IO. This typically only happens on a filesystem shutdown.
f6d6d4fc
CH
463 */
464STATIC void
465xfs_submit_ioend(
06342cf8 466 struct writeback_control *wbc,
7bf7f352
DC
467 xfs_ioend_t *ioend,
468 int fail)
f6d6d4fc 469{
d88992f6 470 xfs_ioend_t *head = ioend;
f6d6d4fc
CH
471 xfs_ioend_t *next;
472 struct buffer_head *bh;
473 struct bio *bio;
474 sector_t lastblock = 0;
475
d88992f6
DC
476 /* Pass 1 - start writeback */
477 do {
478 next = ioend->io_list;
221cb251 479 for (bh = ioend->io_buffer_head; bh; bh = bh->b_private)
d88992f6 480 xfs_start_buffer_writeback(bh);
d88992f6
DC
481 } while ((ioend = next) != NULL);
482
483 /* Pass 2 - submit I/O */
484 ioend = head;
f6d6d4fc
CH
485 do {
486 next = ioend->io_list;
487 bio = NULL;
488
7bf7f352
DC
489 /*
490 * If we are failing the IO now, just mark the ioend with an
491 * error and finish it. This will run IO completion immediately
492 * as there is only one reference to the ioend at this point in
493 * time.
494 */
495 if (fail) {
2451337d 496 ioend->io_error = fail;
7bf7f352
DC
497 xfs_finish_ioend(ioend);
498 continue;
499 }
500
f6d6d4fc 501 for (bh = ioend->io_buffer_head; bh; bh = bh->b_private) {
f6d6d4fc
CH
502
503 if (!bio) {
504 retry:
505 bio = xfs_alloc_ioend_bio(bh);
506 } else if (bh->b_blocknr != lastblock + 1) {
06342cf8 507 xfs_submit_ioend_bio(wbc, ioend, bio);
f6d6d4fc
CH
508 goto retry;
509 }
510
c7c1a7d8 511 if (xfs_bio_add_buffer(bio, bh) != bh->b_size) {
06342cf8 512 xfs_submit_ioend_bio(wbc, ioend, bio);
f6d6d4fc
CH
513 goto retry;
514 }
515
516 lastblock = bh->b_blocknr;
517 }
518 if (bio)
06342cf8 519 xfs_submit_ioend_bio(wbc, ioend, bio);
209fb87a 520 xfs_finish_ioend(ioend);
f6d6d4fc
CH
521 } while ((ioend = next) != NULL);
522}
523
524/*
525 * Cancel submission of all buffer_heads so far in this endio.
526 * Toss the endio too. Only ever called for the initial page
527 * in a writepage request, so only ever one page.
528 */
529STATIC void
530xfs_cancel_ioend(
531 xfs_ioend_t *ioend)
532{
533 xfs_ioend_t *next;
534 struct buffer_head *bh, *next_bh;
535
536 do {
537 next = ioend->io_list;
538 bh = ioend->io_buffer_head;
539 do {
540 next_bh = bh->b_private;
541 clear_buffer_async_write(bh);
07d08681
BF
542 /*
543 * The unwritten flag is cleared when added to the
544 * ioend. We're not submitting for I/O so mark the
545 * buffer unwritten again for next time around.
546 */
547 if (ioend->io_type == XFS_IO_UNWRITTEN)
548 set_buffer_unwritten(bh);
f6d6d4fc
CH
549 unlock_buffer(bh);
550 } while ((bh = next_bh) != NULL);
551
f6d6d4fc
CH
552 mempool_free(ioend, xfs_ioend_pool);
553 } while ((ioend = next) != NULL);
554}
555
556/*
557 * Test to see if we've been building up a completion structure for
558 * earlier buffers -- if so, we try to append to this ioend if we
559 * can, otherwise we finish off any current ioend and start another.
560 * Return true if we've finished the given ioend.
561 */
562STATIC void
563xfs_add_to_ioend(
564 struct inode *inode,
565 struct buffer_head *bh,
7336cea8 566 xfs_off_t offset,
f6d6d4fc
CH
567 unsigned int type,
568 xfs_ioend_t **result,
569 int need_ioend)
570{
571 xfs_ioend_t *ioend = *result;
572
573 if (!ioend || need_ioend || type != ioend->io_type) {
574 xfs_ioend_t *previous = *result;
f6d6d4fc 575
f6d6d4fc
CH
576 ioend = xfs_alloc_ioend(inode, type);
577 ioend->io_offset = offset;
578 ioend->io_buffer_head = bh;
579 ioend->io_buffer_tail = bh;
580 if (previous)
581 previous->io_list = ioend;
582 *result = ioend;
583 } else {
584 ioend->io_buffer_tail->b_private = bh;
585 ioend->io_buffer_tail = bh;
586 }
587
588 bh->b_private = NULL;
589 ioend->io_size += bh->b_size;
590}
591
87cbc49c
NS
592STATIC void
593xfs_map_buffer(
046f1685 594 struct inode *inode,
87cbc49c 595 struct buffer_head *bh,
207d0416 596 struct xfs_bmbt_irec *imap,
046f1685 597 xfs_off_t offset)
87cbc49c
NS
598{
599 sector_t bn;
8699bb0a 600 struct xfs_mount *m = XFS_I(inode)->i_mount;
207d0416
CH
601 xfs_off_t iomap_offset = XFS_FSB_TO_B(m, imap->br_startoff);
602 xfs_daddr_t iomap_bn = xfs_fsb_to_db(XFS_I(inode), imap->br_startblock);
87cbc49c 603
207d0416
CH
604 ASSERT(imap->br_startblock != HOLESTARTBLOCK);
605 ASSERT(imap->br_startblock != DELAYSTARTBLOCK);
87cbc49c 606
e513182d 607 bn = (iomap_bn >> (inode->i_blkbits - BBSHIFT)) +
8699bb0a 608 ((offset - iomap_offset) >> inode->i_blkbits);
87cbc49c 609
046f1685 610 ASSERT(bn || XFS_IS_REALTIME_INODE(XFS_I(inode)));
87cbc49c
NS
611
612 bh->b_blocknr = bn;
613 set_buffer_mapped(bh);
614}
615
1da177e4
LT
616STATIC void
617xfs_map_at_offset(
046f1685 618 struct inode *inode,
1da177e4 619 struct buffer_head *bh,
207d0416 620 struct xfs_bmbt_irec *imap,
046f1685 621 xfs_off_t offset)
1da177e4 622{
207d0416
CH
623 ASSERT(imap->br_startblock != HOLESTARTBLOCK);
624 ASSERT(imap->br_startblock != DELAYSTARTBLOCK);
1da177e4 625
207d0416 626 xfs_map_buffer(inode, bh, imap, offset);
1da177e4
LT
627 set_buffer_mapped(bh);
628 clear_buffer_delay(bh);
f6d6d4fc 629 clear_buffer_unwritten(bh);
1da177e4
LT
630}
631
1da177e4 632/*
a49935f2
DC
633 * Test if a given page contains at least one buffer of a given @type.
634 * If @check_all_buffers is true, then we walk all the buffers in the page to
635 * try to find one of the type passed in. If it is not set, then the caller only
636 * needs to check the first buffer on the page for a match.
1da177e4 637 */
a49935f2 638STATIC bool
6ffc4db5 639xfs_check_page_type(
10ce4444 640 struct page *page,
a49935f2
DC
641 unsigned int type,
642 bool check_all_buffers)
1da177e4 643{
a49935f2
DC
644 struct buffer_head *bh;
645 struct buffer_head *head;
1da177e4 646
a49935f2
DC
647 if (PageWriteback(page))
648 return false;
649 if (!page->mapping)
650 return false;
651 if (!page_has_buffers(page))
652 return false;
1da177e4 653
a49935f2
DC
654 bh = head = page_buffers(page);
655 do {
656 if (buffer_unwritten(bh)) {
657 if (type == XFS_IO_UNWRITTEN)
658 return true;
659 } else if (buffer_delay(bh)) {
805eeb8e 660 if (type == XFS_IO_DELALLOC)
a49935f2
DC
661 return true;
662 } else if (buffer_dirty(bh) && buffer_mapped(bh)) {
805eeb8e 663 if (type == XFS_IO_OVERWRITE)
a49935f2
DC
664 return true;
665 }
1da177e4 666
a49935f2
DC
667 /* If we are only checking the first buffer, we are done now. */
668 if (!check_all_buffers)
669 break;
670 } while ((bh = bh->b_this_page) != head);
1da177e4 671
a49935f2 672 return false;
1da177e4
LT
673}
674
1da177e4
LT
675/*
676 * Allocate & map buffers for page given the extent map. Write it out.
