]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - fs/xfs/xfs_aops.c
xfs: cancel dirty pages on invalidation
[mirror_ubuntu-artful-kernel.git] / fs / xfs / xfs_aops.c
CommitLineData
1da177e4 1/*
7b718769
NS
2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
1da177e4 4 *
7b718769
NS
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
1da177e4
LT
7 * published by the Free Software Foundation.
8 *
7b718769
NS
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
1da177e4 13 *
7b718769
NS
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
1da177e4 17 */
1da177e4 18#include "xfs.h"
70a9883c 19#include "xfs_shared.h"
239880ef
DC
20#include "xfs_format.h"
21#include "xfs_log_format.h"
22#include "xfs_trans_resv.h"
1da177e4 23#include "xfs_mount.h"
1da177e4 24#include "xfs_inode.h"
239880ef 25#include "xfs_trans.h"
281627df 26#include "xfs_inode_item.h"
a844f451 27#include "xfs_alloc.h"
1da177e4 28#include "xfs_error.h"
1da177e4 29#include "xfs_iomap.h"
0b1b213f 30#include "xfs_trace.h"
3ed3a434 31#include "xfs_bmap.h"
68988114 32#include "xfs_bmap_util.h"
a4fbe6ab 33#include "xfs_bmap_btree.h"
ef473667 34#include "xfs_reflink.h"
5a0e3ad6 35#include <linux/gfp.h>
1da177e4 36#include <linux/mpage.h>
10ce4444 37#include <linux/pagevec.h>
1da177e4
LT
38#include <linux/writeback.h>
39
fbcc0256
DC
40/*
41 * structure owned by writepages passed to individual writepage calls
42 */
43struct xfs_writepage_ctx {
44 struct xfs_bmbt_irec imap;
45 bool imap_valid;
46 unsigned int io_type;
fbcc0256
DC
47 struct xfs_ioend *ioend;
48 sector_t last_block;
49};
50
0b1b213f 51void
f51623b2
NS
52xfs_count_page_state(
53 struct page *page,
54 int *delalloc,
f51623b2
NS
55 int *unwritten)
56{
57 struct buffer_head *bh, *head;
58
20cb52eb 59 *delalloc = *unwritten = 0;
f51623b2
NS
60
61 bh = head = page_buffers(page);
62 do {
20cb52eb 63 if (buffer_unwritten(bh))
f51623b2
NS
64 (*unwritten) = 1;
65 else if (buffer_delay(bh))
66 (*delalloc) = 1;
67 } while ((bh = bh->b_this_page) != head);
68}
69
20a90f58 70struct block_device *
6214ed44 71xfs_find_bdev_for_inode(
046f1685 72 struct inode *inode)
6214ed44 73{
046f1685 74 struct xfs_inode *ip = XFS_I(inode);
6214ed44
CH
75 struct xfs_mount *mp = ip->i_mount;
76
71ddabb9 77 if (XFS_IS_REALTIME_INODE(ip))
6214ed44
CH
78 return mp->m_rtdev_targp->bt_bdev;
79 else
80 return mp->m_ddev_targp->bt_bdev;
81}
82
f6d6d4fc 83/*
37992c18
DC
84 * We're now finished for good with this page. Update the page state via the
85 * associated buffer_heads, paying attention to the start and end offsets that
86 * we need to process on the page.
28b783e4 87 *
0b969d67
CH
88 * Note that we open code the action in end_buffer_async_write here so that we
89 * only have to iterate over the buffers attached to the page once. This is not
90 * only more efficient, but also ensures that we only calls end_page_writeback
91 * at the end of the iteration, and thus avoids the pitfall of having the page
92 * and buffers potentially freed after every call to end_buffer_async_write.
37992c18
DC
93 */
94static void
95xfs_finish_page_writeback(
96 struct inode *inode,
97 struct bio_vec *bvec,
98 int error)
99{
0b969d67
CH
100 struct buffer_head *head = page_buffers(bvec->bv_page), *bh = head;
101 bool busy = false;
37992c18 102 unsigned int off = 0;
0b969d67 103 unsigned long flags;
37992c18
DC
104
105 ASSERT(bvec->bv_offset < PAGE_SIZE);
93407472 106 ASSERT((bvec->bv_offset & (i_blocksize(inode) - 1)) == 0);
0b969d67 107 ASSERT(bvec->bv_offset + bvec->bv_len <= PAGE_SIZE);
93407472 108 ASSERT((bvec->bv_len & (i_blocksize(inode) - 1)) == 0);
37992c18 109
0b969d67
CH
110 local_irq_save(flags);
111 bit_spin_lock(BH_Uptodate_Lock, &head->b_state);
37992c18 112 do {
0b969d67
CH
113 if (off >= bvec->bv_offset &&
114 off < bvec->bv_offset + bvec->bv_len) {
115 ASSERT(buffer_async_write(bh));
116 ASSERT(bh->b_end_io == NULL);
117
118 if (error) {
119 mark_buffer_write_io_error(bh);
120 clear_buffer_uptodate(bh);
121 SetPageError(bvec->bv_page);
122 } else {
123 set_buffer_uptodate(bh);
124 }
125 clear_buffer_async_write(bh);
126 unlock_buffer(bh);
127 } else if (buffer_async_write(bh)) {
128 ASSERT(buffer_locked(bh));
129 busy = true;
130 }
131 off += bh->b_size;
132 } while ((bh = bh->b_this_page) != head);
133 bit_spin_unlock(BH_Uptodate_Lock, &head->b_state);
134 local_irq_restore(flags);
135
136 if (!busy)
137 end_page_writeback(bvec->bv_page);
37992c18
DC
138}
139
140/*
141 * We're now finished for good with this ioend structure. Update the page
142 * state, release holds on bios, and finally free up memory. Do not use the
143 * ioend after this.
f6d6d4fc 144 */
0829c360
CH
145STATIC void
146xfs_destroy_ioend(
0e51a8e1
CH
147 struct xfs_ioend *ioend,
148 int error)
0829c360 149{
37992c18 150 struct inode *inode = ioend->io_inode;
0b969d67
CH
151 struct bio *bio = &ioend->io_inline_bio;
152 struct bio *last = ioend->io_bio, *next;
153 u64 start = bio->bi_iter.bi_sector;
154 bool quiet = bio_flagged(bio, BIO_QUIET);
f6d6d4fc 155
0e51a8e1 156 for (bio = &ioend->io_inline_bio; bio; bio = next) {
37992c18
DC
157 struct bio_vec *bvec;
158 int i;
159
0e51a8e1
CH
160 /*
161 * For the last bio, bi_private points to the ioend, so we
162 * need to explicitly end the iteration here.
163 */
164 if (bio == last)
165 next = NULL;
166 else
167 next = bio->bi_private;
583fa586 168
37992c18
DC
169 /* walk each page on bio, ending page IO on them */
170 bio_for_each_segment_all(bvec, bio, i)
171 xfs_finish_page_writeback(inode, bvec, error);
172
173 bio_put(bio);
f6d6d4fc 174 }
0b969d67
CH
175
176 if (unlikely(error && !quiet)) {
177 xfs_err_ratelimited(XFS_I(inode)->i_mount,
178 "writeback error on sector %llu", start);
179 }
0829c360
CH
180}
181
fc0063c4
CH
182/*
183 * Fast and loose check if this write could update the on-disk inode size.
