]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - fs/xfs/xfs_aops.c
xfs: better xfs_trans_alloc interface
[mirror_ubuntu-zesty-kernel.git] / fs / xfs / xfs_aops.c
CommitLineData
1da177e4 1/*
7b718769
NS
2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
1da177e4 4 *
7b718769
NS
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
1da177e4
LT
7 * published by the Free Software Foundation.
8 *
7b718769
NS
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
1da177e4 13 *
7b718769
NS
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
1da177e4 17 */
1da177e4 18#include "xfs.h"
70a9883c 19#include "xfs_shared.h"
239880ef
DC
20#include "xfs_format.h"
21#include "xfs_log_format.h"
22#include "xfs_trans_resv.h"
1da177e4 23#include "xfs_mount.h"
1da177e4 24#include "xfs_inode.h"
239880ef 25#include "xfs_trans.h"
281627df 26#include "xfs_inode_item.h"
a844f451 27#include "xfs_alloc.h"
1da177e4 28#include "xfs_error.h"
1da177e4 29#include "xfs_iomap.h"
0b1b213f 30#include "xfs_trace.h"
3ed3a434 31#include "xfs_bmap.h"
68988114 32#include "xfs_bmap_util.h"
a4fbe6ab 33#include "xfs_bmap_btree.h"
5a0e3ad6 34#include <linux/gfp.h>
1da177e4 35#include <linux/mpage.h>
10ce4444 36#include <linux/pagevec.h>
1da177e4
LT
37#include <linux/writeback.h>
38
273dda76
CH
39/* flags for direct write completions */
40#define XFS_DIO_FLAG_UNWRITTEN (1 << 0)
41#define XFS_DIO_FLAG_APPEND (1 << 1)
42
fbcc0256
DC
43/*
44 * structure owned by writepages passed to individual writepage calls
45 */
46struct xfs_writepage_ctx {
47 struct xfs_bmbt_irec imap;
48 bool imap_valid;
49 unsigned int io_type;
fbcc0256
DC
50 struct xfs_ioend *ioend;
51 sector_t last_block;
52};
53
0b1b213f 54void
f51623b2
NS
55xfs_count_page_state(
56 struct page *page,
57 int *delalloc,
f51623b2
NS
58 int *unwritten)
59{
60 struct buffer_head *bh, *head;
61
20cb52eb 62 *delalloc = *unwritten = 0;
f51623b2
NS
63
64 bh = head = page_buffers(page);
65 do {
20cb52eb 66 if (buffer_unwritten(bh))
f51623b2
NS
67 (*unwritten) = 1;
68 else if (buffer_delay(bh))
69 (*delalloc) = 1;
70 } while ((bh = bh->b_this_page) != head);
71}
72
20a90f58 73struct block_device *
6214ed44 74xfs_find_bdev_for_inode(
046f1685 75 struct inode *inode)
6214ed44 76{
046f1685 77 struct xfs_inode *ip = XFS_I(inode);
6214ed44
CH
78 struct xfs_mount *mp = ip->i_mount;
79
71ddabb9 80 if (XFS_IS_REALTIME_INODE(ip))
6214ed44
CH
81 return mp->m_rtdev_targp->bt_bdev;
82 else
83 return mp->m_ddev_targp->bt_bdev;
84}
85
f6d6d4fc
CH
86/*
87 * We're now finished for good with this ioend structure.
88 * Update the page state via the associated buffer_heads,
89 * release holds on the inode and bio, and finally free
90 * up memory. Do not use the ioend after this.
91 */
0829c360
CH
92STATIC void
93xfs_destroy_ioend(
94 xfs_ioend_t *ioend)
95{
f6d6d4fc
CH
96 struct buffer_head *bh, *next;
97
98 for (bh = ioend->io_buffer_head; bh; bh = next) {
99 next = bh->b_private;
7d04a335 100 bh->b_end_io(bh, !ioend->io_error);
f6d6d4fc 101 }
583fa586 102
0829c360
CH
103 mempool_free(ioend, xfs_ioend_pool);
104}
105
fc0063c4
CH
106/*
107 * Fast and loose check if this write could update the on-disk inode size.
108 */
109static inline bool xfs_ioend_is_append(struct xfs_ioend *ioend)
110{
111 return ioend->io_offset + ioend->io_size >
112 XFS_I(ioend->io_inode)->i_d.di_size;
113}
114
281627df
CH
115STATIC int
116xfs_setfilesize_trans_alloc(
117 struct xfs_ioend *ioend)
118{
119 struct xfs_mount *mp = XFS_I(ioend->io_inode)->i_mount;
120 struct xfs_trans *tp;
121 int error;
122
253f4911
CH
123 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_fsyncts, 0, 0, 0, &tp);
124 if (error)
281627df 125 return error;
281627df
CH
126
127 ioend->io_append_trans = tp;
128
d9457dc0 129 /*
437a255a 130 * We may pass freeze protection with a transaction. So tell lockdep
d9457dc0
JK
131 * we released it.
132 */
bee9182d 133 __sb_writers_release(ioend->io_inode->i_sb, SB_FREEZE_FS);
281627df
CH
134 /*
135 * We hand off the transaction to the completion thread now, so
136 * clear the flag here.
137 */
138 current_restore_flags_nested(&tp->t_pflags, PF_FSTRANS);
139 return 0;
140}
141
ba87ea69 142/*
2813d682 143 * Update on-disk file size now that data has been written to disk.
ba87ea69 144 */
281627df 145STATIC int
ba87ea69 146xfs_setfilesize(
2ba66237
CH
147 struct xfs_inode *ip,
148 struct xfs_trans *tp,
149 xfs_off_t offset,
150 size_t size)
ba87ea69 151{
ba87ea69 152 xfs_fsize_t isize;
ba87ea69 153
aa6bf01d 154 xfs_ilock(ip, XFS_ILOCK_EXCL);
2ba66237 155 isize = xfs_new_eof(ip, offset + size);
281627df
CH
156 if (!isize) {
157 xfs_iunlock(ip, XFS_ILOCK_EXCL);
4906e215 158 xfs_trans_cancel(tp);
281627df 159 return 0;
ba87ea69
LM
160 }
161
2ba66237 162 trace_xfs_setfilesize(ip, offset, size);
281627df
CH
163
164 ip->i_d.di_size = isize;
165 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
166 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
167
70393313 168 return xfs_trans_commit(tp);
77d7a0c2
DC
169}
170
2ba66237
CH
171STATIC int
172xfs_setfilesize_ioend(
173 struct xfs_ioend *ioend)
174{
175 struct xfs_inode *ip = XFS_I(ioend->io_inode);
176 struct xfs_trans *tp = ioend->io_append_trans;
177
178 /*
179 * The transaction may have been allocated in the I/O submission thread,
180 * thus we need to mark ourselves as being in a transaction manually.
181 * Similarly for freeze protection.
182 */
183 current_set_flags_nested(&tp->t_pflags, PF_FSTRANS);
bee9182d 184 __sb_writers_acquired(VFS_I(ip)->i_sb, SB_FREEZE_FS);
2ba66237 185
5cb13dcd
Z
186 /* we abort the update if there was an IO error */
187 if (ioend->io_error) {
188 xfs_trans_cancel(tp);
189 return ioend->io_error;
190 }
191
2ba66237
CH
192 return xfs_setfilesize(ip, tp, ioend->io_offset, ioend->io_size);
193}
194
77d7a0c2 195/*
209fb87a 196 * Schedule IO completion handling on the final put of an ioend.
fc0063c4
CH
197 *
198 * If there is no work to do we might as well call it a day and free the
199 * ioend right now.
77d7a0c2
DC
200 */
201STATIC void
202xfs_finish_ioend(
209fb87a 203 struct xfs_ioend *ioend)
77d7a0c2
DC
204{
205 if (atomic_dec_and_test(&ioend->io_remaining)) {
aa6bf01d
CH
206 struct xfs_mount *mp = XFS_I(ioend->io_inode)->i_mount;
207
0d882a36 208 if (ioend->io_type == XFS_IO_UNWRITTEN)
aa6bf01d 209 queue_work(mp->m_unwritten_workqueue, &ioend->io_work);
2ba66237 210 else if (ioend->io_append_trans)
aa6bf01d 211 queue_work(mp->m_data_workqueue, &ioend->io_work);
fc0063c4
CH
212 else
213 xfs_destroy_ioend(ioend);
77d7a0c2 214 }
ba87ea69
LM
215}
216
0829c360 217/*
5ec4fabb 218 * IO write completion.
f6d6d4fc
CH
219 */
220STATIC void
5ec4fabb 221xfs_end_io(
77d7a0c2 222 struct work_struct *work)
0829c360 223{
77d7a0c2
DC
224 xfs_ioend_t *ioend = container_of(work, xfs_ioend_t, io_work);
225 struct xfs_inode *ip = XFS_I(ioend->io_inode);
69418932 226 int error = 0;
ba87ea69 227
af055e37
BF
228 /*
229 * Set an error if the mount has shut down and proceed with end I/O
230 * processing so it can perform whatever cleanups are necessary.
231 */
232 if (XFS_FORCED_SHUTDOWN(ip->i_mount))
810627d9 233 ioend->io_error = -EIO;
04f658ee 234
5ec4fabb
CH
235 /*
236 * For unwritten extents we need to issue transactions to convert a
237 * range to normal written extens after the data I/O has finished.
5cb13dcd
Z
238 * Detecting and handling completion IO errors is done individually
239 * for each case as different cleanup operations need to be performed
240 * on error.
