]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - fs/xfs/xfs_aops.c
libxfs: move source files
[mirror_ubuntu-artful-kernel.git] / fs / xfs / xfs_aops.c
CommitLineData
1da177e4 1/*
7b718769
NS
2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
1da177e4 4 *
7b718769
NS
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
1da177e4
LT
7 * published by the Free Software Foundation.
8 *
7b718769
NS
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
1da177e4 13 *
7b718769
NS
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
1da177e4 17 */
1da177e4 18#include "xfs.h"
70a9883c 19#include "xfs_shared.h"
239880ef
DC
20#include "xfs_format.h"
21#include "xfs_log_format.h"
22#include "xfs_trans_resv.h"
1da177e4 23#include "xfs_sb.h"
a844f451 24#include "xfs_ag.h"
1da177e4 25#include "xfs_mount.h"
1da177e4 26#include "xfs_inode.h"
239880ef 27#include "xfs_trans.h"
281627df 28#include "xfs_inode_item.h"
a844f451 29#include "xfs_alloc.h"
1da177e4 30#include "xfs_error.h"
1da177e4 31#include "xfs_iomap.h"
0b1b213f 32#include "xfs_trace.h"
3ed3a434 33#include "xfs_bmap.h"
68988114 34#include "xfs_bmap_util.h"
a4fbe6ab
DC
35#include "xfs_bmap_btree.h"
36#include "xfs_dinode.h"
a27bb332 37#include <linux/aio.h>
5a0e3ad6 38#include <linux/gfp.h>
1da177e4 39#include <linux/mpage.h>
10ce4444 40#include <linux/pagevec.h>
1da177e4
LT
41#include <linux/writeback.h>
42
0b1b213f 43void
f51623b2
NS
44xfs_count_page_state(
45 struct page *page,
46 int *delalloc,
f51623b2
NS
47 int *unwritten)
48{
49 struct buffer_head *bh, *head;
50
20cb52eb 51 *delalloc = *unwritten = 0;
f51623b2
NS
52
53 bh = head = page_buffers(page);
54 do {
20cb52eb 55 if (buffer_unwritten(bh))
f51623b2
NS
56 (*unwritten) = 1;
57 else if (buffer_delay(bh))
58 (*delalloc) = 1;
59 } while ((bh = bh->b_this_page) != head);
60}
61
6214ed44
CH
62STATIC struct block_device *
63xfs_find_bdev_for_inode(
046f1685 64 struct inode *inode)
6214ed44 65{
046f1685 66 struct xfs_inode *ip = XFS_I(inode);
6214ed44
CH
67 struct xfs_mount *mp = ip->i_mount;
68
71ddabb9 69 if (XFS_IS_REALTIME_INODE(ip))
6214ed44
CH
70 return mp->m_rtdev_targp->bt_bdev;
71 else
72 return mp->m_ddev_targp->bt_bdev;
73}
74
f6d6d4fc
CH
75/*
76 * We're now finished for good with this ioend structure.
77 * Update the page state via the associated buffer_heads,
78 * release holds on the inode and bio, and finally free
79 * up memory. Do not use the ioend after this.
80 */
0829c360
CH
81STATIC void
82xfs_destroy_ioend(
83 xfs_ioend_t *ioend)
84{
f6d6d4fc
CH
85 struct buffer_head *bh, *next;
86
87 for (bh = ioend->io_buffer_head; bh; bh = next) {
88 next = bh->b_private;
7d04a335 89 bh->b_end_io(bh, !ioend->io_error);
f6d6d4fc 90 }
583fa586 91
0829c360
CH
92 mempool_free(ioend, xfs_ioend_pool);
93}
94
fc0063c4
CH
95/*
96 * Fast and loose check if this write could update the on-disk inode size.
97 */
98static inline bool xfs_ioend_is_append(struct xfs_ioend *ioend)
99{
100 return ioend->io_offset + ioend->io_size >
101 XFS_I(ioend->io_inode)->i_d.di_size;
102}
103
281627df
CH
104STATIC int
105xfs_setfilesize_trans_alloc(
106 struct xfs_ioend *ioend)
107{
108 struct xfs_mount *mp = XFS_I(ioend->io_inode)->i_mount;
109 struct xfs_trans *tp;
110 int error;
111
112 tp = xfs_trans_alloc(mp, XFS_TRANS_FSYNC_TS);
113
3d3c8b52 114 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_fsyncts, 0, 0);
281627df
CH
115 if (error) {
116 xfs_trans_cancel(tp, 0);
117 return error;
118 }
119
120 ioend->io_append_trans = tp;
121
d9457dc0 122 /*
437a255a 123 * We may pass freeze protection with a transaction. So tell lockdep
d9457dc0
JK
124 * we released it.
125 */
126 rwsem_release(&ioend->io_inode->i_sb->s_writers.lock_map[SB_FREEZE_FS-1],
127 1, _THIS_IP_);
281627df
CH
128 /*
129 * We hand off the transaction to the completion thread now, so
130 * clear the flag here.
131 */
132 current_restore_flags_nested(&tp->t_pflags, PF_FSTRANS);
133 return 0;
134}
135
ba87ea69 136/*
2813d682 137 * Update on-disk file size now that data has been written to disk.
ba87ea69 138 */
281627df 139STATIC int
ba87ea69 140xfs_setfilesize(
aa6bf01d 141 struct xfs_ioend *ioend)
ba87ea69 142{
aa6bf01d 143 struct xfs_inode *ip = XFS_I(ioend->io_inode);
281627df 144 struct xfs_trans *tp = ioend->io_append_trans;
ba87ea69 145 xfs_fsize_t isize;
ba87ea69 146
281627df 147 /*
437a255a
DC
148 * The transaction may have been allocated in the I/O submission thread,
149 * thus we need to mark ourselves as beeing in a transaction manually.
150 * Similarly for freeze protection.
281627df
CH
151 */
152 current_set_flags_nested(&tp->t_pflags, PF_FSTRANS);
437a255a
DC
153 rwsem_acquire_read(&VFS_I(ip)->i_sb->s_writers.lock_map[SB_FREEZE_FS-1],
154 0, 1, _THIS_IP_);
281627df 155
aa6bf01d 156 xfs_ilock(ip, XFS_ILOCK_EXCL);
6923e686 157 isize = xfs_new_eof(ip, ioend->io_offset + ioend->io_size);
281627df
CH
158 if (!isize) {
159 xfs_iunlock(ip, XFS_ILOCK_EXCL);
160 xfs_trans_cancel(tp, 0);
161 return 0;
ba87ea69
LM
162 }
163
281627df
CH
164 trace_xfs_setfilesize(ip, ioend->io_offset, ioend->io_size);
165
166 ip->i_d.di_size = isize;
167 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
168 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
169
170 return xfs_trans_commit(tp, 0);
77d7a0c2
DC
171}
172
173/*
209fb87a 174 * Schedule IO completion handling on the final put of an ioend.
fc0063c4
CH
175 *
176 * If there is no work to do we might as well call it a day and free the
177 * ioend right now.
77d7a0c2
DC
178 */
179STATIC void
180xfs_finish_ioend(
209fb87a 181 struct xfs_ioend *ioend)
77d7a0c2
DC
182{
183 if (atomic_dec_and_test(&ioend->io_remaining)) {
aa6bf01d
CH
184 struct xfs_mount *mp = XFS_I(ioend->io_inode)->i_mount;
185
0d882a36 186 if (ioend->io_type == XFS_IO_UNWRITTEN)
aa6bf01d 187 queue_work(mp->m_unwritten_workqueue, &ioend->io_work);
437a255a
DC
188 else if (ioend->io_append_trans ||
189 (ioend->io_isdirect && xfs_ioend_is_append(ioend)))
aa6bf01d 190 queue_work(mp->m_data_workqueue, &ioend->io_work);
fc0063c4
CH
191 else
192 xfs_destroy_ioend(ioend);
77d7a0c2 193 }
ba87ea69
LM
194}
195
0829c360 196/*
5ec4fabb 197 * IO write completion.
f6d6d4fc
CH
198 */
199STATIC void
5ec4fabb 200xfs_end_io(
77d7a0c2 201 struct work_struct *work)
0829c360 202{
77d7a0c2
DC
203 xfs_ioend_t *ioend = container_of(work, xfs_ioend_t, io_work);
204 struct xfs_inode *ip = XFS_I(ioend->io_inode);
69418932 205 int error = 0;
ba87ea69 206
04f658ee 207 if (XFS_FORCED_SHUTDOWN(ip->i_mount)) {
810627d9 208 ioend->io_error = -EIO;
04f658ee
CH
209 goto done;
210 }
211 if (ioend->io_error)
212 goto done;
213
5ec4fabb
CH
214 /*
215 * For unwritten extents we need to issue transactions to convert a
216 * range to normal written extens after the data I/O has finished.
217 */
0d882a36 218 if (ioend->io_type == XFS_IO_UNWRITTEN) {
437a255a
DC
219 error = xfs_iomap_write_unwritten(ip, ioend->io_offset,
220 ioend->io_size);
221 } else if (ioend->io_isdirect && xfs_ioend_is_append(ioend)) {
281627df 222 /*
437a255a
DC
223 * For direct I/O we do not know if we need to allocate blocks
224 * or not so we can't preallocate an append transaction as that
225 * results in nested reservations and log space deadlocks. Hence
226 * allocate the transaction here. While this is sub-optimal and
227 * can block IO completion for some time, we're stuck with doing
228 * it this way until we can pass the ioend to the direct IO
229 * allocation callbacks and avoid nesting that way.