184 */
185static inline bool xfs_ioend_is_append(struct xfs_ioend *ioend)
186{
187 return ioend->io_offset + ioend->io_size >
188 XFS_I(ioend->io_inode)->i_d.di_size;
189}
190
281627df
CH
191STATIC int
192xfs_setfilesize_trans_alloc(
193 struct xfs_ioend *ioend)
194{
195 struct xfs_mount *mp = XFS_I(ioend->io_inode)->i_mount;
196 struct xfs_trans *tp;
197 int error;
198
253f4911
CH
199 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_fsyncts, 0, 0, 0, &tp);
200 if (error)
281627df 201 return error;
281627df
CH
202
203 ioend->io_append_trans = tp;
204
d9457dc0 205 /*
437a255a 206 * We may pass freeze protection with a transaction. So tell lockdep
d9457dc0
JK
207 * we released it.
208 */
bee9182d 209 __sb_writers_release(ioend->io_inode->i_sb, SB_FREEZE_FS);
281627df
CH
210 /*
211 * We hand off the transaction to the completion thread now, so
212 * clear the flag here.
213 */
9070733b 214 current_restore_flags_nested(&tp->t_pflags, PF_MEMALLOC_NOFS);
281627df
CH
215 return 0;
216}
217
ba87ea69 218/*
2813d682 219 * Update on-disk file size now that data has been written to disk.
ba87ea69 220 */
281627df 221STATIC int
e372843a 222__xfs_setfilesize(
2ba66237
CH
223 struct xfs_inode *ip,
224 struct xfs_trans *tp,
225 xfs_off_t offset,
226 size_t size)
ba87ea69 227{
ba87ea69 228 xfs_fsize_t isize;
ba87ea69 229
aa6bf01d 230 xfs_ilock(ip, XFS_ILOCK_EXCL);
2ba66237 231 isize = xfs_new_eof(ip, offset + size);
281627df
CH
232 if (!isize) {
233 xfs_iunlock(ip, XFS_ILOCK_EXCL);
4906e215 234 xfs_trans_cancel(tp);
281627df 235 return 0;
ba87ea69
LM
236 }
237
2ba66237 238 trace_xfs_setfilesize(ip, offset, size);
281627df
CH
239
240 ip->i_d.di_size = isize;
241 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
242 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
243
70393313 244 return xfs_trans_commit(tp);
77d7a0c2
DC
245}
246
e372843a
CH
247int
248xfs_setfilesize(
249 struct xfs_inode *ip,
250 xfs_off_t offset,
251 size_t size)
252{
253 struct xfs_mount *mp = ip->i_mount;
254 struct xfs_trans *tp;
255 int error;
256
257 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_fsyncts, 0, 0, 0, &tp);
258 if (error)
259 return error;
260
261 return __xfs_setfilesize(ip, tp, offset, size);
262}
263
2ba66237
CH
264STATIC int
265xfs_setfilesize_ioend(
0e51a8e1
CH
266 struct xfs_ioend *ioend,
267 int error)
2ba66237
CH
268{
269 struct xfs_inode *ip = XFS_I(ioend->io_inode);
270 struct xfs_trans *tp = ioend->io_append_trans;
271
272 /*
273 * The transaction may have been allocated in the I/O submission thread,
274 * thus we need to mark ourselves as being in a transaction manually.
275 * Similarly for freeze protection.
276 */
9070733b 277 current_set_flags_nested(&tp->t_pflags, PF_MEMALLOC_NOFS);
bee9182d 278 __sb_writers_acquired(VFS_I(ip)->i_sb, SB_FREEZE_FS);
2ba66237 279
5cb13dcd 280 /* we abort the update if there was an IO error */
0e51a8e1 281 if (error) {
5cb13dcd 282 xfs_trans_cancel(tp);
0e51a8e1 283 return error;
5cb13dcd
Z
284 }
285
e372843a 286 return __xfs_setfilesize(ip, tp, ioend->io_offset, ioend->io_size);
2ba66237
CH
287}
288
0829c360 289/*
5ec4fabb 290 * IO write completion.
f6d6d4fc
CH
291 */
292STATIC void
5ec4fabb 293xfs_end_io(
77d7a0c2 294 struct work_struct *work)
0829c360 295{
0e51a8e1
CH
296 struct xfs_ioend *ioend =
297 container_of(work, struct xfs_ioend, io_work);
298 struct xfs_inode *ip = XFS_I(ioend->io_inode);
787eb485
CH
299 xfs_off_t offset = ioend->io_offset;
300 size_t size = ioend->io_size;
4e4cbee9 301 int error;
ba87ea69 302
af055e37 303 /*
787eb485 304 * Just clean up the in-memory strutures if the fs has been shut down.
af055e37 305 */
787eb485 306 if (XFS_FORCED_SHUTDOWN(ip->i_mount)) {
0e51a8e1 307 error = -EIO;
787eb485
CH
308 goto done;
309 }
04f658ee 310
43caeb18 311 /*
787eb485 312 * Clean up any COW blocks on an I/O error.
43caeb18 313 */
4e4cbee9 314 error = blk_status_to_errno(ioend->io_bio->bi_status);
787eb485
CH
315 if (unlikely(error)) {
316 switch (ioend->io_type) {
317 case XFS_IO_COW:
318 xfs_reflink_cancel_cow_range(ip, offset, size, true);
319 break;
43caeb18 320 }
787eb485
CH
321
322 goto done;
43caeb18
DW
323 }
324
5ec4fabb 325 /*
787eb485 326 * Success: commit the COW or unwritten blocks if needed.