5ec4fabb 241 */
0d882a36 242 if (ioend->io_type == XFS_IO_UNWRITTEN) {
5cb13dcd
Z
243 if (ioend->io_error)
244 goto done;
437a255a
DC
245 error = xfs_iomap_write_unwritten(ip, ioend->io_offset,
246 ioend->io_size);
281627df 247 } else if (ioend->io_append_trans) {
2ba66237 248 error = xfs_setfilesize_ioend(ioend);
84803fb7 249 } else {
281627df 250 ASSERT(!xfs_ioend_is_append(ioend));
5ec4fabb 251 }
ba87ea69 252
04f658ee 253done:
437a255a 254 if (error)
2451337d 255 ioend->io_error = error;
aa6bf01d 256 xfs_destroy_ioend(ioend);
c626d174
DC
257}
258
0829c360
CH
259/*
260 * Allocate and initialise an IO completion structure.
261 * We need to track unwritten extent write completion here initially.
262 * We'll need to extend this for updating the ondisk inode size later
263 * (vs. incore size).
264 */
265STATIC xfs_ioend_t *
266xfs_alloc_ioend(
f6d6d4fc
CH
267 struct inode *inode,
268 unsigned int type)
0829c360
CH
269{
270 xfs_ioend_t *ioend;
271
272 ioend = mempool_alloc(xfs_ioend_pool, GFP_NOFS);
273
274 /*
275 * Set the count to 1 initially, which will prevent an I/O
276 * completion callback from happening before we have started
277 * all the I/O from calling the completion routine too early.
278 */
279 atomic_set(&ioend->io_remaining, 1);
7d04a335 280 ioend->io_error = 0;
e10de372 281 INIT_LIST_HEAD(&ioend->io_list);
f6d6d4fc 282 ioend->io_type = type;
b677c210 283 ioend->io_inode = inode;
c1a073bd 284 ioend->io_buffer_head = NULL;
f6d6d4fc 285 ioend->io_buffer_tail = NULL;
0829c360
CH
286 ioend->io_offset = 0;
287 ioend->io_size = 0;
281627df 288 ioend->io_append_trans = NULL;
0829c360 289
5ec4fabb 290 INIT_WORK(&ioend->io_work, xfs_end_io);
0829c360
CH
291 return ioend;
292}
293
1da177e4
LT
294STATIC int
295xfs_map_blocks(
296 struct inode *inode,
297 loff_t offset,
207d0416 298 struct xfs_bmbt_irec *imap,
988ef927 299 int type)
1da177e4 300{
a206c817
CH
301 struct xfs_inode *ip = XFS_I(inode);
302 struct xfs_mount *mp = ip->i_mount;
ed1e7b7e 303 ssize_t count = 1 << inode->i_blkbits;
a206c817
CH
304 xfs_fileoff_t offset_fsb, end_fsb;
305 int error = 0;
a206c817
CH
306 int bmapi_flags = XFS_BMAPI_ENTIRE;
307 int nimaps = 1;
308
309 if (XFS_FORCED_SHUTDOWN(mp))
b474c7ae 310 return -EIO;
a206c817 311
0d882a36 312 if (type == XFS_IO_UNWRITTEN)
a206c817 313 bmapi_flags |= XFS_BMAPI_IGSTATE;
8ff2957d 314
988ef927 315 xfs_ilock(ip, XFS_ILOCK_SHARED);
8ff2957d
CH
316 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
317 (ip->i_df.if_flags & XFS_IFEXTENTS));
d2c28191 318 ASSERT(offset <= mp->m_super->s_maxbytes);
8ff2957d 319
d2c28191
DC
320 if (offset + count > mp->m_super->s_maxbytes)
321 count = mp->m_super->s_maxbytes - offset;
a206c817
CH
322 end_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)offset + count);
323 offset_fsb = XFS_B_TO_FSBT(mp, offset);
5c8ed202
DC
324 error = xfs_bmapi_read(ip, offset_fsb, end_fsb - offset_fsb,
325 imap, &nimaps, bmapi_flags);
8ff2957d 326 xfs_iunlock(ip, XFS_ILOCK_SHARED);
a206c817 327
8ff2957d 328 if (error)
2451337d 329 return error;
a206c817 330
0d882a36 331 if (type == XFS_IO_DELALLOC &&
8ff2957d 332 (!nimaps || isnullstartblock(imap->br_startblock))) {
0799a3e8 333 error = xfs_iomap_write_allocate(ip, offset, imap);
a206c817
CH
334 if (!error)
335 trace_xfs_map_blocks_alloc(ip, offset, count, type, imap);
2451337d 336 return error;
a206c817
CH
337 }
338
8ff2957d 339#ifdef DEBUG
0d882a36 340 if (type == XFS_IO_UNWRITTEN) {
8ff2957d
CH
341 ASSERT(nimaps);
342 ASSERT(imap->br_startblock != HOLESTARTBLOCK);
343 ASSERT(imap->br_startblock != DELAYSTARTBLOCK);
344 }
345#endif
346 if (nimaps)
347 trace_xfs_map_blocks_found(ip, offset, count, type, imap);
348 return 0;
1da177e4
LT
349}
350
fbcc0256 351STATIC bool
558e6891 352xfs_imap_valid(
8699bb0a 353 struct inode *inode,
207d0416 354 struct xfs_bmbt_irec *imap,
558e6891 355 xfs_off_t offset)
1da177e4 356{
558e6891 357 offset >>= inode->i_blkbits;
8699bb0a 358
558e6891
CH
359 return offset >= imap->br_startoff &&
360 offset < imap->br_startoff + imap->br_blockcount;
1da177e4
LT
361}
362
f6d6d4fc
CH
363/*
364 * BIO completion handler for buffered IO.
365 */
782e3b3b 366STATIC void
f6d6d4fc 367xfs_end_bio(
4246a0b6 368 struct bio *bio)
f6d6d4fc
CH
369{
370 xfs_ioend_t *ioend = bio->bi_private;
371
77a78806
LT
372 if (!ioend->io_error)
373 ioend->io_error = bio->bi_error;
f6d6d4fc
CH
374
375 /* Toss bio and pass work off to an xfsdatad thread */
f6d6d4fc
CH
376 bio->bi_private = NULL;
377 bio->bi_end_io = NULL;
f6d6d4fc 378 bio_put(bio);
7d04a335 379
209fb87a 380 xfs_finish_ioend(ioend);
f6d6d4fc
CH
381}
382
383STATIC void
384xfs_submit_ioend_bio(
06342cf8
CH
385 struct writeback_control *wbc,
386 xfs_ioend_t *ioend,
387 struct bio *bio)
f6d6d4fc
CH
388{
389 atomic_inc(&ioend->io_remaining);
f6d6d4fc
CH
390 bio->bi_private = ioend;
391 bio->bi_end_io = xfs_end_bio;
721a9602 392 submit_bio(wbc->sync_mode == WB_SYNC_ALL ? WRITE_SYNC : WRITE, bio);
f6d6d4fc
CH
393}
394
395STATIC struct bio *
396xfs_alloc_ioend_bio(
397 struct buffer_head *bh)
398{
b54ffb73 399 struct bio *bio = bio_alloc(GFP_NOIO, BIO_MAX_PAGES);
f6d6d4fc
CH
400
401 ASSERT(bio->bi_private == NULL);
4f024f37 402 bio->bi_iter.bi_sector = bh->b_blocknr * (bh->b_size >> 9);
f6d6d4fc 403 bio->bi_bdev = bh->b_bdev;
f6d6d4fc
CH
404 return bio;
405}
406
407STATIC void
408xfs_start_buffer_writeback(
409 struct buffer_head *bh)
410{
411 ASSERT(buffer_mapped(bh));
412 ASSERT(buffer_locked(bh));
413 ASSERT(!buffer_delay(bh));
414 ASSERT(!buffer_unwritten(bh));
415
416 mark_buffer_async_write(bh);
417 set_buffer_uptodate(bh);
418 clear_buffer_dirty(bh);
419}
420
421STATIC void
422xfs_start_page_writeback(
423 struct page *page,
e10de372 424 int clear_dirty)
f6d6d4fc
CH
425{
426 ASSERT(PageLocked(page));
427 ASSERT(!PageWriteback(page));
0d085a52
DC
428
429 /*
430 * if the page was not fully cleaned, we need to ensure that the higher
431 * layers come back to it correctly. That means we need to keep the page
432 * dirty, and for WB_SYNC_ALL writeback we need to ensure the
433 * PAGECACHE_TAG_TOWRITE index mark is not removed so another attempt to
434 * write this page in this writeback sweep will be made.
435 */
436 if (clear_dirty) {
92132021 437 clear_page_dirty_for_io(page);
0d085a52
DC
438 set_page_writeback(page);
439 } else
440 set_page_writeback_keepwrite(page);
441
f6d6d4fc 442 unlock_page(page);
f6d6d4fc
CH
443}
444
c7c1a7d8 445static inline int xfs_bio_add_buffer(struct bio *bio, struct buffer_head *bh)
f6d6d4fc
CH
446{
447 return bio_add_page(bio, bh->b_page, bh->b_size, bh_offset(bh));
448}
449
450/*
e10de372
DC
451 * Submit all of the bios for an ioend. We are only passed a single ioend at a
452 * time; the caller is responsible for chaining prior to submission.