281627df 230 */
437a255a
DC
231 error = xfs_setfilesize_trans_alloc(ioend);
232 if (error)
04f658ee 233 goto done;
437a255a 234 error = xfs_setfilesize(ioend);
281627df
CH
235 } else if (ioend->io_append_trans) {
236 error = xfs_setfilesize(ioend);
84803fb7 237 } else {
281627df 238 ASSERT(!xfs_ioend_is_append(ioend));
5ec4fabb 239 }
ba87ea69 240
04f658ee 241done:
437a255a
DC
242 if (error)
243 ioend->io_error = -error;
aa6bf01d 244 xfs_destroy_ioend(ioend);
c626d174
DC
245}
246
209fb87a
CH
247/*
248 * Call IO completion handling in caller context on the final put of an ioend.
249 */
250STATIC void
251xfs_finish_ioend_sync(
252 struct xfs_ioend *ioend)
253{
254 if (atomic_dec_and_test(&ioend->io_remaining))
255 xfs_end_io(&ioend->io_work);
256}
257
0829c360
CH
258/*
259 * Allocate and initialise an IO completion structure.
260 * We need to track unwritten extent write completion here initially.
261 * We'll need to extend this for updating the ondisk inode size later
262 * (vs. incore size).
263 */
264STATIC xfs_ioend_t *
265xfs_alloc_ioend(
f6d6d4fc
CH
266 struct inode *inode,
267 unsigned int type)
0829c360
CH
268{
269 xfs_ioend_t *ioend;
270
271 ioend = mempool_alloc(xfs_ioend_pool, GFP_NOFS);
272
273 /*
274 * Set the count to 1 initially, which will prevent an I/O
275 * completion callback from happening before we have started
276 * all the I/O from calling the completion routine too early.
277 */
278 atomic_set(&ioend->io_remaining, 1);
281627df 279 ioend->io_isdirect = 0;
7d04a335 280 ioend->io_error = 0;
f6d6d4fc
CH
281 ioend->io_list = NULL;
282 ioend->io_type = type;
b677c210 283 ioend->io_inode = inode;
c1a073bd 284 ioend->io_buffer_head = NULL;
f6d6d4fc 285 ioend->io_buffer_tail = NULL;
0829c360
CH
286 ioend->io_offset = 0;
287 ioend->io_size = 0;
281627df 288 ioend->io_append_trans = NULL;
0829c360 289
5ec4fabb 290 INIT_WORK(&ioend->io_work, xfs_end_io);
0829c360
CH
291 return ioend;
292}
293
1da177e4
LT
294STATIC int
295xfs_map_blocks(
296 struct inode *inode,
297 loff_t offset,
207d0416 298 struct xfs_bmbt_irec *imap,
a206c817
CH
299 int type,
300 int nonblocking)
1da177e4 301{
a206c817
CH
302 struct xfs_inode *ip = XFS_I(inode);
303 struct xfs_mount *mp = ip->i_mount;
ed1e7b7e 304 ssize_t count = 1 << inode->i_blkbits;
a206c817
CH
305 xfs_fileoff_t offset_fsb, end_fsb;
306 int error = 0;
a206c817
CH
307 int bmapi_flags = XFS_BMAPI_ENTIRE;
308 int nimaps = 1;
309
310 if (XFS_FORCED_SHUTDOWN(mp))
b474c7ae 311 return -EIO;
a206c817 312
0d882a36 313 if (type == XFS_IO_UNWRITTEN)
a206c817 314 bmapi_flags |= XFS_BMAPI_IGSTATE;
8ff2957d
CH
315
316 if (!xfs_ilock_nowait(ip, XFS_ILOCK_SHARED)) {
317 if (nonblocking)
b474c7ae 318 return -EAGAIN;
8ff2957d 319 xfs_ilock(ip, XFS_ILOCK_SHARED);
a206c817
CH
320 }
321
8ff2957d
CH
322 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
323 (ip->i_df.if_flags & XFS_IFEXTENTS));
d2c28191 324 ASSERT(offset <= mp->m_super->s_maxbytes);
8ff2957d 325
d2c28191
DC
326 if (offset + count > mp->m_super->s_maxbytes)
327 count = mp->m_super->s_maxbytes - offset;
a206c817
CH
328 end_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)offset + count);
329 offset_fsb = XFS_B_TO_FSBT(mp, offset);
5c8ed202
DC
330 error = xfs_bmapi_read(ip, offset_fsb, end_fsb - offset_fsb,
331 imap, &nimaps, bmapi_flags);
8ff2957d 332 xfs_iunlock(ip, XFS_ILOCK_SHARED);
a206c817 333
8ff2957d 334 if (error)
b474c7ae 335 return -error;
a206c817 336
0d882a36 337 if (type == XFS_IO_DELALLOC &&
8ff2957d 338 (!nimaps || isnullstartblock(imap->br_startblock))) {
0799a3e8 339 error = xfs_iomap_write_allocate(ip, offset, imap);
a206c817
CH
340 if (!error)
341 trace_xfs_map_blocks_alloc(ip, offset, count, type, imap);
b474c7ae 342 return -error;
a206c817
CH
343 }
344
8ff2957d 345#ifdef DEBUG
0d882a36 346 if (type == XFS_IO_UNWRITTEN) {
8ff2957d
CH
347 ASSERT(nimaps);
348 ASSERT(imap->br_startblock != HOLESTARTBLOCK);
349 ASSERT(imap->br_startblock != DELAYSTARTBLOCK);
350 }
351#endif
352 if (nimaps)
353 trace_xfs_map_blocks_found(ip, offset, count, type, imap);
354 return 0;
1da177e4
LT
355}
356
b8f82a4a 357STATIC int
558e6891 358xfs_imap_valid(
8699bb0a 359 struct inode *inode,
207d0416 360 struct xfs_bmbt_irec *imap,
558e6891 361 xfs_off_t offset)
1da177e4 362{
558e6891 363 offset >>= inode->i_blkbits;
8699bb0a 364
558e6891
CH
365 return offset >= imap->br_startoff &&
366 offset < imap->br_startoff + imap->br_blockcount;
1da177e4
LT
367}
368
f6d6d4fc
CH
369/*
370 * BIO completion handler for buffered IO.
371 */
782e3b3b 372STATIC void
f6d6d4fc
CH
373xfs_end_bio(
374 struct bio *bio,
f6d6d4fc
CH
375 int error)
376{
377 xfs_ioend_t *ioend = bio->bi_private;
378
f6d6d4fc 379 ASSERT(atomic_read(&bio->bi_cnt) >= 1);
7d04a335 380 ioend->io_error = test_bit(BIO_UPTODATE, &bio->bi_flags) ? 0 : error;
f6d6d4fc
CH
381
382 /* Toss bio and pass work off to an xfsdatad thread */
f6d6d4fc
CH
383 bio->bi_private = NULL;
384 bio->bi_end_io = NULL;
f6d6d4fc 385 bio_put(bio);
7d04a335 386
209fb87a 387 xfs_finish_ioend(ioend);
f6d6d4fc
CH
388}
389
390STATIC void
391xfs_submit_ioend_bio(
06342cf8
CH
392 struct writeback_control *wbc,
393 xfs_ioend_t *ioend,
394 struct bio *bio)
f6d6d4fc
CH
395{
396 atomic_inc(&ioend->io_remaining);
f6d6d4fc
CH
397 bio->bi_private = ioend;
398 bio->bi_end_io = xfs_end_bio;
721a9602 399 submit_bio(wbc->sync_mode == WB_SYNC_ALL ? WRITE_SYNC : WRITE, bio);
f6d6d4fc
CH
400}
401
402STATIC struct bio *
403xfs_alloc_ioend_bio(
404 struct buffer_head *bh)
405{
f6d6d4fc 406 int nvecs = bio_get_nr_vecs(bh->b_bdev);
221cb251 407 struct bio *bio = bio_alloc(GFP_NOIO, nvecs);
f6d6d4fc
CH
408
409 ASSERT(bio->bi_private == NULL);
4f024f37 410 bio->bi_iter.bi_sector = bh->b_blocknr * (bh->b_size >> 9);
f6d6d4fc 411 bio->bi_bdev = bh->b_bdev;
f6d6d4fc
CH
412 return bio;
413}
414
415STATIC void
416xfs_start_buffer_writeback(
417 struct buffer_head *bh)
418{
419 ASSERT(buffer_mapped(bh));
420 ASSERT(buffer_locked(bh));
421 ASSERT(!buffer_delay(bh));
422 ASSERT(!buffer_unwritten(bh));
423
424 mark_buffer_async_write(bh);
425 set_buffer_uptodate(bh);
426 clear_buffer_dirty(bh);
427}
428
429STATIC void
430xfs_start_page_writeback(
431 struct page *page,
f6d6d4fc
CH
432 int clear_dirty,
433 int buffers)
434{
435 ASSERT(PageLocked(page));
436 ASSERT(!PageWriteback(page));
f6d6d4fc 437 if (clear_dirty)
92132021
DC
438 clear_page_dirty_for_io(page);
439 set_page_writeback(page);
f6d6d4fc 440 unlock_page(page);
1f7decf6
FW
441 /* If no buffers on the page are to be written, finish it here */
442 if (!buffers)
f6d6d4fc 443 end_page_writeback(page);
f6d6d4fc
CH
444}
445
c7c1a7d8 446static inline int xfs_bio_add_buffer(struct bio *bio, struct buffer_head *bh)
f6d6d4fc
CH
447{
448 return bio_add_page(bio, bh->b_page, bh->b_size, bh_offset(bh));
449}
450
451/*
d88992f6
DC
452 * Submit all of the bios for all of the ioends we have saved up, covering the
453 * initial writepage page and also any probed pages.