5ec4fabb 327 */
787eb485
CH
328 switch (ioend->io_type) {
329 case XFS_IO_COW:
330 error = xfs_reflink_end_cow(ip, offset, size);
331 break;
332 case XFS_IO_UNWRITTEN:
15f30c7f
EG
333 /* writeback should never update isize */
334 error = xfs_iomap_write_unwritten(ip, offset, size, false);
787eb485
CH
335 break;
336 default:
337 ASSERT(!xfs_ioend_is_append(ioend) || ioend->io_append_trans);
338 break;
5ec4fabb 339 }
ba87ea69 340
04f658ee 341done:
787eb485
CH
342 if (ioend->io_append_trans)
343 error = xfs_setfilesize_ioend(ioend, error);
0e51a8e1 344 xfs_destroy_ioend(ioend, error);
c626d174
DC
345}
346
0e51a8e1
CH
347STATIC void
348xfs_end_bio(
349 struct bio *bio)
0829c360 350{
0e51a8e1
CH
351 struct xfs_ioend *ioend = bio->bi_private;
352 struct xfs_mount *mp = XFS_I(ioend->io_inode)->i_mount;
0829c360 353
43caeb18 354 if (ioend->io_type == XFS_IO_UNWRITTEN || ioend->io_type == XFS_IO_COW)
0e51a8e1
CH
355 queue_work(mp->m_unwritten_workqueue, &ioend->io_work);
356 else if (ioend->io_append_trans)
357 queue_work(mp->m_data_workqueue, &ioend->io_work);
358 else
4e4cbee9 359 xfs_destroy_ioend(ioend, blk_status_to_errno(bio->bi_status));
0829c360
CH
360}
361
1da177e4
LT
362STATIC int
363xfs_map_blocks(
364 struct inode *inode,
365 loff_t offset,
207d0416 366 struct xfs_bmbt_irec *imap,
988ef927 367 int type)
1da177e4 368{
a206c817
CH
369 struct xfs_inode *ip = XFS_I(inode);
370 struct xfs_mount *mp = ip->i_mount;
93407472 371 ssize_t count = i_blocksize(inode);
a206c817
CH
372 xfs_fileoff_t offset_fsb, end_fsb;
373 int error = 0;
a206c817
CH
374 int bmapi_flags = XFS_BMAPI_ENTIRE;
375 int nimaps = 1;
376
377 if (XFS_FORCED_SHUTDOWN(mp))
b474c7ae 378 return -EIO;
a206c817 379
ef473667 380 ASSERT(type != XFS_IO_COW);
0d882a36 381 if (type == XFS_IO_UNWRITTEN)
a206c817 382 bmapi_flags |= XFS_BMAPI_IGSTATE;
8ff2957d 383
988ef927 384 xfs_ilock(ip, XFS_ILOCK_SHARED);
8ff2957d
CH
385 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
386 (ip->i_df.if_flags & XFS_IFEXTENTS));
d2c28191 387 ASSERT(offset <= mp->m_super->s_maxbytes);
8ff2957d 388
d2c28191
DC
389 if (offset + count > mp->m_super->s_maxbytes)
390 count = mp->m_super->s_maxbytes - offset;
a206c817
CH
391 end_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)offset + count);
392 offset_fsb = XFS_B_TO_FSBT(mp, offset);
5c8ed202
DC
393 error = xfs_bmapi_read(ip, offset_fsb, end_fsb - offset_fsb,
394 imap, &nimaps, bmapi_flags);
ef473667
DW
395 /*
396 * Truncate an overwrite extent if there's a pending CoW
397 * reservation before the end of this extent. This forces us
398 * to come back to writepage to take care of the CoW.
399 */
400 if (nimaps && type == XFS_IO_OVERWRITE)
401 xfs_reflink_trim_irec_to_next_cow(ip, offset_fsb, imap);
8ff2957d 402 xfs_iunlock(ip, XFS_ILOCK_SHARED);
a206c817 403
8ff2957d 404 if (error)
2451337d 405 return error;
a206c817 406
0d882a36 407 if (type == XFS_IO_DELALLOC &&
8ff2957d 408 (!nimaps || isnullstartblock(imap->br_startblock))) {
60b4984f
DW
409 error = xfs_iomap_write_allocate(ip, XFS_DATA_FORK, offset,
410 imap);
a206c817 411 if (!error)
ef473667 412 trace_xfs_map_blocks_alloc(ip, offset, count, type, imap);
2451337d 413 return error;
a206c817
CH
414 }
415
8ff2957d 416#ifdef DEBUG
0d882a36 417 if (type == XFS_IO_UNWRITTEN) {
8ff2957d
CH
418 ASSERT(nimaps);
419 ASSERT(imap->br_startblock != HOLESTARTBLOCK);
420 ASSERT(imap->br_startblock != DELAYSTARTBLOCK);
421 }
422#endif
423 if (nimaps)
424 trace_xfs_map_blocks_found(ip, offset, count, type, imap);
425 return 0;
1da177e4
LT
426}
427
fbcc0256 428STATIC bool
558e6891 429xfs_imap_valid(
8699bb0a 430 struct inode *inode,
207d0416 431 struct xfs_bmbt_irec *imap,
558e6891 432 xfs_off_t offset)
1da177e4 433{
558e6891 434 offset >>= inode->i_blkbits;
8699bb0a 435
558e6891
CH
436 return offset >= imap->br_startoff &&
437 offset < imap->br_startoff + imap->br_blockcount;
1da177e4
LT
438}
439
f6d6d4fc
CH
440STATIC void
441xfs_start_buffer_writeback(
442 struct buffer_head *bh)
443{
444 ASSERT(buffer_mapped(bh));
445 ASSERT(buffer_locked(bh));
446 ASSERT(!buffer_delay(bh));
447 ASSERT(!buffer_unwritten(bh));
448
0b969d67
CH
449 bh->b_end_io = NULL;
450 set_buffer_async_write(bh);
f6d6d4fc
CH
451 set_buffer_uptodate(bh);
452 clear_buffer_dirty(bh);
453}
454
455STATIC void
456xfs_start_page_writeback(
457 struct page *page,
e10de372 458 int clear_dirty)
f6d6d4fc
CH
459{
460 ASSERT(PageLocked(page));
461 ASSERT(!PageWriteback(page));
0d085a52
DC
462
463 /*
464 * if the page was not fully cleaned, we need to ensure that the higher
465 * layers come back to it correctly. That means we need to keep the page
466 * dirty, and for WB_SYNC_ALL writeback we need to ensure the
467 * PAGECACHE_TAG_TOWRITE index mark is not removed so another attempt to
468 * write this page in this writeback sweep will be made.
469 */
470 if (clear_dirty) {
92132021 471 clear_page_dirty_for_io(page);
0d085a52
DC
472 set_page_writeback(page);
473 } else
474 set_page_writeback_keepwrite(page);
475
f6d6d4fc 476 unlock_page(page);
f6d6d4fc
CH
477}
478
c7c1a7d8 479static inline int xfs_bio_add_buffer(struct bio *bio, struct buffer_head *bh)
f6d6d4fc
CH
480{
481 return bio_add_page(bio, bh->b_page, bh->b_size, bh_offset(bh));
482}
483
484/*
bb18782a
DC
485 * Submit the bio for an ioend. We are passed an ioend with a bio attached to
486 * it, and we submit that bio. The ioend may be used for multiple bio
487 * submissions, so we only want to allocate an append transaction for the ioend
488 * once. In the case of multiple bio submission, each bio will take an IO
489 * reference to the ioend to ensure that the ioend completion is only done once
490 * all bios have been submitted and the ioend is really done.
7bf7f352
DC
491 *
492 * If @fail is non-zero, it means that we have a situation where some part of
493 * the submission process has failed after we have marked paged for writeback
bb18782a
DC
494 * and unlocked them. In this situation, we need to fail the bio and ioend
495 * rather than submit it to IO. This typically only happens on a filesystem
496 * shutdown.
f6d6d4fc 497 */
e10de372 498STATIC int
f6d6d4fc 499xfs_submit_ioend(
06342cf8 500 struct writeback_control *wbc,
0e51a8e1 501 struct xfs_ioend *ioend,
e10de372 502 int status)
f6d6d4fc 503{
5eda4300
DW
504 /* Convert CoW extents to regular */
505 if (!status && ioend->io_type == XFS_IO_COW) {
506 status = xfs_reflink_convert_cow(XFS_I(ioend->io_inode),
507 ioend->io_offset, ioend->io_size);
508 }
509
e10de372
DC
510 /* Reserve log space if we might write beyond the on-disk inode size. */
511 if (!status &&
0e51a8e1 512 ioend->io_type != XFS_IO_UNWRITTEN &&
bb18782a
DC
513 xfs_ioend_is_append(ioend) &&
514 !ioend->io_append_trans)
e10de372 515 status = xfs_setfilesize_trans_alloc(ioend);
bb18782a 516
0e51a8e1
CH
517 ioend->io_bio->bi_private = ioend;
518 ioend->io_bio->bi_end_io = xfs_end_bio;
7637241e 519 ioend->io_bio->bi_opf = REQ_OP_WRITE | wbc_to_write_flags(wbc);
70fd7614 520
e10de372
DC
521 /*
522 * If we are failing the IO now, just mark the ioend with an
523 * error and finish it. This will run IO completion immediately
524 * as there is only one reference to the ioend at this point in
525 * time.
