]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - fs/xfs/xfs_aops.c
Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs
[mirror_ubuntu-zesty-kernel.git] / fs / xfs / xfs_aops.c
CommitLineData
1da177e4 1/*
7b718769
NS
2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
1da177e4 4 *
7b718769
NS
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
1da177e4
LT
7 * published by the Free Software Foundation.
8 *
7b718769
NS
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
1da177e4 13 *
7b718769
NS
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
1da177e4 17 */
1da177e4 18#include "xfs.h"
70a9883c 19#include "xfs_shared.h"
239880ef
DC
20#include "xfs_format.h"
21#include "xfs_log_format.h"
22#include "xfs_trans_resv.h"
1da177e4 23#include "xfs_mount.h"
1da177e4 24#include "xfs_inode.h"
239880ef 25#include "xfs_trans.h"
281627df 26#include "xfs_inode_item.h"
a844f451 27#include "xfs_alloc.h"
1da177e4 28#include "xfs_error.h"
1da177e4 29#include "xfs_iomap.h"
0b1b213f 30#include "xfs_trace.h"
3ed3a434 31#include "xfs_bmap.h"
68988114 32#include "xfs_bmap_util.h"
a4fbe6ab 33#include "xfs_bmap_btree.h"
5a0e3ad6 34#include <linux/gfp.h>
1da177e4 35#include <linux/mpage.h>
10ce4444 36#include <linux/pagevec.h>
1da177e4
LT
37#include <linux/writeback.h>
38
0b1b213f 39void
f51623b2
NS
40xfs_count_page_state(
41 struct page *page,
42 int *delalloc,
f51623b2
NS
43 int *unwritten)
44{
45 struct buffer_head *bh, *head;
46
20cb52eb 47 *delalloc = *unwritten = 0;
f51623b2
NS
48
49 bh = head = page_buffers(page);
50 do {
20cb52eb 51 if (buffer_unwritten(bh))
f51623b2
NS
52 (*unwritten) = 1;
53 else if (buffer_delay(bh))
54 (*delalloc) = 1;
55 } while ((bh = bh->b_this_page) != head);
56}
57
6214ed44
CH
58STATIC struct block_device *
59xfs_find_bdev_for_inode(
046f1685 60 struct inode *inode)
6214ed44 61{
046f1685 62 struct xfs_inode *ip = XFS_I(inode);
6214ed44
CH
63 struct xfs_mount *mp = ip->i_mount;
64
71ddabb9 65 if (XFS_IS_REALTIME_INODE(ip))
6214ed44
CH
66 return mp->m_rtdev_targp->bt_bdev;
67 else
68 return mp->m_ddev_targp->bt_bdev;
69}
70
f6d6d4fc
CH
71/*
72 * We're now finished for good with this ioend structure.
73 * Update the page state via the associated buffer_heads,
74 * release holds on the inode and bio, and finally free
75 * up memory. Do not use the ioend after this.
76 */
0829c360
CH
77STATIC void
78xfs_destroy_ioend(
79 xfs_ioend_t *ioend)
80{
f6d6d4fc
CH
81 struct buffer_head *bh, *next;
82
83 for (bh = ioend->io_buffer_head; bh; bh = next) {
84 next = bh->b_private;
7d04a335 85 bh->b_end_io(bh, !ioend->io_error);
f6d6d4fc 86 }
583fa586 87
0829c360
CH
88 mempool_free(ioend, xfs_ioend_pool);
89}
90
fc0063c4
CH
91/*
92 * Fast and loose check if this write could update the on-disk inode size.
93 */
94static inline bool xfs_ioend_is_append(struct xfs_ioend *ioend)
95{
96 return ioend->io_offset + ioend->io_size >
97 XFS_I(ioend->io_inode)->i_d.di_size;
98}
99
281627df
CH
100STATIC int
101xfs_setfilesize_trans_alloc(
102 struct xfs_ioend *ioend)
103{
104 struct xfs_mount *mp = XFS_I(ioend->io_inode)->i_mount;
105 struct xfs_trans *tp;
106 int error;
107
108 tp = xfs_trans_alloc(mp, XFS_TRANS_FSYNC_TS);
109
3d3c8b52 110 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_fsyncts, 0, 0);
281627df 111 if (error) {
4906e215 112 xfs_trans_cancel(tp);
281627df
CH
113 return error;
114 }
115
116 ioend->io_append_trans = tp;
117
d9457dc0 118 /*
437a255a 119 * We may pass freeze protection with a transaction. So tell lockdep
d9457dc0
JK
120 * we released it.
121 */
bee9182d 122 __sb_writers_release(ioend->io_inode->i_sb, SB_FREEZE_FS);
281627df
CH
123 /*
124 * We hand off the transaction to the completion thread now, so
125 * clear the flag here.
126 */
127 current_restore_flags_nested(&tp->t_pflags, PF_FSTRANS);
128 return 0;
129}
130
ba87ea69 131/*
2813d682 132 * Update on-disk file size now that data has been written to disk.
ba87ea69 133 */
281627df 134STATIC int
ba87ea69 135xfs_setfilesize(
2ba66237
CH
136 struct xfs_inode *ip,
137 struct xfs_trans *tp,
138 xfs_off_t offset,
139 size_t size)
ba87ea69 140{
ba87ea69 141 xfs_fsize_t isize;
ba87ea69 142
aa6bf01d 143 xfs_ilock(ip, XFS_ILOCK_EXCL);
2ba66237 144 isize = xfs_new_eof(ip, offset + size);
281627df
CH
145 if (!isize) {
146 xfs_iunlock(ip, XFS_ILOCK_EXCL);
4906e215 147 xfs_trans_cancel(tp);
281627df 148 return 0;
ba87ea69
LM
149 }
150
2ba66237 151 trace_xfs_setfilesize(ip, offset, size);
281627df
CH
152
153 ip->i_d.di_size = isize;
154 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
155 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
156
70393313 157 return xfs_trans_commit(tp);
77d7a0c2
DC
158}
159
2ba66237
CH
160STATIC int
161xfs_setfilesize_ioend(
162 struct xfs_ioend *ioend)
163{
164 struct xfs_inode *ip = XFS_I(ioend->io_inode);
165 struct xfs_trans *tp = ioend->io_append_trans;
166
167 /*
168 * The transaction may have been allocated in the I/O submission thread,
169 * thus we need to mark ourselves as being in a transaction manually.
170 * Similarly for freeze protection.
171 */
172 current_set_flags_nested(&tp->t_pflags, PF_FSTRANS);
bee9182d 173 __sb_writers_acquired(VFS_I(ip)->i_sb, SB_FREEZE_FS);
2ba66237
CH
174
175 return xfs_setfilesize(ip, tp, ioend->io_offset, ioend->io_size);
176}
177
77d7a0c2 178/*
209fb87a 179 * Schedule IO completion handling on the final put of an ioend.
fc0063c4
CH
180 *
181 * If there is no work to do we might as well call it a day and free the
182 * ioend right now.
77d7a0c2
DC
183 */
184STATIC void
185xfs_finish_ioend(
209fb87a 186 struct xfs_ioend *ioend)
77d7a0c2
DC
187{
188 if (atomic_dec_and_test(&ioend->io_remaining)) {
aa6bf01d
CH
189 struct xfs_mount *mp = XFS_I(ioend->io_inode)->i_mount;
190
0d882a36 191 if (ioend->io_type == XFS_IO_UNWRITTEN)
aa6bf01d 192 queue_work(mp->m_unwritten_workqueue, &ioend->io_work);
2ba66237 193 else if (ioend->io_append_trans)
aa6bf01d 194 queue_work(mp->m_data_workqueue, &ioend->io_work);
fc0063c4
CH
195 else
196 xfs_destroy_ioend(ioend);
77d7a0c2 197 }
ba87ea69
LM
198}
199
0829c360 200/*
5ec4fabb 201 * IO write completion.
f6d6d4fc
CH
202 */
203STATIC void
5ec4fabb 204xfs_end_io(
77d7a0c2 205 struct work_struct *work)
0829c360 206{
77d7a0c2
DC
207 xfs_ioend_t *ioend = container_of(work, xfs_ioend_t, io_work);
208 struct xfs_inode *ip = XFS_I(ioend->io_inode);
69418932 209 int error = 0;
ba87ea69 210
04f658ee 211 if (XFS_FORCED_SHUTDOWN(ip->i_mount)) {
810627d9 212 ioend->io_error = -EIO;
04f658ee
CH
213 goto done;
214 }
215 if (ioend->io_error)
216 goto done;
217
5ec4fabb
CH
218 /*
219 * For unwritten extents we need to issue transactions to convert a
220 * range to normal written extens after the data I/O has finished.
221 */
0d882a36 222 if (ioend->io_type == XFS_IO_UNWRITTEN) {
437a255a
DC
223 error = xfs_iomap_write_unwritten(ip, ioend->io_offset,
224 ioend->io_size);
281627df 225 } else if (ioend->io_append_trans) {
2ba66237 226 error = xfs_setfilesize_ioend(ioend);
84803fb7 227 } else {
281627df 228 ASSERT(!xfs_ioend_is_append(ioend));
5ec4fabb 229 }
ba87ea69 230
04f658ee 231done:
437a255a 232 if (error)
2451337d 233 ioend->io_error = error;
aa6bf01d 234 xfs_destroy_ioend(ioend);
c626d174
DC
235}
236
0829c360
CH
237/*
238 * Allocate and initialise an IO completion structure.
239 * We need to track unwritten extent write completion here initially.
240 * We'll need to extend this for updating the ondisk inode size later
241 * (vs. incore size).
242 */
243STATIC xfs_ioend_t *
244xfs_alloc_ioend(
f6d6d4fc
CH
245 struct inode *inode,
246 unsigned int type)
0829c360
CH
247{
248 xfs_ioend_t *ioend;
249
250 ioend = mempool_alloc(xfs_ioend_pool, GFP_NOFS);
251
252 /*
253 * Set the count to 1 initially, which will prevent an I/O
254 * completion callback from happening before we have started
255 * all the I/O from calling the completion routine too early.