677 * except for the original page of a writepage, this is called on
678 * delalloc/unwritten pages only, for the original page it is possible
679 * that the page has no mapping at all.
680 */
f6d6d4fc 681STATIC int
1da177e4
LT
682xfs_convert_page(
683 struct inode *inode,
684 struct page *page,
10ce4444 685 loff_t tindex,
207d0416 686 struct xfs_bmbt_irec *imap,
f6d6d4fc 687 xfs_ioend_t **ioendp,
2fa24f92 688 struct writeback_control *wbc)
1da177e4 689{
f6d6d4fc 690 struct buffer_head *bh, *head;
9260dc6b
CH
691 xfs_off_t end_offset;
692 unsigned long p_offset;
f6d6d4fc 693 unsigned int type;
24e17b5f 694 int len, page_dirty;
f6d6d4fc 695 int count = 0, done = 0, uptodate = 1;
9260dc6b 696 xfs_off_t offset = page_offset(page);
1da177e4 697
10ce4444
CH
698 if (page->index != tindex)
699 goto fail;
529ae9aa 700 if (!trylock_page(page))
10ce4444
CH
701 goto fail;
702 if (PageWriteback(page))
703 goto fail_unlock_page;
704 if (page->mapping != inode->i_mapping)
705 goto fail_unlock_page;
a49935f2 706 if (!xfs_check_page_type(page, (*ioendp)->io_type, false))
10ce4444
CH
707 goto fail_unlock_page;
708
24e17b5f
NS
709 /*
710 * page_dirty is initially a count of buffers on the page before
c41564b5 711 * EOF and is decremented as we move each into a cleanable state.
9260dc6b
CH
712 *
713 * Derivation:
714 *
715 * End offset is the highest offset that this page should represent.
716 * If we are on the last page, (end_offset & (PAGE_CACHE_SIZE - 1))
717 * will evaluate non-zero and be less than PAGE_CACHE_SIZE and
718 * hence give us the correct page_dirty count. On any other page,
719 * it will be zero and in that case we need page_dirty to be the
720 * count of buffers on the page.
24e17b5f 721 */
9260dc6b
CH
722 end_offset = min_t(unsigned long long,
723 (xfs_off_t)(page->index + 1) << PAGE_CACHE_SHIFT,
724 i_size_read(inode));
725
480d7467
DC
726 /*
727 * If the current map does not span the entire page we are about to try
728 * to write, then give up. The only way we can write a page that spans
729 * multiple mappings in a single writeback iteration is via the
730 * xfs_vm_writepage() function. Data integrity writeback requires the
731 * entire page to be written in a single attempt, otherwise the part of
732 * the page we don't write here doesn't get written as part of the data
733 * integrity sync.
734 *
735 * For normal writeback, we also don't attempt to write partial pages
736 * here as it simply means that write_cache_pages() will see it under
737 * writeback and ignore the page until some point in the future, at
738 * which time this will be the only page in the file that needs
739 * writeback. Hence for more optimal IO patterns, we should always
740 * avoid partial page writeback due to multiple mappings on a page here.
741 */
742 if (!xfs_imap_valid(inode, imap, end_offset))
743 goto fail_unlock_page;
744
24e17b5f 745 len = 1 << inode->i_blkbits;
9260dc6b
CH
746 p_offset = min_t(unsigned long, end_offset & (PAGE_CACHE_SIZE - 1),
747 PAGE_CACHE_SIZE);
748 p_offset = p_offset ? roundup(p_offset, len) : PAGE_CACHE_SIZE;
749 page_dirty = p_offset / len;
24e17b5f 750
a49935f2
DC
751 /*
752 * The moment we find a buffer that doesn't match our current type
753 * specification or can't be written, abort the loop and start
754 * writeback. As per the above xfs_imap_valid() check, only
755 * xfs_vm_writepage() can handle partial page writeback fully - we are
756 * limited here to the buffers that are contiguous with the current
757 * ioend, and hence a buffer we can't write breaks that contiguity and
758 * we have to defer the rest of the IO to xfs_vm_writepage().
759 */
1da177e4
LT
760 bh = head = page_buffers(page);
761 do {
9260dc6b 762 if (offset >= end_offset)
1da177e4 763 break;
f6d6d4fc
CH
764 if (!buffer_uptodate(bh))
765 uptodate = 0;
766 if (!(PageUptodate(page) || buffer_uptodate(bh))) {
767 done = 1;
a49935f2 768 break;
f6d6d4fc
CH
769 }
770
2fa24f92
CH
771 if (buffer_unwritten(bh) || buffer_delay(bh) ||
772 buffer_mapped(bh)) {
9260dc6b 773 if (buffer_unwritten(bh))
0d882a36 774 type = XFS_IO_UNWRITTEN;
2fa24f92 775 else if (buffer_delay(bh))
0d882a36 776 type = XFS_IO_DELALLOC;
2fa24f92 777 else
0d882a36 778 type = XFS_IO_OVERWRITE;
9260dc6b 779
a49935f2
DC
780 /*
781 * imap should always be valid because of the above
782 * partial page end_offset check on the imap.
783 */
784 ASSERT(xfs_imap_valid(inode, imap, offset));
9260dc6b 785
ecff71e6 786 lock_buffer(bh);
0d882a36 787 if (type != XFS_IO_OVERWRITE)
2fa24f92 788 xfs_map_at_offset(inode, bh, imap, offset);
89f3b363
CH
789 xfs_add_to_ioend(inode, bh, offset, type,
790 ioendp, done);
791
9260dc6b
CH
792 page_dirty--;
793 count++;
794 } else {
2fa24f92 795 done = 1;
a49935f2 796 break;
1da177e4 797 }
7336cea8 798 } while (offset += len, (bh = bh->b_this_page) != head);
1da177e4 799
f6d6d4fc
CH
800 if (uptodate && bh == head)
801 SetPageUptodate(page);
802
89f3b363 803 if (count) {
efceab1d
DC
804 if (--wbc->nr_to_write <= 0 &&
805 wbc->sync_mode == WB_SYNC_NONE)
89f3b363 806 done = 1;
1da177e4 807 }
89f3b363 808 xfs_start_page_writeback(page, !page_dirty, count);
f6d6d4fc
CH
809
810 return done;
10ce4444
CH
811 fail_unlock_page:
812 unlock_page(page);
813 fail:
814 return 1;
1da177e4
LT
815}
816
817/*
818 * Convert & write out a cluster of pages in the same extent as defined
819 * by mp and following the start page.