7bf7f352
DC
453 *
454 * If @fail is non-zero, it means that we have a situation where some part of
455 * the submission process has failed after we have marked paged for writeback
456 * and unlocked them. In this situation, we need to fail the ioend chain rather
457 * than submit it to IO. This typically only happens on a filesystem shutdown.
f6d6d4fc 458 */
e10de372 459STATIC int
f6d6d4fc 460xfs_submit_ioend(
06342cf8 461 struct writeback_control *wbc,
7bf7f352 462 xfs_ioend_t *ioend,
e10de372 463 int status)
f6d6d4fc 464{
f6d6d4fc
CH
465 struct buffer_head *bh;
466 struct bio *bio;
467 sector_t lastblock = 0;
468
e10de372
DC
469 /* Reserve log space if we might write beyond the on-disk inode size. */
470 if (!status &&
471 ioend->io_type != XFS_IO_UNWRITTEN && xfs_ioend_is_append(ioend))
472 status = xfs_setfilesize_trans_alloc(ioend);
473 /*
474 * If we are failing the IO now, just mark the ioend with an
475 * error and finish it. This will run IO completion immediately
476 * as there is only one reference to the ioend at this point in
477 * time.
478 */
479 if (status) {
480 ioend->io_error = status;
481 xfs_finish_ioend(ioend);
482 return status;
483 }
d88992f6 484
e10de372
DC
485 bio = NULL;
486 for (bh = ioend->io_buffer_head; bh; bh = bh->b_private) {
f6d6d4fc 487
e10de372
DC
488 if (!bio) {
489retry:
490 bio = xfs_alloc_ioend_bio(bh);
491 } else if (bh->b_blocknr != lastblock + 1) {
492 xfs_submit_ioend_bio(wbc, ioend, bio);
493 goto retry;
7bf7f352
DC
494 }
495
e10de372 496 if (xfs_bio_add_buffer(bio, bh) != bh->b_size) {
06342cf8 497 xfs_submit_ioend_bio(wbc, ioend, bio);
e10de372
DC
498 goto retry;
499 }
f6d6d4fc 500
e10de372
DC
501 lastblock = bh->b_blocknr;
502 }
503 if (bio)
504 xfs_submit_ioend_bio(wbc, ioend, bio);
505 xfs_finish_ioend(ioend);
506 return 0;
f6d6d4fc
CH
507}
508
509/*
510 * Test to see if we've been building up a completion structure for
511 * earlier buffers -- if so, we try to append to this ioend if we
512 * can, otherwise we finish off any current ioend and start another.
e10de372
DC
513 * Return the ioend we finished off so that the caller can submit it
514 * once it has finished processing the dirty page.
f6d6d4fc
CH
515 */
516STATIC void
517xfs_add_to_ioend(
518 struct inode *inode,
519 struct buffer_head *bh,
7336cea8 520 xfs_off_t offset,
e10de372
DC
521 struct xfs_writepage_ctx *wpc,
522 struct list_head *iolist)
f6d6d4fc 523{
fbcc0256 524 if (!wpc->ioend || wpc->io_type != wpc->ioend->io_type ||
0df61da8
DW
525 bh->b_blocknr != wpc->last_block + 1 ||
526 offset != wpc->ioend->io_offset + wpc->ioend->io_size) {
fbcc0256
DC
527 struct xfs_ioend *new;
528
e10de372
DC
529 if (wpc->ioend)
530 list_add(&wpc->ioend->io_list, iolist);
531
fbcc0256
DC
532 new = xfs_alloc_ioend(inode, wpc->io_type);
533 new->io_offset = offset;
534 new->io_buffer_head = bh;
535 new->io_buffer_tail = bh;
fbcc0256 536 wpc->ioend = new;
f6d6d4fc 537 } else {
fbcc0256
DC
538 wpc->ioend->io_buffer_tail->b_private = bh;
539 wpc->ioend->io_buffer_tail = bh;
f6d6d4fc
CH
540 }
541
542 bh->b_private = NULL;
fbcc0256
DC
543 wpc->ioend->io_size += bh->b_size;
544 wpc->last_block = bh->b_blocknr;
e10de372 545 xfs_start_buffer_writeback(bh);
f6d6d4fc
CH
546}
547
87cbc49c
NS
548STATIC void
549xfs_map_buffer(
046f1685 550 struct inode *inode,
87cbc49c 551 struct buffer_head *bh,
207d0416 552 struct xfs_bmbt_irec *imap,
046f1685 553 xfs_off_t offset)
87cbc49c
NS
554{
555 sector_t bn;
8699bb0a 556 struct xfs_mount *m = XFS_I(inode)->i_mount;
207d0416
CH
557 xfs_off_t iomap_offset = XFS_FSB_TO_B(m, imap->br_startoff);
558 xfs_daddr_t iomap_bn = xfs_fsb_to_db(XFS_I(inode), imap->br_startblock);
87cbc49c 559
207d0416
CH
560 ASSERT(imap->br_startblock != HOLESTARTBLOCK);
561 ASSERT(imap->br_startblock != DELAYSTARTBLOCK);
87cbc49c 562
e513182d 563 bn = (iomap_bn >> (inode->i_blkbits - BBSHIFT)) +
8699bb0a 564 ((offset - iomap_offset) >> inode->i_blkbits);
87cbc49c 565
046f1685 566 ASSERT(bn || XFS_IS_REALTIME_INODE(XFS_I(inode)));
87cbc49c
NS
567
568 bh->b_blocknr = bn;
569 set_buffer_mapped(bh);
570}
571
1da177e4
LT
572STATIC void
573xfs_map_at_offset(
046f1685 574 struct inode *inode,
1da177e4 575 struct buffer_head *bh,
207d0416 576 struct xfs_bmbt_irec *imap,
046f1685 577 xfs_off_t offset)
1da177e4 578{
207d0416
CH
579 ASSERT(imap->br_startblock != HOLESTARTBLOCK);
580 ASSERT(imap->br_startblock != DELAYSTARTBLOCK);
1da177e4 581
207d0416 582 xfs_map_buffer(inode, bh, imap, offset);
1da177e4
LT
583 set_buffer_mapped(bh);
584 clear_buffer_delay(bh);
f6d6d4fc 585 clear_buffer_unwritten(bh);
1da177e4
LT
586}
587
1da177e4 588/*
a49935f2
DC
589 * Test if a given page contains at least one buffer of a given @type.
590 * If @check_all_buffers is true, then we walk all the buffers in the page to
591 * try to find one of the type passed in. If it is not set, then the caller only
592 * needs to check the first buffer on the page for a match.
1da177e4 593 */
a49935f2 594STATIC bool
6ffc4db5 595xfs_check_page_type(
10ce4444 596 struct page *page,
a49935f2
DC
597 unsigned int type,
598 bool check_all_buffers)
1da177e4 599{
a49935f2
DC
600 struct buffer_head *bh;
601 struct buffer_head *head;
1da177e4 602
a49935f2
DC
603 if (PageWriteback(page))
604 return false;
605 if (!page->mapping)
606 return false;
607 if (!page_has_buffers(page))
608 return false;
1da177e4 609
a49935f2
DC
610 bh = head = page_buffers(page);
611 do {
612 if (buffer_unwritten(bh)) {
613 if (type == XFS_IO_UNWRITTEN)
614 return true;
615 } else if (buffer_delay(bh)) {
805eeb8e 616 if (type == XFS_IO_DELALLOC)
a49935f2
DC
617 return true;
618 } else if (buffer_dirty(bh) && buffer_mapped(bh)) {
805eeb8e 619 if (type == XFS_IO_OVERWRITE)
a49935f2
DC
620 return true;
621 }
1da177e4 622
a49935f2
DC
623 /* If we are only checking the first buffer, we are done now. */
624 if (!check_all_buffers)
625 break;
626 } while ((bh = bh->b_this_page) != head);
1da177e4 627
a49935f2 628 return false;
1da177e4
LT
629}
630
3ed3a434
DC
631STATIC void
632xfs_vm_invalidatepage(
633 struct page *page,
d47992f8
LC
634 unsigned int offset,
635 unsigned int length)
3ed3a434 636{
34097dfe
LC
637 trace_xfs_invalidatepage(page->mapping->host, page, offset,
638 length);
639 block_invalidatepage(page, offset, length);
3ed3a434
DC
640}
641
642/*
643 * If the page has delalloc buffers on it, we need to punch them out before we
644 * invalidate the page. If we don't, we leave a stale delalloc mapping on the
645 * inode that can trip a BUG() in xfs_get_blocks() later on if a direct IO read
646 * is done on that same region - the delalloc extent is returned when none is
647 * supposed to be there.
648 *
649 * We prevent this by truncating away the delalloc regions on the page before
650 * invalidating it. Because they are delalloc, we can do this without needing a
651 * transaction. Indeed - if we get ENOSPC errors, we have to be able to do this
652 * truncation without a transaction as there is no space left for block
653 * reservation (typically why we see a ENOSPC in writeback).
654 *
655 * This is not a performance critical path, so for now just do the punching a
656 * buffer head at a time.