454 *
455 * Because we may have multiple ioends spanning a page, we need to start
456 * writeback on all the buffers before we submit them for I/O. If we mark the
457 * buffers as we got, then we can end up with a page that only has buffers
458 * marked async write and I/O complete on can occur before we mark the other
459 * buffers async write.
460 *
461 * The end result of this is that we trip a bug in end_page_writeback() because
462 * we call it twice for the one page as the code in end_buffer_async_write()
463 * assumes that all buffers on the page are started at the same time.
464 *
465 * The fix is two passes across the ioend list - one to start writeback on the
c41564b5 466 * buffer_heads, and then submit them for I/O on the second pass.
7bf7f352
DC
467 *
468 * If @fail is non-zero, it means that we have a situation where some part of
469 * the submission process has failed after we have marked paged for writeback
470 * and unlocked them. In this situation, we need to fail the ioend chain rather
471 * than submit it to IO. This typically only happens on a filesystem shutdown.
f6d6d4fc
CH
472 */
473STATIC void
474xfs_submit_ioend(
06342cf8 475 struct writeback_control *wbc,
7bf7f352
DC
476 xfs_ioend_t *ioend,
477 int fail)
f6d6d4fc 478{
d88992f6 479 xfs_ioend_t *head = ioend;
f6d6d4fc
CH
480 xfs_ioend_t *next;
481 struct buffer_head *bh;
482 struct bio *bio;
483 sector_t lastblock = 0;
484
d88992f6
DC
485 /* Pass 1 - start writeback */
486 do {
487 next = ioend->io_list;
221cb251 488 for (bh = ioend->io_buffer_head; bh; bh = bh->b_private)
d88992f6 489 xfs_start_buffer_writeback(bh);
d88992f6
DC
490 } while ((ioend = next) != NULL);
491
492 /* Pass 2 - submit I/O */
493 ioend = head;
f6d6d4fc
CH
494 do {
495 next = ioend->io_list;
496 bio = NULL;
497
7bf7f352
DC
498 /*
499 * If we are failing the IO now, just mark the ioend with an
500 * error and finish it. This will run IO completion immediately
501 * as there is only one reference to the ioend at this point in
502 * time.
503 */
504 if (fail) {
505 ioend->io_error = -fail;
506 xfs_finish_ioend(ioend);
507 continue;
508 }
509
f6d6d4fc 510 for (bh = ioend->io_buffer_head; bh; bh = bh->b_private) {
f6d6d4fc
CH
511
512 if (!bio) {
513 retry:
514 bio = xfs_alloc_ioend_bio(bh);
515 } else if (bh->b_blocknr != lastblock + 1) {
06342cf8 516 xfs_submit_ioend_bio(wbc, ioend, bio);
f6d6d4fc
CH
517 goto retry;
518 }
519
c7c1a7d8 520 if (xfs_bio_add_buffer(bio, bh) != bh->b_size) {
06342cf8 521 xfs_submit_ioend_bio(wbc, ioend, bio);
f6d6d4fc
CH
522 goto retry;
523 }
524
525 lastblock = bh->b_blocknr;
526 }
527 if (bio)
06342cf8 528 xfs_submit_ioend_bio(wbc, ioend, bio);
209fb87a 529 xfs_finish_ioend(ioend);
f6d6d4fc
CH
530 } while ((ioend = next) != NULL);
531}
532
533/*
534 * Cancel submission of all buffer_heads so far in this endio.
535 * Toss the endio too. Only ever called for the initial page
536 * in a writepage request, so only ever one page.
537 */
538STATIC void
539xfs_cancel_ioend(
540 xfs_ioend_t *ioend)
541{
542 xfs_ioend_t *next;
543 struct buffer_head *bh, *next_bh;
544
545 do {
546 next = ioend->io_list;
547 bh = ioend->io_buffer_head;
548 do {
549 next_bh = bh->b_private;
550 clear_buffer_async_write(bh);
551 unlock_buffer(bh);
552 } while ((bh = next_bh) != NULL);
553
f6d6d4fc
CH
554 mempool_free(ioend, xfs_ioend_pool);
555 } while ((ioend = next) != NULL);
556}
557
558/*
559 * Test to see if we've been building up a completion structure for
560 * earlier buffers -- if so, we try to append to this ioend if we
561 * can, otherwise we finish off any current ioend and start another.
562 * Return true if we've finished the given ioend.
563 */
564STATIC void
565xfs_add_to_ioend(
566 struct inode *inode,
567 struct buffer_head *bh,
7336cea8 568 xfs_off_t offset,
f6d6d4fc
CH
569 unsigned int type,
570 xfs_ioend_t **result,
571 int need_ioend)
572{
573 xfs_ioend_t *ioend = *result;
574
575 if (!ioend || need_ioend || type != ioend->io_type) {
576 xfs_ioend_t *previous = *result;
f6d6d4fc 577
f6d6d4fc
CH
578 ioend = xfs_alloc_ioend(inode, type);
579 ioend->io_offset = offset;
580 ioend->io_buffer_head = bh;
581 ioend->io_buffer_tail = bh;
582 if (previous)
583 previous->io_list = ioend;
584 *result = ioend;
585 } else {
586 ioend->io_buffer_tail->b_private = bh;
587 ioend->io_buffer_tail = bh;
588 }
589
590 bh->b_private = NULL;
591 ioend->io_size += bh->b_size;
592}
593
87cbc49c
NS
594STATIC void
595xfs_map_buffer(
046f1685 596 struct inode *inode,
87cbc49c 597 struct buffer_head *bh,
207d0416 598 struct xfs_bmbt_irec *imap,
046f1685 599 xfs_off_t offset)
87cbc49c
NS
600{
601 sector_t bn;
8699bb0a 602 struct xfs_mount *m = XFS_I(inode)->i_mount;
207d0416
CH
603 xfs_off_t iomap_offset = XFS_FSB_TO_B(m, imap->br_startoff);
604 xfs_daddr_t iomap_bn = xfs_fsb_to_db(XFS_I(inode), imap->br_startblock);
87cbc49c 605
207d0416
CH
606 ASSERT(imap->br_startblock != HOLESTARTBLOCK);
607 ASSERT(imap->br_startblock != DELAYSTARTBLOCK);
87cbc49c 608
e513182d 609 bn = (iomap_bn >> (inode->i_blkbits - BBSHIFT)) +
8699bb0a 610 ((offset - iomap_offset) >> inode->i_blkbits);
87cbc49c 611
046f1685 612 ASSERT(bn || XFS_IS_REALTIME_INODE(XFS_I(inode)));
87cbc49c
NS
613
614 bh->b_blocknr = bn;
615 set_buffer_mapped(bh);
616}
617
1da177e4
LT
618STATIC void
619xfs_map_at_offset(
046f1685 620 struct inode *inode,
1da177e4 621 struct buffer_head *bh,
207d0416 622 struct xfs_bmbt_irec *imap,
046f1685 623 xfs_off_t offset)
1da177e4 624{
207d0416
CH
625 ASSERT(imap->br_startblock != HOLESTARTBLOCK);
626 ASSERT(imap->br_startblock != DELAYSTARTBLOCK);
1da177e4 627
207d0416 628 xfs_map_buffer(inode, bh, imap, offset);
1da177e4
LT
629 set_buffer_mapped(bh);
630 clear_buffer_delay(bh);
f6d6d4fc 631 clear_buffer_unwritten(bh);
1da177e4
LT
632}
633
1da177e4 634/*
a49935f2
DC
635 * Test if a given page contains at least one buffer of a given @type.
636 * If @check_all_buffers is true, then we walk all the buffers in the page to
637 * try to find one of the type passed in. If it is not set, then the caller only
638 * needs to check the first buffer on the page for a match.
1da177e4 639 */
a49935f2 640STATIC bool
6ffc4db5 641xfs_check_page_type(
10ce4444 642 struct page *page,
a49935f2
DC
643 unsigned int type,
644 bool check_all_buffers)
1da177e4 645{
a49935f2
DC
646 struct buffer_head *bh;
647 struct buffer_head *head;
1da177e4 648
a49935f2
DC
649 if (PageWriteback(page))
650 return false;
651 if (!page->mapping)
652 return false;
653 if (!page_has_buffers(page))
654 return false;
1da177e4 655
a49935f2
DC
656 bh = head = page_buffers(page);
657 do {
658 if (buffer_unwritten(bh)) {
659 if (type == XFS_IO_UNWRITTEN)
660 return true;
661 } else if (buffer_delay(bh)) {
805eeb8e 662 if (type == XFS_IO_DELALLOC)
a49935f2
DC
663 return true;
664 } else if (buffer_dirty(bh) && buffer_mapped(bh)) {
805eeb8e 665 if (type == XFS_IO_OVERWRITE)
a49935f2
DC
666 return true;
667 }
1da177e4 668
a49935f2
DC
669 /* If we are only checking the first buffer, we are done now. */
670 if (!check_all_buffers)
671 break;
672 } while ((bh = bh->b_this_page) != head);
1da177e4 673
a49935f2 674 return false;
1da177e4
LT
675}
676
1da177e4
LT
677/*
678 * Allocate & map buffers for page given the extent map. Write it out.
679 * except for the original page of a writepage, this is called on
680 * delalloc/unwritten pages only, for the original page it is possible
681 * that the page has no mapping at all.