820 */
821STATIC void
822xfs_cluster_write(
823 struct inode *inode,
824 pgoff_t tindex,
207d0416 825 struct xfs_bmbt_irec *imap,
f6d6d4fc 826 xfs_ioend_t **ioendp,
1da177e4 827 struct writeback_control *wbc,
1da177e4
LT
828 pgoff_t tlast)
829{
10ce4444
CH
830 struct pagevec pvec;
831 int done = 0, i;
1da177e4 832
10ce4444
CH
833 pagevec_init(&pvec, 0);
834 while (!done && tindex <= tlast) {
835 unsigned len = min_t(pgoff_t, PAGEVEC_SIZE, tlast - tindex + 1);
836
837 if (!pagevec_lookup(&pvec, inode->i_mapping, tindex, len))
1da177e4 838 break;
10ce4444
CH
839
840 for (i = 0; i < pagevec_count(&pvec); i++) {
841 done = xfs_convert_page(inode, pvec.pages[i], tindex++,
2fa24f92 842 imap, ioendp, wbc);
10ce4444
CH
843 if (done)
844 break;
845 }
846
847 pagevec_release(&pvec);
848 cond_resched();
1da177e4
LT
849 }
850}
851
3ed3a434
DC
852STATIC void
853xfs_vm_invalidatepage(
854 struct page *page,
d47992f8
LC
855 unsigned int offset,
856 unsigned int length)
3ed3a434 857{
34097dfe
LC
858 trace_xfs_invalidatepage(page->mapping->host, page, offset,
859 length);
860 block_invalidatepage(page, offset, length);
3ed3a434
DC
861}
862
863/*
864 * If the page has delalloc buffers on it, we need to punch them out before we
865 * invalidate the page. If we don't, we leave a stale delalloc mapping on the
866 * inode that can trip a BUG() in xfs_get_blocks() later on if a direct IO read
867 * is done on that same region - the delalloc extent is returned when none is
868 * supposed to be there.
869 *
870 * We prevent this by truncating away the delalloc regions on the page before
871 * invalidating it. Because they are delalloc, we can do this without needing a
872 * transaction. Indeed - if we get ENOSPC errors, we have to be able to do this
873 * truncation without a transaction as there is no space left for block
874 * reservation (typically why we see a ENOSPC in writeback).
875 *
876 * This is not a performance critical path, so for now just do the punching a
877 * buffer head at a time.
878 */
879STATIC void
880xfs_aops_discard_page(
881 struct page *page)
882{
883 struct inode *inode = page->mapping->host;
884 struct xfs_inode *ip = XFS_I(inode);
885 struct buffer_head *bh, *head;
886 loff_t offset = page_offset(page);
3ed3a434 887
a49935f2 888 if (!xfs_check_page_type(page, XFS_IO_DELALLOC, true))
3ed3a434
DC
889 goto out_invalidate;
890
e8c3753c
DC
891 if (XFS_FORCED_SHUTDOWN(ip->i_mount))
892 goto out_invalidate;
893
4f10700a 894 xfs_alert(ip->i_mount,
3ed3a434
DC
895 "page discard on page %p, inode 0x%llx, offset %llu.",
896 page, ip->i_ino, offset);
897
898 xfs_ilock(ip, XFS_ILOCK_EXCL);
899 bh = head = page_buffers(page);
900 do {
3ed3a434 901 int error;
c726de44 902 xfs_fileoff_t start_fsb;
3ed3a434
DC
903
904 if (!buffer_delay(bh))
905 goto next_buffer;
906
c726de44
DC
907 start_fsb = XFS_B_TO_FSBT(ip->i_mount, offset);
908 error = xfs_bmap_punch_delalloc_range(ip, start_fsb, 1);
3ed3a434
DC
909 if (error) {
910 /* something screwed, just bail */
e8c3753c 911 if (!XFS_FORCED_SHUTDOWN(ip->i_mount)) {
4f10700a 912 xfs_alert(ip->i_mount,
3ed3a434 913 "page discard unable to remove delalloc mapping.");
e8c3753c 914 }
3ed3a434
DC
915 break;
916 }
917next_buffer:
c726de44 918 offset += 1 << inode->i_blkbits;
3ed3a434
DC
919
920 } while ((bh = bh->b_this_page) != head);
921
922 xfs_iunlock(ip, XFS_ILOCK_EXCL);
923out_invalidate:
d47992f8 924 xfs_vm_invalidatepage(page, 0, PAGE_CACHE_SIZE);
3ed3a434
DC
925 return;
926}
927
1da177e4 928/*
89f3b363
CH
929 * Write out a dirty page.
930 *
931 * For delalloc space on the page we need to allocate space and flush it.
932 * For unwritten space on the page we need to start the conversion to
933 * regular allocated space.
89f3b363 934 * For any other dirty buffer heads on the page we should flush them.
1da177e4 935 */
1da177e4 936STATIC int
89f3b363
CH
937xfs_vm_writepage(
938 struct page *page,
939 struct writeback_control *wbc)
1da177e4 940{
89f3b363 941 struct inode *inode = page->mapping->host;
f6d6d4fc 942 struct buffer_head *bh, *head;
207d0416 943 struct xfs_bmbt_irec imap;
f6d6d4fc 944 xfs_ioend_t *ioend = NULL, *iohead = NULL;
1da177e4 945 loff_t offset;
f6d6d4fc 946 unsigned int type;
1da177e4 947 __uint64_t end_offset;
bd1556a1 948 pgoff_t end_index, last_index;
ed1e7b7e 949 ssize_t len;
a206c817 950 int err, imap_valid = 0, uptodate = 1;
89f3b363 951 int count = 0;
a206c817 952 int nonblocking = 0;
89f3b363 953
34097dfe 954 trace_xfs_writepage(inode, page, 0, 0);
89f3b363 955
20cb52eb
CH
956 ASSERT(page_has_buffers(page));
957
89f3b363
CH
958 /*
959 * Refuse to write the page out if we are called from reclaim context.
960 *
d4f7a5cb
CH
961 * This avoids stack overflows when called from deeply used stacks in
962 * random callers for direct reclaim or memcg reclaim. We explicitly
963 * allow reclaim from kswapd as the stack usage there is relatively low.
89f3b363 964 *
94054fa3
MG
965 * This should never happen except in the case of a VM regression so
966 * warn about it.
89f3b363 967 */
94054fa3
MG
968 if (WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD)) ==
969 PF_MEMALLOC))
b5420f23 970 goto redirty;
1da177e4 971
89f3b363 972 /*
680a647b
CH
973 * Given that we do not allow direct reclaim to call us, we should
974 * never be called while in a filesystem transaction.
89f3b363 975 */
448011e2 976 if (WARN_ON_ONCE(current->flags & PF_FSTRANS))
b5420f23 977 goto redirty;
89f3b363 978
1da177e4
LT
979 /* Is this page beyond the end of the file? */
980 offset = i_size_read(inode);
981 end_index = offset >> PAGE_CACHE_SHIFT;
982 last_index = (offset - 1) >> PAGE_CACHE_SHIFT;
8695d27e
JL
983
984 /*
985 * The page index is less than the end_index, adjust the end_offset
986 * to the highest offset that this page should represent.
987 * -----------------------------------------------------
988 * | file mapping | <EOF> |
989 * -----------------------------------------------------
990 * | Page ... | Page N-2 | Page N-1 | Page N | |
991 * ^--------------------------------^----------|--------
992 * | desired writeback range | see else |
993 * ---------------------------------^------------------|
994 */
995 if (page->index < end_index)
996 end_offset = (xfs_off_t)(page->index + 1) << PAGE_CACHE_SHIFT;
997 else {
998 /*
999 * Check whether the page to write out is beyond or straddles
1000 * i_size or not.
1001 * -------------------------------------------------------
1002 * | file mapping | <EOF> |
1003 * -------------------------------------------------------
1004 * | Page ... | Page N-2 | Page N-1 | Page N | Beyond |
1005 * ^--------------------------------^-----------|---------
1006 * | | Straddles |
1007 * ---------------------------------^-----------|--------|
1008 */
6b7a03f0
CH
1009 unsigned offset_into_page = offset & (PAGE_CACHE_SIZE - 1);
1010
1011 /*
ff9a28f6
JK
1012 * Skip the page if it is fully outside i_size, e.g. due to a
1013 * truncate operation that is in progress. We must redirty the
1014 * page so that reclaim stops reclaiming it. Otherwise
1015 * xfs_vm_releasepage() is called on it and gets confused.
8695d27e
JL
1016 *
1017 * Note that the end_index is unsigned long, it would overflow
1018 * if the given offset is greater than 16TB on 32-bit system
1019 * and if we do check the page is fully outside i_size or not
1020 * via "if (page->index >= end_index + 1)" as "end_index + 1"
1021 * will be evaluated to 0. Hence this page will be redirtied
1022 * and be written out repeatedly which would result in an
1023 * infinite loop, the user program that perform this operation
1024 * will hang. Instead, we can verify this situation by checking
1025 * if the page to write is totally beyond the i_size or if it's
1026 * offset is just equal to the EOF.