526 */
527 if (status) {
4e4cbee9 528 ioend->io_bio->bi_status = errno_to_blk_status(status);
0e51a8e1 529 bio_endio(ioend->io_bio);
e10de372
DC
530 return status;
531 }
d88992f6 532
31d7d58d 533 ioend->io_bio->bi_write_hint = ioend->io_inode->i_write_hint;
4e49ea4a 534 submit_bio(ioend->io_bio);
e10de372 535 return 0;
f6d6d4fc 536}
f6d6d4fc 537
0e51a8e1
CH
538static void
539xfs_init_bio_from_bh(
540 struct bio *bio,
541 struct buffer_head *bh)
542{
543 bio->bi_iter.bi_sector = bh->b_blocknr * (bh->b_size >> 9);
544 bio->bi_bdev = bh->b_bdev;
545}
7bf7f352 546
0e51a8e1
CH
547static struct xfs_ioend *
548xfs_alloc_ioend(
549 struct inode *inode,
550 unsigned int type,
551 xfs_off_t offset,
552 struct buffer_head *bh)
553{
554 struct xfs_ioend *ioend;
555 struct bio *bio;
f6d6d4fc 556
0e51a8e1
CH
557 bio = bio_alloc_bioset(GFP_NOFS, BIO_MAX_PAGES, xfs_ioend_bioset);
558 xfs_init_bio_from_bh(bio, bh);
559
560 ioend = container_of(bio, struct xfs_ioend, io_inline_bio);
561 INIT_LIST_HEAD(&ioend->io_list);
562 ioend->io_type = type;
563 ioend->io_inode = inode;
564 ioend->io_size = 0;
565 ioend->io_offset = offset;
566 INIT_WORK(&ioend->io_work, xfs_end_io);
567 ioend->io_append_trans = NULL;
568 ioend->io_bio = bio;
569 return ioend;
570}
571
572/*
573 * Allocate a new bio, and chain the old bio to the new one.
574 *
575 * Note that we have to do perform the chaining in this unintuitive order
576 * so that the bi_private linkage is set up in the right direction for the
577 * traversal in xfs_destroy_ioend().
578 */
579static void
580xfs_chain_bio(
581 struct xfs_ioend *ioend,
582 struct writeback_control *wbc,
583 struct buffer_head *bh)
584{
585 struct bio *new;
586
587 new = bio_alloc(GFP_NOFS, BIO_MAX_PAGES);
588 xfs_init_bio_from_bh(new, bh);
589
590 bio_chain(ioend->io_bio, new);
591 bio_get(ioend->io_bio); /* for xfs_destroy_ioend */
7637241e 592 ioend->io_bio->bi_opf = REQ_OP_WRITE | wbc_to_write_flags(wbc);
31d7d58d 593 ioend->io_bio->bi_write_hint = ioend->io_inode->i_write_hint;
4e49ea4a 594 submit_bio(ioend->io_bio);
0e51a8e1 595 ioend->io_bio = new;
f6d6d4fc
CH
596}
597
598/*
599 * Test to see if we've been building up a completion structure for
600 * earlier buffers -- if so, we try to append to this ioend if we
601 * can, otherwise we finish off any current ioend and start another.
e10de372
DC
602 * Return the ioend we finished off so that the caller can submit it
603 * once it has finished processing the dirty page.
f6d6d4fc
CH
604 */
605STATIC void
606xfs_add_to_ioend(
607 struct inode *inode,
608 struct buffer_head *bh,
7336cea8 609 xfs_off_t offset,
e10de372 610 struct xfs_writepage_ctx *wpc,
bb18782a 611 struct writeback_control *wbc,
e10de372 612 struct list_head *iolist)
f6d6d4fc 613{
fbcc0256 614 if (!wpc->ioend || wpc->io_type != wpc->ioend->io_type ||
0df61da8
DW
615 bh->b_blocknr != wpc->last_block + 1 ||
616 offset != wpc->ioend->io_offset + wpc->ioend->io_size) {
e10de372
DC
617 if (wpc->ioend)
618 list_add(&wpc->ioend->io_list, iolist);
0e51a8e1 619 wpc->ioend = xfs_alloc_ioend(inode, wpc->io_type, offset, bh);
f6d6d4fc
CH
620 }
621
0e51a8e1
CH
622 /*
623 * If the buffer doesn't fit into the bio we need to allocate a new
624 * one. This shouldn't happen more than once for a given buffer.
625 */
626 while (xfs_bio_add_buffer(wpc->ioend->io_bio, bh) != bh->b_size)
627 xfs_chain_bio(wpc->ioend, wbc, bh);
bb18782a 628
fbcc0256
DC
629 wpc->ioend->io_size += bh->b_size;
630 wpc->last_block = bh->b_blocknr;
e10de372 631 xfs_start_buffer_writeback(bh);
f6d6d4fc
CH
632}
633
87cbc49c
NS
634STATIC void
635xfs_map_buffer(
046f1685 636 struct inode *inode,
87cbc49c 637 struct buffer_head *bh,
207d0416 638 struct xfs_bmbt_irec *imap,
046f1685 639 xfs_off_t offset)
87cbc49c
NS
640{
641 sector_t bn;
8699bb0a 642 struct xfs_mount *m = XFS_I(inode)->i_mount;
207d0416
CH
643 xfs_off_t iomap_offset = XFS_FSB_TO_B(m, imap->br_startoff);
644 xfs_daddr_t iomap_bn = xfs_fsb_to_db(XFS_I(inode), imap->br_startblock);
87cbc49c 645
207d0416
CH
646 ASSERT(imap->br_startblock != HOLESTARTBLOCK);
647 ASSERT(imap->br_startblock != DELAYSTARTBLOCK);
87cbc49c 648
e513182d 649 bn = (iomap_bn >> (inode->i_blkbits - BBSHIFT)) +
8699bb0a 650 ((offset - iomap_offset) >> inode->i_blkbits);
87cbc49c 651
046f1685 652 ASSERT(bn || XFS_IS_REALTIME_INODE(XFS_I(inode)));
87cbc49c
NS
653
654 bh->b_blocknr = bn;
655 set_buffer_mapped(bh);
656}
657
1da177e4
LT
658STATIC void
659xfs_map_at_offset(
046f1685 660 struct inode *inode,
1da177e4 661 struct buffer_head *bh,
207d0416 662 struct xfs_bmbt_irec *imap,
046f1685 663 xfs_off_t offset)
1da177e4 664{
207d0416
CH
665 ASSERT(imap->br_startblock != HOLESTARTBLOCK);
666 ASSERT(imap->br_startblock != DELAYSTARTBLOCK);
1da177e4 667
207d0416 668 xfs_map_buffer(inode, bh, imap, offset);
1da177e4
LT
669 set_buffer_mapped(bh);
670 clear_buffer_delay(bh);
f6d6d4fc 671 clear_buffer_unwritten(bh);
1da177e4
LT
672}
673
1da177e4 674/*
a49935f2
DC
675 * Test if a given page contains at least one buffer of a given @type.