657 */
658STATIC void
659xfs_aops_discard_page(
660 struct page *page)
661{
662 struct inode *inode = page->mapping->host;
663 struct xfs_inode *ip = XFS_I(inode);
664 struct buffer_head *bh, *head;
665 loff_t offset = page_offset(page);
3ed3a434 666
a49935f2 667 if (!xfs_check_page_type(page, XFS_IO_DELALLOC, true))
3ed3a434
DC
668 goto out_invalidate;
669
e8c3753c
DC
670 if (XFS_FORCED_SHUTDOWN(ip->i_mount))
671 goto out_invalidate;
672
4f10700a 673 xfs_alert(ip->i_mount,
3ed3a434
DC
674 "page discard on page %p, inode 0x%llx, offset %llu.",
675 page, ip->i_ino, offset);
676
677 xfs_ilock(ip, XFS_ILOCK_EXCL);
678 bh = head = page_buffers(page);
679 do {
3ed3a434 680 int error;
c726de44 681 xfs_fileoff_t start_fsb;
3ed3a434
DC
682
683 if (!buffer_delay(bh))
684 goto next_buffer;
685
c726de44
DC
686 start_fsb = XFS_B_TO_FSBT(ip->i_mount, offset);
687 error = xfs_bmap_punch_delalloc_range(ip, start_fsb, 1);
3ed3a434
DC
688 if (error) {
689 /* something screwed, just bail */
e8c3753c 690 if (!XFS_FORCED_SHUTDOWN(ip->i_mount)) {
4f10700a 691 xfs_alert(ip->i_mount,
3ed3a434 692 "page discard unable to remove delalloc mapping.");
e8c3753c 693 }
3ed3a434
DC
694 break;
695 }
696next_buffer:
c726de44 697 offset += 1 << inode->i_blkbits;
3ed3a434
DC
698
699 } while ((bh = bh->b_this_page) != head);
700
701 xfs_iunlock(ip, XFS_ILOCK_EXCL);
702out_invalidate:
d47992f8 703 xfs_vm_invalidatepage(page, 0, PAGE_CACHE_SIZE);
3ed3a434
DC
704 return;
705}
706
e10de372
DC
707/*
708 * We implement an immediate ioend submission policy here to avoid needing to
709 * chain multiple ioends and hence nest mempool allocations which can violate
710 * forward progress guarantees we need to provide. The current ioend we are
711 * adding buffers to is cached on the writepage context, and if the new buffer
712 * does not append to the cached ioend it will create a new ioend and cache that
713 * instead.
714 *
715 * If a new ioend is created and cached, the old ioend is returned and queued
716 * locally for submission once the entire page is processed or an error has been
717 * detected. While ioends are submitted immediately after they are completed,
718 * batching optimisations are provided by higher level block plugging.
719 *
720 * At the end of a writeback pass, there will be a cached ioend remaining on the
721 * writepage context that the caller will need to submit.
722 */
bfce7d2e
DC
723static int
724xfs_writepage_map(
725 struct xfs_writepage_ctx *wpc,
e10de372 726 struct writeback_control *wbc,
bfce7d2e
DC
727 struct inode *inode,
728 struct page *page,
729 loff_t offset,
730 __uint64_t end_offset)
731{
e10de372
DC
732 LIST_HEAD(submit_list);
733 struct xfs_ioend *ioend, *next;
bfce7d2e
DC
734 struct buffer_head *bh, *head;
735 ssize_t len = 1 << inode->i_blkbits;
736 int error = 0;
bfce7d2e 737 int count = 0;
e10de372 738 int uptodate = 1;
bfce7d2e
DC
739
740 bh = head = page_buffers(page);
741 offset = page_offset(page);
bfce7d2e
DC
742 do {
743 if (offset >= end_offset)
744 break;
745 if (!buffer_uptodate(bh))
746 uptodate = 0;
747
748 /*
749 * set_page_dirty dirties all buffers in a page, independent
750 * of their state. The dirty state however is entirely
751 * meaningless for holes (!mapped && uptodate), so skip
752 * buffers covering holes here.
753 */
754 if (!buffer_mapped(bh) && buffer_uptodate(bh)) {
755 wpc->imap_valid = false;
756 continue;
757 }
758
759 if (buffer_unwritten(bh)) {
760 if (wpc->io_type != XFS_IO_UNWRITTEN) {
761 wpc->io_type = XFS_IO_UNWRITTEN;
762 wpc->imap_valid = false;
763 }
764 } else if (buffer_delay(bh)) {
765 if (wpc->io_type != XFS_IO_DELALLOC) {
766 wpc->io_type = XFS_IO_DELALLOC;
767 wpc->imap_valid = false;
768 }
769 } else if (buffer_uptodate(bh)) {
770 if (wpc->io_type != XFS_IO_OVERWRITE) {
771 wpc->io_type = XFS_IO_OVERWRITE;
772 wpc->imap_valid = false;
773 }
774 } else {
775 if (PageUptodate(page))
776 ASSERT(buffer_mapped(bh));
777 /*
778 * This buffer is not uptodate and will not be
779 * written to disk. Ensure that we will put any
780 * subsequent writeable buffers into a new
781 * ioend.
782 */
783 wpc->imap_valid = false;
784 continue;
785 }
786
787 if (wpc->imap_valid)
788 wpc->imap_valid = xfs_imap_valid(inode, &wpc->imap,
789 offset);
790 if (!wpc->imap_valid) {
791 error = xfs_map_blocks(inode, offset, &wpc->imap,
792 wpc->io_type);
793 if (error)
e10de372 794 goto out;
bfce7d2e
DC
795 wpc->imap_valid = xfs_imap_valid(inode, &wpc->imap,
796 offset);
797 }
798 if (wpc->imap_valid) {
799 lock_buffer(bh);
800 if (wpc->io_type != XFS_IO_OVERWRITE)
801 xfs_map_at_offset(inode, bh, &wpc->imap, offset);
e10de372 802 xfs_add_to_ioend(inode, bh, offset, wpc, &submit_list);
bfce7d2e
DC
803 count++;
804 }
805
bfce7d2e
DC
806 } while (offset += len, ((bh = bh->b_this_page) != head));
807
808 if (uptodate && bh == head)
809 SetPageUptodate(page);
810
e10de372 811 ASSERT(wpc->ioend || list_empty(&submit_list));
bfce7d2e 812
e10de372 813out:
bfce7d2e 814 /*
e10de372
DC
815 * On error, we have to fail the ioend here because we have locked
816 * buffers in the ioend. If we don't do this, we'll deadlock
817 * invalidating the page as that tries to lock the buffers on the page.
818 * Also, because we may have set pages under writeback, we have to make
819 * sure we run IO completion to mark the error state of the IO
820 * appropriately, so we can't cancel the ioend directly here. That means
821 * we have to mark this page as under writeback if we included any
822 * buffers from it in the ioend chain so that completion treats it
823 * correctly.
bfce7d2e 824 *
e10de372
DC
825 * If we didn't include the page in the ioend, the on error we can
826 * simply discard and unlock it as there are no other users of the page
827 * or it's buffers right now. The caller will still need to trigger
828 * submission of outstanding ioends on the writepage context so they are
829 * treated correctly on error.
bfce7d2e 830 */
e10de372
DC
831 if (count) {
832 xfs_start_page_writeback(page, !error);
833
834 /*
835 * Preserve the original error if there was one, otherwise catch
836 * submission errors here and propagate into subsequent ioend
837 * submissions.
838 */
839 list_for_each_entry_safe(ioend, next, &submit_list, io_list) {
840 int error2;
841
842 list_del_init(&ioend->io_list);
843 error2 = xfs_submit_ioend(wbc, ioend, error);
844 if (error2 && !error)
845 error = error2;
846 }
847 } else if (error) {
bfce7d2e
DC
848 xfs_aops_discard_page(page);
849 ClearPageUptodate(page);
850 unlock_page(page);
e10de372
DC
851 } else {
852 /*
853 * We can end up here with no error and nothing to write if we
854 * race with a partial page truncate on a sub-page block sized
855 * filesystem. In that case we need to mark the page clean.
856 */
857 xfs_start_page_writeback(page, 1);
858 end_page_writeback(page);
bfce7d2e 859 }
e10de372 860
bfce7d2e
DC
861 mapping_set_error(page->mapping, error);
862 return error;
863}
864
1da177e4 865/*
89f3b363
CH
866 * Write out a dirty page.
867 *
868 * For delalloc space on the page we need to allocate space and flush it.
869 * For unwritten space on the page we need to start the conversion to
870 * regular allocated space.
89f3b363 871 * For any other dirty buffer heads on the page we should flush them.
1da177e4 872 */
1da177e4 873STATIC int
fbcc0256 874xfs_do_writepage(
89f3b363 875 struct page *page,
fbcc0256
DC
876 struct writeback_control *wbc,
877 void *data)
1da177e4 878{
fbcc0256 879 struct xfs_writepage_ctx *wpc = data;
89f3b363 880 struct inode *inode = page->mapping->host;
1da177e4 881 loff_t offset;
1da177e4 882 __uint64_t end_offset;
ad68972a 883 pgoff_t end_index;
89f3b363 884
34097dfe 885 trace_xfs_writepage(inode, page, 0, 0);
89f3b363 886
20cb52eb
CH
887 ASSERT(page_has_buffers(page));
888
89f3b363
CH
889 /*
890 * Refuse to write the page out if we are called from reclaim context.
891 *
d4f7a5cb
CH
892 * This avoids stack overflows when called from deeply used stacks in
893 * random callers for direct reclaim or memcg reclaim. We explicitly
894 * allow reclaim from kswapd as the stack usage there is relatively low.
89f3b363 895 *
94054fa3
MG
896 * This should never happen except in the case of a VM regression so
897 * warn about it.
89f3b363 898 */
94054fa3
MG
899 if (WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD)) ==
900 PF_MEMALLOC))
b5420f23 901 goto redirty;
1da177e4 902
89f3b363 903 /*
680a647b
CH
904 * Given that we do not allow direct reclaim to call us, we should
905 * never be called while in a filesystem transaction.