6b7a03f0 1027 */
8695d27e
JL
1028 if (page->index > end_index ||
1029 (page->index == end_index && offset_into_page == 0))
ff9a28f6 1030 goto redirty;
6b7a03f0
CH
1031
1032 /*
1033 * The page straddles i_size. It must be zeroed out on each
1034 * and every writepage invocation because it may be mmapped.
1035 * "A file is mapped in multiples of the page size. For a file
8695d27e 1036 * that is not a multiple of the page size, the remaining
6b7a03f0
CH
1037 * memory is zeroed when mapped, and writes to that region are
1038 * not written out to the file."
1039 */
1040 zero_user_segment(page, offset_into_page, PAGE_CACHE_SIZE);
8695d27e
JL
1041
1042 /* Adjust the end_offset to the end of file */
1043 end_offset = offset;
1da177e4
LT
1044 }
1045
24e17b5f 1046 len = 1 << inode->i_blkbits;
24e17b5f 1047
24e17b5f 1048 bh = head = page_buffers(page);
f6d6d4fc 1049 offset = page_offset(page);
0d882a36 1050 type = XFS_IO_OVERWRITE;
a206c817 1051
dbcdde3e 1052 if (wbc->sync_mode == WB_SYNC_NONE)
a206c817 1053 nonblocking = 1;
f6d6d4fc 1054
1da177e4 1055 do {
6ac7248e
CH
1056 int new_ioend = 0;
1057
1da177e4
LT
1058 if (offset >= end_offset)
1059 break;
1060 if (!buffer_uptodate(bh))
1061 uptodate = 0;
1da177e4 1062
3d9b02e3 1063 /*
ece413f5
CH
1064 * set_page_dirty dirties all buffers in a page, independent
1065 * of their state. The dirty state however is entirely
1066 * meaningless for holes (!mapped && uptodate), so skip
1067 * buffers covering holes here.
3d9b02e3
ES
1068 */
1069 if (!buffer_mapped(bh) && buffer_uptodate(bh)) {
3d9b02e3
ES
1070 imap_valid = 0;
1071 continue;
1072 }
1073
aeea1b1f 1074 if (buffer_unwritten(bh)) {
0d882a36
AR
1075 if (type != XFS_IO_UNWRITTEN) {
1076 type = XFS_IO_UNWRITTEN;
aeea1b1f 1077 imap_valid = 0;
1da177e4 1078 }
aeea1b1f 1079 } else if (buffer_delay(bh)) {
0d882a36
AR
1080 if (type != XFS_IO_DELALLOC) {
1081 type = XFS_IO_DELALLOC;
aeea1b1f 1082 imap_valid = 0;
1da177e4 1083 }
89f3b363 1084 } else if (buffer_uptodate(bh)) {
0d882a36
AR
1085 if (type != XFS_IO_OVERWRITE) {
1086 type = XFS_IO_OVERWRITE;
85da94c6
CH
1087 imap_valid = 0;
1088 }
aeea1b1f 1089 } else {
7d0fa3ec 1090 if (PageUptodate(page))
aeea1b1f 1091 ASSERT(buffer_mapped(bh));
7d0fa3ec
AR
1092 /*
1093 * This buffer is not uptodate and will not be
1094 * written to disk. Ensure that we will put any
1095 * subsequent writeable buffers into a new
1096 * ioend.
1097 */
1098 imap_valid = 0;
aeea1b1f
CH
1099 continue;
1100 }
d5cb48aa 1101
aeea1b1f
CH
1102 if (imap_valid)
1103 imap_valid = xfs_imap_valid(inode, &imap, offset);
1104 if (!imap_valid) {
1105 /*
1106 * If we didn't have a valid mapping then we need to
1107 * put the new mapping into a separate ioend structure.
1108 * This ensures non-contiguous extents always have
1109 * separate ioends, which is particularly important
1110 * for unwritten extent conversion at I/O completion
1111 * time.
1112 */
1113 new_ioend = 1;
1114 err = xfs_map_blocks(inode, offset, &imap, type,
1115 nonblocking);
1116 if (err)
1117 goto error;
1118 imap_valid = xfs_imap_valid(inode, &imap, offset);
1119 }
1120 if (imap_valid) {
ecff71e6 1121 lock_buffer(bh);
0d882a36 1122 if (type != XFS_IO_OVERWRITE)
aeea1b1f
CH
1123 xfs_map_at_offset(inode, bh, &imap, offset);
1124 xfs_add_to_ioend(inode, bh, offset, type, &ioend,
1125 new_ioend);
1126 count++;
1da177e4 1127 }
f6d6d4fc
CH
1128
1129 if (!iohead)
1130 iohead = ioend;
1131
1132 } while (offset += len, ((bh = bh->b_this_page) != head));
1da177e4
LT
1133
1134 if (uptodate && bh == head)
1135 SetPageUptodate(page);
1136
89f3b363 1137 xfs_start_page_writeback(page, 1, count);
1da177e4 1138
7bf7f352
DC
1139 /* if there is no IO to be submitted for this page, we are done */
1140 if (!ioend)
1141 return 0;
1142
1143 ASSERT(iohead);
1144
1145 /*
1146 * Any errors from this point onwards need tobe reported through the IO
1147 * completion path as we have marked the initial page as under writeback
1148 * and unlocked it.
1149 */
1150 if (imap_valid) {
bd1556a1
CH
1151 xfs_off_t end_index;
1152
1153 end_index = imap.br_startoff + imap.br_blockcount;
1154
1155 /* to bytes */
1156 end_index <<= inode->i_blkbits;
1157
1158 /* to pages */
1159 end_index = (end_index - 1) >> PAGE_CACHE_SHIFT;
1160
1161 /* check against file size */
1162 if (end_index > last_index)
1163 end_index = last_index;
8699bb0a 1164
207d0416 1165 xfs_cluster_write(inode, page->index + 1, &imap, &ioend,
2fa24f92 1166 wbc, end_index);
1da177e4
LT
1167 }
1168
281627df 1169
7bf7f352
DC
1170 /*
1171 * Reserve log space if we might write beyond the on-disk inode size.
1172 */
1173 err = 0;
1174 if (ioend->io_type != XFS_IO_UNWRITTEN && xfs_ioend_is_append(ioend))
1175 err = xfs_setfilesize_trans_alloc(ioend);
1176
1177 xfs_submit_ioend(wbc, iohead, err);
f6d6d4fc 1178
89f3b363 1179 return 0;
1da177e4
LT
1180
1181error:
f6d6d4fc
CH
1182 if (iohead)
1183 xfs_cancel_ioend(iohead);
1da177e4 1184
b5420f23
CH
1185 if (err == -EAGAIN)
1186 goto redirty;
1187
20cb52eb 1188 xfs_aops_discard_page(page);
89f3b363
CH
1189 ClearPageUptodate(page);
1190 unlock_page(page);
1da177e4 1191 return err;
f51623b2 1192
b5420f23 1193redirty:
f51623b2
NS
1194 redirty_page_for_writepage(wbc, page);
1195 unlock_page(page);
1196 return 0;
f51623b2
NS
1197}
1198
7d4fb40a
NS
1199STATIC int
1200xfs_vm_writepages(
1201 struct address_space *mapping,
1202 struct writeback_control *wbc)
1203{
b3aea4ed 1204 xfs_iflags_clear(XFS_I(mapping->host), XFS_ITRUNCATED);
7d4fb40a
NS
1205 return generic_writepages(mapping, wbc);
1206}
1207
f51623b2
NS
1208/*
1209 * Called to move a page into cleanable state - and from there
89f3b363 1210 * to be released. The page should already be clean. We always
f51623b2
NS
1211 * have buffer heads in this call.