256 */
257 atomic_set(&ioend->io_remaining, 1);
7d04a335 258 ioend->io_error = 0;
f6d6d4fc
CH
259 ioend->io_list = NULL;
260 ioend->io_type = type;
b677c210 261 ioend->io_inode = inode;
c1a073bd 262 ioend->io_buffer_head = NULL;
f6d6d4fc 263 ioend->io_buffer_tail = NULL;
0829c360
CH
264 ioend->io_offset = 0;
265 ioend->io_size = 0;
281627df 266 ioend->io_append_trans = NULL;
0829c360 267
5ec4fabb 268 INIT_WORK(&ioend->io_work, xfs_end_io);
0829c360
CH
269 return ioend;
270}
271
1da177e4
LT
272STATIC int
273xfs_map_blocks(
274 struct inode *inode,
275 loff_t offset,
207d0416 276 struct xfs_bmbt_irec *imap,
a206c817
CH
277 int type,
278 int nonblocking)
1da177e4 279{
a206c817
CH
280 struct xfs_inode *ip = XFS_I(inode);
281 struct xfs_mount *mp = ip->i_mount;
ed1e7b7e 282 ssize_t count = 1 << inode->i_blkbits;
a206c817
CH
283 xfs_fileoff_t offset_fsb, end_fsb;
284 int error = 0;
a206c817
CH
285 int bmapi_flags = XFS_BMAPI_ENTIRE;
286 int nimaps = 1;
287
288 if (XFS_FORCED_SHUTDOWN(mp))
b474c7ae 289 return -EIO;
a206c817 290
0d882a36 291 if (type == XFS_IO_UNWRITTEN)
a206c817 292 bmapi_flags |= XFS_BMAPI_IGSTATE;
8ff2957d
CH
293
294 if (!xfs_ilock_nowait(ip, XFS_ILOCK_SHARED)) {
295 if (nonblocking)
b474c7ae 296 return -EAGAIN;
8ff2957d 297 xfs_ilock(ip, XFS_ILOCK_SHARED);
a206c817
CH
298 }
299
8ff2957d
CH
300 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
301 (ip->i_df.if_flags & XFS_IFEXTENTS));
d2c28191 302 ASSERT(offset <= mp->m_super->s_maxbytes);
8ff2957d 303
d2c28191
DC
304 if (offset + count > mp->m_super->s_maxbytes)
305 count = mp->m_super->s_maxbytes - offset;
a206c817
CH
306 end_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)offset + count);
307 offset_fsb = XFS_B_TO_FSBT(mp, offset);
5c8ed202
DC
308 error = xfs_bmapi_read(ip, offset_fsb, end_fsb - offset_fsb,
309 imap, &nimaps, bmapi_flags);
8ff2957d 310 xfs_iunlock(ip, XFS_ILOCK_SHARED);
a206c817 311
8ff2957d 312 if (error)
2451337d 313 return error;
a206c817 314
0d882a36 315 if (type == XFS_IO_DELALLOC &&
8ff2957d 316 (!nimaps || isnullstartblock(imap->br_startblock))) {
0799a3e8 317 error = xfs_iomap_write_allocate(ip, offset, imap);
a206c817
CH
318 if (!error)
319 trace_xfs_map_blocks_alloc(ip, offset, count, type, imap);
2451337d 320 return error;
a206c817
CH
321 }
322
8ff2957d 323#ifdef DEBUG
0d882a36 324 if (type == XFS_IO_UNWRITTEN) {
8ff2957d
CH
325 ASSERT(nimaps);
326 ASSERT(imap->br_startblock != HOLESTARTBLOCK);
327 ASSERT(imap->br_startblock != DELAYSTARTBLOCK);
328 }
329#endif
330 if (nimaps)
331 trace_xfs_map_blocks_found(ip, offset, count, type, imap);
332 return 0;
1da177e4
LT
333}
334
b8f82a4a 335STATIC int
558e6891 336xfs_imap_valid(
8699bb0a 337 struct inode *inode,
207d0416 338 struct xfs_bmbt_irec *imap,
558e6891 339 xfs_off_t offset)
1da177e4 340{
558e6891 341 offset >>= inode->i_blkbits;
8699bb0a 342
558e6891
CH
343 return offset >= imap->br_startoff &&
344 offset < imap->br_startoff + imap->br_blockcount;
1da177e4
LT
345}
346
f6d6d4fc
CH
347/*
348 * BIO completion handler for buffered IO.
349 */
782e3b3b 350STATIC void
f6d6d4fc 351xfs_end_bio(
4246a0b6 352 struct bio *bio)
f6d6d4fc
CH
353{
354 xfs_ioend_t *ioend = bio->bi_private;
355
4246a0b6 356 ioend->io_error = bio->bi_error;
f6d6d4fc
CH
357
358 /* Toss bio and pass work off to an xfsdatad thread */
f6d6d4fc
CH
359 bio->bi_private = NULL;
360 bio->bi_end_io = NULL;
f6d6d4fc 361 bio_put(bio);
7d04a335 362
209fb87a 363 xfs_finish_ioend(ioend);
f6d6d4fc
CH
364}
365
366STATIC void
367xfs_submit_ioend_bio(
06342cf8
CH
368 struct writeback_control *wbc,
369 xfs_ioend_t *ioend,
370 struct bio *bio)
f6d6d4fc
CH
371{
372 atomic_inc(&ioend->io_remaining);
f6d6d4fc
CH
373 bio->bi_private = ioend;
374 bio->bi_end_io = xfs_end_bio;
721a9602 375 submit_bio(wbc->sync_mode == WB_SYNC_ALL ? WRITE_SYNC : WRITE, bio);
f6d6d4fc
CH
376}
377
378STATIC struct bio *
379xfs_alloc_ioend_bio(
380 struct buffer_head *bh)
381{
b54ffb73 382 struct bio *bio = bio_alloc(GFP_NOIO, BIO_MAX_PAGES);
f6d6d4fc
CH
383
384 ASSERT(bio->bi_private == NULL);
4f024f37 385 bio->bi_iter.bi_sector = bh->b_blocknr * (bh->b_size >> 9);
f6d6d4fc 386 bio->bi_bdev = bh->b_bdev;
f6d6d4fc
CH
387 return bio;
388}
389
390STATIC void
391xfs_start_buffer_writeback(
392 struct buffer_head *bh)
393{
394 ASSERT(buffer_mapped(bh));
395 ASSERT(buffer_locked(bh));
396 ASSERT(!buffer_delay(bh));
397 ASSERT(!buffer_unwritten(bh));
398
399 mark_buffer_async_write(bh);
400 set_buffer_uptodate(bh);
401 clear_buffer_dirty(bh);
402}
403
404STATIC void
405xfs_start_page_writeback(
406 struct page *page,
f6d6d4fc
CH
407 int clear_dirty,
408 int buffers)
409{
410 ASSERT(PageLocked(page));
411 ASSERT(!PageWriteback(page));
0d085a52
DC
412
413 /*
414 * if the page was not fully cleaned, we need to ensure that the higher
415 * layers come back to it correctly. That means we need to keep the page
416 * dirty, and for WB_SYNC_ALL writeback we need to ensure the
417 * PAGECACHE_TAG_TOWRITE index mark is not removed so another attempt to
418 * write this page in this writeback sweep will be made.
419 */
420 if (clear_dirty) {
92132021 421 clear_page_dirty_for_io(page);
0d085a52
DC
422 set_page_writeback(page);
423 } else
424 set_page_writeback_keepwrite(page);
425
f6d6d4fc 426 unlock_page(page);
0d085a52 427
1f7decf6
FW
428 /* If no buffers on the page are to be written, finish it here */
429 if (!buffers)
f6d6d4fc 430 end_page_writeback(page);
f6d6d4fc
CH
431}
432
c7c1a7d8 433static inline int xfs_bio_add_buffer(struct bio *bio, struct buffer_head *bh)
f6d6d4fc
CH
434{
435 return bio_add_page(bio, bh->b_page, bh->b_size, bh_offset(bh));
436}
437
438/*
d88992f6
DC
439 * Submit all of the bios for all of the ioends we have saved up, covering the
440 * initial writepage page and also any probed pages.
441 *
442 * Because we may have multiple ioends spanning a page, we need to start
443 * writeback on all the buffers before we submit them for I/O. If we mark the
444 * buffers as we got, then we can end up with a page that only has buffers
445 * marked async write and I/O complete on can occur before we mark the other
446 * buffers async write.
447 *
448 * The end result of this is that we trip a bug in end_page_writeback() because
449 * we call it twice for the one page as the code in end_buffer_async_write()
450 * assumes that all buffers on the page are started at the same time.
451 *
452 * The fix is two passes across the ioend list - one to start writeback on the
c41564b5 453 * buffer_heads, and then submit them for I/O on the second pass.
7bf7f352
DC
454 *
455 * If @fail is non-zero, it means that we have a situation where some part of
456 * the submission process has failed after we have marked paged for writeback
457 * and unlocked them. In this situation, we need to fail the ioend chain rather
458 * than submit it to IO. This typically only happens on a filesystem shutdown.
f6d6d4fc
CH
459 */
460STATIC void
461xfs_submit_ioend(
06342cf8 462 struct writeback_control *wbc,
7bf7f352
DC
463 xfs_ioend_t *ioend,
464 int fail)
f6d6d4fc 465{
d88992f6 466 xfs_ioend_t *head = ioend;
f6d6d4fc
CH
467 xfs_ioend_t *next;
468 struct buffer_head *bh;
469 struct bio *bio;
470 sector_t lastblock = 0;
471
d88992f6
DC
472 /* Pass 1 - start writeback */
473 do {
474 next = ioend->io_list;
221cb251 475 for (bh = ioend->io_buffer_head; bh; bh = bh->b_private)
d88992f6 476 xfs_start_buffer_writeback(bh);
d88992f6
DC
477 } while ((ioend = next) != NULL);
478
479 /* Pass 2 - submit I/O */
480 ioend = head;
f6d6d4fc
CH
481 do {
482 next = ioend->io_list;
483 bio = NULL;
484
7bf7f352
DC
485 /*
486 * If we are failing the IO now, just mark the ioend with an
487 * error and finish it. This will run IO completion immediately
488 * as there is only one reference to the ioend at this point in
489 * time.
490 */
491 if (fail) {
2451337d 492 ioend->io_error = fail;
7bf7f352
DC
493 xfs_finish_ioend(ioend);
494 continue;
495 }
496
f6d6d4fc 497 for (bh = ioend->io_buffer_head; bh; bh = bh->b_private) {
f6d6d4fc
CH
498
499 if (!bio) {
500 retry:
501 bio = xfs_alloc_ioend_bio(bh);
502 } else if (bh->b_blocknr != lastblock + 1) {
06342cf8 503 xfs_submit_ioend_bio(wbc, ioend, bio);
f6d6d4fc
CH
504 goto retry;
505 }
506
c7c1a7d8 507 if (xfs_bio_add_buffer(bio, bh) != bh->b_size) {
06342cf8 508 xfs_submit_ioend_bio(wbc, ioend, bio);
f6d6d4fc
CH
509 goto retry;
510 }
511
512 lastblock = bh->b_blocknr;
513 }
514 if (bio)
06342cf8 515 xfs_submit_ioend_bio(wbc, ioend, bio);
209fb87a 516 xfs_finish_ioend(ioend);
f6d6d4fc
CH
517 } while ((ioend = next) != NULL);
518}
519
520/*
521 * Cancel submission of all buffer_heads so far in this endio.