89f3b363 906 */
448011e2 907 if (WARN_ON_ONCE(current->flags & PF_FSTRANS))
b5420f23 908 goto redirty;
89f3b363 909
8695d27e 910 /*
ad68972a
DC
911 * Is this page beyond the end of the file?
912 *
8695d27e
JL
913 * The page index is less than the end_index, adjust the end_offset
914 * to the highest offset that this page should represent.
915 * -----------------------------------------------------
916 * | file mapping | <EOF> |
917 * -----------------------------------------------------
918 * | Page ... | Page N-2 | Page N-1 | Page N | |
919 * ^--------------------------------^----------|--------
920 * | desired writeback range | see else |
921 * ---------------------------------^------------------|
922 */
ad68972a
DC
923 offset = i_size_read(inode);
924 end_index = offset >> PAGE_CACHE_SHIFT;
8695d27e
JL
925 if (page->index < end_index)
926 end_offset = (xfs_off_t)(page->index + 1) << PAGE_CACHE_SHIFT;
927 else {
928 /*
929 * Check whether the page to write out is beyond or straddles
930 * i_size or not.
931 * -------------------------------------------------------
932 * | file mapping | <EOF> |
933 * -------------------------------------------------------
934 * | Page ... | Page N-2 | Page N-1 | Page N | Beyond |
935 * ^--------------------------------^-----------|---------
936 * | | Straddles |
937 * ---------------------------------^-----------|--------|
938 */
6b7a03f0
CH
939 unsigned offset_into_page = offset & (PAGE_CACHE_SIZE - 1);
940
941 /*
ff9a28f6
JK
942 * Skip the page if it is fully outside i_size, e.g. due to a
943 * truncate operation that is in progress. We must redirty the
944 * page so that reclaim stops reclaiming it. Otherwise
945 * xfs_vm_releasepage() is called on it and gets confused.
8695d27e
JL
946 *
947 * Note that the end_index is unsigned long, it would overflow
948 * if the given offset is greater than 16TB on 32-bit system
949 * and if we do check the page is fully outside i_size or not
950 * via "if (page->index >= end_index + 1)" as "end_index + 1"
951 * will be evaluated to 0. Hence this page will be redirtied
952 * and be written out repeatedly which would result in an
953 * infinite loop, the user program that perform this operation
954 * will hang. Instead, we can verify this situation by checking
955 * if the page to write is totally beyond the i_size or if it's
956 * offset is just equal to the EOF.
6b7a03f0 957 */
8695d27e
JL
958 if (page->index > end_index ||
959 (page->index == end_index && offset_into_page == 0))
ff9a28f6 960 goto redirty;
6b7a03f0
CH
961
962 /*
963 * The page straddles i_size. It must be zeroed out on each
964 * and every writepage invocation because it may be mmapped.
965 * "A file is mapped in multiples of the page size. For a file
8695d27e 966 * that is not a multiple of the page size, the remaining
6b7a03f0
CH
967 * memory is zeroed when mapped, and writes to that region are
968 * not written out to the file."
969 */
970 zero_user_segment(page, offset_into_page, PAGE_CACHE_SIZE);
8695d27e
JL
971
972 /* Adjust the end_offset to the end of file */
973 end_offset = offset;
1da177e4
LT
974 }
975
e10de372 976 return xfs_writepage_map(wpc, wbc, inode, page, offset, end_offset);
f51623b2 977
b5420f23 978redirty:
f51623b2
NS
979 redirty_page_for_writepage(wbc, page);
980 unlock_page(page);
981 return 0;
f51623b2
NS
982}
983
fbcc0256
DC
984STATIC int
985xfs_vm_writepage(
986 struct page *page,
987 struct writeback_control *wbc)
988{
989 struct xfs_writepage_ctx wpc = {
990 .io_type = XFS_IO_INVALID,
991 };
992 int ret;
993
994 ret = xfs_do_writepage(page, wbc, &wpc);
e10de372
DC
995 if (wpc.ioend)
996 ret = xfs_submit_ioend(wbc, wpc.ioend, ret);
997 return ret;
fbcc0256
DC
998}
999
7d4fb40a
NS
1000STATIC int
1001xfs_vm_writepages(
1002 struct address_space *mapping,
1003 struct writeback_control *wbc)
1004{
fbcc0256
DC
1005 struct xfs_writepage_ctx wpc = {
1006 .io_type = XFS_IO_INVALID,
1007 };
1008 int ret;
1009
b3aea4ed 1010 xfs_iflags_clear(XFS_I(mapping->host), XFS_ITRUNCATED);
7f6d5b52
RZ
1011 if (dax_mapping(mapping))
1012 return dax_writeback_mapping_range(mapping,
1013 xfs_find_bdev_for_inode(mapping->host), wbc);
1014
fbcc0256 1015 ret = write_cache_pages(mapping, wbc, xfs_do_writepage, &wpc);
e10de372
DC
1016 if (wpc.ioend)
1017 ret = xfs_submit_ioend(wbc, wpc.ioend, ret);
1018 return ret;
7d4fb40a
NS
1019}
1020
f51623b2
NS
1021/*
1022 * Called to move a page into cleanable state - and from there
89f3b363 1023 * to be released. The page should already be clean. We always
f51623b2
NS
1024 * have buffer heads in this call.
1025 *
89f3b363 1026 * Returns 1 if the page is ok to release, 0 otherwise.
f51623b2
NS
1027 */
1028STATIC int
238f4c54 1029xfs_vm_releasepage(
f51623b2
NS
1030 struct page *page,
1031 gfp_t gfp_mask)
1032{
20cb52eb 1033 int delalloc, unwritten;
f51623b2 1034
34097dfe 1035 trace_xfs_releasepage(page->mapping->host, page, 0, 0);
238f4c54 1036
20cb52eb 1037 xfs_count_page_state(page, &delalloc, &unwritten);
f51623b2 1038
448011e2 1039 if (WARN_ON_ONCE(delalloc))
f51623b2 1040 return 0;
448011e2 1041 if (WARN_ON_ONCE(unwritten))
f51623b2
NS
1042 return 0;
1043
f51623b2
NS
1044 return try_to_free_buffers(page);
1045}
1046
a719370b 1047/*
273dda76
CH
1048 * When we map a DIO buffer, we may need to pass flags to
1049 * xfs_end_io_direct_write to tell it what kind of write IO we are doing.
3e12dbbd
DC
1050 *
1051 * Note that for DIO, an IO to the highest supported file block offset (i.e.
1052 * 2^63 - 1FSB bytes) will result in the offset + count overflowing a signed 64
1053 * bit variable. Hence if we see this overflow, we have to assume that the IO is
1054 * extending the file size. We won't know for sure until IO completion is run
1055 * and the actual max write offset is communicated to the IO completion
1056 * routine.
a719370b
DC
1057 */
1058static void
1059xfs_map_direct(
1060 struct inode *inode,
1061 struct buffer_head *bh_result,
1062 struct xfs_bmbt_irec *imap,
273dda76 1063 xfs_off_t offset)
a719370b 1064{
273dda76 1065 uintptr_t *flags = (uintptr_t *)&bh_result->b_private;
d5cc2e3f 1066 xfs_off_t size = bh_result->b_size;
d5cc2e3f 1067
273dda76
CH
1068 trace_xfs_get_blocks_map_direct(XFS_I(inode), offset, size,
1069 ISUNWRITTEN(imap) ? XFS_IO_UNWRITTEN : XFS_IO_OVERWRITE, imap);
d5cc2e3f 1070
273dda76
CH
1071 if (ISUNWRITTEN(imap)) {
1072 *flags |= XFS_DIO_FLAG_UNWRITTEN;
1073 set_buffer_defer_completion(bh_result);
1074 } else if (offset + size > i_size_read(inode) || offset + size < 0) {
1075 *flags |= XFS_DIO_FLAG_APPEND;
a06c277a 1076 set_buffer_defer_completion(bh_result);
a719370b
DC
1077 }
1078}
1079
1fdca9c2
DC
1080/*
1081 * If this is O_DIRECT or the mpage code calling tell them how large the mapping
1082 * is, so that we can avoid repeated get_blocks calls.
1083 *
1084 * If the mapping spans EOF, then we have to break the mapping up as the mapping
1085 * for blocks beyond EOF must be marked new so that sub block regions can be
1086 * correctly zeroed. We can't do this for mappings within EOF unless the mapping
1087 * was just allocated or is unwritten, otherwise the callers would overwrite
1088 * existing data with zeros. Hence we have to split the mapping into a range up
1089 * to and including EOF, and a second mapping for beyond EOF.