1212 *
89f3b363 1213 * Returns 1 if the page is ok to release, 0 otherwise.
f51623b2
NS
1214 */
1215STATIC int
238f4c54 1216xfs_vm_releasepage(
f51623b2
NS
1217 struct page *page,
1218 gfp_t gfp_mask)
1219{
20cb52eb 1220 int delalloc, unwritten;
f51623b2 1221
34097dfe 1222 trace_xfs_releasepage(page->mapping->host, page, 0, 0);
238f4c54 1223
20cb52eb 1224 xfs_count_page_state(page, &delalloc, &unwritten);
f51623b2 1225
448011e2 1226 if (WARN_ON_ONCE(delalloc))
f51623b2 1227 return 0;
448011e2 1228 if (WARN_ON_ONCE(unwritten))
f51623b2
NS
1229 return 0;
1230
f51623b2
NS
1231 return try_to_free_buffers(page);
1232}
1233
a719370b 1234/*
a06c277a
DC
1235 * When we map a DIO buffer, we may need to attach an ioend that describes the
1236 * type of write IO we are doing. This passes to the completion function the
1237 * operations it needs to perform. If the mapping is for an overwrite wholly
1238 * within the EOF then we don't need an ioend and so we don't allocate one.
1239 * This avoids the unnecessary overhead of allocating and freeing ioends for
1240 * workloads that don't require transactions on IO completion.
d5cc2e3f
DC
1241 *
1242 * If we get multiple mappings in a single IO, we might be mapping different
1243 * types. But because the direct IO can only have a single private pointer, we
1244 * need to ensure that:
1245 *
a06c277a
DC
1246 * a) i) the ioend spans the entire region of unwritten mappings; or
1247 * ii) the ioend spans all the mappings that cross or are beyond EOF; and
d5cc2e3f
DC
1248 * b) if it contains unwritten extents, it is *permanently* marked as such
1249 *
1250 * We could do this by chaining ioends like buffered IO does, but we only
1251 * actually get one IO completion callback from the direct IO, and that spans
1252 * the entire IO regardless of how many mappings and IOs are needed to complete
1253 * the DIO. There is only going to be one reference to the ioend and its life
1254 * cycle is constrained by the DIO completion code. hence we don't need
1255 * reference counting here.
a719370b
DC
1256 */
1257static void
1258xfs_map_direct(
1259 struct inode *inode,
1260 struct buffer_head *bh_result,
1261 struct xfs_bmbt_irec *imap,
1262 xfs_off_t offset)
1263{
d5cc2e3f
DC
1264 struct xfs_ioend *ioend;
1265 xfs_off_t size = bh_result->b_size;
1266 int type;
1267
1268 if (ISUNWRITTEN(imap))
1269 type = XFS_IO_UNWRITTEN;
1270 else
1271 type = XFS_IO_OVERWRITE;
1272
1273 trace_xfs_gbmap_direct(XFS_I(inode), offset, size, type, imap);
1274
1275 if (bh_result->b_private) {
1276 ioend = bh_result->b_private;
1277 ASSERT(ioend->io_size > 0);
1278 ASSERT(offset >= ioend->io_offset);
1279 if (offset + size > ioend->io_offset + ioend->io_size)
1280 ioend->io_size = offset - ioend->io_offset + size;
1281
1282 if (type == XFS_IO_UNWRITTEN && type != ioend->io_type)
1283 ioend->io_type = XFS_IO_UNWRITTEN;
1284
1285 trace_xfs_gbmap_direct_update(XFS_I(inode), ioend->io_offset,
1286 ioend->io_size, ioend->io_type,
1287 imap);
a06c277a
DC
1288 } else if (type == XFS_IO_UNWRITTEN ||
1289 offset + size > i_size_read(inode)) {
d5cc2e3f
DC
1290 ioend = xfs_alloc_ioend(inode, type);
1291 ioend->io_offset = offset;
1292 ioend->io_size = size;
a06c277a 1293
d5cc2e3f 1294 bh_result->b_private = ioend;
a06c277a 1295 set_buffer_defer_completion(bh_result);
d5cc2e3f
DC
1296
1297 trace_xfs_gbmap_direct_new(XFS_I(inode), offset, size, type,
1298 imap);
a06c277a
DC
1299 } else {
1300 trace_xfs_gbmap_direct_none(XFS_I(inode), offset, size, type,
1301 imap);
a719370b
DC
1302 }
1303}
1304
1fdca9c2
DC
1305/*
1306 * If this is O_DIRECT or the mpage code calling tell them how large the mapping
1307 * is, so that we can avoid repeated get_blocks calls.
1308 *
1309 * If the mapping spans EOF, then we have to break the mapping up as the mapping
1310 * for blocks beyond EOF must be marked new so that sub block regions can be
1311 * correctly zeroed. We can't do this for mappings within EOF unless the mapping
1312 * was just allocated or is unwritten, otherwise the callers would overwrite
1313 * existing data with zeros. Hence we have to split the mapping into a range up
1314 * to and including EOF, and a second mapping for beyond EOF.
1315 */
1316static void
1317xfs_map_trim_size(
1318 struct inode *inode,
1319 sector_t iblock,
1320 struct buffer_head *bh_result,
1321 struct xfs_bmbt_irec *imap,
1322 xfs_off_t offset,
1323 ssize_t size)
1324{
1325 xfs_off_t mapping_size;
1326
1327 mapping_size = imap->br_startoff + imap->br_blockcount - iblock;
1328 mapping_size <<= inode->i_blkbits;
1329
1330 ASSERT(mapping_size > 0);
1331 if (mapping_size > size)
1332 mapping_size = size;
1333 if (offset < i_size_read(inode) &&
1334 offset + mapping_size >= i_size_read(inode)) {
1335 /* limit mapping to block that spans EOF */
1336 mapping_size = roundup_64(i_size_read(inode) - offset,
1337 1 << inode->i_blkbits);
1338 }
1339 if (mapping_size > LONG_MAX)
1340 mapping_size = LONG_MAX;
1341
1342 bh_result->b_size = mapping_size;
1343}
1344
1da177e4 1345STATIC int
c2536668 1346__xfs_get_blocks(
1da177e4
LT
1347 struct inode *inode,
1348 sector_t iblock,
1da177e4
LT
1349 struct buffer_head *bh_result,
1350 int create,
f2bde9b8 1351 int direct)
1da177e4 1352{
a206c817
CH
1353 struct xfs_inode *ip = XFS_I(inode);
1354 struct xfs_mount *mp = ip->i_mount;
1355 xfs_fileoff_t offset_fsb, end_fsb;
1356 int error = 0;
1357 int lockmode = 0;
207d0416 1358 struct xfs_bmbt_irec imap;
a206c817 1359 int nimaps = 1;
fdc7ed75
NS
1360 xfs_off_t offset;
1361 ssize_t size;
207d0416 1362 int new = 0;
a206c817
CH
1363
1364 if (XFS_FORCED_SHUTDOWN(mp))
b474c7ae 1365 return -EIO;
1da177e4 1366
fdc7ed75 1367 offset = (xfs_off_t)iblock << inode->i_blkbits;
c2536668
NS
1368 ASSERT(bh_result->b_size >= (1 << inode->i_blkbits));
1369 size = bh_result->b_size;
364f358a
LM
1370
1371 if (!create && direct && offset >= i_size_read(inode))
1372 return 0;
1373
507630b2
DC
1374 /*
1375 * Direct I/O is usually done on preallocated files, so try getting
1376 * a block mapping without an exclusive lock first. For buffered
1377 * writes we already have the exclusive iolock anyway, so avoiding
1378 * a lock roundtrip here by taking the ilock exclusive from the
1379 * beginning is a useful micro optimization.