522 * Toss the endio too. Only ever called for the initial page
523 * in a writepage request, so only ever one page.
524 */
525STATIC void
526xfs_cancel_ioend(
527 xfs_ioend_t *ioend)
528{
529 xfs_ioend_t *next;
530 struct buffer_head *bh, *next_bh;
531
532 do {
533 next = ioend->io_list;
534 bh = ioend->io_buffer_head;
535 do {
536 next_bh = bh->b_private;
537 clear_buffer_async_write(bh);
07d08681
BF
538 /*
539 * The unwritten flag is cleared when added to the
540 * ioend. We're not submitting for I/O so mark the
541 * buffer unwritten again for next time around.
542 */
543 if (ioend->io_type == XFS_IO_UNWRITTEN)
544 set_buffer_unwritten(bh);
f6d6d4fc
CH
545 unlock_buffer(bh);
546 } while ((bh = next_bh) != NULL);
547
f6d6d4fc
CH
548 mempool_free(ioend, xfs_ioend_pool);
549 } while ((ioend = next) != NULL);
550}
551
552/*
553 * Test to see if we've been building up a completion structure for
554 * earlier buffers -- if so, we try to append to this ioend if we
555 * can, otherwise we finish off any current ioend and start another.
556 * Return true if we've finished the given ioend.
557 */
558STATIC void
559xfs_add_to_ioend(
560 struct inode *inode,
561 struct buffer_head *bh,
7336cea8 562 xfs_off_t offset,
f6d6d4fc
CH
563 unsigned int type,
564 xfs_ioend_t **result,
565 int need_ioend)
566{
567 xfs_ioend_t *ioend = *result;
568
569 if (!ioend || need_ioend || type != ioend->io_type) {
570 xfs_ioend_t *previous = *result;
f6d6d4fc 571
f6d6d4fc
CH
572 ioend = xfs_alloc_ioend(inode, type);
573 ioend->io_offset = offset;
574 ioend->io_buffer_head = bh;
575 ioend->io_buffer_tail = bh;
576 if (previous)
577 previous->io_list = ioend;
578 *result = ioend;
579 } else {
580 ioend->io_buffer_tail->b_private = bh;
581 ioend->io_buffer_tail = bh;
582 }
583
584 bh->b_private = NULL;
585 ioend->io_size += bh->b_size;
586}
587
87cbc49c
NS
588STATIC void
589xfs_map_buffer(
046f1685 590 struct inode *inode,
87cbc49c 591 struct buffer_head *bh,
207d0416 592 struct xfs_bmbt_irec *imap,
046f1685 593 xfs_off_t offset)
87cbc49c
NS
594{
595 sector_t bn;
8699bb0a 596 struct xfs_mount *m = XFS_I(inode)->i_mount;
207d0416
CH
597 xfs_off_t iomap_offset = XFS_FSB_TO_B(m, imap->br_startoff);
598 xfs_daddr_t iomap_bn = xfs_fsb_to_db(XFS_I(inode), imap->br_startblock);
87cbc49c 599
207d0416
CH
600 ASSERT(imap->br_startblock != HOLESTARTBLOCK);
601 ASSERT(imap->br_startblock != DELAYSTARTBLOCK);
87cbc49c 602
e513182d 603 bn = (iomap_bn >> (inode->i_blkbits - BBSHIFT)) +
8699bb0a 604 ((offset - iomap_offset) >> inode->i_blkbits);
87cbc49c 605
046f1685 606 ASSERT(bn || XFS_IS_REALTIME_INODE(XFS_I(inode)));
87cbc49c
NS
607
608 bh->b_blocknr = bn;
609 set_buffer_mapped(bh);
610}
611
1da177e4
LT
612STATIC void
613xfs_map_at_offset(
046f1685 614 struct inode *inode,
1da177e4 615 struct buffer_head *bh,
207d0416 616 struct xfs_bmbt_irec *imap,
046f1685 617 xfs_off_t offset)
1da177e4 618{
207d0416
CH
619 ASSERT(imap->br_startblock != HOLESTARTBLOCK);
620 ASSERT(imap->br_startblock != DELAYSTARTBLOCK);
1da177e4 621
207d0416 622 xfs_map_buffer(inode, bh, imap, offset);
1da177e4
LT
623 set_buffer_mapped(bh);
624 clear_buffer_delay(bh);
f6d6d4fc 625 clear_buffer_unwritten(bh);
1da177e4
LT
626}
627
1da177e4 628/*
a49935f2
DC
629 * Test if a given page contains at least one buffer of a given @type.
630 * If @check_all_buffers is true, then we walk all the buffers in the page to
631 * try to find one of the type passed in. If it is not set, then the caller only
632 * needs to check the first buffer on the page for a match.
1da177e4 633 */
a49935f2 634STATIC bool
6ffc4db5 635xfs_check_page_type(
10ce4444 636 struct page *page,
a49935f2
DC
637 unsigned int type,
638 bool check_all_buffers)
1da177e4 639{
a49935f2
DC
640 struct buffer_head *bh;
641 struct buffer_head *head;
1da177e4 642
a49935f2
DC
643 if (PageWriteback(page))
644 return false;
645 if (!page->mapping)
646 return false;
647 if (!page_has_buffers(page))
648 return false;
1da177e4 649
a49935f2
DC
650 bh = head = page_buffers(page);
651 do {
652 if (buffer_unwritten(bh)) {
653 if (type == XFS_IO_UNWRITTEN)
654 return true;
655 } else if (buffer_delay(bh)) {
805eeb8e 656 if (type == XFS_IO_DELALLOC)
a49935f2
DC
657 return true;
658 } else if (buffer_dirty(bh) && buffer_mapped(bh)) {
805eeb8e 659 if (type == XFS_IO_OVERWRITE)
a49935f2
DC
660 return true;
661 }
1da177e4 662
a49935f2
DC
663 /* If we are only checking the first buffer, we are done now. */
664 if (!check_all_buffers)
665 break;
666 } while ((bh = bh->b_this_page) != head);
1da177e4 667
a49935f2 668 return false;
1da177e4
LT
669}
670
1da177e4
LT
671/*
672 * Allocate & map buffers for page given the extent map. Write it out.
673 * except for the original page of a writepage, this is called on
674 * delalloc/unwritten pages only, for the original page it is possible
675 * that the page has no mapping at all.
676 */
f6d6d4fc 677STATIC int
1da177e4
LT
678xfs_convert_page(
679 struct inode *inode,
680 struct page *page,
10ce4444 681 loff_t tindex,
207d0416 682 struct xfs_bmbt_irec *imap,
f6d6d4fc 683 xfs_ioend_t **ioendp,
2fa24f92 684 struct writeback_control *wbc)
1da177e4 685{
f6d6d4fc 686 struct buffer_head *bh, *head;
9260dc6b
CH
687 xfs_off_t end_offset;
688 unsigned long p_offset;
f6d6d4fc 689 unsigned int type;
24e17b5f 690 int len, page_dirty;
f6d6d4fc 691 int count = 0, done = 0, uptodate = 1;
9260dc6b 692 xfs_off_t offset = page_offset(page);
1da177e4 693
10ce4444
CH
694 if (page->index != tindex)
695 goto fail;
529ae9aa 696 if (!trylock_page(page))
10ce4444
CH
697 goto fail;
698 if (PageWriteback(page))
699 goto fail_unlock_page;
700 if (page->mapping != inode->i_mapping)
701 goto fail_unlock_page;
a49935f2 702 if (!xfs_check_page_type(page, (*ioendp)->io_type, false))
10ce4444
CH
703 goto fail_unlock_page;
704
24e17b5f
NS
705 /*
706 * page_dirty is initially a count of buffers on the page before
c41564b5 707 * EOF and is decremented as we move each into a cleanable state.
9260dc6b
CH
708 *
709 * Derivation:
710 *
711 * End offset is the highest offset that this page should represent.
712 * If we are on the last page, (end_offset & (PAGE_CACHE_SIZE - 1))
713 * will evaluate non-zero and be less than PAGE_CACHE_SIZE and
714 * hence give us the correct page_dirty count. On any other page,
715 * it will be zero and in that case we need page_dirty to be the
716 * count of buffers on the page.
24e17b5f 717 */
9260dc6b
CH
718 end_offset = min_t(unsigned long long,
719 (xfs_off_t)(page->index + 1) << PAGE_CACHE_SHIFT,
720 i_size_read(inode));
721
480d7467
DC
722 /*
723 * If the current map does not span the entire page we are about to try
724 * to write, then give up. The only way we can write a page that spans
725 * multiple mappings in a single writeback iteration is via the
726 * xfs_vm_writepage() function. Data integrity writeback requires the
727 * entire page to be written in a single attempt, otherwise the part of
728 * the page we don't write here doesn't get written as part of the data
729 * integrity sync.
730 *
731 * For normal writeback, we also don't attempt to write partial pages
732 * here as it simply means that write_cache_pages() will see it under
733 * writeback and ignore the page until some point in the future, at
734 * which time this will be the only page in the file that needs
735 * writeback. Hence for more optimal IO patterns, we should always
736 * avoid partial page writeback due to multiple mappings on a page here.
737 */
738 if (!xfs_imap_valid(inode, imap, end_offset))
739 goto fail_unlock_page;
740
24e17b5f 741 len = 1 << inode->i_blkbits;
9260dc6b
CH
742 p_offset = min_t(unsigned long, end_offset & (PAGE_CACHE_SIZE - 1),
743 PAGE_CACHE_SIZE);
744 p_offset = p_offset ? roundup(p_offset, len) : PAGE_CACHE_SIZE;
745 page_dirty = p_offset / len;
24e17b5f 746
a49935f2
DC
747 /*
748 * The moment we find a buffer that doesn't match our current type
749 * specification or can't be written, abort the loop and start
750 * writeback. As per the above xfs_imap_valid() check, only
751 * xfs_vm_writepage() can handle partial page writeback fully - we are
752 * limited here to the buffers that are contiguous with the current
753 * ioend, and hence a buffer we can't write breaks that contiguity and
754 * we have to defer the rest of the IO to xfs_vm_writepage().