682 */
f6d6d4fc 683STATIC int
1da177e4
LT
684xfs_convert_page(
685 struct inode *inode,
686 struct page *page,
10ce4444 687 loff_t tindex,
207d0416 688 struct xfs_bmbt_irec *imap,
f6d6d4fc 689 xfs_ioend_t **ioendp,
2fa24f92 690 struct writeback_control *wbc)
1da177e4 691{
f6d6d4fc 692 struct buffer_head *bh, *head;
9260dc6b
CH
693 xfs_off_t end_offset;
694 unsigned long p_offset;
f6d6d4fc 695 unsigned int type;
24e17b5f 696 int len, page_dirty;
f6d6d4fc 697 int count = 0, done = 0, uptodate = 1;
9260dc6b 698 xfs_off_t offset = page_offset(page);
1da177e4 699
10ce4444
CH
700 if (page->index != tindex)
701 goto fail;
529ae9aa 702 if (!trylock_page(page))
10ce4444
CH
703 goto fail;
704 if (PageWriteback(page))
705 goto fail_unlock_page;
706 if (page->mapping != inode->i_mapping)
707 goto fail_unlock_page;
a49935f2 708 if (!xfs_check_page_type(page, (*ioendp)->io_type, false))
10ce4444
CH
709 goto fail_unlock_page;
710
24e17b5f
NS
711 /*
712 * page_dirty is initially a count of buffers on the page before
c41564b5 713 * EOF and is decremented as we move each into a cleanable state.
9260dc6b
CH
714 *
715 * Derivation:
716 *
717 * End offset is the highest offset that this page should represent.
718 * If we are on the last page, (end_offset & (PAGE_CACHE_SIZE - 1))
719 * will evaluate non-zero and be less than PAGE_CACHE_SIZE and
720 * hence give us the correct page_dirty count. On any other page,
721 * it will be zero and in that case we need page_dirty to be the
722 * count of buffers on the page.
24e17b5f 723 */
9260dc6b
CH
724 end_offset = min_t(unsigned long long,
725 (xfs_off_t)(page->index + 1) << PAGE_CACHE_SHIFT,
726 i_size_read(inode));
727
480d7467
DC
728 /*
729 * If the current map does not span the entire page we are about to try
730 * to write, then give up. The only way we can write a page that spans
731 * multiple mappings in a single writeback iteration is via the
732 * xfs_vm_writepage() function. Data integrity writeback requires the
733 * entire page to be written in a single attempt, otherwise the part of
734 * the page we don't write here doesn't get written as part of the data
735 * integrity sync.
736 *
737 * For normal writeback, we also don't attempt to write partial pages
738 * here as it simply means that write_cache_pages() will see it under
739 * writeback and ignore the page until some point in the future, at
740 * which time this will be the only page in the file that needs
741 * writeback. Hence for more optimal IO patterns, we should always
742 * avoid partial page writeback due to multiple mappings on a page here.
743 */
744 if (!xfs_imap_valid(inode, imap, end_offset))
745 goto fail_unlock_page;
746
24e17b5f 747 len = 1 << inode->i_blkbits;
9260dc6b
CH
748 p_offset = min_t(unsigned long, end_offset & (PAGE_CACHE_SIZE - 1),
749 PAGE_CACHE_SIZE);
750 p_offset = p_offset ? roundup(p_offset, len) : PAGE_CACHE_SIZE;
751 page_dirty = p_offset / len;
24e17b5f 752
a49935f2
DC
753 /*
754 * The moment we find a buffer that doesn't match our current type
755 * specification or can't be written, abort the loop and start
756 * writeback. As per the above xfs_imap_valid() check, only
757 * xfs_vm_writepage() can handle partial page writeback fully - we are
758 * limited here to the buffers that are contiguous with the current
759 * ioend, and hence a buffer we can't write breaks that contiguity and
760 * we have to defer the rest of the IO to xfs_vm_writepage().
761 */
1da177e4
LT
762 bh = head = page_buffers(page);
763 do {
9260dc6b 764 if (offset >= end_offset)
1da177e4 765 break;
f6d6d4fc
CH
766 if (!buffer_uptodate(bh))
767 uptodate = 0;
768 if (!(PageUptodate(page) || buffer_uptodate(bh))) {
769 done = 1;
a49935f2 770 break;
f6d6d4fc
CH
771 }
772
2fa24f92
CH
773 if (buffer_unwritten(bh) || buffer_delay(bh) ||
774 buffer_mapped(bh)) {
9260dc6b 775 if (buffer_unwritten(bh))
0d882a36 776 type = XFS_IO_UNWRITTEN;
2fa24f92 777 else if (buffer_delay(bh))
0d882a36 778 type = XFS_IO_DELALLOC;
2fa24f92 779 else
0d882a36 780 type = XFS_IO_OVERWRITE;
9260dc6b 781
a49935f2
DC
782 /*
783 * imap should always be valid because of the above
784 * partial page end_offset check on the imap.
785 */
786 ASSERT(xfs_imap_valid(inode, imap, offset));
9260dc6b 787
ecff71e6 788 lock_buffer(bh);
0d882a36 789 if (type != XFS_IO_OVERWRITE)
2fa24f92 790 xfs_map_at_offset(inode, bh, imap, offset);
89f3b363
CH
791 xfs_add_to_ioend(inode, bh, offset, type,
792 ioendp, done);
793
9260dc6b
CH
794 page_dirty--;
795 count++;
796 } else {
2fa24f92 797 done = 1;
a49935f2 798 break;
1da177e4 799 }
7336cea8 800 } while (offset += len, (bh = bh->b_this_page) != head);
1da177e4 801
f6d6d4fc
CH
802 if (uptodate && bh == head)
803 SetPageUptodate(page);
804
89f3b363 805 if (count) {
efceab1d
DC
806 if (--wbc->nr_to_write <= 0 &&
807 wbc->sync_mode == WB_SYNC_NONE)
89f3b363 808 done = 1;
1da177e4 809 }
89f3b363 810 xfs_start_page_writeback(page, !page_dirty, count);
f6d6d4fc
CH
811
812 return done;
10ce4444
CH
813 fail_unlock_page:
814 unlock_page(page);
815 fail:
816 return 1;
1da177e4
LT
817}
818
819/*
820 * Convert & write out a cluster of pages in the same extent as defined
821 * by mp and following the start page.
822 */
823STATIC void
824xfs_cluster_write(
825 struct inode *inode,
826 pgoff_t tindex,
207d0416 827 struct xfs_bmbt_irec *imap,
f6d6d4fc 828 xfs_ioend_t **ioendp,
1da177e4 829 struct writeback_control *wbc,
1da177e4
LT
830 pgoff_t tlast)
831{
10ce4444
CH
832 struct pagevec pvec;
833 int done = 0, i;
1da177e4 834
10ce4444
CH
835 pagevec_init(&pvec, 0);
836 while (!done && tindex <= tlast) {
837 unsigned len = min_t(pgoff_t, PAGEVEC_SIZE, tlast - tindex + 1);
838
839 if (!pagevec_lookup(&pvec, inode->i_mapping, tindex, len))
1da177e4 840 break;
10ce4444
CH
841
842 for (i = 0; i < pagevec_count(&pvec); i++) {
843 done = xfs_convert_page(inode, pvec.pages[i], tindex++,
2fa24f92 844 imap, ioendp, wbc);
10ce4444
CH
845 if (done)
846 break;
847 }
848
849 pagevec_release(&pvec);
850 cond_resched();
1da177e4
LT
851 }
852}
853
3ed3a434
DC
854STATIC void
855xfs_vm_invalidatepage(
856 struct page *page,
d47992f8
LC
857 unsigned int offset,
858 unsigned int length)
3ed3a434 859{
34097dfe
LC
860 trace_xfs_invalidatepage(page->mapping->host, page, offset,
861 length);
862 block_invalidatepage(page, offset, length);
3ed3a434
DC
863}
864
865/*
866 * If the page has delalloc buffers on it, we need to punch them out before we
867 * invalidate the page. If we don't, we leave a stale delalloc mapping on the
868 * inode that can trip a BUG() in xfs_get_blocks() later on if a direct IO read
869 * is done on that same region - the delalloc extent is returned when none is
870 * supposed to be there.
871 *
872 * We prevent this by truncating away the delalloc regions on the page before
873 * invalidating it. Because they are delalloc, we can do this without needing a
874 * transaction. Indeed - if we get ENOSPC errors, we have to be able to do this
875 * truncation without a transaction as there is no space left for block
876 * reservation (typically why we see a ENOSPC in writeback).
877 *
878 * This is not a performance critical path, so for now just do the punching a
879 * buffer head at a time.