676 * If @check_all_buffers is true, then we walk all the buffers in the page to
677 * try to find one of the type passed in. If it is not set, then the caller only
678 * needs to check the first buffer on the page for a match.
1da177e4 679 */
a49935f2 680STATIC bool
6ffc4db5 681xfs_check_page_type(
10ce4444 682 struct page *page,
a49935f2
DC
683 unsigned int type,
684 bool check_all_buffers)
1da177e4 685{
a49935f2
DC
686 struct buffer_head *bh;
687 struct buffer_head *head;
1da177e4 688
a49935f2
DC
689 if (PageWriteback(page))
690 return false;
691 if (!page->mapping)
692 return false;
693 if (!page_has_buffers(page))
694 return false;
1da177e4 695
a49935f2
DC
696 bh = head = page_buffers(page);
697 do {
698 if (buffer_unwritten(bh)) {
699 if (type == XFS_IO_UNWRITTEN)
700 return true;
701 } else if (buffer_delay(bh)) {
805eeb8e 702 if (type == XFS_IO_DELALLOC)
a49935f2
DC
703 return true;
704 } else if (buffer_dirty(bh) && buffer_mapped(bh)) {
805eeb8e 705 if (type == XFS_IO_OVERWRITE)
a49935f2
DC
706 return true;
707 }
1da177e4 708
a49935f2
DC
709 /* If we are only checking the first buffer, we are done now. */
710 if (!check_all_buffers)
711 break;
712 } while ((bh = bh->b_this_page) != head);
1da177e4 713
a49935f2 714 return false;
1da177e4
LT
715}
716
3ed3a434
DC
717STATIC void
718xfs_vm_invalidatepage(
719 struct page *page,
d47992f8
LC
720 unsigned int offset,
721 unsigned int length)
3ed3a434 722{
34097dfe
LC
723 trace_xfs_invalidatepage(page->mapping->host, page, offset,
724 length);
917be1c1
DC
725
726 /*
727 * If we are invalidating the entire page, clear the dirty state from it
728 * so that we can check for attempts to release dirty cached pages in
729 * xfs_vm_releasepage().
730 */
731 if (offset == 0 && length >= PAGE_SIZE)
732 cancel_dirty_page(page);
34097dfe 733 block_invalidatepage(page, offset, length);
3ed3a434
DC
734}
735
736/*
737 * If the page has delalloc buffers on it, we need to punch them out before we
738 * invalidate the page. If we don't, we leave a stale delalloc mapping on the
739 * inode that can trip a BUG() in xfs_get_blocks() later on if a direct IO read
740 * is done on that same region - the delalloc extent is returned when none is
741 * supposed to be there.
742 *
743 * We prevent this by truncating away the delalloc regions on the page before
744 * invalidating it. Because they are delalloc, we can do this without needing a
745 * transaction. Indeed - if we get ENOSPC errors, we have to be able to do this
746 * truncation without a transaction as there is no space left for block
747 * reservation (typically why we see a ENOSPC in writeback).
748 *
749 * This is not a performance critical path, so for now just do the punching a
750 * buffer head at a time.
751 */
752STATIC void
753xfs_aops_discard_page(
754 struct page *page)
755{
756 struct inode *inode = page->mapping->host;
757 struct xfs_inode *ip = XFS_I(inode);
758 struct buffer_head *bh, *head;
759 loff_t offset = page_offset(page);
3ed3a434 760
a49935f2 761 if (!xfs_check_page_type(page, XFS_IO_DELALLOC, true))
3ed3a434
DC
762 goto out_invalidate;
763
e8c3753c
DC
764 if (XFS_FORCED_SHUTDOWN(ip->i_mount))
765 goto out_invalidate;
766
4f10700a 767 xfs_alert(ip->i_mount,
3ed3a434
DC
768 "page discard on page %p, inode 0x%llx, offset %llu.",
769 page, ip->i_ino, offset);
770
771 xfs_ilock(ip, XFS_ILOCK_EXCL);
772 bh = head = page_buffers(page);
773 do {
3ed3a434 774 int error;
c726de44 775 xfs_fileoff_t start_fsb;
3ed3a434
DC
776
777 if (!buffer_delay(bh))
778 goto next_buffer;
779
c726de44
DC
780 start_fsb = XFS_B_TO_FSBT(ip->i_mount, offset);
781 error = xfs_bmap_punch_delalloc_range(ip, start_fsb, 1);
3ed3a434
DC
782 if (error) {
783 /* something screwed, just bail */
e8c3753c 784 if (!XFS_FORCED_SHUTDOWN(ip->i_mount)) {
4f10700a 785 xfs_alert(ip->i_mount,
3ed3a434 786 "page discard unable to remove delalloc mapping.");
e8c3753c 787 }
3ed3a434
DC
788 break;
789 }
790next_buffer:
93407472 791 offset += i_blocksize(inode);
3ed3a434
DC
792
793 } while ((bh = bh->b_this_page) != head);
794
795 xfs_iunlock(ip, XFS_ILOCK_EXCL);
796out_invalidate:
09cbfeaf 797 xfs_vm_invalidatepage(page, 0, PAGE_SIZE);
3ed3a434
DC
798 return;
799}
800
ef473667
DW
801static int
802xfs_map_cow(
803 struct xfs_writepage_ctx *wpc,
804 struct inode *inode,
805 loff_t offset,
806 unsigned int *new_type)
807{
808 struct xfs_inode *ip = XFS_I(inode);
809 struct xfs_bmbt_irec imap;
092d5d9d 810 bool is_cow = false;
ef473667
DW
811 int error;
812
813 /*
814 * If we already have a valid COW mapping keep using it.
815 */
816 if (wpc->io_type == XFS_IO_COW) {
817 wpc->imap_valid = xfs_imap_valid(inode, &wpc->imap, offset);
818 if (wpc->imap_valid) {
819 *new_type = XFS_IO_COW;
820 return 0;
821 }
822 }
823
824 /*
825 * Else we need to check if there is a COW mapping at this offset.
826 */
827 xfs_ilock(ip, XFS_ILOCK_SHARED);
092d5d9d 828 is_cow = xfs_reflink_find_cow_mapping(ip, offset, &imap);
ef473667
DW
829 xfs_iunlock(ip, XFS_ILOCK_SHARED);
830
831 if (!is_cow)
832 return 0;
833
834 /*
835 * And if the COW mapping has a delayed extent here we need to
836 * allocate real space for it now.
837 */
092d5d9d 838 if (isnullstartblock(imap.br_startblock)) {
ef473667
DW
839 error = xfs_iomap_write_allocate(ip, XFS_COW_FORK, offset,
840 &imap);
841 if (error)
842 return error;
843 }
844
845 wpc->io_type = *new_type = XFS_IO_COW;
846 wpc->imap_valid = true;
847 wpc->imap = imap;
848 return 0;
849}
850
e10de372
DC
851/*
852 * We implement an immediate ioend submission policy here to avoid needing to
853 * chain multiple ioends and hence nest mempool allocations which can violate
854 * forward progress guarantees we need to provide. The current ioend we are
855 * adding buffers to is cached on the writepage context, and if the new buffer
856 * does not append to the cached ioend it will create a new ioend and cache that
857 * instead.