755 */
1da177e4
LT
756 bh = head = page_buffers(page);
757 do {
9260dc6b 758 if (offset >= end_offset)
1da177e4 759 break;
f6d6d4fc
CH
760 if (!buffer_uptodate(bh))
761 uptodate = 0;
762 if (!(PageUptodate(page) || buffer_uptodate(bh))) {
763 done = 1;
a49935f2 764 break;
f6d6d4fc
CH
765 }
766
2fa24f92
CH
767 if (buffer_unwritten(bh) || buffer_delay(bh) ||
768 buffer_mapped(bh)) {
9260dc6b 769 if (buffer_unwritten(bh))
0d882a36 770 type = XFS_IO_UNWRITTEN;
2fa24f92 771 else if (buffer_delay(bh))
0d882a36 772 type = XFS_IO_DELALLOC;
2fa24f92 773 else
0d882a36 774 type = XFS_IO_OVERWRITE;
9260dc6b 775
a49935f2
DC
776 /*
777 * imap should always be valid because of the above
778 * partial page end_offset check on the imap.
779 */
780 ASSERT(xfs_imap_valid(inode, imap, offset));
9260dc6b 781
ecff71e6 782 lock_buffer(bh);
0d882a36 783 if (type != XFS_IO_OVERWRITE)
2fa24f92 784 xfs_map_at_offset(inode, bh, imap, offset);
89f3b363
CH
785 xfs_add_to_ioend(inode, bh, offset, type,
786 ioendp, done);
787
9260dc6b
CH
788 page_dirty--;
789 count++;
790 } else {
2fa24f92 791 done = 1;
a49935f2 792 break;
1da177e4 793 }
7336cea8 794 } while (offset += len, (bh = bh->b_this_page) != head);
1da177e4 795
f6d6d4fc
CH
796 if (uptodate && bh == head)
797 SetPageUptodate(page);
798
89f3b363 799 if (count) {
efceab1d
DC
800 if (--wbc->nr_to_write <= 0 &&
801 wbc->sync_mode == WB_SYNC_NONE)
89f3b363 802 done = 1;
1da177e4 803 }
89f3b363 804 xfs_start_page_writeback(page, !page_dirty, count);
f6d6d4fc
CH
805
806 return done;
10ce4444
CH
807 fail_unlock_page:
808 unlock_page(page);
809 fail:
810 return 1;
1da177e4
LT
811}
812
813/*
814 * Convert & write out a cluster of pages in the same extent as defined
815 * by mp and following the start page.
816 */
817STATIC void
818xfs_cluster_write(
819 struct inode *inode,
820 pgoff_t tindex,
207d0416 821 struct xfs_bmbt_irec *imap,
f6d6d4fc 822 xfs_ioend_t **ioendp,
1da177e4 823 struct writeback_control *wbc,
1da177e4
LT
824 pgoff_t tlast)
825{
10ce4444
CH
826 struct pagevec pvec;
827 int done = 0, i;
1da177e4 828
10ce4444
CH
829 pagevec_init(&pvec, 0);
830 while (!done && tindex <= tlast) {
831 unsigned len = min_t(pgoff_t, PAGEVEC_SIZE, tlast - tindex + 1);
832
833 if (!pagevec_lookup(&pvec, inode->i_mapping, tindex, len))
1da177e4 834 break;
10ce4444
CH
835
836 for (i = 0; i < pagevec_count(&pvec); i++) {
837 done = xfs_convert_page(inode, pvec.pages[i], tindex++,
2fa24f92 838 imap, ioendp, wbc);
10ce4444
CH
839 if (done)
840 break;
841 }
842
843 pagevec_release(&pvec);
844 cond_resched();
1da177e4
LT
845 }
846}
847
3ed3a434
DC
848STATIC void
849xfs_vm_invalidatepage(
850 struct page *page,
d47992f8
LC
851 unsigned int offset,
852 unsigned int length)
3ed3a434 853{
34097dfe
LC
854 trace_xfs_invalidatepage(page->mapping->host, page, offset,
855 length);
856 block_invalidatepage(page, offset, length);
3ed3a434
DC
857}
858
859/*
860 * If the page has delalloc buffers on it, we need to punch them out before we
861 * invalidate the page. If we don't, we leave a stale delalloc mapping on the
862 * inode that can trip a BUG() in xfs_get_blocks() later on if a direct IO read
863 * is done on that same region - the delalloc extent is returned when none is
864 * supposed to be there.
865 *
866 * We prevent this by truncating away the delalloc regions on the page before
867 * invalidating it. Because they are delalloc, we can do this without needing a
868 * transaction. Indeed - if we get ENOSPC errors, we have to be able to do this
869 * truncation without a transaction as there is no space left for block
870 * reservation (typically why we see a ENOSPC in writeback).
871 *
872 * This is not a performance critical path, so for now just do the punching a
873 * buffer head at a time.
874 */
875STATIC void
876xfs_aops_discard_page(
877 struct page *page)
878{
879 struct inode *inode = page->mapping->host;
880 struct xfs_inode *ip = XFS_I(inode);
881 struct buffer_head *bh, *head;
882 loff_t offset = page_offset(page);
3ed3a434 883
a49935f2 884 if (!xfs_check_page_type(page, XFS_IO_DELALLOC, true))
3ed3a434
DC
885 goto out_invalidate;
886
e8c3753c
DC
887 if (XFS_FORCED_SHUTDOWN(ip->i_mount))
888 goto out_invalidate;
889
4f10700a 890 xfs_alert(ip->i_mount,
3ed3a434
DC
891 "page discard on page %p, inode 0x%llx, offset %llu.",
892 page, ip->i_ino, offset);
893
894 xfs_ilock(ip, XFS_ILOCK_EXCL);
895 bh = head = page_buffers(page);
896 do {
3ed3a434 897 int error;
c726de44 898 xfs_fileoff_t start_fsb;
3ed3a434
DC
899
900 if (!buffer_delay(bh))
901 goto next_buffer;
902
c726de44
DC
903 start_fsb = XFS_B_TO_FSBT(ip->i_mount, offset);
904 error = xfs_bmap_punch_delalloc_range(ip, start_fsb, 1);
3ed3a434
DC
905 if (error) {
906 /* something screwed, just bail */
e8c3753c 907 if (!XFS_FORCED_SHUTDOWN(ip->i_mount)) {
4f10700a 908 xfs_alert(ip->i_mount,
3ed3a434 909 "page discard unable to remove delalloc mapping.");
e8c3753c 910 }
3ed3a434
DC
911 break;
912 }
913next_buffer:
c726de44 914 offset += 1 << inode->i_blkbits;
3ed3a434
DC
915
916 } while ((bh = bh->b_this_page) != head);
917
918 xfs_iunlock(ip, XFS_ILOCK_EXCL);
919out_invalidate:
d47992f8 920 xfs_vm_invalidatepage(page, 0, PAGE_CACHE_SIZE);
3ed3a434
DC
921 return;
922}
923
1da177e4 924/*
89f3b363
CH
925 * Write out a dirty page.
926 *
927 * For delalloc space on the page we need to allocate space and flush it.
928 * For unwritten space on the page we need to start the conversion to
929 * regular allocated space.
89f3b363 930 * For any other dirty buffer heads on the page we should flush them.
1da177e4 931 */
1da177e4 932STATIC int
89f3b363
CH
933xfs_vm_writepage(
934 struct page *page,
935 struct writeback_control *wbc)
1da177e4 936{
89f3b363 937 struct inode *inode = page->mapping->host;
f6d6d4fc 938 struct buffer_head *bh, *head;
207d0416 939 struct xfs_bmbt_irec imap;
f6d6d4fc 940 xfs_ioend_t *ioend = NULL, *iohead = NULL;
1da177e4 941 loff_t offset;
f6d6d4fc 942 unsigned int type;
1da177e4 943 __uint64_t end_offset;
bd1556a1 944 pgoff_t end_index, last_index;
ed1e7b7e 945 ssize_t len;
a206c817 946 int err, imap_valid = 0, uptodate = 1;
89f3b363 947 int count = 0;
a206c817 948 int nonblocking = 0;
89f3b363 949
34097dfe 950 trace_xfs_writepage(inode, page, 0, 0);
89f3b363 951
20cb52eb
CH
952 ASSERT(page_has_buffers(page));
953
89f3b363
CH
954 /*
955 * Refuse to write the page out if we are called from reclaim context.
956 *
d4f7a5cb
CH
957 * This avoids stack overflows when called from deeply used stacks in
958 * random callers for direct reclaim or memcg reclaim. We explicitly
959 * allow reclaim from kswapd as the stack usage there is relatively low.
89f3b363 960 *
94054fa3
MG
961 * This should never happen except in the case of a VM regression so
962 * warn about it.
89f3b363 963 */
94054fa3
MG
964 if (WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD)) ==
965 PF_MEMALLOC))
b5420f23 966 goto redirty;
1da177e4 967
89f3b363 968 /*
680a647b
CH
969 * Given that we do not allow direct reclaim to call us, we should
970 * never be called while in a filesystem transaction.
89f3b363 971 */
448011e2 972 if (WARN_ON_ONCE(current->flags & PF_FSTRANS))
b5420f23 973 goto redirty;
89f3b363 974
1da177e4
LT
975 /* Is this page beyond the end of the file? */
976 offset = i_size_read(inode);
977 end_index = offset >> PAGE_CACHE_SHIFT;
978 last_index = (offset - 1) >> PAGE_CACHE_SHIFT;
8695d27e
JL
979
980 /*
981 * The page index is less than the end_index, adjust the end_offset
982 * to the highest offset that this page should represent.
983 * -----------------------------------------------------
984 * | file mapping | <EOF> |
985 * -----------------------------------------------------
986 * | Page ... | Page N-2 | Page N-1 | Page N | |
987 * ^--------------------------------^----------|--------
988 * | desired writeback range | see else |
989 * ---------------------------------^------------------|
990 */
991 if (page->index < end_index)
992 end_offset = (xfs_off_t)(page->index + 1) << PAGE_CACHE_SHIFT;
993 else {
994 /*
995 * Check whether the page to write out is beyond or straddles
996 * i_size or not.
997 * -------------------------------------------------------
998 * | file mapping | <EOF> |
999 * -------------------------------------------------------
1000 * | Page ... | Page N-2 | Page N-1 | Page N | Beyond |
1001 * ^--------------------------------^-----------|---------
1002 * | | Straddles |
1003 * ---------------------------------^-----------|--------|
1004 */
6b7a03f0
CH
1005 unsigned offset_into_page = offset & (PAGE_CACHE_SIZE - 1);
1006
1007 /*
ff9a28f6
JK
1008 * Skip the page if it is fully outside i_size, e.g. due to a
1009 * truncate operation that is in progress. We must redirty the
1010 * page so that reclaim stops reclaiming it. Otherwise
1011 * xfs_vm_releasepage() is called on it and gets confused.