880 */
881STATIC void
882xfs_aops_discard_page(
883 struct page *page)
884{
885 struct inode *inode = page->mapping->host;
886 struct xfs_inode *ip = XFS_I(inode);
887 struct buffer_head *bh, *head;
888 loff_t offset = page_offset(page);
3ed3a434 889
a49935f2 890 if (!xfs_check_page_type(page, XFS_IO_DELALLOC, true))
3ed3a434
DC
891 goto out_invalidate;
892
e8c3753c
DC
893 if (XFS_FORCED_SHUTDOWN(ip->i_mount))
894 goto out_invalidate;
895
4f10700a 896 xfs_alert(ip->i_mount,
3ed3a434
DC
897 "page discard on page %p, inode 0x%llx, offset %llu.",
898 page, ip->i_ino, offset);
899
900 xfs_ilock(ip, XFS_ILOCK_EXCL);
901 bh = head = page_buffers(page);
902 do {
3ed3a434 903 int error;
c726de44 904 xfs_fileoff_t start_fsb;
3ed3a434
DC
905
906 if (!buffer_delay(bh))
907 goto next_buffer;
908
c726de44
DC
909 start_fsb = XFS_B_TO_FSBT(ip->i_mount, offset);
910 error = xfs_bmap_punch_delalloc_range(ip, start_fsb, 1);
3ed3a434
DC
911 if (error) {
912 /* something screwed, just bail */
e8c3753c 913 if (!XFS_FORCED_SHUTDOWN(ip->i_mount)) {
4f10700a 914 xfs_alert(ip->i_mount,
3ed3a434 915 "page discard unable to remove delalloc mapping.");
e8c3753c 916 }
3ed3a434
DC
917 break;
918 }
919next_buffer:
c726de44 920 offset += 1 << inode->i_blkbits;
3ed3a434
DC
921
922 } while ((bh = bh->b_this_page) != head);
923
924 xfs_iunlock(ip, XFS_ILOCK_EXCL);
925out_invalidate:
d47992f8 926 xfs_vm_invalidatepage(page, 0, PAGE_CACHE_SIZE);
3ed3a434
DC
927 return;
928}
929
1da177e4 930/*
89f3b363
CH
931 * Write out a dirty page.
932 *
933 * For delalloc space on the page we need to allocate space and flush it.
934 * For unwritten space on the page we need to start the conversion to
935 * regular allocated space.
89f3b363 936 * For any other dirty buffer heads on the page we should flush them.
1da177e4 937 */
1da177e4 938STATIC int
89f3b363
CH
939xfs_vm_writepage(
940 struct page *page,
941 struct writeback_control *wbc)
1da177e4 942{
89f3b363 943 struct inode *inode = page->mapping->host;
f6d6d4fc 944 struct buffer_head *bh, *head;
207d0416 945 struct xfs_bmbt_irec imap;
f6d6d4fc 946 xfs_ioend_t *ioend = NULL, *iohead = NULL;
1da177e4 947 loff_t offset;
f6d6d4fc 948 unsigned int type;
1da177e4 949 __uint64_t end_offset;
bd1556a1 950 pgoff_t end_index, last_index;
ed1e7b7e 951 ssize_t len;
a206c817 952 int err, imap_valid = 0, uptodate = 1;
89f3b363 953 int count = 0;
a206c817 954 int nonblocking = 0;
89f3b363 955
34097dfe 956 trace_xfs_writepage(inode, page, 0, 0);
89f3b363 957
20cb52eb
CH
958 ASSERT(page_has_buffers(page));
959
89f3b363
CH
960 /*
961 * Refuse to write the page out if we are called from reclaim context.
962 *
d4f7a5cb
CH
963 * This avoids stack overflows when called from deeply used stacks in
964 * random callers for direct reclaim or memcg reclaim. We explicitly
965 * allow reclaim from kswapd as the stack usage there is relatively low.
89f3b363 966 *
94054fa3
MG
967 * This should never happen except in the case of a VM regression so
968 * warn about it.
89f3b363 969 */
94054fa3
MG
970 if (WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD)) ==
971 PF_MEMALLOC))
b5420f23 972 goto redirty;
1da177e4 973
89f3b363 974 /*
680a647b
CH
975 * Given that we do not allow direct reclaim to call us, we should
976 * never be called while in a filesystem transaction.
89f3b363 977 */
448011e2 978 if (WARN_ON_ONCE(current->flags & PF_FSTRANS))
b5420f23 979 goto redirty;
89f3b363 980
1da177e4
LT
981 /* Is this page beyond the end of the file? */
982 offset = i_size_read(inode);
983 end_index = offset >> PAGE_CACHE_SHIFT;
984 last_index = (offset - 1) >> PAGE_CACHE_SHIFT;
8695d27e
JL
985
986 /*
987 * The page index is less than the end_index, adjust the end_offset
988 * to the highest offset that this page should represent.
989 * -----------------------------------------------------
990 * | file mapping | <EOF> |
991 * -----------------------------------------------------
992 * | Page ... | Page N-2 | Page N-1 | Page N | |
993 * ^--------------------------------^----------|--------
994 * | desired writeback range | see else |
995 * ---------------------------------^------------------|
996 */
997 if (page->index < end_index)
998 end_offset = (xfs_off_t)(page->index + 1) << PAGE_CACHE_SHIFT;
999 else {
1000 /*
1001 * Check whether the page to write out is beyond or straddles
1002 * i_size or not.
1003 * -------------------------------------------------------
1004 * | file mapping | <EOF> |
1005 * -------------------------------------------------------
1006 * | Page ... | Page N-2 | Page N-1 | Page N | Beyond |
1007 * ^--------------------------------^-----------|---------
1008 * | | Straddles |
1009 * ---------------------------------^-----------|--------|
1010 */
6b7a03f0
CH
1011 unsigned offset_into_page = offset & (PAGE_CACHE_SIZE - 1);
1012
1013 /*
ff9a28f6
JK
1014 * Skip the page if it is fully outside i_size, e.g. due to a
1015 * truncate operation that is in progress. We must redirty the
1016 * page so that reclaim stops reclaiming it. Otherwise
1017 * xfs_vm_releasepage() is called on it and gets confused.
8695d27e
JL
1018 *
1019 * Note that the end_index is unsigned long, it would overflow
1020 * if the given offset is greater than 16TB on 32-bit system
1021 * and if we do check the page is fully outside i_size or not
1022 * via "if (page->index >= end_index + 1)" as "end_index + 1"
1023 * will be evaluated to 0. Hence this page will be redirtied
1024 * and be written out repeatedly which would result in an
1025 * infinite loop, the user program that perform this operation
1026 * will hang. Instead, we can verify this situation by checking
1027 * if the page to write is totally beyond the i_size or if it's
1028 * offset is just equal to the EOF.
6b7a03f0 1029 */
8695d27e
JL
1030 if (page->index > end_index ||
1031 (page->index == end_index && offset_into_page == 0))
ff9a28f6 1032 goto redirty;
6b7a03f0
CH
1033
1034 /*
1035 * The page straddles i_size. It must be zeroed out on each
1036 * and every writepage invocation because it may be mmapped.
1037 * "A file is mapped in multiples of the page size. For a file
8695d27e 1038 * that is not a multiple of the page size, the remaining
6b7a03f0
CH
1039 * memory is zeroed when mapped, and writes to that region are
1040 * not written out to the file."
1041 */
1042 zero_user_segment(page, offset_into_page, PAGE_CACHE_SIZE);
8695d27e
JL
1043
1044 /* Adjust the end_offset to the end of file */
1045 end_offset = offset;
1da177e4
LT
1046 }
1047
24e17b5f 1048 len = 1 << inode->i_blkbits;
24e17b5f 1049
24e17b5f 1050 bh = head = page_buffers(page);
f6d6d4fc 1051 offset = page_offset(page);
0d882a36 1052 type = XFS_IO_OVERWRITE;
a206c817 1053
dbcdde3e 1054 if (wbc->sync_mode == WB_SYNC_NONE)
a206c817 1055 nonblocking = 1;
f6d6d4fc 1056
1da177e4 1057 do {
6ac7248e
CH
1058 int new_ioend = 0;
1059
1da177e4
LT
1060 if (offset >= end_offset)
1061 break;
1062 if (!buffer_uptodate(bh))
1063 uptodate = 0;
1da177e4 1064
3d9b02e3 1065 /*
ece413f5
CH
1066 * set_page_dirty dirties all buffers in a page, independent
1067 * of their state. The dirty state however is entirely
1068 * meaningless for holes (!mapped && uptodate), so skip
1069 * buffers covering holes here.
3d9b02e3
ES
1070 */
1071 if (!buffer_mapped(bh) && buffer_uptodate(bh)) {
3d9b02e3
ES
1072 imap_valid = 0;
1073 continue;
1074 }
1075
aeea1b1f 1076 if (buffer_unwritten(bh)) {
0d882a36
AR
1077 if (type != XFS_IO_UNWRITTEN) {
1078 type = XFS_IO_UNWRITTEN;
aeea1b1f 1079 imap_valid = 0;
1da177e4 1080 }
aeea1b1f 1081 } else if (buffer_delay(bh)) {
0d882a36
AR
1082 if (type != XFS_IO_DELALLOC) {
1083 type = XFS_IO_DELALLOC;
aeea1b1f 1084 imap_valid = 0;
1da177e4 1085 }
89f3b363 1086 } else if (buffer_uptodate(bh)) {
0d882a36
AR
1087 if (type != XFS_IO_OVERWRITE) {
1088 type = XFS_IO_OVERWRITE;
85da94c6
CH
1089 imap_valid = 0;
1090 }
aeea1b1f 1091 } else {
7d0fa3ec 1092 if (PageUptodate(page))
aeea1b1f 1093 ASSERT(buffer_mapped(bh));
7d0fa3ec
AR
1094 /*
1095 * This buffer is not uptodate and will not be
1096 * written to disk. Ensure that we will put any
1097 * subsequent writeable buffers into a new
1098 * ioend.
1099 */
1100 imap_valid = 0;
aeea1b1f
CH
1101 continue;
1102 }
d5cb48aa 1103
aeea1b1f
CH
1104 if (imap_valid)
1105 imap_valid = xfs_imap_valid(inode, &imap, offset);
1106 if (!imap_valid) {
1107 /*
1108 * If we didn't have a valid mapping then we need to
1109 * put the new mapping into a separate ioend structure.