858 *
859 * If a new ioend is created and cached, the old ioend is returned and queued
860 * locally for submission once the entire page is processed or an error has been
861 * detected. While ioends are submitted immediately after they are completed,
862 * batching optimisations are provided by higher level block plugging.
863 *
864 * At the end of a writeback pass, there will be a cached ioend remaining on the
865 * writepage context that the caller will need to submit.
866 */
bfce7d2e
DC
867static int
868xfs_writepage_map(
869 struct xfs_writepage_ctx *wpc,
e10de372 870 struct writeback_control *wbc,
bfce7d2e
DC
871 struct inode *inode,
872 struct page *page,
873 loff_t offset,
c8ce540d 874 uint64_t end_offset)
bfce7d2e 875{
e10de372
DC
876 LIST_HEAD(submit_list);
877 struct xfs_ioend *ioend, *next;
bfce7d2e 878 struct buffer_head *bh, *head;
93407472 879 ssize_t len = i_blocksize(inode);
bfce7d2e 880 int error = 0;
bfce7d2e 881 int count = 0;
e10de372 882 int uptodate = 1;
ef473667 883 unsigned int new_type;
bfce7d2e
DC
884
885 bh = head = page_buffers(page);
886 offset = page_offset(page);
bfce7d2e
DC
887 do {
888 if (offset >= end_offset)
889 break;
890 if (!buffer_uptodate(bh))
891 uptodate = 0;
892
893 /*
894 * set_page_dirty dirties all buffers in a page, independent
895 * of their state. The dirty state however is entirely
896 * meaningless for holes (!mapped && uptodate), so skip
897 * buffers covering holes here.
898 */
899 if (!buffer_mapped(bh) && buffer_uptodate(bh)) {
900 wpc->imap_valid = false;
901 continue;
902 }
903
ef473667
DW
904 if (buffer_unwritten(bh))
905 new_type = XFS_IO_UNWRITTEN;
906 else if (buffer_delay(bh))
907 new_type = XFS_IO_DELALLOC;
908 else if (buffer_uptodate(bh))
909 new_type = XFS_IO_OVERWRITE;
910 else {
bfce7d2e
DC
911 if (PageUptodate(page))
912 ASSERT(buffer_mapped(bh));
913 /*
914 * This buffer is not uptodate and will not be
915 * written to disk. Ensure that we will put any
916 * subsequent writeable buffers into a new
917 * ioend.
918 */
919 wpc->imap_valid = false;
920 continue;
921 }
922
ef473667
DW
923 if (xfs_is_reflink_inode(XFS_I(inode))) {
924 error = xfs_map_cow(wpc, inode, offset, &new_type);
925 if (error)
926 goto out;
927 }
928
929 if (wpc->io_type != new_type) {
930 wpc->io_type = new_type;
931 wpc->imap_valid = false;
932 }
933
bfce7d2e
DC
934 if (wpc->imap_valid)
935 wpc->imap_valid = xfs_imap_valid(inode, &wpc->imap,
936 offset);
937 if (!wpc->imap_valid) {
938 error = xfs_map_blocks(inode, offset, &wpc->imap,
939 wpc->io_type);
940 if (error)
e10de372 941 goto out;
bfce7d2e
DC
942 wpc->imap_valid = xfs_imap_valid(inode, &wpc->imap,
943 offset);
944 }
945 if (wpc->imap_valid) {
946 lock_buffer(bh);
947 if (wpc->io_type != XFS_IO_OVERWRITE)
948 xfs_map_at_offset(inode, bh, &wpc->imap, offset);
bb18782a 949 xfs_add_to_ioend(inode, bh, offset, wpc, wbc, &submit_list);
bfce7d2e
DC
950 count++;
951 }
952
bfce7d2e
DC
953 } while (offset += len, ((bh = bh->b_this_page) != head));
954
955 if (uptodate && bh == head)
956 SetPageUptodate(page);
957
e10de372 958 ASSERT(wpc->ioend || list_empty(&submit_list));
bfce7d2e 959
e10de372 960out:
bfce7d2e 961 /*
e10de372
DC
962 * On error, we have to fail the ioend here because we have locked
963 * buffers in the ioend. If we don't do this, we'll deadlock
964 * invalidating the page as that tries to lock the buffers on the page.
965 * Also, because we may have set pages under writeback, we have to make
966 * sure we run IO completion to mark the error state of the IO
967 * appropriately, so we can't cancel the ioend directly here. That means
968 * we have to mark this page as under writeback if we included any
969 * buffers from it in the ioend chain so that completion treats it
970 * correctly.
bfce7d2e 971 *
e10de372
DC
972 * If we didn't include the page in the ioend, the on error we can
973 * simply discard and unlock it as there are no other users of the page
974 * or it's buffers right now. The caller will still need to trigger
975 * submission of outstanding ioends on the writepage context so they are
976 * treated correctly on error.
bfce7d2e 977 */
e10de372
DC
978 if (count) {
979 xfs_start_page_writeback(page, !error);
980
981 /*
982 * Preserve the original error if there was one, otherwise catch
983 * submission errors here and propagate into subsequent ioend
984 * submissions.
985 */
986 list_for_each_entry_safe(ioend, next, &submit_list, io_list) {
987 int error2;
988
989 list_del_init(&ioend->io_list);
990 error2 = xfs_submit_ioend(wbc, ioend, error);
991 if (error2 && !error)
992 error = error2;
993 }
994 } else if (error) {
bfce7d2e
DC
995 xfs_aops_discard_page(page);
996 ClearPageUptodate(page);
997 unlock_page(page);
e10de372
DC
998 } else {
999 /*
1000 * We can end up here with no error and nothing to write if we
1001 * race with a partial page truncate on a sub-page block sized
1002 * filesystem. In that case we need to mark the page clean.
1003 */
1004 xfs_start_page_writeback(page, 1);
1005 end_page_writeback(page);
bfce7d2e 1006 }
e10de372 1007
bfce7d2e
DC
1008 mapping_set_error(page->mapping, error);
1009 return error;
1010}
1011
1da177e4 1012/*
89f3b363
CH
1013 * Write out a dirty page.
1014 *
1015 * For delalloc space on the page we need to allocate space and flush it.
1016 * For unwritten space on the page we need to start the conversion to
1017 * regular allocated space.
89f3b363 1018 * For any other dirty buffer heads on the page we should flush them.
1da177e4 1019 */
1da177e4 1020STATIC int
fbcc0256 1021xfs_do_writepage(
89f3b363 1022 struct page *page,
fbcc0256
DC
1023 struct writeback_control *wbc,
1024 void *data)
1da177e4 1025{
fbcc0256 1026 struct xfs_writepage_ctx *wpc = data;
89f3b363 1027 struct inode *inode = page->mapping->host;
1da177e4 1028 loff_t offset;
c8ce540d 1029 uint64_t end_offset;
ad68972a 1030 pgoff_t end_index;
89f3b363 1031
34097dfe 1032 trace_xfs_writepage(inode, page, 0, 0);
89f3b363 1033
20cb52eb
CH
1034 ASSERT(page_has_buffers(page));
1035
89f3b363
CH
1036 /*
1037 * Refuse to write the page out if we are called from reclaim context.