1380 */
1381 if (create && !direct) {
a206c817
CH
1382 lockmode = XFS_ILOCK_EXCL;
1383 xfs_ilock(ip, lockmode);
1384 } else {
309ecac8 1385 lockmode = xfs_ilock_data_map_shared(ip);
a206c817 1386 }
f2bde9b8 1387
d2c28191
DC
1388 ASSERT(offset <= mp->m_super->s_maxbytes);
1389 if (offset + size > mp->m_super->s_maxbytes)
1390 size = mp->m_super->s_maxbytes - offset;
a206c817
CH
1391 end_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)offset + size);
1392 offset_fsb = XFS_B_TO_FSBT(mp, offset);
1393
5c8ed202
DC
1394 error = xfs_bmapi_read(ip, offset_fsb, end_fsb - offset_fsb,
1395 &imap, &nimaps, XFS_BMAPI_ENTIRE);
1da177e4 1396 if (error)
a206c817
CH
1397 goto out_unlock;
1398
1399 if (create &&
1400 (!nimaps ||
1401 (imap.br_startblock == HOLESTARTBLOCK ||
1402 imap.br_startblock == DELAYSTARTBLOCK))) {
aff3a9ed 1403 if (direct || xfs_get_extsz_hint(ip)) {
507630b2
DC
1404 /*
1405 * Drop the ilock in preparation for starting the block
1406 * allocation transaction. It will be retaken
1407 * exclusively inside xfs_iomap_write_direct for the
1408 * actual allocation.
1409 */
1410 xfs_iunlock(ip, lockmode);
a206c817
CH
1411 error = xfs_iomap_write_direct(ip, offset, size,
1412 &imap, nimaps);
507630b2 1413 if (error)
2451337d 1414 return error;
d3bc815a 1415 new = 1;
a206c817 1416 } else {
507630b2
DC
1417 /*
1418 * Delalloc reservations do not require a transaction,
d3bc815a
DC
1419 * we can go on without dropping the lock here. If we
1420 * are allocating a new delalloc block, make sure that
1421 * we set the new flag so that we mark the buffer new so
1422 * that we know that it is newly allocated if the write
1423 * fails.
507630b2 1424 */
d3bc815a
DC
1425 if (nimaps && imap.br_startblock == HOLESTARTBLOCK)
1426 new = 1;
a206c817 1427 error = xfs_iomap_write_delay(ip, offset, size, &imap);
507630b2
DC
1428 if (error)
1429 goto out_unlock;
1430
1431 xfs_iunlock(ip, lockmode);
a206c817 1432 }
d5cc2e3f
DC
1433 trace_xfs_get_blocks_alloc(ip, offset, size,
1434 ISUNWRITTEN(&imap) ? XFS_IO_UNWRITTEN
1435 : XFS_IO_DELALLOC, &imap);
a206c817 1436 } else if (nimaps) {
d5cc2e3f
DC
1437 trace_xfs_get_blocks_found(ip, offset, size,
1438 ISUNWRITTEN(&imap) ? XFS_IO_UNWRITTEN
1439 : XFS_IO_OVERWRITE, &imap);
507630b2 1440 xfs_iunlock(ip, lockmode);
a206c817
CH
1441 } else {
1442 trace_xfs_get_blocks_notfound(ip, offset, size);
1443 goto out_unlock;
1444 }
1da177e4 1445
1fdca9c2
DC
1446 /* trim mapping down to size requested */
1447 if (direct || size > (1 << inode->i_blkbits))
1448 xfs_map_trim_size(inode, iblock, bh_result,
1449 &imap, offset, size);
1450
a719370b
DC
1451 /*
1452 * For unwritten extents do not report a disk address in the buffered
1453 * read case (treat as if we're reading into a hole).
1454 */
207d0416 1455 if (imap.br_startblock != HOLESTARTBLOCK &&
a719370b
DC
1456 imap.br_startblock != DELAYSTARTBLOCK &&
1457 (create || !ISUNWRITTEN(&imap))) {
1458 xfs_map_buffer(inode, bh_result, &imap, offset);
1459 if (ISUNWRITTEN(&imap))
1da177e4 1460 set_buffer_unwritten(bh_result);
a719370b
DC
1461 /* direct IO needs special help */
1462 if (create && direct)
1463 xfs_map_direct(inode, bh_result, &imap, offset);
1da177e4
LT
1464 }
1465
c2536668
NS
1466 /*
1467 * If this is a realtime file, data may be on a different device.
1468 * to that pointed to from the buffer_head b_bdev currently.
1469 */
046f1685 1470 bh_result->b_bdev = xfs_find_bdev_for_inode(inode);
1da177e4 1471
c2536668 1472 /*
549054af
DC
1473 * If we previously allocated a block out beyond eof and we are now
1474 * coming back to use it then we will need to flag it as new even if it
1475 * has a disk address.
1476 *
1477 * With sub-block writes into unwritten extents we also need to mark
1478 * the buffer as new so that the unwritten parts of the buffer gets
1479 * correctly zeroed.
1da177e4
LT
1480 */
1481 if (create &&
1482 ((!buffer_mapped(bh_result) && !buffer_uptodate(bh_result)) ||
549054af 1483 (offset >= i_size_read(inode)) ||
207d0416 1484 (new || ISUNWRITTEN(&imap))))
1da177e4 1485 set_buffer_new(bh_result);
1da177e4 1486
207d0416 1487 if (imap.br_startblock == DELAYSTARTBLOCK) {
1da177e4
LT
1488 BUG_ON(direct);
1489 if (create) {
1490 set_buffer_uptodate(bh_result);
1491 set_buffer_mapped(bh_result);
1492 set_buffer_delay(bh_result);
1493 }
1494 }
1495
1da177e4 1496 return 0;
a206c817
CH
1497
1498out_unlock:
1499 xfs_iunlock(ip, lockmode);
2451337d 1500 return error;
1da177e4
LT
1501}
1502
1503int
c2536668 1504xfs_get_blocks(
1da177e4
LT
1505 struct inode *inode,
1506 sector_t iblock,
1507 struct buffer_head *bh_result,
1508 int create)
1509{
f2bde9b8 1510 return __xfs_get_blocks(inode, iblock, bh_result, create, 0);
1da177e4
LT
1511}
1512
1513STATIC int
e4c573bb 1514xfs_get_blocks_direct(
1da177e4
LT
1515 struct inode *inode,
1516 sector_t iblock,
1da177e4
LT
1517 struct buffer_head *bh_result,
1518 int create)
1519{
f2bde9b8 1520 return __xfs_get_blocks(inode, iblock, bh_result, create, 1);
1da177e4
LT
1521}
1522
209fb87a
CH
1523/*
1524 * Complete a direct I/O write request.
1525 *
a06c277a
DC
1526 * The ioend structure is passed from __xfs_get_blocks() to tell us what to do.
1527 * If no ioend exists (i.e. @private == NULL) then the write IO is an overwrite
1528 * wholly within the EOF and so there is nothing for us to do. Note that in this
1529 * case the completion can be called in interrupt context, whereas if we have an
1530 * ioend we will always be called in task context (i.e. from a workqueue).
209fb87a 1531 */
f0973863 1532STATIC void
209fb87a
CH
1533xfs_end_io_direct_write(
1534 struct kiocb *iocb,
1535 loff_t offset,
1536 ssize_t size,
7b7a8665 1537 void *private)
f0973863 1538{
2ba66237
CH
1539 struct inode *inode = file_inode(iocb->ki_filp);
1540 struct xfs_inode *ip = XFS_I(inode);
1541 struct xfs_mount *mp = ip->i_mount;
d5cc2e3f 1542 struct xfs_ioend *ioend = private;
2ba66237 1543
a06c277a
DC
1544 trace_xfs_gbmap_direct_endio(ip, offset, size,
1545 ioend ? ioend->io_type : 0, NULL);
1546
1547 if (!ioend) {
1548 ASSERT(offset + size <= i_size_read(inode));
2ba66237 1549 return;
a06c277a 1550 }
6dfa1b67 1551
2ba66237 1552 if (XFS_FORCED_SHUTDOWN(mp))
6dfa1b67 1553 goto out_end_io;
f0973863 1554
2813d682 1555 /*
d5cc2e3f
DC
1556 * dio completion end_io functions are only called on writes if more
1557 * than 0 bytes was written.