1110 * This ensures non-contiguous extents always have
1111 * separate ioends, which is particularly important
1112 * for unwritten extent conversion at I/O completion
1113 * time.
1114 */
1115 new_ioend = 1;
1116 err = xfs_map_blocks(inode, offset, &imap, type,
1117 nonblocking);
1118 if (err)
1119 goto error;
1120 imap_valid = xfs_imap_valid(inode, &imap, offset);
1121 }
1122 if (imap_valid) {
ecff71e6 1123 lock_buffer(bh);
0d882a36 1124 if (type != XFS_IO_OVERWRITE)
aeea1b1f
CH
1125 xfs_map_at_offset(inode, bh, &imap, offset);
1126 xfs_add_to_ioend(inode, bh, offset, type, &ioend,
1127 new_ioend);
1128 count++;
1da177e4 1129 }
f6d6d4fc
CH
1130
1131 if (!iohead)
1132 iohead = ioend;
1133
1134 } while (offset += len, ((bh = bh->b_this_page) != head));
1da177e4
LT
1135
1136 if (uptodate && bh == head)
1137 SetPageUptodate(page);
1138
89f3b363 1139 xfs_start_page_writeback(page, 1, count);
1da177e4 1140
7bf7f352
DC
1141 /* if there is no IO to be submitted for this page, we are done */
1142 if (!ioend)
1143 return 0;
1144
1145 ASSERT(iohead);
1146
1147 /*
1148 * Any errors from this point onwards need tobe reported through the IO
1149 * completion path as we have marked the initial page as under writeback
1150 * and unlocked it.
1151 */
1152 if (imap_valid) {
bd1556a1
CH
1153 xfs_off_t end_index;
1154
1155 end_index = imap.br_startoff + imap.br_blockcount;
1156
1157 /* to bytes */
1158 end_index <<= inode->i_blkbits;
1159
1160 /* to pages */
1161 end_index = (end_index - 1) >> PAGE_CACHE_SHIFT;
1162
1163 /* check against file size */
1164 if (end_index > last_index)
1165 end_index = last_index;
8699bb0a 1166
207d0416 1167 xfs_cluster_write(inode, page->index + 1, &imap, &ioend,
2fa24f92 1168 wbc, end_index);
1da177e4
LT
1169 }
1170
281627df 1171
7bf7f352
DC
1172 /*
1173 * Reserve log space if we might write beyond the on-disk inode size.
1174 */
1175 err = 0;
1176 if (ioend->io_type != XFS_IO_UNWRITTEN && xfs_ioend_is_append(ioend))
1177 err = xfs_setfilesize_trans_alloc(ioend);
1178
1179 xfs_submit_ioend(wbc, iohead, err);
f6d6d4fc 1180
89f3b363 1181 return 0;
1da177e4
LT
1182
1183error:
f6d6d4fc
CH
1184 if (iohead)
1185 xfs_cancel_ioend(iohead);
1da177e4 1186
b5420f23
CH
1187 if (err == -EAGAIN)
1188 goto redirty;
1189
20cb52eb 1190 xfs_aops_discard_page(page);
89f3b363
CH
1191 ClearPageUptodate(page);
1192 unlock_page(page);
1da177e4 1193 return err;
f51623b2 1194
b5420f23 1195redirty:
f51623b2
NS
1196 redirty_page_for_writepage(wbc, page);
1197 unlock_page(page);
1198 return 0;
f51623b2
NS
1199}
1200
7d4fb40a
NS
1201STATIC int
1202xfs_vm_writepages(
1203 struct address_space *mapping,
1204 struct writeback_control *wbc)
1205{
b3aea4ed 1206 xfs_iflags_clear(XFS_I(mapping->host), XFS_ITRUNCATED);
7d4fb40a
NS
1207 return generic_writepages(mapping, wbc);
1208}
1209
f51623b2
NS
1210/*
1211 * Called to move a page into cleanable state - and from there
89f3b363 1212 * to be released. The page should already be clean. We always
f51623b2
NS
1213 * have buffer heads in this call.
1214 *
89f3b363 1215 * Returns 1 if the page is ok to release, 0 otherwise.
f51623b2
NS
1216 */
1217STATIC int
238f4c54 1218xfs_vm_releasepage(
f51623b2
NS
1219 struct page *page,
1220 gfp_t gfp_mask)
1221{
20cb52eb 1222 int delalloc, unwritten;
f51623b2 1223
34097dfe 1224 trace_xfs_releasepage(page->mapping->host, page, 0, 0);
238f4c54 1225
20cb52eb 1226 xfs_count_page_state(page, &delalloc, &unwritten);
f51623b2 1227
448011e2 1228 if (WARN_ON_ONCE(delalloc))
f51623b2 1229 return 0;
448011e2 1230 if (WARN_ON_ONCE(unwritten))
f51623b2
NS
1231 return 0;
1232
f51623b2
NS
1233 return try_to_free_buffers(page);
1234}
1235
1da177e4 1236STATIC int
c2536668 1237__xfs_get_blocks(
1da177e4
LT
1238 struct inode *inode,
1239 sector_t iblock,
1da177e4
LT
1240 struct buffer_head *bh_result,
1241 int create,
f2bde9b8 1242 int direct)
1da177e4 1243{
a206c817
CH
1244 struct xfs_inode *ip = XFS_I(inode);
1245 struct xfs_mount *mp = ip->i_mount;
1246 xfs_fileoff_t offset_fsb, end_fsb;
1247 int error = 0;
1248 int lockmode = 0;
207d0416 1249 struct xfs_bmbt_irec imap;
a206c817 1250 int nimaps = 1;
fdc7ed75
NS
1251 xfs_off_t offset;
1252 ssize_t size;
207d0416 1253 int new = 0;
a206c817
CH
1254
1255 if (XFS_FORCED_SHUTDOWN(mp))
b474c7ae 1256 return -EIO;
1da177e4 1257
fdc7ed75 1258 offset = (xfs_off_t)iblock << inode->i_blkbits;
c2536668
NS
1259 ASSERT(bh_result->b_size >= (1 << inode->i_blkbits));
1260 size = bh_result->b_size;
364f358a
LM
1261
1262 if (!create && direct && offset >= i_size_read(inode))
1263 return 0;
1264
507630b2
DC
1265 /*
1266 * Direct I/O is usually done on preallocated files, so try getting
1267 * a block mapping without an exclusive lock first. For buffered
1268 * writes we already have the exclusive iolock anyway, so avoiding
1269 * a lock roundtrip here by taking the ilock exclusive from the
1270 * beginning is a useful micro optimization.
1271 */
1272 if (create && !direct) {
a206c817
CH
1273 lockmode = XFS_ILOCK_EXCL;
1274 xfs_ilock(ip, lockmode);
1275 } else {
309ecac8 1276 lockmode = xfs_ilock_data_map_shared(ip);
a206c817 1277 }
f2bde9b8 1278
d2c28191
DC
1279 ASSERT(offset <= mp->m_super->s_maxbytes);
1280 if (offset + size > mp->m_super->s_maxbytes)
1281 size = mp->m_super->s_maxbytes - offset;
a206c817
CH
1282 end_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)offset + size);
1283 offset_fsb = XFS_B_TO_FSBT(mp, offset);
1284
5c8ed202
DC
1285 error = xfs_bmapi_read(ip, offset_fsb, end_fsb - offset_fsb,
1286 &imap, &nimaps, XFS_BMAPI_ENTIRE);
1da177e4 1287 if (error)
a206c817
CH
1288 goto out_unlock;
1289
1290 if (create &&
1291 (!nimaps ||
1292 (imap.br_startblock == HOLESTARTBLOCK ||
1293 imap.br_startblock == DELAYSTARTBLOCK))) {
aff3a9ed 1294 if (direct || xfs_get_extsz_hint(ip)) {
507630b2
DC
1295 /*
1296 * Drop the ilock in preparation for starting the block
1297 * allocation transaction. It will be retaken
1298 * exclusively inside xfs_iomap_write_direct for the
1299 * actual allocation.
1300 */
1301 xfs_iunlock(ip, lockmode);
a206c817
CH
1302 error = xfs_iomap_write_direct(ip, offset, size,
1303 &imap, nimaps);
507630b2
DC
1304 if (error)
1305 return -error;
d3bc815a 1306 new = 1;
a206c817 1307 } else {
507630b2
DC
1308 /*
1309 * Delalloc reservations do not require a transaction,
d3bc815a
DC
1310 * we can go on without dropping the lock here. If we
1311 * are allocating a new delalloc block, make sure that
1312 * we set the new flag so that we mark the buffer new so
1313 * that we know that it is newly allocated if the write
1314 * fails.
507630b2 1315 */
d3bc815a
DC
1316 if (nimaps && imap.br_startblock == HOLESTARTBLOCK)
1317 new = 1;
a206c817 1318 error = xfs_iomap_write_delay(ip, offset, size, &imap);
507630b2
DC
1319 if (error)
1320 goto out_unlock;
1321
1322 xfs_iunlock(ip, lockmode);
a206c817 1323 }
a206c817
CH
1324
1325 trace_xfs_get_blocks_alloc(ip, offset, size, 0, &imap);
1326 } else if (nimaps) {
1327 trace_xfs_get_blocks_found(ip, offset, size, 0, &imap);
507630b2 1328 xfs_iunlock(ip, lockmode);
a206c817
CH
1329 } else {
1330 trace_xfs_get_blocks_notfound(ip, offset, size);
1331 goto out_unlock;
1332 }
1da177e4 1333
207d0416
CH
1334 if (imap.br_startblock != HOLESTARTBLOCK &&
1335 imap.br_startblock != DELAYSTARTBLOCK) {
87cbc49c
NS
1336 /*
1337 * For unwritten extents do not report a disk address on
1da177e4
LT
1338 * the read case (treat as if we're reading into a hole).