1090 */
1091static void
1092xfs_map_trim_size(
1093 struct inode *inode,
1094 sector_t iblock,
1095 struct buffer_head *bh_result,
1096 struct xfs_bmbt_irec *imap,
1097 xfs_off_t offset,
1098 ssize_t size)
1099{
1100 xfs_off_t mapping_size;
1101
1102 mapping_size = imap->br_startoff + imap->br_blockcount - iblock;
1103 mapping_size <<= inode->i_blkbits;
1104
1105 ASSERT(mapping_size > 0);
1106 if (mapping_size > size)
1107 mapping_size = size;
1108 if (offset < i_size_read(inode) &&
1109 offset + mapping_size >= i_size_read(inode)) {
1110 /* limit mapping to block that spans EOF */
1111 mapping_size = roundup_64(i_size_read(inode) - offset,
1112 1 << inode->i_blkbits);
1113 }
1114 if (mapping_size > LONG_MAX)
1115 mapping_size = LONG_MAX;
1116
1117 bh_result->b_size = mapping_size;
1118}
1119
1da177e4 1120STATIC int
c2536668 1121__xfs_get_blocks(
1da177e4
LT
1122 struct inode *inode,
1123 sector_t iblock,
1da177e4
LT
1124 struct buffer_head *bh_result,
1125 int create,
3e12dbbd
DC
1126 bool direct,
1127 bool dax_fault)
1da177e4 1128{
a206c817
CH
1129 struct xfs_inode *ip = XFS_I(inode);
1130 struct xfs_mount *mp = ip->i_mount;
1131 xfs_fileoff_t offset_fsb, end_fsb;
1132 int error = 0;
1133 int lockmode = 0;
207d0416 1134 struct xfs_bmbt_irec imap;
a206c817 1135 int nimaps = 1;
fdc7ed75
NS
1136 xfs_off_t offset;
1137 ssize_t size;
207d0416 1138 int new = 0;
a206c817
CH
1139
1140 if (XFS_FORCED_SHUTDOWN(mp))
b474c7ae 1141 return -EIO;
1da177e4 1142
fdc7ed75 1143 offset = (xfs_off_t)iblock << inode->i_blkbits;
c2536668
NS
1144 ASSERT(bh_result->b_size >= (1 << inode->i_blkbits));
1145 size = bh_result->b_size;
364f358a
LM
1146
1147 if (!create && direct && offset >= i_size_read(inode))
1148 return 0;
1149
507630b2
DC
1150 /*
1151 * Direct I/O is usually done on preallocated files, so try getting
1152 * a block mapping without an exclusive lock first. For buffered
1153 * writes we already have the exclusive iolock anyway, so avoiding
1154 * a lock roundtrip here by taking the ilock exclusive from the
1155 * beginning is a useful micro optimization.
1156 */
1157 if (create && !direct) {
a206c817
CH
1158 lockmode = XFS_ILOCK_EXCL;
1159 xfs_ilock(ip, lockmode);
1160 } else {
309ecac8 1161 lockmode = xfs_ilock_data_map_shared(ip);
a206c817 1162 }
f2bde9b8 1163
d2c28191
DC
1164 ASSERT(offset <= mp->m_super->s_maxbytes);
1165 if (offset + size > mp->m_super->s_maxbytes)
1166 size = mp->m_super->s_maxbytes - offset;
a206c817
CH
1167 end_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)offset + size);
1168 offset_fsb = XFS_B_TO_FSBT(mp, offset);
1169
5c8ed202
DC
1170 error = xfs_bmapi_read(ip, offset_fsb, end_fsb - offset_fsb,
1171 &imap, &nimaps, XFS_BMAPI_ENTIRE);
1da177e4 1172 if (error)
a206c817
CH
1173 goto out_unlock;
1174
1ca19157 1175 /* for DAX, we convert unwritten extents directly */
a206c817
CH
1176 if (create &&
1177 (!nimaps ||
1178 (imap.br_startblock == HOLESTARTBLOCK ||
1ca19157
DC
1179 imap.br_startblock == DELAYSTARTBLOCK) ||
1180 (IS_DAX(inode) && ISUNWRITTEN(&imap)))) {
aff3a9ed 1181 if (direct || xfs_get_extsz_hint(ip)) {
507630b2 1182 /*
009c6e87
BF
1183 * xfs_iomap_write_direct() expects the shared lock. It
1184 * is unlocked on return.
507630b2 1185 */
009c6e87
BF
1186 if (lockmode == XFS_ILOCK_EXCL)
1187 xfs_ilock_demote(ip, lockmode);
1188
a206c817
CH
1189 error = xfs_iomap_write_direct(ip, offset, size,
1190 &imap, nimaps);
507630b2 1191 if (error)
2451337d 1192 return error;
d3bc815a 1193 new = 1;
6b698ede 1194
a206c817 1195 } else {
507630b2
DC
1196 /*
1197 * Delalloc reservations do not require a transaction,
d3bc815a
DC
1198 * we can go on without dropping the lock here. If we
1199 * are allocating a new delalloc block, make sure that
1200 * we set the new flag so that we mark the buffer new so
1201 * that we know that it is newly allocated if the write
1202 * fails.
507630b2 1203 */
d3bc815a
DC
1204 if (nimaps && imap.br_startblock == HOLESTARTBLOCK)
1205 new = 1;
a206c817 1206 error = xfs_iomap_write_delay(ip, offset, size, &imap);
507630b2
DC
1207 if (error)
1208 goto out_unlock;
1209
1210 xfs_iunlock(ip, lockmode);
a206c817 1211 }
d5cc2e3f
DC
1212 trace_xfs_get_blocks_alloc(ip, offset, size,
1213 ISUNWRITTEN(&imap) ? XFS_IO_UNWRITTEN
1214 : XFS_IO_DELALLOC, &imap);
a206c817 1215 } else if (nimaps) {
d5cc2e3f
DC
1216 trace_xfs_get_blocks_found(ip, offset, size,
1217 ISUNWRITTEN(&imap) ? XFS_IO_UNWRITTEN
1218 : XFS_IO_OVERWRITE, &imap);
507630b2 1219 xfs_iunlock(ip, lockmode);
a206c817
CH
1220 } else {
1221 trace_xfs_get_blocks_notfound(ip, offset, size);
1222 goto out_unlock;
1223 }
1da177e4 1224
1ca19157
DC
1225 if (IS_DAX(inode) && create) {
1226 ASSERT(!ISUNWRITTEN(&imap));
1227 /* zeroing is not needed at a higher layer */
1228 new = 0;
1229 }
1230
1fdca9c2
DC
1231 /* trim mapping down to size requested */
1232 if (direct || size > (1 << inode->i_blkbits))
1233 xfs_map_trim_size(inode, iblock, bh_result,
1234 &imap, offset, size);
1235
a719370b
DC
1236 /*
1237 * For unwritten extents do not report a disk address in the buffered
1238 * read case (treat as if we're reading into a hole).
1239 */
207d0416 1240 if (imap.br_startblock != HOLESTARTBLOCK &&
a719370b
DC
1241 imap.br_startblock != DELAYSTARTBLOCK &&
1242 (create || !ISUNWRITTEN(&imap))) {
1243 xfs_map_buffer(inode, bh_result, &imap, offset);
1244 if (ISUNWRITTEN(&imap))
1da177e4 1245 set_buffer_unwritten(bh_result);
a719370b 1246 /* direct IO needs special help */
273dda76
CH
1247 if (create && direct) {
1248 if (dax_fault)
1249 ASSERT(!ISUNWRITTEN(&imap));
1250 else
1251 xfs_map_direct(inode, bh_result, &imap, offset);
1252 }
1da177e4
LT
1253 }
1254
c2536668
NS
1255 /*
1256 * If this is a realtime file, data may be on a different device.
1257 * to that pointed to from the buffer_head b_bdev currently.
1258 */
046f1685 1259 bh_result->b_bdev = xfs_find_bdev_for_inode(inode);
1da177e4 1260
c2536668 1261 /*
549054af
DC
1262 * If we previously allocated a block out beyond eof and we are now
1263 * coming back to use it then we will need to flag it as new even if it
1264 * has a disk address.
1265 *
1266 * With sub-block writes into unwritten extents we also need to mark
1267 * the buffer as new so that the unwritten parts of the buffer gets
1268 * correctly zeroed.
1da177e4
LT
1269 */
1270 if (create &&
1271 ((!buffer_mapped(bh_result) && !buffer_uptodate(bh_result)) ||
549054af 1272 (offset >= i_size_read(inode)) ||
207d0416 1273 (new || ISUNWRITTEN(&imap))))
1da177e4 1274 set_buffer_new(bh_result);
1da177e4 1275
207d0416 1276 if (imap.br_startblock == DELAYSTARTBLOCK) {
1da177e4
LT
1277 BUG_ON(direct);
1278 if (create) {
1279 set_buffer_uptodate(bh_result);
1280 set_buffer_mapped(bh_result);
1281 set_buffer_delay(bh_result);
1282 }
1283 }
1284
1da177e4 1285 return 0;
a206c817
CH
1286
1287out_unlock:
1288 xfs_iunlock(ip, lockmode);
2451337d 1289 return error;
1da177e4
LT
1290}
1291
1292int
c2536668 1293xfs_get_blocks(
1da177e4
LT
1294 struct inode *inode,
1295 sector_t iblock,
1296 struct buffer_head *bh_result,
1297 int create)
1298{
3e12dbbd 1299 return __xfs_get_blocks(inode, iblock, bh_result, create, false, false);
1da177e4
LT
1300}
1301
6b698ede 1302int
e4c573bb 1303xfs_get_blocks_direct(
1da177e4
LT
1304 struct inode *inode,
1305 sector_t iblock,
1da177e4
LT
1306 struct buffer_head *bh_result,
1307 int create)
1308{
3e12dbbd
DC
1309 return __xfs_get_blocks(inode, iblock, bh_result, create, true, false);
1310}
1311
1312int
1313xfs_get_blocks_dax_fault(
1314 struct inode *inode,
1315 sector_t iblock,
1316 struct buffer_head *bh_result,
1317 int create)
1318{
1319 return __xfs_get_blocks(inode, iblock, bh_result, create, true, true);
1da177e4
LT
1320}
1321
273dda76
CH
1322/*
1323 * Complete a direct I/O write request.