1038 *
d4f7a5cb
CH
1039 * This avoids stack overflows when called from deeply used stacks in
1040 * random callers for direct reclaim or memcg reclaim. We explicitly
1041 * allow reclaim from kswapd as the stack usage there is relatively low.
89f3b363 1042 *
94054fa3
MG
1043 * This should never happen except in the case of a VM regression so
1044 * warn about it.
89f3b363 1045 */
94054fa3
MG
1046 if (WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD)) ==
1047 PF_MEMALLOC))
b5420f23 1048 goto redirty;
1da177e4 1049
89f3b363 1050 /*
680a647b
CH
1051 * Given that we do not allow direct reclaim to call us, we should
1052 * never be called while in a filesystem transaction.
89f3b363 1053 */
9070733b 1054 if (WARN_ON_ONCE(current->flags & PF_MEMALLOC_NOFS))
b5420f23 1055 goto redirty;
89f3b363 1056
8695d27e 1057 /*
ad68972a
DC
1058 * Is this page beyond the end of the file?
1059 *
8695d27e
JL
1060 * The page index is less than the end_index, adjust the end_offset
1061 * to the highest offset that this page should represent.
1062 * -----------------------------------------------------
1063 * | file mapping | <EOF> |
1064 * -----------------------------------------------------
1065 * | Page ... | Page N-2 | Page N-1 | Page N | |
1066 * ^--------------------------------^----------|--------
1067 * | desired writeback range | see else |
1068 * ---------------------------------^------------------|
1069 */
ad68972a 1070 offset = i_size_read(inode);
09cbfeaf 1071 end_index = offset >> PAGE_SHIFT;
8695d27e 1072 if (page->index < end_index)
09cbfeaf 1073 end_offset = (xfs_off_t)(page->index + 1) << PAGE_SHIFT;
8695d27e
JL
1074 else {
1075 /*
1076 * Check whether the page to write out is beyond or straddles
1077 * i_size or not.
1078 * -------------------------------------------------------
1079 * | file mapping | <EOF> |
1080 * -------------------------------------------------------
1081 * | Page ... | Page N-2 | Page N-1 | Page N | Beyond |
1082 * ^--------------------------------^-----------|---------
1083 * | | Straddles |
1084 * ---------------------------------^-----------|--------|
1085 */
09cbfeaf 1086 unsigned offset_into_page = offset & (PAGE_SIZE - 1);
6b7a03f0
CH
1087
1088 /*
ff9a28f6
JK
1089 * Skip the page if it is fully outside i_size, e.g. due to a
1090 * truncate operation that is in progress. We must redirty the
1091 * page so that reclaim stops reclaiming it. Otherwise
1092 * xfs_vm_releasepage() is called on it and gets confused.
8695d27e
JL
1093 *
1094 * Note that the end_index is unsigned long, it would overflow
1095 * if the given offset is greater than 16TB on 32-bit system
1096 * and if we do check the page is fully outside i_size or not
1097 * via "if (page->index >= end_index + 1)" as "end_index + 1"
1098 * will be evaluated to 0. Hence this page will be redirtied
1099 * and be written out repeatedly which would result in an
1100 * infinite loop, the user program that perform this operation
1101 * will hang. Instead, we can verify this situation by checking
1102 * if the page to write is totally beyond the i_size or if it's
1103 * offset is just equal to the EOF.
6b7a03f0 1104 */
8695d27e
JL
1105 if (page->index > end_index ||
1106 (page->index == end_index && offset_into_page == 0))
ff9a28f6 1107 goto redirty;
6b7a03f0
CH
1108
1109 /*
1110 * The page straddles i_size. It must be zeroed out on each
1111 * and every writepage invocation because it may be mmapped.
1112 * "A file is mapped in multiples of the page size. For a file
8695d27e 1113 * that is not a multiple of the page size, the remaining
6b7a03f0
CH
1114 * memory is zeroed when mapped, and writes to that region are
1115 * not written out to the file."
1116 */
09cbfeaf 1117 zero_user_segment(page, offset_into_page, PAGE_SIZE);
8695d27e
JL
1118
1119 /* Adjust the end_offset to the end of file */
1120 end_offset = offset;
1da177e4
LT
1121 }
1122
e10de372 1123 return xfs_writepage_map(wpc, wbc, inode, page, offset, end_offset);
f51623b2 1124
b5420f23 1125redirty:
f51623b2
NS
1126 redirty_page_for_writepage(wbc, page);
1127 unlock_page(page);
1128 return 0;
f51623b2
NS
1129}
1130
fbcc0256
DC
1131STATIC int
1132xfs_vm_writepage(
1133 struct page *page,
1134 struct writeback_control *wbc)
1135{
1136 struct xfs_writepage_ctx wpc = {
1137 .io_type = XFS_IO_INVALID,
1138 };
1139 int ret;
1140
1141 ret = xfs_do_writepage(page, wbc, &wpc);
e10de372
DC
1142 if (wpc.ioend)
1143 ret = xfs_submit_ioend(wbc, wpc.ioend, ret);
1144 return ret;
fbcc0256
DC
1145}
1146
7d4fb40a
NS
1147STATIC int
1148xfs_vm_writepages(
1149 struct address_space *mapping,
1150 struct writeback_control *wbc)
1151{
fbcc0256
DC
1152 struct xfs_writepage_ctx wpc = {
1153 .io_type = XFS_IO_INVALID,
1154 };
1155 int ret;
1156
b3aea4ed 1157 xfs_iflags_clear(XFS_I(mapping->host), XFS_ITRUNCATED);
7f6d5b52
RZ
1158 if (dax_mapping(mapping))
1159 return dax_writeback_mapping_range(mapping,
1160 xfs_find_bdev_for_inode(mapping->host), wbc);
1161
fbcc0256 1162 ret = write_cache_pages(mapping, wbc, xfs_do_writepage, &wpc);
e10de372
DC
1163 if (wpc.ioend)
1164 ret = xfs_submit_ioend(wbc, wpc.ioend, ret);
1165 return ret;
7d4fb40a
NS
1166}
1167
f51623b2
NS
1168/*
1169 * Called to move a page into cleanable state - and from there
89f3b363 1170 * to be released. The page should already be clean. We always
f51623b2
NS
1171 * have buffer heads in this call.
1172 *
89f3b363 1173 * Returns 1 if the page is ok to release, 0 otherwise.
f51623b2
NS
1174 */
1175STATIC int
238f4c54 1176xfs_vm_releasepage(
f51623b2
NS
1177 struct page *page,
1178 gfp_t gfp_mask)
1179{
20cb52eb 1180 int delalloc, unwritten;
f51623b2 1181
34097dfe 1182 trace_xfs_releasepage(page->mapping->host, page, 0, 0);
238f4c54 1183
99579cce
BF
1184 /*
1185 * mm accommodates an old ext3 case where clean pages might not have had
1186 * the dirty bit cleared. Thus, it can send actual dirty pages to
1187 * ->releasepage() via shrink_active_list(). Conversely,
917be1c1
DC
1188 * block_invalidatepage() can send pages that are still marked dirty but
1189 * otherwise have invalidated buffers.
99579cce 1190 *
0a417b8d 1191 * We want to release the latter to avoid unnecessary buildup of the
917be1c1
DC
1192 * LRU, so xfs_vm_invalidatepage() clears the page dirty flag on pages
1193 * that are entirely invalidated and need to be released. Hence the
1194 * only time we should get dirty pages here is through
1195 * shrink_active_list() and so we can simply skip those now.