2813d682 1558 */
d5cc2e3f
DC
1559 ASSERT(size > 0);
1560
1561 /*
1562 * The ioend only maps whole blocks, while the IO may be sector aligned.
a06c277a
DC
1563 * Hence the ioend offset/size may not match the IO offset/size exactly.
1564 * Because we don't map overwrites within EOF into the ioend, the offset
1565 * may not match, but only if the endio spans EOF. Either way, write
1566 * the IO sizes into the ioend so that completion processing does the
1567 * right thing.
d5cc2e3f 1568 */
d5cc2e3f
DC
1569 ASSERT(offset + size <= ioend->io_offset + ioend->io_size);
1570 ioend->io_size = size;
1571 ioend->io_offset = offset;
f0973863 1572
2813d682 1573 /*
6dfa1b67
DC
1574 * The ioend tells us whether we are doing unwritten extent conversion
1575 * or an append transaction that updates the on-disk file size. These
1576 * cases are the only cases where we should *potentially* be needing
a06c277a 1577 * to update the VFS inode size.
6dfa1b67
DC
1578 *
1579 * We need to update the in-core inode size here so that we don't end up
a06c277a
DC
1580 * with the on-disk inode size being outside the in-core inode size. We
1581 * have no other method of updating EOF for AIO, so always do it here
1582 * if necessary.
b9d59846
DC
1583 *
1584 * We need to lock the test/set EOF update as we can be racing with
1585 * other IO completions here to update the EOF. Failing to serialise
1586 * here can result in EOF moving backwards and Bad Things Happen when
1587 * that occurs.
2813d682 1588 */
b9d59846 1589 spin_lock(&ip->i_flags_lock);
2ba66237
CH
1590 if (offset + size > i_size_read(inode))
1591 i_size_write(inode, offset + size);
b9d59846 1592 spin_unlock(&ip->i_flags_lock);
2813d682 1593
f0973863 1594 /*
6dfa1b67
DC
1595 * If we are doing an append IO that needs to update the EOF on disk,
1596 * do the transaction reserve now so we can use common end io
1597 * processing. Stashing the error (if there is one) in the ioend will
1598 * result in the ioend processing passing on the error if it is
1599 * possible as we can't return it from here.
f0973863 1600 */
a06c277a 1601 if (ioend->io_type == XFS_IO_OVERWRITE)
6dfa1b67 1602 ioend->io_error = xfs_setfilesize_trans_alloc(ioend);
209fb87a 1603
6dfa1b67
DC
1604out_end_io:
1605 xfs_end_io(&ioend->io_work);
1606 return;
f0973863
CH
1607}
1608
1da177e4 1609STATIC ssize_t
e4c573bb 1610xfs_vm_direct_IO(
1da177e4 1611 struct kiocb *iocb,
d8d3d94b
AV
1612 struct iov_iter *iter,
1613 loff_t offset)
1da177e4 1614{
209fb87a
CH
1615 struct inode *inode = iocb->ki_filp->f_mapping->host;
1616 struct block_device *bdev = xfs_find_bdev_for_inode(inode);
209fb87a 1617
6f673763 1618 if (iov_iter_rw(iter) == WRITE) {
17f8c842
OS
1619 return __blockdev_direct_IO(iocb, inode, bdev, iter, offset,
1620 xfs_get_blocks_direct,
9862f62f
CH
1621 xfs_end_io_direct_write, NULL,
1622 DIO_ASYNC_EXTEND);
209fb87a 1623 }
17f8c842
OS
1624 return __blockdev_direct_IO(iocb, inode, bdev, iter, offset,
1625 xfs_get_blocks_direct, NULL, NULL, 0);
1da177e4
LT
1626}
1627
d3bc815a
DC
1628/*
1629 * Punch out the delalloc blocks we have already allocated.
1630 *
1631 * Don't bother with xfs_setattr given that nothing can have made it to disk yet
1632 * as the page is still locked at this point.
1633 */
1634STATIC void
1635xfs_vm_kill_delalloc_range(
1636 struct inode *inode,
1637 loff_t start,
1638 loff_t end)
1639{
1640 struct xfs_inode *ip = XFS_I(inode);
1641 xfs_fileoff_t start_fsb;
1642 xfs_fileoff_t end_fsb;
1643 int error;
1644
1645 start_fsb = XFS_B_TO_FSB(ip->i_mount, start);
1646 end_fsb = XFS_B_TO_FSB(ip->i_mount, end);
1647 if (end_fsb <= start_fsb)
1648 return;
1649
1650 xfs_ilock(ip, XFS_ILOCK_EXCL);
1651 error = xfs_bmap_punch_delalloc_range(ip, start_fsb,
1652 end_fsb - start_fsb);
1653 if (error) {
1654 /* something screwed, just bail */
1655 if (!XFS_FORCED_SHUTDOWN(ip->i_mount)) {
1656 xfs_alert(ip->i_mount,
1657 "xfs_vm_write_failed: unable to clean up ino %lld",
1658 ip->i_ino);
1659 }
1660 }
1661 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1662}
1663
fa9b227e
CH
1664STATIC void
1665xfs_vm_write_failed(
d3bc815a
DC
1666 struct inode *inode,
1667 struct page *page,
1668 loff_t pos,
1669 unsigned len)
fa9b227e 1670{
58e59854 1671 loff_t block_offset;
d3bc815a
DC
1672 loff_t block_start;
1673 loff_t block_end;
1674 loff_t from = pos & (PAGE_CACHE_SIZE - 1);
1675 loff_t to = from + len;
1676 struct buffer_head *bh, *head;
fa9b227e 1677
58e59854
JL
1678 /*
1679 * The request pos offset might be 32 or 64 bit, this is all fine
1680 * on 64-bit platform. However, for 64-bit pos request on 32-bit
1681 * platform, the high 32-bit will be masked off if we evaluate the
1682 * block_offset via (pos & PAGE_MASK) because the PAGE_MASK is
1683 * 0xfffff000 as an unsigned long, hence the result is incorrect
1684 * which could cause the following ASSERT failed in most cases.
1685 * In order to avoid this, we can evaluate the block_offset of the
1686 * start of the page by using shifts rather than masks the mismatch
1687 * problem.
1688 */
1689 block_offset = (pos >> PAGE_CACHE_SHIFT) << PAGE_CACHE_SHIFT;
1690
d3bc815a 1691 ASSERT(block_offset + from == pos);
c726de44 1692
d3bc815a
DC
1693 head = page_buffers(page);
1694 block_start = 0;
1695 for (bh = head; bh != head || !block_start;
1696 bh = bh->b_this_page, block_start = block_end,
1697 block_offset += bh->b_size) {
1698 block_end = block_start + bh->b_size;
c726de44 1699
d3bc815a
DC
1700 /* skip buffers before the write */
1701 if (block_end <= from)
1702 continue;
1703
1704 /* if the buffer is after the write, we're done */
1705 if (block_start >= to)
1706 break;
1707
1708 if (!buffer_delay(bh))
1709 continue;
1710
1711 if (!buffer_new(bh) && block_offset < i_size_read(inode))
1712 continue;
1713
1714 xfs_vm_kill_delalloc_range(inode, block_offset,
1715 block_offset + bh->b_size);
4ab9ed57
DC
1716
1717 /*
1718 * This buffer does not contain data anymore. make sure anyone
1719 * who finds it knows that for certain.
1720 */
1721 clear_buffer_delay(bh);
1722 clear_buffer_uptodate(bh);
1723 clear_buffer_mapped(bh);
1724 clear_buffer_new(bh);
1725 clear_buffer_dirty(bh);
fa9b227e 1726 }
d3bc815a 1727
fa9b227e
CH
1728}
1729
d3bc815a
DC
1730/*
1731 * This used to call block_write_begin(), but it unlocks and releases the page
1732 * on error, and we need that page to be able to punch stale delalloc blocks out
1733 * on failure. hence we copy-n-waste it here and call xfs_vm_write_failed() at
1734 * the appropriate point.