1324 *
1325 * xfs_map_direct passes us some flags in the private data to tell us what to
1326 * do. If no flags are set, then the write IO is an overwrite wholly within
1327 * the existing allocated file size and so there is nothing for us to do.
1328 *
1329 * Note that in this case the completion can be called in interrupt context,
1330 * whereas if we have flags set we will always be called in task context
1331 * (i.e. from a workqueue).
1332 */
1333STATIC int
1334xfs_end_io_direct_write(
1335 struct kiocb *iocb,
209fb87a 1336 loff_t offset,
273dda76
CH
1337 ssize_t size,
1338 void *private)
f0973863 1339{
273dda76
CH
1340 struct inode *inode = file_inode(iocb->ki_filp);
1341 struct xfs_inode *ip = XFS_I(inode);
1342 struct xfs_mount *mp = ip->i_mount;
1343 uintptr_t flags = (uintptr_t)private;
1344 int error = 0;
a06c277a 1345
273dda76 1346 trace_xfs_end_io_direct_write(ip, offset, size);
f0973863 1347
273dda76
CH
1348 if (XFS_FORCED_SHUTDOWN(mp))
1349 return -EIO;
d5cc2e3f 1350
273dda76
CH
1351 if (size <= 0)
1352 return size;
f0973863 1353
2813d682 1354 /*
273dda76 1355 * The flags tell us whether we are doing unwritten extent conversions
6dfa1b67
DC
1356 * or an append transaction that updates the on-disk file size. These
1357 * cases are the only cases where we should *potentially* be needing
a06c277a 1358 * to update the VFS inode size.
273dda76
CH
1359 */
1360 if (flags == 0) {
1361 ASSERT(offset + size <= i_size_read(inode));
1362 return 0;
1363 }
1364
1365 /*
6dfa1b67 1366 * We need to update the in-core inode size here so that we don't end up
a06c277a
DC
1367 * with the on-disk inode size being outside the in-core inode size. We
1368 * have no other method of updating EOF for AIO, so always do it here
1369 * if necessary.
b9d59846
DC
1370 *
1371 * We need to lock the test/set EOF update as we can be racing with
1372 * other IO completions here to update the EOF. Failing to serialise
1373 * here can result in EOF moving backwards and Bad Things Happen when
1374 * that occurs.
2813d682 1375 */
273dda76 1376 spin_lock(&ip->i_flags_lock);
2ba66237
CH
1377 if (offset + size > i_size_read(inode))
1378 i_size_write(inode, offset + size);
273dda76 1379 spin_unlock(&ip->i_flags_lock);
2813d682 1380
273dda76
CH
1381 if (flags & XFS_DIO_FLAG_UNWRITTEN) {
1382 trace_xfs_end_io_direct_write_unwritten(ip, offset, size);
209fb87a 1383
273dda76
CH
1384 error = xfs_iomap_write_unwritten(ip, offset, size);
1385 } else if (flags & XFS_DIO_FLAG_APPEND) {
1386 struct xfs_trans *tp;
f0973863 1387
273dda76 1388 trace_xfs_end_io_direct_write_append(ip, offset, size);
6b698ede 1389
253f4911
CH
1390 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_fsyncts, 0, 0, 0,
1391 &tp);
1392 if (!error)
1393 error = xfs_setfilesize(ip, tp, offset, size);
6b698ede
DC
1394 }
1395
273dda76 1396 return error;
6b698ede
DC
1397}
1398
c19b104a
CH
1399STATIC ssize_t
1400xfs_vm_direct_IO(
6e1ba0bc
DC
1401 struct kiocb *iocb,
1402 struct iov_iter *iter,
c19b104a 1403 loff_t offset)
6e1ba0bc 1404{
c19b104a
CH
1405 struct inode *inode = iocb->ki_filp->f_mapping->host;
1406 dio_iodone_t *endio = NULL;
1407 int flags = 0;
6e1ba0bc
DC
1408 struct block_device *bdev;
1409
c19b104a
CH
1410 if (iov_iter_rw(iter) == WRITE) {
1411 endio = xfs_end_io_direct_write;
1412 flags = DIO_ASYNC_EXTEND;
1413 }
1414
1415 if (IS_DAX(inode)) {
6e1ba0bc
DC
1416 return dax_do_io(iocb, inode, iter, offset,
1417 xfs_get_blocks_direct, endio, 0);
c19b104a 1418 }
6e1ba0bc
DC
1419
1420 bdev = xfs_find_bdev_for_inode(inode);
1421 return __blockdev_direct_IO(iocb, inode, bdev, iter, offset,
c19b104a 1422 xfs_get_blocks_direct, endio, NULL, flags);
1da177e4
LT
1423}
1424
d3bc815a
DC
1425/*
1426 * Punch out the delalloc blocks we have already allocated.
1427 *
1428 * Don't bother with xfs_setattr given that nothing can have made it to disk yet
1429 * as the page is still locked at this point.
1430 */
1431STATIC void
1432xfs_vm_kill_delalloc_range(
1433 struct inode *inode,
1434 loff_t start,
1435 loff_t end)
1436{
1437 struct xfs_inode *ip = XFS_I(inode);
1438 xfs_fileoff_t start_fsb;
1439 xfs_fileoff_t end_fsb;
1440 int error;
1441
1442 start_fsb = XFS_B_TO_FSB(ip->i_mount, start);
1443 end_fsb = XFS_B_TO_FSB(ip->i_mount, end);
1444 if (end_fsb <= start_fsb)
1445 return;
1446
1447 xfs_ilock(ip, XFS_ILOCK_EXCL);
1448 error = xfs_bmap_punch_delalloc_range(ip, start_fsb,
1449 end_fsb - start_fsb);
1450 if (error) {
1451 /* something screwed, just bail */
1452 if (!XFS_FORCED_SHUTDOWN(ip->i_mount)) {
1453 xfs_alert(ip->i_mount,
1454 "xfs_vm_write_failed: unable to clean up ino %lld",
1455 ip->i_ino);
1456 }
1457 }
1458 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1459}
1460
fa9b227e
CH
1461STATIC void
1462xfs_vm_write_failed(
d3bc815a
DC
1463 struct inode *inode,
1464 struct page *page,
1465 loff_t pos,
1466 unsigned len)
fa9b227e 1467{
58e59854 1468 loff_t block_offset;
d3bc815a
DC
1469 loff_t block_start;
1470 loff_t block_end;
1471 loff_t from = pos & (PAGE_CACHE_SIZE - 1);
1472 loff_t to = from + len;
1473 struct buffer_head *bh, *head;
801cc4e1 1474 struct xfs_mount *mp = XFS_I(inode)->i_mount;
fa9b227e 1475
58e59854
JL
1476 /*
1477 * The request pos offset might be 32 or 64 bit, this is all fine
1478 * on 64-bit platform. However, for 64-bit pos request on 32-bit
1479 * platform, the high 32-bit will be masked off if we evaluate the
1480 * block_offset via (pos & PAGE_MASK) because the PAGE_MASK is
1481 * 0xfffff000 as an unsigned long, hence the result is incorrect
1482 * which could cause the following ASSERT failed in most cases.
1483 * In order to avoid this, we can evaluate the block_offset of the
1484 * start of the page by using shifts rather than masks the mismatch
1485 * problem.
1486 */
1487 block_offset = (pos >> PAGE_CACHE_SHIFT) << PAGE_CACHE_SHIFT;
1488
d3bc815a 1489 ASSERT(block_offset + from == pos);
c726de44 1490
d3bc815a
DC
1491 head = page_buffers(page);
1492 block_start = 0;
1493 for (bh = head; bh != head || !block_start;
1494 bh = bh->b_this_page, block_start = block_end,
1495 block_offset += bh->b_size) {
1496 block_end = block_start + bh->b_size;
c726de44 1497
d3bc815a
DC
1498 /* skip buffers before the write */
1499 if (block_end <= from)
1500 continue;
1501
1502 /* if the buffer is after the write, we're done */
1503 if (block_start >= to)
1504 break;
1505
60630fe6
BF
1506 /*
1507 * Process delalloc and unwritten buffers beyond EOF. We can
1508 * encounter unwritten buffers in the event that a file has
1509 * post-EOF unwritten extents and an extending write happens to
1510 * fail (e.g., an unaligned write that also involves a delalloc
1511 * to the same page).
1512 */
1513 if (!buffer_delay(bh) && !buffer_unwritten(bh))
d3bc815a
DC
1514 continue;
1515
801cc4e1
BF
1516 if (!xfs_mp_fail_writes(mp) && !buffer_new(bh) &&
1517 block_offset < i_size_read(inode))
d3bc815a
DC
1518 continue;
1519
60630fe6
BF
1520 if (buffer_delay(bh))
1521 xfs_vm_kill_delalloc_range(inode, block_offset,
1522 block_offset + bh->b_size);
4ab9ed57
DC
1523
1524 /*
1525 * This buffer does not contain data anymore. make sure anyone
1526 * who finds it knows that for certain.
1527 */
1528 clear_buffer_delay(bh);
1529 clear_buffer_uptodate(bh);
1530 clear_buffer_mapped(bh);
1531 clear_buffer_new(bh);
1532 clear_buffer_dirty(bh);
60630fe6 1533 clear_buffer_unwritten(bh);
fa9b227e 1534 }
d3bc815a 1535
fa9b227e
CH
1536}
1537
d3bc815a
DC
1538/*
1539 * This used to call block_write_begin(), but it unlocks and releases the page
1540 * on error, and we need that page to be able to punch stale delalloc blocks out
1541 * on failure. hence we copy-n-waste it here and call xfs_vm_write_failed() at
1542 * the appropriate point.