1339 */
207d0416
CH
1340 if (create || !ISUNWRITTEN(&imap))
1341 xfs_map_buffer(inode, bh_result, &imap, offset);
1342 if (create && ISUNWRITTEN(&imap)) {
7b7a8665 1343 if (direct) {
1da177e4 1344 bh_result->b_private = inode;
7b7a8665
CH
1345 set_buffer_defer_completion(bh_result);
1346 }
1da177e4 1347 set_buffer_unwritten(bh_result);
1da177e4
LT
1348 }
1349 }
1350
c2536668
NS
1351 /*
1352 * If this is a realtime file, data may be on a different device.
1353 * to that pointed to from the buffer_head b_bdev currently.
1354 */
046f1685 1355 bh_result->b_bdev = xfs_find_bdev_for_inode(inode);
1da177e4 1356
c2536668 1357 /*
549054af
DC
1358 * If we previously allocated a block out beyond eof and we are now
1359 * coming back to use it then we will need to flag it as new even if it
1360 * has a disk address.
1361 *
1362 * With sub-block writes into unwritten extents we also need to mark
1363 * the buffer as new so that the unwritten parts of the buffer gets
1364 * correctly zeroed.
1da177e4
LT
1365 */
1366 if (create &&
1367 ((!buffer_mapped(bh_result) && !buffer_uptodate(bh_result)) ||
549054af 1368 (offset >= i_size_read(inode)) ||
207d0416 1369 (new || ISUNWRITTEN(&imap))))
1da177e4 1370 set_buffer_new(bh_result);
1da177e4 1371
207d0416 1372 if (imap.br_startblock == DELAYSTARTBLOCK) {
1da177e4
LT
1373 BUG_ON(direct);
1374 if (create) {
1375 set_buffer_uptodate(bh_result);
1376 set_buffer_mapped(bh_result);
1377 set_buffer_delay(bh_result);
1378 }
1379 }
1380
2b8f12b7
CH
1381 /*
1382 * If this is O_DIRECT or the mpage code calling tell them how large
1383 * the mapping is, so that we can avoid repeated get_blocks calls.
0e1f789d
DC
1384 *
1385 * If the mapping spans EOF, then we have to break the mapping up as the
1386 * mapping for blocks beyond EOF must be marked new so that sub block
1387 * regions can be correctly zeroed. We can't do this for mappings within
1388 * EOF unless the mapping was just allocated or is unwritten, otherwise
1389 * the callers would overwrite existing data with zeros. Hence we have
1390 * to split the mapping into a range up to and including EOF, and a
1391 * second mapping for beyond EOF.
2b8f12b7 1392 */
c2536668 1393 if (direct || size > (1 << inode->i_blkbits)) {
2b8f12b7
CH
1394 xfs_off_t mapping_size;
1395
1396 mapping_size = imap.br_startoff + imap.br_blockcount - iblock;
1397 mapping_size <<= inode->i_blkbits;
1398
1399 ASSERT(mapping_size > 0);
1400 if (mapping_size > size)
1401 mapping_size = size;
0e1f789d
DC
1402 if (offset < i_size_read(inode) &&
1403 offset + mapping_size >= i_size_read(inode)) {
1404 /* limit mapping to block that spans EOF */
1405 mapping_size = roundup_64(i_size_read(inode) - offset,
1406 1 << inode->i_blkbits);
1407 }
2b8f12b7
CH
1408 if (mapping_size > LONG_MAX)
1409 mapping_size = LONG_MAX;
1410
1411 bh_result->b_size = mapping_size;
1da177e4
LT
1412 }
1413
1414 return 0;
a206c817
CH
1415
1416out_unlock:
1417 xfs_iunlock(ip, lockmode);
1418 return -error;
1da177e4
LT
1419}
1420
1421int
c2536668 1422xfs_get_blocks(
1da177e4
LT
1423 struct inode *inode,
1424 sector_t iblock,
1425 struct buffer_head *bh_result,
1426 int create)
1427{
f2bde9b8 1428 return __xfs_get_blocks(inode, iblock, bh_result, create, 0);
1da177e4
LT
1429}
1430
1431STATIC int
e4c573bb 1432xfs_get_blocks_direct(
1da177e4
LT
1433 struct inode *inode,
1434 sector_t iblock,
1da177e4
LT
1435 struct buffer_head *bh_result,
1436 int create)
1437{
f2bde9b8 1438 return __xfs_get_blocks(inode, iblock, bh_result, create, 1);
1da177e4
LT
1439}
1440
209fb87a
CH
1441/*
1442 * Complete a direct I/O write request.
1443 *
1444 * If the private argument is non-NULL __xfs_get_blocks signals us that we
1445 * need to issue a transaction to convert the range from unwritten to written
1446 * extents. In case this is regular synchronous I/O we just call xfs_end_io
25985edc 1447 * to do this and we are done. But in case this was a successful AIO
209fb87a
CH
1448 * request this handler is called from interrupt context, from which we
1449 * can't start transactions. In that case offload the I/O completion to
1450 * the workqueues we also use for buffered I/O completion.
1451 */
f0973863 1452STATIC void
209fb87a
CH
1453xfs_end_io_direct_write(
1454 struct kiocb *iocb,
1455 loff_t offset,
1456 ssize_t size,
7b7a8665 1457 void *private)
f0973863 1458{
209fb87a 1459 struct xfs_ioend *ioend = iocb->private;
f0973863 1460
2813d682
CH
1461 /*
1462 * While the generic direct I/O code updates the inode size, it does
1463 * so only after the end_io handler is called, which means our
1464 * end_io handler thinks the on-disk size is outside the in-core
1465 * size. To prevent this just update it a little bit earlier here.
1466 */
1467 if (offset + size > i_size_read(ioend->io_inode))
1468 i_size_write(ioend->io_inode, offset + size);
1469
f0973863 1470 /*
209fb87a
CH
1471 * blockdev_direct_IO can return an error even after the I/O
1472 * completion handler was called. Thus we need to protect
1473 * against double-freeing.
f0973863 1474 */
209fb87a
CH
1475 iocb->private = NULL;
1476
ba87ea69
LM
1477 ioend->io_offset = offset;
1478 ioend->io_size = size;
209fb87a 1479 if (private && size > 0)
0d882a36 1480 ioend->io_type = XFS_IO_UNWRITTEN;
209fb87a 1481
7b7a8665 1482 xfs_finish_ioend_sync(ioend);
f0973863
CH
1483}
1484
1da177e4 1485STATIC ssize_t
e4c573bb 1486xfs_vm_direct_IO(
1da177e4
LT
1487 int rw,
1488 struct kiocb *iocb,
d8d3d94b
AV
1489 struct iov_iter *iter,
1490 loff_t offset)
1da177e4 1491{
209fb87a
CH
1492 struct inode *inode = iocb->ki_filp->f_mapping->host;
1493 struct block_device *bdev = xfs_find_bdev_for_inode(inode);
281627df 1494 struct xfs_ioend *ioend = NULL;
209fb87a
CH
1495 ssize_t ret;
1496
1497 if (rw & WRITE) {
a6cbcd4a 1498 size_t size = iov_iter_count(iter);
281627df
CH
1499
1500 /*
437a255a
DC
1501 * We cannot preallocate a size update transaction here as we
1502 * don't know whether allocation is necessary or not. Hence we
1503 * can only tell IO completion that one is necessary if we are
1504 * not doing unwritten extent conversion.
281627df 1505 */
0d882a36 1506 iocb->private = ioend = xfs_alloc_ioend(inode, XFS_IO_DIRECT);
437a255a 1507 if (offset + size > XFS_I(inode)->i_d.di_size)
281627df 1508 ioend->io_isdirect = 1;
209fb87a 1509
31b14039
AV
1510 ret = __blockdev_direct_IO(rw, iocb, inode, bdev, iter,
1511 offset, xfs_get_blocks_direct,
9862f62f
CH
1512 xfs_end_io_direct_write, NULL,
1513 DIO_ASYNC_EXTEND);
209fb87a 1514 if (ret != -EIOCBQUEUED && iocb->private)
437a255a 1515 goto out_destroy_ioend;
209fb87a 1516 } else {
31b14039
AV
1517 ret = __blockdev_direct_IO(rw, iocb, inode, bdev, iter,
1518 offset, xfs_get_blocks_direct,
eafdc7d1 1519 NULL, NULL, 0);
209fb87a 1520 }
f0973863 1521
f0973863 1522 return ret;
281627df 1523
281627df
CH
1524out_destroy_ioend:
1525 xfs_destroy_ioend(ioend);
1526 return ret;
1da177e4
LT
1527}
1528
d3bc815a
DC
1529/*
1530 * Punch out the delalloc blocks we have already allocated.
1531 *
1532 * Don't bother with xfs_setattr given that nothing can have made it to disk yet
1533 * as the page is still locked at this point.