8695d27e
JL
1012 *
1013 * Note that the end_index is unsigned long, it would overflow
1014 * if the given offset is greater than 16TB on 32-bit system
1015 * and if we do check the page is fully outside i_size or not
1016 * via "if (page->index >= end_index + 1)" as "end_index + 1"
1017 * will be evaluated to 0. Hence this page will be redirtied
1018 * and be written out repeatedly which would result in an
1019 * infinite loop, the user program that perform this operation
1020 * will hang. Instead, we can verify this situation by checking
1021 * if the page to write is totally beyond the i_size or if it's
1022 * offset is just equal to the EOF.
6b7a03f0 1023 */
8695d27e
JL
1024 if (page->index > end_index ||
1025 (page->index == end_index && offset_into_page == 0))
ff9a28f6 1026 goto redirty;
6b7a03f0
CH
1027
1028 /*
1029 * The page straddles i_size. It must be zeroed out on each
1030 * and every writepage invocation because it may be mmapped.
1031 * "A file is mapped in multiples of the page size. For a file
8695d27e 1032 * that is not a multiple of the page size, the remaining
6b7a03f0
CH
1033 * memory is zeroed when mapped, and writes to that region are
1034 * not written out to the file."
1035 */
1036 zero_user_segment(page, offset_into_page, PAGE_CACHE_SIZE);
8695d27e
JL
1037
1038 /* Adjust the end_offset to the end of file */
1039 end_offset = offset;
1da177e4
LT
1040 }
1041
24e17b5f 1042 len = 1 << inode->i_blkbits;
24e17b5f 1043
24e17b5f 1044 bh = head = page_buffers(page);
f6d6d4fc 1045 offset = page_offset(page);
0d882a36 1046 type = XFS_IO_OVERWRITE;
a206c817 1047
dbcdde3e 1048 if (wbc->sync_mode == WB_SYNC_NONE)
a206c817 1049 nonblocking = 1;
f6d6d4fc 1050
1da177e4 1051 do {
6ac7248e
CH
1052 int new_ioend = 0;
1053
1da177e4
LT
1054 if (offset >= end_offset)
1055 break;
1056 if (!buffer_uptodate(bh))
1057 uptodate = 0;
1da177e4 1058
3d9b02e3 1059 /*
ece413f5
CH
1060 * set_page_dirty dirties all buffers in a page, independent
1061 * of their state. The dirty state however is entirely
1062 * meaningless for holes (!mapped && uptodate), so skip
1063 * buffers covering holes here.
3d9b02e3
ES
1064 */
1065 if (!buffer_mapped(bh) && buffer_uptodate(bh)) {
3d9b02e3
ES
1066 imap_valid = 0;
1067 continue;
1068 }
1069
aeea1b1f 1070 if (buffer_unwritten(bh)) {
0d882a36
AR
1071 if (type != XFS_IO_UNWRITTEN) {
1072 type = XFS_IO_UNWRITTEN;
aeea1b1f 1073 imap_valid = 0;
1da177e4 1074 }
aeea1b1f 1075 } else if (buffer_delay(bh)) {
0d882a36
AR
1076 if (type != XFS_IO_DELALLOC) {
1077 type = XFS_IO_DELALLOC;
aeea1b1f 1078 imap_valid = 0;
1da177e4 1079 }
89f3b363 1080 } else if (buffer_uptodate(bh)) {
0d882a36
AR
1081 if (type != XFS_IO_OVERWRITE) {
1082 type = XFS_IO_OVERWRITE;
85da94c6
CH
1083 imap_valid = 0;
1084 }
aeea1b1f 1085 } else {
7d0fa3ec 1086 if (PageUptodate(page))
aeea1b1f 1087 ASSERT(buffer_mapped(bh));
7d0fa3ec
AR
1088 /*
1089 * This buffer is not uptodate and will not be
1090 * written to disk. Ensure that we will put any
1091 * subsequent writeable buffers into a new
1092 * ioend.
1093 */
1094 imap_valid = 0;
aeea1b1f
CH
1095 continue;
1096 }
d5cb48aa 1097
aeea1b1f
CH
1098 if (imap_valid)
1099 imap_valid = xfs_imap_valid(inode, &imap, offset);
1100 if (!imap_valid) {
1101 /*
1102 * If we didn't have a valid mapping then we need to
1103 * put the new mapping into a separate ioend structure.
1104 * This ensures non-contiguous extents always have
1105 * separate ioends, which is particularly important
1106 * for unwritten extent conversion at I/O completion
1107 * time.
1108 */
1109 new_ioend = 1;
1110 err = xfs_map_blocks(inode, offset, &imap, type,
1111 nonblocking);
1112 if (err)
1113 goto error;
1114 imap_valid = xfs_imap_valid(inode, &imap, offset);
1115 }
1116 if (imap_valid) {
ecff71e6 1117 lock_buffer(bh);
0d882a36 1118 if (type != XFS_IO_OVERWRITE)
aeea1b1f
CH
1119 xfs_map_at_offset(inode, bh, &imap, offset);
1120 xfs_add_to_ioend(inode, bh, offset, type, &ioend,
1121 new_ioend);
1122 count++;
1da177e4 1123 }
f6d6d4fc
CH
1124
1125 if (!iohead)
1126 iohead = ioend;
1127
1128 } while (offset += len, ((bh = bh->b_this_page) != head));
1da177e4
LT
1129
1130 if (uptodate && bh == head)
1131 SetPageUptodate(page);
1132
89f3b363 1133 xfs_start_page_writeback(page, 1, count);
1da177e4 1134
7bf7f352
DC
1135 /* if there is no IO to be submitted for this page, we are done */
1136 if (!ioend)
1137 return 0;
1138
1139 ASSERT(iohead);
1140
1141 /*
1142 * Any errors from this point onwards need tobe reported through the IO
1143 * completion path as we have marked the initial page as under writeback
1144 * and unlocked it.
1145 */
1146 if (imap_valid) {
bd1556a1
CH
1147 xfs_off_t end_index;
1148
1149 end_index = imap.br_startoff + imap.br_blockcount;
1150
1151 /* to bytes */
1152 end_index <<= inode->i_blkbits;
1153
1154 /* to pages */
1155 end_index = (end_index - 1) >> PAGE_CACHE_SHIFT;
1156
1157 /* check against file size */
1158 if (end_index > last_index)
1159 end_index = last_index;
8699bb0a 1160
207d0416 1161 xfs_cluster_write(inode, page->index + 1, &imap, &ioend,
2fa24f92 1162 wbc, end_index);
1da177e4
LT
1163 }
1164
281627df 1165
7bf7f352
DC
1166 /*
1167 * Reserve log space if we might write beyond the on-disk inode size.
1168 */
1169 err = 0;
1170 if (ioend->io_type != XFS_IO_UNWRITTEN && xfs_ioend_is_append(ioend))
1171 err = xfs_setfilesize_trans_alloc(ioend);
1172
1173 xfs_submit_ioend(wbc, iohead, err);
f6d6d4fc 1174
89f3b363 1175 return 0;
1da177e4
LT
1176
1177error:
f6d6d4fc
CH
1178 if (iohead)
1179 xfs_cancel_ioend(iohead);
1da177e4 1180
b5420f23
CH
1181 if (err == -EAGAIN)
1182 goto redirty;
1183
20cb52eb 1184 xfs_aops_discard_page(page);
89f3b363
CH
1185 ClearPageUptodate(page);
1186 unlock_page(page);
1da177e4 1187 return err;
f51623b2 1188
b5420f23 1189redirty:
f51623b2
NS
1190 redirty_page_for_writepage(wbc, page);
1191 unlock_page(page);
1192 return 0;
f51623b2
NS
1193}
1194
7d4fb40a
NS
1195STATIC int
1196xfs_vm_writepages(
1197 struct address_space *mapping,
1198 struct writeback_control *wbc)
1199{
b3aea4ed 1200 xfs_iflags_clear(XFS_I(mapping->host), XFS_ITRUNCATED);
7d4fb40a
NS
1201 return generic_writepages(mapping, wbc);
1202}
1203
f51623b2
NS
1204/*
1205 * Called to move a page into cleanable state - and from there
89f3b363 1206 * to be released. The page should already be clean. We always
f51623b2
NS
1207 * have buffer heads in this call.
1208 *
89f3b363 1209 * Returns 1 if the page is ok to release, 0 otherwise.
f51623b2
NS
1210 */
1211STATIC int
238f4c54 1212xfs_vm_releasepage(
f51623b2
NS
1213 struct page *page,
1214 gfp_t gfp_mask)
1215{
20cb52eb 1216 int delalloc, unwritten;
f51623b2 1217
34097dfe 1218 trace_xfs_releasepage(page->mapping->host, page, 0, 0);
238f4c54 1219
20cb52eb 1220 xfs_count_page_state(page, &delalloc, &unwritten);
f51623b2 1221
448011e2 1222 if (WARN_ON_ONCE(delalloc))
f51623b2 1223 return 0;
448011e2 1224 if (WARN_ON_ONCE(unwritten))
f51623b2
NS
1225 return 0;
1226
f51623b2
NS
1227 return try_to_free_buffers(page);
1228}
1229
a719370b 1230/*
a06c277a
DC
1231 * When we map a DIO buffer, we may need to attach an ioend that describes the
1232 * type of write IO we are doing. This passes to the completion function the
1233 * operations it needs to perform. If the mapping is for an overwrite wholly
1234 * within the EOF then we don't need an ioend and so we don't allocate one.