1735 */
f51623b2 1736STATIC int
d79689c7 1737xfs_vm_write_begin(
f51623b2 1738 struct file *file,
d79689c7
NP
1739 struct address_space *mapping,
1740 loff_t pos,
1741 unsigned len,
1742 unsigned flags,
1743 struct page **pagep,
1744 void **fsdata)
f51623b2 1745{
d3bc815a
DC
1746 pgoff_t index = pos >> PAGE_CACHE_SHIFT;
1747 struct page *page;
1748 int status;
155130a4 1749
d3bc815a
DC
1750 ASSERT(len <= PAGE_CACHE_SIZE);
1751
ad22c7a0 1752 page = grab_cache_page_write_begin(mapping, index, flags);
d3bc815a
DC
1753 if (!page)
1754 return -ENOMEM;
1755
1756 status = __block_write_begin(page, pos, len, xfs_get_blocks);
1757 if (unlikely(status)) {
1758 struct inode *inode = mapping->host;
72ab70a1 1759 size_t isize = i_size_read(inode);
d3bc815a
DC
1760
1761 xfs_vm_write_failed(inode, page, pos, len);
1762 unlock_page(page);
1763
72ab70a1
DC
1764 /*
1765 * If the write is beyond EOF, we only want to kill blocks
1766 * allocated in this write, not blocks that were previously
1767 * written successfully.
1768 */
1769 if (pos + len > isize) {
1770 ssize_t start = max_t(ssize_t, pos, isize);
1771
1772 truncate_pagecache_range(inode, start, pos + len);
1773 }
d3bc815a
DC
1774
1775 page_cache_release(page);
1776 page = NULL;
1777 }
1778
1779 *pagep = page;
1780 return status;
fa9b227e
CH
1781}
1782
d3bc815a 1783/*
aad3f375
DC
1784 * On failure, we only need to kill delalloc blocks beyond EOF in the range of
1785 * this specific write because they will never be written. Previous writes
1786 * beyond EOF where block allocation succeeded do not need to be trashed, so
1787 * only new blocks from this write should be trashed. For blocks within
1788 * EOF, generic_write_end() zeros them so they are safe to leave alone and be
1789 * written with all the other valid data.
d3bc815a 1790 */
fa9b227e
CH
1791STATIC int
1792xfs_vm_write_end(
1793 struct file *file,
1794 struct address_space *mapping,
1795 loff_t pos,
1796 unsigned len,
1797 unsigned copied,
1798 struct page *page,
1799 void *fsdata)
1800{
1801 int ret;
155130a4 1802
d3bc815a
DC
1803 ASSERT(len <= PAGE_CACHE_SIZE);
1804
fa9b227e 1805 ret = generic_write_end(file, mapping, pos, len, copied, page, fsdata);
d3bc815a
DC
1806 if (unlikely(ret < len)) {
1807 struct inode *inode = mapping->host;
1808 size_t isize = i_size_read(inode);
1809 loff_t to = pos + len;
1810
1811 if (to > isize) {
aad3f375
DC
1812 /* only kill blocks in this write beyond EOF */
1813 if (pos > isize)
1814 isize = pos;
d3bc815a 1815 xfs_vm_kill_delalloc_range(inode, isize, to);
aad3f375 1816 truncate_pagecache_range(inode, isize, to);
d3bc815a
DC
1817 }
1818 }
155130a4 1819 return ret;
f51623b2 1820}
1da177e4
LT
1821
1822STATIC sector_t
e4c573bb 1823xfs_vm_bmap(
1da177e4
LT
1824 struct address_space *mapping,
1825 sector_t block)
1826{
1827 struct inode *inode = (struct inode *)mapping->host;
739bfb2a 1828 struct xfs_inode *ip = XFS_I(inode);
1da177e4 1829
cca28fb8 1830 trace_xfs_vm_bmap(XFS_I(inode));
126468b1 1831 xfs_ilock(ip, XFS_IOLOCK_SHARED);
4bc1ea6b 1832 filemap_write_and_wait(mapping);
126468b1 1833 xfs_iunlock(ip, XFS_IOLOCK_SHARED);
c2536668 1834 return generic_block_bmap(mapping, block, xfs_get_blocks);
1da177e4
LT
1835}
1836
1837STATIC int
e4c573bb 1838xfs_vm_readpage(
1da177e4
LT
1839 struct file *unused,
1840 struct page *page)
1841{
c2536668 1842 return mpage_readpage(page, xfs_get_blocks);
1da177e4
LT
1843}
1844
1845STATIC int
e4c573bb 1846xfs_vm_readpages(
1da177e4
LT
1847 struct file *unused,
1848 struct address_space *mapping,
1849 struct list_head *pages,
1850 unsigned nr_pages)
1851{
c2536668 1852 return mpage_readpages(mapping, pages, nr_pages, xfs_get_blocks);
1da177e4
LT
1853}
1854
22e757a4
DC
1855/*
1856 * This is basically a copy of __set_page_dirty_buffers() with one
1857 * small tweak: buffers beyond EOF do not get marked dirty. If we mark them
1858 * dirty, we'll never be able to clean them because we don't write buffers
1859 * beyond EOF, and that means we can't invalidate pages that span EOF
1860 * that have been marked dirty. Further, the dirty state can leak into
1861 * the file interior if the file is extended, resulting in all sorts of
1862 * bad things happening as the state does not match the underlying data.
1863 *
1864 * XXX: this really indicates that bufferheads in XFS need to die. Warts like
1865 * this only exist because of bufferheads and how the generic code manages them.
1866 */
1867STATIC int
1868xfs_vm_set_page_dirty(
1869 struct page *page)
1870{
1871 struct address_space *mapping = page->mapping;
1872 struct inode *inode = mapping->host;
1873 loff_t end_offset;
1874 loff_t offset;
1875 int newly_dirty;
1876
1877 if (unlikely(!mapping))
1878 return !TestSetPageDirty(page);
1879
1880 end_offset = i_size_read(inode);
1881 offset = page_offset(page);
1882
1883 spin_lock(&mapping->private_lock);
1884 if (page_has_buffers(page)) {
1885 struct buffer_head *head = page_buffers(page);
1886 struct buffer_head *bh = head;
1887
1888 do {
1889 if (offset < end_offset)
1890 set_buffer_dirty(bh);
1891 bh = bh->b_this_page;
1892 offset += 1 << inode->i_blkbits;
1893 } while (bh != head);
1894 }
1895 newly_dirty = !TestSetPageDirty(page);
1896 spin_unlock(&mapping->private_lock);
1897
1898 if (newly_dirty) {
1899 /* sigh - __set_page_dirty() is static, so copy it here, too */
1900 unsigned long flags;
1901
1902 spin_lock_irqsave(&mapping->tree_lock, flags);
1903 if (page->mapping) { /* Race with truncate? */
1904 WARN_ON_ONCE(!PageUptodate(page));
1905 account_page_dirtied(page, mapping);
1906 radix_tree_tag_set(&mapping->page_tree,
1907 page_index(page), PAGECACHE_TAG_DIRTY);
1908 }
1909 spin_unlock_irqrestore(&mapping->tree_lock, flags);
1910 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
1911 }
1912 return newly_dirty;
1913}
1914
f5e54d6e 1915const struct address_space_operations xfs_address_space_operations = {
e4c573bb
NS
1916 .readpage = xfs_vm_readpage,
1917 .readpages = xfs_vm_readpages,
1918 .writepage = xfs_vm_writepage,
7d4fb40a 1919 .writepages = xfs_vm_writepages,
22e757a4 1920 .set_page_dirty = xfs_vm_set_page_dirty,
238f4c54
NS
1921 .releasepage = xfs_vm_releasepage,
1922 .invalidatepage = xfs_vm_invalidatepage,
d79689c7 1923 .write_begin = xfs_vm_write_begin,
fa9b227e 1924 .write_end = xfs_vm_write_end,
e4c573bb
NS
1925 .bmap = xfs_vm_bmap,
1926 .direct_IO = xfs_vm_direct_IO,
e965f963 1927 .migratepage = buffer_migrate_page,
bddaafa1 1928 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 1929 .error_remove_page = generic_error_remove_page,
1da177e4 1930};