1534 */
1535STATIC void
1536xfs_vm_kill_delalloc_range(
1537 struct inode *inode,
1538 loff_t start,
1539 loff_t end)
1540{
1541 struct xfs_inode *ip = XFS_I(inode);
1542 xfs_fileoff_t start_fsb;
1543 xfs_fileoff_t end_fsb;
1544 int error;
1545
1546 start_fsb = XFS_B_TO_FSB(ip->i_mount, start);
1547 end_fsb = XFS_B_TO_FSB(ip->i_mount, end);
1548 if (end_fsb <= start_fsb)
1549 return;
1550
1551 xfs_ilock(ip, XFS_ILOCK_EXCL);
1552 error = xfs_bmap_punch_delalloc_range(ip, start_fsb,
1553 end_fsb - start_fsb);
1554 if (error) {
1555 /* something screwed, just bail */
1556 if (!XFS_FORCED_SHUTDOWN(ip->i_mount)) {
1557 xfs_alert(ip->i_mount,
1558 "xfs_vm_write_failed: unable to clean up ino %lld",
1559 ip->i_ino);
1560 }
1561 }
1562 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1563}
1564
fa9b227e
CH
1565STATIC void
1566xfs_vm_write_failed(
d3bc815a
DC
1567 struct inode *inode,
1568 struct page *page,
1569 loff_t pos,
1570 unsigned len)
fa9b227e 1571{
58e59854 1572 loff_t block_offset;
d3bc815a
DC
1573 loff_t block_start;
1574 loff_t block_end;
1575 loff_t from = pos & (PAGE_CACHE_SIZE - 1);
1576 loff_t to = from + len;
1577 struct buffer_head *bh, *head;
fa9b227e 1578
58e59854
JL
1579 /*
1580 * The request pos offset might be 32 or 64 bit, this is all fine
1581 * on 64-bit platform. However, for 64-bit pos request on 32-bit
1582 * platform, the high 32-bit will be masked off if we evaluate the
1583 * block_offset via (pos & PAGE_MASK) because the PAGE_MASK is
1584 * 0xfffff000 as an unsigned long, hence the result is incorrect
1585 * which could cause the following ASSERT failed in most cases.
1586 * In order to avoid this, we can evaluate the block_offset of the
1587 * start of the page by using shifts rather than masks the mismatch
1588 * problem.
1589 */
1590 block_offset = (pos >> PAGE_CACHE_SHIFT) << PAGE_CACHE_SHIFT;
1591
d3bc815a 1592 ASSERT(block_offset + from == pos);
c726de44 1593
d3bc815a
DC
1594 head = page_buffers(page);
1595 block_start = 0;
1596 for (bh = head; bh != head || !block_start;
1597 bh = bh->b_this_page, block_start = block_end,
1598 block_offset += bh->b_size) {
1599 block_end = block_start + bh->b_size;
c726de44 1600
d3bc815a
DC
1601 /* skip buffers before the write */
1602 if (block_end <= from)
1603 continue;
1604
1605 /* if the buffer is after the write, we're done */
1606 if (block_start >= to)
1607 break;
1608
1609 if (!buffer_delay(bh))
1610 continue;
1611
1612 if (!buffer_new(bh) && block_offset < i_size_read(inode))
1613 continue;
1614
1615 xfs_vm_kill_delalloc_range(inode, block_offset,
1616 block_offset + bh->b_size);
4ab9ed57
DC
1617
1618 /*
1619 * This buffer does not contain data anymore. make sure anyone
1620 * who finds it knows that for certain.
1621 */
1622 clear_buffer_delay(bh);
1623 clear_buffer_uptodate(bh);
1624 clear_buffer_mapped(bh);
1625 clear_buffer_new(bh);
1626 clear_buffer_dirty(bh);
fa9b227e 1627 }
d3bc815a 1628
fa9b227e
CH
1629}
1630
d3bc815a
DC
1631/*
1632 * This used to call block_write_begin(), but it unlocks and releases the page
1633 * on error, and we need that page to be able to punch stale delalloc blocks out
1634 * on failure. hence we copy-n-waste it here and call xfs_vm_write_failed() at
1635 * the appropriate point.
1636 */
f51623b2 1637STATIC int
d79689c7 1638xfs_vm_write_begin(
f51623b2 1639 struct file *file,
d79689c7
NP
1640 struct address_space *mapping,
1641 loff_t pos,
1642 unsigned len,
1643 unsigned flags,
1644 struct page **pagep,
1645 void **fsdata)
f51623b2 1646{
d3bc815a
DC
1647 pgoff_t index = pos >> PAGE_CACHE_SHIFT;
1648 struct page *page;
1649 int status;
155130a4 1650
d3bc815a
DC
1651 ASSERT(len <= PAGE_CACHE_SIZE);
1652
ad22c7a0 1653 page = grab_cache_page_write_begin(mapping, index, flags);
d3bc815a
DC
1654 if (!page)
1655 return -ENOMEM;
1656
1657 status = __block_write_begin(page, pos, len, xfs_get_blocks);
1658 if (unlikely(status)) {
1659 struct inode *inode = mapping->host;
72ab70a1 1660 size_t isize = i_size_read(inode);
d3bc815a
DC
1661
1662 xfs_vm_write_failed(inode, page, pos, len);
1663 unlock_page(page);
1664
72ab70a1
DC
1665 /*
1666 * If the write is beyond EOF, we only want to kill blocks
1667 * allocated in this write, not blocks that were previously
1668 * written successfully.
1669 */
1670 if (pos + len > isize) {
1671 ssize_t start = max_t(ssize_t, pos, isize);
1672
1673 truncate_pagecache_range(inode, start, pos + len);
1674 }
d3bc815a
DC
1675
1676 page_cache_release(page);
1677 page = NULL;
1678 }
1679
1680 *pagep = page;
1681 return status;
fa9b227e
CH
1682}
1683
d3bc815a 1684/*
aad3f375
DC
1685 * On failure, we only need to kill delalloc blocks beyond EOF in the range of
1686 * this specific write because they will never be written. Previous writes
1687 * beyond EOF where block allocation succeeded do not need to be trashed, so
1688 * only new blocks from this write should be trashed. For blocks within
1689 * EOF, generic_write_end() zeros them so they are safe to leave alone and be
1690 * written with all the other valid data.
d3bc815a 1691 */
fa9b227e
CH
1692STATIC int
1693xfs_vm_write_end(
1694 struct file *file,
1695 struct address_space *mapping,
1696 loff_t pos,
1697 unsigned len,
1698 unsigned copied,
1699 struct page *page,
1700 void *fsdata)
1701{
1702 int ret;
155130a4 1703
d3bc815a
DC
1704 ASSERT(len <= PAGE_CACHE_SIZE);
1705
fa9b227e 1706 ret = generic_write_end(file, mapping, pos, len, copied, page, fsdata);
d3bc815a
DC
1707 if (unlikely(ret < len)) {
1708 struct inode *inode = mapping->host;
1709 size_t isize = i_size_read(inode);
1710 loff_t to = pos + len;
1711
1712 if (to > isize) {
aad3f375
DC
1713 /* only kill blocks in this write beyond EOF */
1714 if (pos > isize)
1715 isize = pos;
d3bc815a 1716 xfs_vm_kill_delalloc_range(inode, isize, to);
aad3f375 1717 truncate_pagecache_range(inode, isize, to);
d3bc815a
DC
1718 }
1719 }
155130a4 1720 return ret;
f51623b2 1721}
1da177e4
LT
1722
1723STATIC sector_t
e4c573bb 1724xfs_vm_bmap(
1da177e4
LT
1725 struct address_space *mapping,
1726 sector_t block)
1727{
1728 struct inode *inode = (struct inode *)mapping->host;
739bfb2a 1729 struct xfs_inode *ip = XFS_I(inode);
1da177e4 1730
cca28fb8 1731 trace_xfs_vm_bmap(XFS_I(inode));
126468b1 1732 xfs_ilock(ip, XFS_IOLOCK_SHARED);
4bc1ea6b 1733 filemap_write_and_wait(mapping);
126468b1 1734 xfs_iunlock(ip, XFS_IOLOCK_SHARED);
c2536668 1735 return generic_block_bmap(mapping, block, xfs_get_blocks);
1da177e4
LT
1736}
1737
1738STATIC int
e4c573bb 1739xfs_vm_readpage(
1da177e4
LT
1740 struct file *unused,
1741 struct page *page)
1742{
c2536668 1743 return mpage_readpage(page, xfs_get_blocks);
1da177e4
LT
1744}
1745
1746STATIC int
e4c573bb 1747xfs_vm_readpages(
1da177e4
LT
1748 struct file *unused,
1749 struct address_space *mapping,
1750 struct list_head *pages,
1751 unsigned nr_pages)
1752{
c2536668 1753 return mpage_readpages(mapping, pages, nr_pages, xfs_get_blocks);
1da177e4
LT
1754}
1755
f5e54d6e 1756const struct address_space_operations xfs_address_space_operations = {
e4c573bb
NS
1757 .readpage = xfs_vm_readpage,
1758 .readpages = xfs_vm_readpages,
1759 .writepage = xfs_vm_writepage,
7d4fb40a 1760 .writepages = xfs_vm_writepages,
238f4c54
NS
1761 .releasepage = xfs_vm_releasepage,
1762 .invalidatepage = xfs_vm_invalidatepage,
d79689c7 1763 .write_begin = xfs_vm_write_begin,
fa9b227e 1764 .write_end = xfs_vm_write_end,
e4c573bb
NS
1765 .bmap = xfs_vm_bmap,
1766 .direct_IO = xfs_vm_direct_IO,
e965f963 1767 .migratepage = buffer_migrate_page,
bddaafa1 1768 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 1769 .error_remove_page = generic_error_remove_page,
1da177e4 1770};