1235 * This avoids the unnecessary overhead of allocating and freeing ioends for
1236 * workloads that don't require transactions on IO completion.
d5cc2e3f
DC
1237 *
1238 * If we get multiple mappings in a single IO, we might be mapping different
1239 * types. But because the direct IO can only have a single private pointer, we
1240 * need to ensure that:
1241 *
a06c277a
DC
1242 * a) i) the ioend spans the entire region of unwritten mappings; or
1243 * ii) the ioend spans all the mappings that cross or are beyond EOF; and
d5cc2e3f
DC
1244 * b) if it contains unwritten extents, it is *permanently* marked as such
1245 *
1246 * We could do this by chaining ioends like buffered IO does, but we only
1247 * actually get one IO completion callback from the direct IO, and that spans
1248 * the entire IO regardless of how many mappings and IOs are needed to complete
1249 * the DIO. There is only going to be one reference to the ioend and its life
1250 * cycle is constrained by the DIO completion code. hence we don't need
1251 * reference counting here.
a719370b
DC
1252 */
1253static void
1254xfs_map_direct(
1255 struct inode *inode,
1256 struct buffer_head *bh_result,
1257 struct xfs_bmbt_irec *imap,
1258 xfs_off_t offset)
1259{
d5cc2e3f
DC
1260 struct xfs_ioend *ioend;
1261 xfs_off_t size = bh_result->b_size;
1262 int type;
1263
1264 if (ISUNWRITTEN(imap))
1265 type = XFS_IO_UNWRITTEN;
1266 else
1267 type = XFS_IO_OVERWRITE;
1268
1269 trace_xfs_gbmap_direct(XFS_I(inode), offset, size, type, imap);
1270
1271 if (bh_result->b_private) {
1272 ioend = bh_result->b_private;
1273 ASSERT(ioend->io_size > 0);
1274 ASSERT(offset >= ioend->io_offset);
1275 if (offset + size > ioend->io_offset + ioend->io_size)
1276 ioend->io_size = offset - ioend->io_offset + size;
1277
1278 if (type == XFS_IO_UNWRITTEN && type != ioend->io_type)
1279 ioend->io_type = XFS_IO_UNWRITTEN;
1280
1281 trace_xfs_gbmap_direct_update(XFS_I(inode), ioend->io_offset,
1282 ioend->io_size, ioend->io_type,
1283 imap);
a06c277a
DC
1284 } else if (type == XFS_IO_UNWRITTEN ||
1285 offset + size > i_size_read(inode)) {
d5cc2e3f
DC
1286 ioend = xfs_alloc_ioend(inode, type);
1287 ioend->io_offset = offset;
1288 ioend->io_size = size;
a06c277a 1289
d5cc2e3f 1290 bh_result->b_private = ioend;
a06c277a 1291 set_buffer_defer_completion(bh_result);
d5cc2e3f
DC
1292
1293 trace_xfs_gbmap_direct_new(XFS_I(inode), offset, size, type,
1294 imap);
a06c277a
DC
1295 } else {
1296 trace_xfs_gbmap_direct_none(XFS_I(inode), offset, size, type,
1297 imap);
a719370b
DC
1298 }
1299}
1300
1fdca9c2
DC
1301/*
1302 * If this is O_DIRECT or the mpage code calling tell them how large the mapping
1303 * is, so that we can avoid repeated get_blocks calls.
1304 *
1305 * If the mapping spans EOF, then we have to break the mapping up as the mapping
1306 * for blocks beyond EOF must be marked new so that sub block regions can be
1307 * correctly zeroed. We can't do this for mappings within EOF unless the mapping
1308 * was just allocated or is unwritten, otherwise the callers would overwrite
1309 * existing data with zeros. Hence we have to split the mapping into a range up
1310 * to and including EOF, and a second mapping for beyond EOF.
1311 */
1312static void
1313xfs_map_trim_size(
1314 struct inode *inode,
1315 sector_t iblock,
1316 struct buffer_head *bh_result,
1317 struct xfs_bmbt_irec *imap,
1318 xfs_off_t offset,
1319 ssize_t size)
1320{
1321 xfs_off_t mapping_size;
1322
1323 mapping_size = imap->br_startoff + imap->br_blockcount - iblock;
1324 mapping_size <<= inode->i_blkbits;
1325
1326 ASSERT(mapping_size > 0);
1327 if (mapping_size > size)
1328 mapping_size = size;
1329 if (offset < i_size_read(inode) &&
1330 offset + mapping_size >= i_size_read(inode)) {
1331 /* limit mapping to block that spans EOF */
1332 mapping_size = roundup_64(i_size_read(inode) - offset,
1333 1 << inode->i_blkbits);
1334 }
1335 if (mapping_size > LONG_MAX)
1336 mapping_size = LONG_MAX;
1337
1338 bh_result->b_size = mapping_size;
1339}
1340
1da177e4 1341STATIC int
c2536668 1342__xfs_get_blocks(
1da177e4
LT
1343 struct inode *inode,
1344 sector_t iblock,
1da177e4
LT
1345 struct buffer_head *bh_result,
1346 int create,
6b698ede 1347 bool direct)
1da177e4 1348{
a206c817
CH
1349 struct xfs_inode *ip = XFS_I(inode);
1350 struct xfs_mount *mp = ip->i_mount;
1351 xfs_fileoff_t offset_fsb, end_fsb;
1352 int error = 0;
1353 int lockmode = 0;
207d0416 1354 struct xfs_bmbt_irec imap;
a206c817 1355 int nimaps = 1;
fdc7ed75
NS
1356 xfs_off_t offset;
1357 ssize_t size;
207d0416 1358 int new = 0;
a206c817
CH
1359
1360 if (XFS_FORCED_SHUTDOWN(mp))
b474c7ae 1361 return -EIO;
1da177e4 1362
fdc7ed75 1363 offset = (xfs_off_t)iblock << inode->i_blkbits;
c2536668
NS
1364 ASSERT(bh_result->b_size >= (1 << inode->i_blkbits));
1365 size = bh_result->b_size;
364f358a
LM
1366
1367 if (!create && direct && offset >= i_size_read(inode))
1368 return 0;
1369
507630b2
DC
1370 /*
1371 * Direct I/O is usually done on preallocated files, so try getting
1372 * a block mapping without an exclusive lock first. For buffered
1373 * writes we already have the exclusive iolock anyway, so avoiding
1374 * a lock roundtrip here by taking the ilock exclusive from the
1375 * beginning is a useful micro optimization.
1376 */
1377 if (create && !direct) {
a206c817
CH
1378 lockmode = XFS_ILOCK_EXCL;
1379 xfs_ilock(ip, lockmode);
1380 } else {
309ecac8 1381 lockmode = xfs_ilock_data_map_shared(ip);
a206c817 1382 }
f2bde9b8 1383
d2c28191
DC
1384 ASSERT(offset <= mp->m_super->s_maxbytes);
1385 if (offset + size > mp->m_super->s_maxbytes)
1386 size = mp->m_super->s_maxbytes - offset;
a206c817
CH
1387 end_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)offset + size);
1388 offset_fsb = XFS_B_TO_FSBT(mp, offset);
1389
5c8ed202
DC
1390 error = xfs_bmapi_read(ip, offset_fsb, end_fsb - offset_fsb,
1391 &imap, &nimaps, XFS_BMAPI_ENTIRE);
1da177e4 1392 if (error)
a206c817
CH
1393 goto out_unlock;
1394
1395 if (create &&
1396 (!nimaps ||
1397 (imap.br_startblock == HOLESTARTBLOCK ||
1398 imap.br_startblock == DELAYSTARTBLOCK))) {
aff3a9ed 1399 if (direct || xfs_get_extsz_hint(ip)) {
507630b2
DC
1400 /*
1401 * Drop the ilock in preparation for starting the block
1402 * allocation transaction. It will be retaken
1403 * exclusively inside xfs_iomap_write_direct for the
1404 * actual allocation.
1405 */
1406 xfs_iunlock(ip, lockmode);
a206c817
CH
1407 error = xfs_iomap_write_direct(ip, offset, size,
1408 &imap, nimaps);
507630b2 1409 if (error)
2451337d 1410 return error;
d3bc815a 1411 new = 1;
6b698ede 1412
a206c817 1413 } else {
507630b2
DC
1414 /*
1415 * Delalloc reservations do not require a transaction,
d3bc815a
DC
1416 * we can go on without dropping the lock here. If we
1417 * are allocating a new delalloc block, make sure that
1418 * we set the new flag so that we mark the buffer new so
1419 * that we know that it is newly allocated if the write
1420 * fails.
507630b2 1421 */
d3bc815a
DC
1422 if (nimaps && imap.br_startblock == HOLESTARTBLOCK)
1423 new = 1;
a206c817 1424 error = xfs_iomap_write_delay(ip, offset, size, &imap);
507630b2
DC
1425 if (error)
1426 goto out_unlock;
1427
1428 xfs_iunlock(ip, lockmode);
a206c817 1429 }
d5cc2e3f
DC
1430 trace_xfs_get_blocks_alloc(ip, offset, size,
1431 ISUNWRITTEN(&imap) ? XFS_IO_UNWRITTEN
1432 : XFS_IO_DELALLOC, &imap);
a206c817 1433 } else if (nimaps) {
d5cc2e3f
DC
1434 trace_xfs_get_blocks_found(ip, offset, size,
1435 ISUNWRITTEN(&imap) ? XFS_IO_UNWRITTEN
1436 : XFS_IO_OVERWRITE, &imap);
507630b2 1437 xfs_iunlock(ip, lockmode);
a206c817
CH
1438 } else {
1439 trace_xfs_get_blocks_notfound(ip, offset, size);
1440 goto out_unlock;
1441 }
1da177e4 1442
1fdca9c2
DC
1443 /* trim mapping down to size requested */
1444 if (direct || size > (1 << inode->i_blkbits))
1445 xfs_map_trim_size(inode, iblock, bh_result,
1446 &imap, offset, size);
1447
a719370b
DC
1448 /*
1449 * For unwritten extents do not report a disk address in the buffered
1450 * read case (treat as if we're reading into a hole).
1451 */
207d0416 1452 if (imap.br_startblock != HOLESTARTBLOCK &&
a719370b
DC
1453 imap.br_startblock != DELAYSTARTBLOCK &&
1454 (create || !ISUNWRITTEN(&imap))) {
1455 xfs_map_buffer(inode, bh_result, &imap, offset);
1456 if (ISUNWRITTEN(&imap))
1da177e4 1457 set_buffer_unwritten(bh_result);
a719370b
DC
1458 /* direct IO needs special help */
1459 if (create && direct)
1460 xfs_map_direct(inode, bh_result, &imap, offset);
1da177e4
LT
1461 }
1462
c2536668
NS
1463 /*
1464 * If this is a realtime file, data may be on a different device.
1465 * to that pointed to from the buffer_head b_bdev currently.
1466 */
046f1685 1467 bh_result->b_bdev = xfs_find_bdev_for_inode(inode);
1da177e4 1468
c2536668 1469 /*
549054af
DC
1470 * If we previously allocated a block out beyond eof and we are now
1471 * coming back to use it then we will need to flag it as new even if it
1472 * has a disk address.
1473 *
1474 * With sub-block writes into unwritten extents we also need to mark
1475 * the buffer as new so that the unwritten parts of the buffer gets
1476 * correctly zeroed.