1543 */
f51623b2 1544STATIC int
d79689c7 1545xfs_vm_write_begin(
f51623b2 1546 struct file *file,
d79689c7
NP
1547 struct address_space *mapping,
1548 loff_t pos,
1549 unsigned len,
1550 unsigned flags,
1551 struct page **pagep,
1552 void **fsdata)
f51623b2 1553{
d3bc815a
DC
1554 pgoff_t index = pos >> PAGE_CACHE_SHIFT;
1555 struct page *page;
1556 int status;
801cc4e1 1557 struct xfs_mount *mp = XFS_I(mapping->host)->i_mount;
155130a4 1558
d3bc815a
DC
1559 ASSERT(len <= PAGE_CACHE_SIZE);
1560
ad22c7a0 1561 page = grab_cache_page_write_begin(mapping, index, flags);
d3bc815a
DC
1562 if (!page)
1563 return -ENOMEM;
1564
1565 status = __block_write_begin(page, pos, len, xfs_get_blocks);
801cc4e1
BF
1566 if (xfs_mp_fail_writes(mp))
1567 status = -EIO;
d3bc815a
DC
1568 if (unlikely(status)) {
1569 struct inode *inode = mapping->host;
72ab70a1 1570 size_t isize = i_size_read(inode);
d3bc815a
DC
1571
1572 xfs_vm_write_failed(inode, page, pos, len);
1573 unlock_page(page);
1574
72ab70a1
DC
1575 /*
1576 * If the write is beyond EOF, we only want to kill blocks
1577 * allocated in this write, not blocks that were previously
1578 * written successfully.
1579 */
801cc4e1
BF
1580 if (xfs_mp_fail_writes(mp))
1581 isize = 0;
72ab70a1
DC
1582 if (pos + len > isize) {
1583 ssize_t start = max_t(ssize_t, pos, isize);
1584
1585 truncate_pagecache_range(inode, start, pos + len);
1586 }
d3bc815a
DC
1587
1588 page_cache_release(page);
1589 page = NULL;
1590 }
1591
1592 *pagep = page;
1593 return status;
fa9b227e
CH
1594}
1595
d3bc815a 1596/*
aad3f375
DC
1597 * On failure, we only need to kill delalloc blocks beyond EOF in the range of
1598 * this specific write because they will never be written. Previous writes
1599 * beyond EOF where block allocation succeeded do not need to be trashed, so
1600 * only new blocks from this write should be trashed. For blocks within
1601 * EOF, generic_write_end() zeros them so they are safe to leave alone and be
1602 * written with all the other valid data.
d3bc815a 1603 */
fa9b227e
CH
1604STATIC int
1605xfs_vm_write_end(
1606 struct file *file,
1607 struct address_space *mapping,
1608 loff_t pos,
1609 unsigned len,
1610 unsigned copied,
1611 struct page *page,
1612 void *fsdata)
1613{
1614 int ret;
155130a4 1615
d3bc815a
DC
1616 ASSERT(len <= PAGE_CACHE_SIZE);
1617
fa9b227e 1618 ret = generic_write_end(file, mapping, pos, len, copied, page, fsdata);
d3bc815a
DC
1619 if (unlikely(ret < len)) {
1620 struct inode *inode = mapping->host;
1621 size_t isize = i_size_read(inode);
1622 loff_t to = pos + len;
1623
1624 if (to > isize) {
aad3f375
DC
1625 /* only kill blocks in this write beyond EOF */
1626 if (pos > isize)
1627 isize = pos;
d3bc815a 1628 xfs_vm_kill_delalloc_range(inode, isize, to);
aad3f375 1629 truncate_pagecache_range(inode, isize, to);
d3bc815a
DC
1630 }
1631 }
155130a4 1632 return ret;
f51623b2 1633}
1da177e4
LT
1634
1635STATIC sector_t
e4c573bb 1636xfs_vm_bmap(
1da177e4
LT
1637 struct address_space *mapping,
1638 sector_t block)
1639{
1640 struct inode *inode = (struct inode *)mapping->host;
739bfb2a 1641 struct xfs_inode *ip = XFS_I(inode);
1da177e4 1642
cca28fb8 1643 trace_xfs_vm_bmap(XFS_I(inode));
126468b1 1644 xfs_ilock(ip, XFS_IOLOCK_SHARED);
4bc1ea6b 1645 filemap_write_and_wait(mapping);
126468b1 1646 xfs_iunlock(ip, XFS_IOLOCK_SHARED);
c2536668 1647 return generic_block_bmap(mapping, block, xfs_get_blocks);
1da177e4
LT
1648}
1649
1650STATIC int
e4c573bb 1651xfs_vm_readpage(
1da177e4
LT
1652 struct file *unused,
1653 struct page *page)
1654{
121e213e 1655 trace_xfs_vm_readpage(page->mapping->host, 1);
c2536668 1656 return mpage_readpage(page, xfs_get_blocks);
1da177e4
LT
1657}
1658
1659STATIC int
e4c573bb 1660xfs_vm_readpages(
1da177e4
LT
1661 struct file *unused,
1662 struct address_space *mapping,
1663 struct list_head *pages,
1664 unsigned nr_pages)
1665{
121e213e 1666 trace_xfs_vm_readpages(mapping->host, nr_pages);
c2536668 1667 return mpage_readpages(mapping, pages, nr_pages, xfs_get_blocks);
1da177e4
LT
1668}
1669
22e757a4
DC
1670/*
1671 * This is basically a copy of __set_page_dirty_buffers() with one
1672 * small tweak: buffers beyond EOF do not get marked dirty. If we mark them
1673 * dirty, we'll never be able to clean them because we don't write buffers
1674 * beyond EOF, and that means we can't invalidate pages that span EOF
1675 * that have been marked dirty. Further, the dirty state can leak into
1676 * the file interior if the file is extended, resulting in all sorts of
1677 * bad things happening as the state does not match the underlying data.
1678 *
1679 * XXX: this really indicates that bufferheads in XFS need to die. Warts like
1680 * this only exist because of bufferheads and how the generic code manages them.
1681 */
1682STATIC int
1683xfs_vm_set_page_dirty(
1684 struct page *page)
1685{
1686 struct address_space *mapping = page->mapping;
1687 struct inode *inode = mapping->host;
1688 loff_t end_offset;
1689 loff_t offset;
1690 int newly_dirty;
1691
1692 if (unlikely(!mapping))
1693 return !TestSetPageDirty(page);
1694
1695 end_offset = i_size_read(inode);
1696 offset = page_offset(page);
1697
1698 spin_lock(&mapping->private_lock);
1699 if (page_has_buffers(page)) {
1700 struct buffer_head *head = page_buffers(page);
1701 struct buffer_head *bh = head;
1702
1703 do {
1704 if (offset < end_offset)
1705 set_buffer_dirty(bh);
1706 bh = bh->b_this_page;
1707 offset += 1 << inode->i_blkbits;
1708 } while (bh != head);
1709 }
c4843a75 1710 /*
81f8c3a4
JW
1711 * Lock out page->mem_cgroup migration to keep PageDirty
1712 * synchronized with per-memcg dirty page counters.
c4843a75 1713 */
62cccb8c 1714 lock_page_memcg(page);
22e757a4
DC
1715 newly_dirty = !TestSetPageDirty(page);
1716 spin_unlock(&mapping->private_lock);
1717
1718 if (newly_dirty) {
1719 /* sigh - __set_page_dirty() is static, so copy it here, too */
1720 unsigned long flags;
1721
1722 spin_lock_irqsave(&mapping->tree_lock, flags);
1723 if (page->mapping) { /* Race with truncate? */
1724 WARN_ON_ONCE(!PageUptodate(page));
62cccb8c 1725 account_page_dirtied(page, mapping);
22e757a4
DC
1726 radix_tree_tag_set(&mapping->page_tree,
1727 page_index(page), PAGECACHE_TAG_DIRTY);
1728 }
1729 spin_unlock_irqrestore(&mapping->tree_lock, flags);
22e757a4 1730 }
62cccb8c 1731 unlock_page_memcg(page);
c4843a75
GT
1732 if (newly_dirty)
1733 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
22e757a4
DC
1734 return newly_dirty;
1735}
1736
f5e54d6e 1737const struct address_space_operations xfs_address_space_operations = {
e4c573bb
NS
1738 .readpage = xfs_vm_readpage,
1739 .readpages = xfs_vm_readpages,
1740 .writepage = xfs_vm_writepage,
7d4fb40a 1741 .writepages = xfs_vm_writepages,
22e757a4 1742 .set_page_dirty = xfs_vm_set_page_dirty,
238f4c54
NS
1743 .releasepage = xfs_vm_releasepage,
1744 .invalidatepage = xfs_vm_invalidatepage,
d79689c7 1745 .write_begin = xfs_vm_write_begin,
fa9b227e 1746 .write_end = xfs_vm_write_end,
e4c573bb
NS
1747 .bmap = xfs_vm_bmap,
1748 .direct_IO = xfs_vm_direct_IO,
e965f963 1749 .migratepage = buffer_migrate_page,
bddaafa1 1750 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 1751 .error_remove_page = generic_error_remove_page,
1da177e4 1752};