1da177e4
LT
1477 */
1478 if (create &&
1479 ((!buffer_mapped(bh_result) && !buffer_uptodate(bh_result)) ||
549054af 1480 (offset >= i_size_read(inode)) ||
207d0416 1481 (new || ISUNWRITTEN(&imap))))
1da177e4 1482 set_buffer_new(bh_result);
1da177e4 1483
207d0416 1484 if (imap.br_startblock == DELAYSTARTBLOCK) {
1da177e4
LT
1485 BUG_ON(direct);
1486 if (create) {
1487 set_buffer_uptodate(bh_result);
1488 set_buffer_mapped(bh_result);
1489 set_buffer_delay(bh_result);
1490 }
1491 }
1492
1da177e4 1493 return 0;
a206c817
CH
1494
1495out_unlock:
1496 xfs_iunlock(ip, lockmode);
2451337d 1497 return error;
1da177e4
LT
1498}
1499
1500int
c2536668 1501xfs_get_blocks(
1da177e4
LT
1502 struct inode *inode,
1503 sector_t iblock,
1504 struct buffer_head *bh_result,
1505 int create)
1506{
6b698ede 1507 return __xfs_get_blocks(inode, iblock, bh_result, create, false);
1da177e4
LT
1508}
1509
6b698ede 1510int
e4c573bb 1511xfs_get_blocks_direct(
1da177e4
LT
1512 struct inode *inode,
1513 sector_t iblock,
1da177e4
LT
1514 struct buffer_head *bh_result,
1515 int create)
1516{
6b698ede 1517 return __xfs_get_blocks(inode, iblock, bh_result, create, true);
1da177e4
LT
1518}
1519
6b698ede
DC
1520static void
1521__xfs_end_io_direct_write(
1522 struct inode *inode,
1523 struct xfs_ioend *ioend,
209fb87a 1524 loff_t offset,
6b698ede 1525 ssize_t size)
f0973863 1526{
6b698ede 1527 struct xfs_mount *mp = XFS_I(inode)->i_mount;
a06c277a 1528
6b698ede 1529 if (XFS_FORCED_SHUTDOWN(mp) || ioend->io_error)
6dfa1b67 1530 goto out_end_io;
f0973863 1531
2813d682 1532 /*
d5cc2e3f
DC
1533 * dio completion end_io functions are only called on writes if more
1534 * than 0 bytes was written.
2813d682 1535 */
d5cc2e3f
DC
1536 ASSERT(size > 0);
1537
1538 /*
1539 * The ioend only maps whole blocks, while the IO may be sector aligned.
a06c277a
DC
1540 * Hence the ioend offset/size may not match the IO offset/size exactly.
1541 * Because we don't map overwrites within EOF into the ioend, the offset
1542 * may not match, but only if the endio spans EOF. Either way, write
1543 * the IO sizes into the ioend so that completion processing does the
1544 * right thing.
d5cc2e3f 1545 */
d5cc2e3f
DC
1546 ASSERT(offset + size <= ioend->io_offset + ioend->io_size);
1547 ioend->io_size = size;
1548 ioend->io_offset = offset;
f0973863 1549
2813d682 1550 /*
6dfa1b67
DC
1551 * The ioend tells us whether we are doing unwritten extent conversion
1552 * or an append transaction that updates the on-disk file size. These
1553 * cases are the only cases where we should *potentially* be needing
a06c277a 1554 * to update the VFS inode size.
6dfa1b67
DC
1555 *
1556 * We need to update the in-core inode size here so that we don't end up
a06c277a
DC
1557 * with the on-disk inode size being outside the in-core inode size. We
1558 * have no other method of updating EOF for AIO, so always do it here
1559 * if necessary.
b9d59846
DC
1560 *
1561 * We need to lock the test/set EOF update as we can be racing with
1562 * other IO completions here to update the EOF. Failing to serialise
1563 * here can result in EOF moving backwards and Bad Things Happen when
1564 * that occurs.
2813d682 1565 */
6b698ede 1566 spin_lock(&XFS_I(inode)->i_flags_lock);
2ba66237
CH
1567 if (offset + size > i_size_read(inode))
1568 i_size_write(inode, offset + size);
6b698ede 1569 spin_unlock(&XFS_I(inode)->i_flags_lock);
2813d682 1570
f0973863 1571 /*
6dfa1b67
DC
1572 * If we are doing an append IO that needs to update the EOF on disk,
1573 * do the transaction reserve now so we can use common end io
1574 * processing. Stashing the error (if there is one) in the ioend will
1575 * result in the ioend processing passing on the error if it is
1576 * possible as we can't return it from here.
f0973863 1577 */
a06c277a 1578 if (ioend->io_type == XFS_IO_OVERWRITE)
6dfa1b67 1579 ioend->io_error = xfs_setfilesize_trans_alloc(ioend);
209fb87a 1580
6dfa1b67
DC
1581out_end_io:
1582 xfs_end_io(&ioend->io_work);
1583 return;
f0973863
CH
1584}
1585
6b698ede
DC
1586/*
1587 * Complete a direct I/O write request.
1588 *
1589 * The ioend structure is passed from __xfs_get_blocks() to tell us what to do.
1590 * If no ioend exists (i.e. @private == NULL) then the write IO is an overwrite
1591 * wholly within the EOF and so there is nothing for us to do. Note that in this
1592 * case the completion can be called in interrupt context, whereas if we have an
1593 * ioend we will always be called in task context (i.e. from a workqueue).
1594 */
1595STATIC void
1596xfs_end_io_direct_write(
1597 struct kiocb *iocb,
1598 loff_t offset,
1599 ssize_t size,
1600 void *private)
1601{
1602 struct inode *inode = file_inode(iocb->ki_filp);
1603 struct xfs_ioend *ioend = private;
1604
1605 trace_xfs_gbmap_direct_endio(XFS_I(inode), offset, size,
1606 ioend ? ioend->io_type : 0, NULL);
1607
1608 if (!ioend) {
1609 ASSERT(offset + size <= i_size_read(inode));
1610 return;
1611 }
1612
1613 __xfs_end_io_direct_write(inode, ioend, offset, size);
1614}
1615
1616/*
1617 * For DAX we need a mapping buffer callback for unwritten extent conversion
1618 * when page faults allocate blocks and then zero them. Note that in this
1619 * case the mapping indicated by the ioend may extend beyond EOF. We most
1620 * definitely do not want to extend EOF here, so we trim back the ioend size to
1621 * EOF.
1622 */
1623#ifdef CONFIG_FS_DAX
1624void
1625xfs_end_io_dax_write(
1626 struct buffer_head *bh,
1627 int uptodate)
1628{
1629 struct xfs_ioend *ioend = bh->b_private;
1630 struct inode *inode = ioend->io_inode;
1631 ssize_t size = ioend->io_size;
1632
1633 ASSERT(IS_DAX(ioend->io_inode));
1634
1635 /* if there was an error zeroing, then don't convert it */
1636 if (!uptodate)
1637 ioend->io_error = -EIO;
1638
1639 /*
1640 * Trim update to EOF, so we don't extend EOF during unwritten extent
1641 * conversion of partial EOF blocks.
1642 */
1643 spin_lock(&XFS_I(inode)->i_flags_lock);
1644 if (ioend->io_offset + size > i_size_read(inode))
1645 size = i_size_read(inode) - ioend->io_offset;
1646 spin_unlock(&XFS_I(inode)->i_flags_lock);
1647
1648 __xfs_end_io_direct_write(inode, ioend, ioend->io_offset, size);
1649
1650}
1651#else
1652void xfs_end_io_dax_write(struct buffer_head *bh, int uptodate) { }
1653#endif
1654
6e1ba0bc
DC
1655static inline ssize_t
1656xfs_vm_do_dio(
1657 struct inode *inode,
1658 struct kiocb *iocb,
1659 struct iov_iter *iter,
1660 loff_t offset,
1661 void (*endio)(struct kiocb *iocb,
1662 loff_t offset,
1663 ssize_t size,
1664 void *private),
1665 int flags)
1666{
1667 struct block_device *bdev;
1668
1669 if (IS_DAX(inode))
1670 return dax_do_io(iocb, inode, iter, offset,
1671 xfs_get_blocks_direct, endio, 0);
1672
1673 bdev = xfs_find_bdev_for_inode(inode);
1674 return __blockdev_direct_IO(iocb, inode, bdev, iter, offset,
1675 xfs_get_blocks_direct, endio, NULL, flags);
1676}
1677
1da177e4 1678STATIC ssize_t
e4c573bb 1679xfs_vm_direct_IO(
1da177e4 1680 struct kiocb *iocb,
d8d3d94b
AV
1681 struct iov_iter *iter,
1682 loff_t offset)
1da177e4 1683{
209fb87a 1684 struct inode *inode = iocb->ki_filp->f_mapping->host;
209fb87a 1685
6e1ba0bc
DC
1686 if (iov_iter_rw(iter) == WRITE)
1687 return xfs_vm_do_dio(inode, iocb, iter, offset,
1688 xfs_end_io_direct_write, DIO_ASYNC_EXTEND);
1689 return xfs_vm_do_dio(inode, iocb, iter, offset, NULL, 0);
1da177e4
LT
1690}
1691
d3bc815a
DC
1692/*
1693 * Punch out the delalloc blocks we have already allocated.
1694 *
1695 * Don't bother with xfs_setattr given that nothing can have made it to disk yet
1696 * as the page is still locked at this point.
1697 */
1698STATIC void
1699xfs_vm_kill_delalloc_range(
1700 struct inode *inode,
1701 loff_t start,
1702 loff_t end)
1703{
1704 struct xfs_inode *ip = XFS_I(inode);
1705 xfs_fileoff_t start_fsb;
1706 xfs_fileoff_t end_fsb;
1707 int error;
1708
1709 start_fsb = XFS_B_TO_FSB(ip->i_mount, start);
1710 end_fsb = XFS_B_TO_FSB(ip->i_mount, end);
1711 if (end_fsb <= start_fsb)
1712 return;
1713
1714 xfs_ilock(ip, XFS_ILOCK_EXCL);
1715 error = xfs_bmap_punch_delalloc_range(ip, start_fsb,
1716 end_fsb - start_fsb);
1717 if (error) {
1718 /* something screwed, just bail */
1719 if (!XFS_FORCED_SHUTDOWN(ip->i_mount)) {
1720 xfs_alert(ip->i_mount,
1721 "xfs_vm_write_failed: unable to clean up ino %lld",
1722 ip->i_ino);
1723 }
1724 }
1725 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1726}
1727
fa9b227e
CH
1728STATIC void
1729xfs_vm_write_failed(
d3bc815a
DC
1730 struct inode *inode,
1731 struct page *page,
1732 loff_t pos,
1733 unsigned len)
fa9b227e 1734{
58e59854 1735 loff_t block_offset;
d3bc815a
DC
1736 loff_t block_start;
1737 loff_t block_end;
1738 loff_t from = pos & (PAGE_CACHE_SIZE - 1);
1739 loff_t to = from + len;
1740 struct buffer_head *bh, *head;
fa9b227e 1741
58e59854
JL
1742 /*
1743 * The request pos offset might be 32 or 64 bit, this is all fine
1744 * on 64-bit platform. However, for 64-bit pos request on 32-bit
1745 * platform, the high 32-bit will be masked off if we evaluate the
1746 * block_offset via (pos & PAGE_MASK) because the PAGE_MASK is
1747 * 0xfffff000 as an unsigned long, hence the result is incorrect
1748 * which could cause the following ASSERT failed in most cases.
1749 * In order to avoid this, we can evaluate the block_offset of the
1750 * start of the page by using shifts rather than masks the mismatch
1751 * problem.
1752 */
1753 block_offset = (pos >> PAGE_CACHE_SHIFT) << PAGE_CACHE_SHIFT;
1754
d3bc815a 1755 ASSERT(block_offset + from == pos);
c726de44 1756
d3bc815a
DC
1757 head = page_buffers(page);
1758 block_start = 0;
1759 for (bh = head; bh != head || !block_start;
1760 bh = bh->b_this_page, block_start = block_end,
1761 block_offset += bh->b_size) {
1762 block_end = block_start + bh->b_size;
c726de44 1763
d3bc815a
DC
1764 /* skip buffers before the write */
1765 if (block_end <= from)
1766 continue;
1767
1768 /* if the buffer is after the write, we're done */
1769 if (block_start >= to)
1770 break;
1771
1772 if (!buffer_delay(bh))
1773 continue;
1774
1775 if (!buffer_new(bh) && block_offset < i_size_read(inode))
1776 continue;
1777
1778 xfs_vm_kill_delalloc_range(inode, block_offset,
1779 block_offset + bh->b_size);
4ab9ed57
DC
1780
1781 /*
1782 * This buffer does not contain data anymore. make sure anyone
1783 * who finds it knows that for certain.
1784 */
1785 clear_buffer_delay(bh);
1786 clear_buffer_uptodate(bh);
1787 clear_buffer_mapped(bh);
1788 clear_buffer_new(bh);
1789 clear_buffer_dirty(bh);
fa9b227e 1790 }
d3bc815a 1791
fa9b227e
CH
1792}
1793
d3bc815a
DC
1794/*
1795 * This used to call block_write_begin(), but it unlocks and releases the page
1796 * on error, and we need that page to be able to punch stale delalloc blocks out
1797 * on failure. hence we copy-n-waste it here and call xfs_vm_write_failed() at
1798 * the appropriate point.
1799 */
f51623b2 1800STATIC int
d79689c7 1801xfs_vm_write_begin(
f51623b2 1802 struct file *file,
d79689c7
NP
1803 struct address_space *mapping,
1804 loff_t pos,
1805 unsigned len,
1806 unsigned flags,
1807 struct page **pagep,
1808 void **fsdata)
f51623b2 1809{
d3bc815a
DC
1810 pgoff_t index = pos >> PAGE_CACHE_SHIFT;
1811 struct page *page;
1812 int status;
155130a4 1813
d3bc815a
DC
1814 ASSERT(len <= PAGE_CACHE_SIZE);
1815
ad22c7a0 1816 page = grab_cache_page_write_begin(mapping, index, flags);
d3bc815a
DC
1817 if (!page)
1818 return -ENOMEM;
1819
1820 status = __block_write_begin(page, pos, len, xfs_get_blocks);
1821 if (unlikely(status)) {
1822 struct inode *inode = mapping->host;
72ab70a1 1823 size_t isize = i_size_read(inode);
d3bc815a
DC
1824
1825 xfs_vm_write_failed(inode, page, pos, len);
1826 unlock_page(page);
1827
72ab70a1
DC
1828 /*
1829 * If the write is beyond EOF, we only want to kill blocks
1830 * allocated in this write, not blocks that were previously
1831 * written successfully.
1832 */
1833 if (pos + len > isize) {
1834 ssize_t start = max_t(ssize_t, pos, isize);
1835
1836 truncate_pagecache_range(inode, start, pos + len);
1837 }
d3bc815a
DC
1838
1839 page_cache_release(page);
1840 page = NULL;
1841 }
1842
1843 *pagep = page;
1844 return status;
fa9b227e
CH
1845}
1846
d3bc815a 1847/*
aad3f375
DC
1848 * On failure, we only need to kill delalloc blocks beyond EOF in the range of
1849 * this specific write because they will never be written. Previous writes
1850 * beyond EOF where block allocation succeeded do not need to be trashed, so
1851 * only new blocks from this write should be trashed. For blocks within
1852 * EOF, generic_write_end() zeros them so they are safe to leave alone and be
1853 * written with all the other valid data.
d3bc815a 1854 */
fa9b227e
CH
1855STATIC int
1856xfs_vm_write_end(
1857 struct file *file,
1858 struct address_space *mapping,
1859 loff_t pos,
1860 unsigned len,
1861 unsigned copied,
1862 struct page *page,
1863 void *fsdata)
1864{
1865 int ret;
155130a4 1866
d3bc815a
DC
1867 ASSERT(len <= PAGE_CACHE_SIZE);
1868
fa9b227e 1869 ret = generic_write_end(file, mapping, pos, len, copied, page, fsdata);
d3bc815a
DC
1870 if (unlikely(ret < len)) {
1871 struct inode *inode = mapping->host;
1872 size_t isize = i_size_read(inode);
1873 loff_t to = pos + len;
1874
1875 if (to > isize) {
aad3f375
DC
1876 /* only kill blocks in this write beyond EOF */
1877 if (pos > isize)
1878 isize = pos;
d3bc815a 1879 xfs_vm_kill_delalloc_range(inode, isize, to);
aad3f375 1880 truncate_pagecache_range(inode, isize, to);
d3bc815a
DC
1881 }
1882 }
155130a4 1883 return ret;
f51623b2 1884}
1da177e4
LT
1885
1886STATIC sector_t
e4c573bb 1887xfs_vm_bmap(
1da177e4
LT
1888 struct address_space *mapping,
1889 sector_t block)
1890{
1891 struct inode *inode = (struct inode *)mapping->host;
739bfb2a 1892 struct xfs_inode *ip = XFS_I(inode);
1da177e4 1893
cca28fb8 1894 trace_xfs_vm_bmap(XFS_I(inode));
126468b1 1895 xfs_ilock(ip, XFS_IOLOCK_SHARED);
4bc1ea6b 1896 filemap_write_and_wait(mapping);
126468b1 1897 xfs_iunlock(ip, XFS_IOLOCK_SHARED);
c2536668 1898 return generic_block_bmap(mapping, block, xfs_get_blocks);
1da177e4
LT
1899}
1900
1901STATIC int
e4c573bb 1902xfs_vm_readpage(
1da177e4
LT
1903 struct file *unused,
1904 struct page *page)
1905{
c2536668 1906 return mpage_readpage(page, xfs_get_blocks);
1da177e4
LT
1907}
1908
1909STATIC int
e4c573bb 1910xfs_vm_readpages(
1da177e4
LT
1911 struct file *unused,
1912 struct address_space *mapping,
1913 struct list_head *pages,
1914 unsigned nr_pages)
1915{
c2536668 1916 return mpage_readpages(mapping, pages, nr_pages, xfs_get_blocks);
1da177e4
LT
1917}
1918
22e757a4
DC
1919/*
1920 * This is basically a copy of __set_page_dirty_buffers() with one
1921 * small tweak: buffers beyond EOF do not get marked dirty. If we mark them
1922 * dirty, we'll never be able to clean them because we don't write buffers
1923 * beyond EOF, and that means we can't invalidate pages that span EOF
1924 * that have been marked dirty. Further, the dirty state can leak into
1925 * the file interior if the file is extended, resulting in all sorts of
1926 * bad things happening as the state does not match the underlying data.
1927 *
1928 * XXX: this really indicates that bufferheads in XFS need to die. Warts like
1929 * this only exist because of bufferheads and how the generic code manages them.
1930 */
1931STATIC int
1932xfs_vm_set_page_dirty(
1933 struct page *page)
1934{
1935 struct address_space *mapping = page->mapping;
1936 struct inode *inode = mapping->host;
1937 loff_t end_offset;
1938 loff_t offset;
1939 int newly_dirty;
c4843a75 1940 struct mem_cgroup *memcg;
22e757a4
DC
1941
1942 if (unlikely(!mapping))
1943 return !TestSetPageDirty(page);
1944
1945 end_offset = i_size_read(inode);
1946 offset = page_offset(page);
1947
1948 spin_lock(&mapping->private_lock);
1949 if (page_has_buffers(page)) {
1950 struct buffer_head *head = page_buffers(page);
1951 struct buffer_head *bh = head;
1952
1953 do {
1954 if (offset < end_offset)
1955 set_buffer_dirty(bh);
1956 bh = bh->b_this_page;
1957 offset += 1 << inode->i_blkbits;
1958 } while (bh != head);
1959 }
c4843a75
GT
1960 /*
1961 * Use mem_group_begin_page_stat() to keep PageDirty synchronized with
1962 * per-memcg dirty page counters.
1963 */
1964 memcg = mem_cgroup_begin_page_stat(page);
22e757a4
DC
1965 newly_dirty = !TestSetPageDirty(page);
1966 spin_unlock(&mapping->private_lock);
1967
1968 if (newly_dirty) {
1969 /* sigh - __set_page_dirty() is static, so copy it here, too */
1970 unsigned long flags;
1971
1972 spin_lock_irqsave(&mapping->tree_lock, flags);
1973 if (page->mapping) { /* Race with truncate? */
1974 WARN_ON_ONCE(!PageUptodate(page));
c4843a75 1975 account_page_dirtied(page, mapping, memcg);
22e757a4
DC
1976 radix_tree_tag_set(&mapping->page_tree,
1977 page_index(page), PAGECACHE_TAG_DIRTY);
1978 }
1979 spin_unlock_irqrestore(&mapping->tree_lock, flags);
22e757a4 1980 }
c4843a75
GT
1981 mem_cgroup_end_page_stat(memcg);
1982 if (newly_dirty)
1983 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
22e757a4
DC
1984 return newly_dirty;
1985}
1986
f5e54d6e 1987const struct address_space_operations xfs_address_space_operations = {
e4c573bb
NS
1988 .readpage = xfs_vm_readpage,
1989 .readpages = xfs_vm_readpages,
1990 .writepage = xfs_vm_writepage,
7d4fb40a 1991 .writepages = xfs_vm_writepages,
22e757a4 1992 .set_page_dirty = xfs_vm_set_page_dirty,
238f4c54
NS
1993 .releasepage = xfs_vm_releasepage,
1994 .invalidatepage = xfs_vm_invalidatepage,
d79689c7 1995 .write_begin = xfs_vm_write_begin,
fa9b227e 1996 .write_end = xfs_vm_write_end,
e4c573bb
NS
1997 .bmap = xfs_vm_bmap,
1998 .direct_IO = xfs_vm_direct_IO,
e965f963 1999 .migratepage = buffer_migrate_page,
bddaafa1 2000 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 2001 .error_remove_page = generic_error_remove_page,
1da177e4 2002};