1196 *
1197 * warn if we've left any lingering delalloc/unwritten buffers on clean
1198 * or invalidated pages we are about to release.
99579cce 1199 */
917be1c1
DC
1200 if (PageDirty(page))
1201 return 0;
1202
20cb52eb 1203 xfs_count_page_state(page, &delalloc, &unwritten);
f51623b2 1204
917be1c1 1205 if (WARN_ON_ONCE(delalloc))
f51623b2 1206 return 0;
917be1c1 1207 if (WARN_ON_ONCE(unwritten))
f51623b2
NS
1208 return 0;
1209
f51623b2
NS
1210 return try_to_free_buffers(page);
1211}
1212
1fdca9c2
DC
1213/*
1214 * If this is O_DIRECT or the mpage code calling tell them how large the mapping
1215 * is, so that we can avoid repeated get_blocks calls.
1216 *
1217 * If the mapping spans EOF, then we have to break the mapping up as the mapping
1218 * for blocks beyond EOF must be marked new so that sub block regions can be
1219 * correctly zeroed. We can't do this for mappings within EOF unless the mapping
1220 * was just allocated or is unwritten, otherwise the callers would overwrite
1221 * existing data with zeros. Hence we have to split the mapping into a range up
1222 * to and including EOF, and a second mapping for beyond EOF.
1223 */
1224static void
1225xfs_map_trim_size(
1226 struct inode *inode,
1227 sector_t iblock,
1228 struct buffer_head *bh_result,
1229 struct xfs_bmbt_irec *imap,
1230 xfs_off_t offset,
1231 ssize_t size)
1232{
1233 xfs_off_t mapping_size;
1234
1235 mapping_size = imap->br_startoff + imap->br_blockcount - iblock;
1236 mapping_size <<= inode->i_blkbits;
1237
1238 ASSERT(mapping_size > 0);
1239 if (mapping_size > size)
1240 mapping_size = size;
1241 if (offset < i_size_read(inode) &&
1242 offset + mapping_size >= i_size_read(inode)) {
1243 /* limit mapping to block that spans EOF */
1244 mapping_size = roundup_64(i_size_read(inode) - offset,
93407472 1245 i_blocksize(inode));
1fdca9c2
DC
1246 }
1247 if (mapping_size > LONG_MAX)
1248 mapping_size = LONG_MAX;
1249
1250 bh_result->b_size = mapping_size;
1251}
1252
0613f16c 1253static int
acdda3aa 1254xfs_get_blocks(
1da177e4
LT
1255 struct inode *inode,
1256 sector_t iblock,
1da177e4 1257 struct buffer_head *bh_result,
acdda3aa 1258 int create)
1da177e4 1259{
a206c817
CH
1260 struct xfs_inode *ip = XFS_I(inode);
1261 struct xfs_mount *mp = ip->i_mount;
1262 xfs_fileoff_t offset_fsb, end_fsb;
1263 int error = 0;
1264 int lockmode = 0;
207d0416 1265 struct xfs_bmbt_irec imap;
a206c817 1266 int nimaps = 1;
fdc7ed75
NS
1267 xfs_off_t offset;
1268 ssize_t size;
a206c817 1269
acdda3aa 1270 BUG_ON(create);
6e8a27a8 1271
a206c817 1272 if (XFS_FORCED_SHUTDOWN(mp))
b474c7ae 1273 return -EIO;
1da177e4 1274
fdc7ed75 1275 offset = (xfs_off_t)iblock << inode->i_blkbits;
93407472 1276 ASSERT(bh_result->b_size >= i_blocksize(inode));
c2536668 1277 size = bh_result->b_size;
364f358a 1278
acdda3aa 1279 if (offset >= i_size_read(inode))
364f358a
LM
1280 return 0;
1281
507630b2
DC
1282 /*
1283 * Direct I/O is usually done on preallocated files, so try getting
6e8a27a8 1284 * a block mapping without an exclusive lock first.
507630b2 1285 */
6e8a27a8 1286 lockmode = xfs_ilock_data_map_shared(ip);
f2bde9b8 1287
d2c28191
DC
1288 ASSERT(offset <= mp->m_super->s_maxbytes);
1289 if (offset + size > mp->m_super->s_maxbytes)
1290 size = mp->m_super->s_maxbytes - offset;
a206c817
CH
1291 end_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)offset + size);
1292 offset_fsb = XFS_B_TO_FSBT(mp, offset);
1293
acdda3aa
CH
1294 error = xfs_bmapi_read(ip, offset_fsb, end_fsb - offset_fsb,
1295 &imap, &nimaps, XFS_BMAPI_ENTIRE);
1da177e4 1296 if (error)
a206c817
CH
1297 goto out_unlock;
1298
acdda3aa 1299 if (nimaps) {
d5cc2e3f 1300 trace_xfs_get_blocks_found(ip, offset, size,
63fbb4c1
CH
1301 imap.br_state == XFS_EXT_UNWRITTEN ?
1302 XFS_IO_UNWRITTEN : XFS_IO_OVERWRITE, &imap);
507630b2 1303 xfs_iunlock(ip, lockmode);
a206c817
CH
1304 } else {
1305 trace_xfs_get_blocks_notfound(ip, offset, size);
1306 goto out_unlock;
1307 }
1da177e4 1308
1fdca9c2 1309 /* trim mapping down to size requested */
6e8a27a8 1310 xfs_map_trim_size(inode, iblock, bh_result, &imap, offset, size);
1fdca9c2 1311
a719370b
DC
1312 /*
1313 * For unwritten extents do not report a disk address in the buffered
1314 * read case (treat as if we're reading into a hole).
1315 */
9c4f29d3 1316 if (xfs_bmap_is_real_extent(&imap))
a719370b 1317 xfs_map_buffer(inode, bh_result, &imap, offset);
1da177e4 1318
c2536668
NS
1319 /*
1320 * If this is a realtime file, data may be on a different device.
1321 * to that pointed to from the buffer_head b_bdev currently.
1322 */
046f1685 1323 bh_result->b_bdev = xfs_find_bdev_for_inode(inode);
1da177e4 1324 return 0;
a206c817
CH
1325
1326out_unlock:
1327 xfs_iunlock(ip, lockmode);
2451337d 1328 return error;
1da177e4
LT
1329}
1330
c19b104a
CH
1331STATIC ssize_t
1332xfs_vm_direct_IO(
6e1ba0bc 1333 struct kiocb *iocb,
c8b8e32d 1334 struct iov_iter *iter)
6e1ba0bc 1335{
58e59854 1336 /*
fa8d972d 1337 * We just need the method present so that open/fcntl allow direct I/O.
58e59854 1338 */
fa8d972d 1339 return -EINVAL;
f51623b2 1340}
1da177e4
LT
1341
1342STATIC sector_t
e4c573bb 1343xfs_vm_bmap(
1da177e4
LT
1344 struct address_space *mapping,
1345 sector_t block)
1346{
1347 struct inode *inode = (struct inode *)mapping->host;
739bfb2a 1348 struct xfs_inode *ip = XFS_I(inode);
1da177e4 1349
cca28fb8 1350 trace_xfs_vm_bmap(XFS_I(inode));
db1327b1
DW
1351
1352 /*
1353 * The swap code (ab-)uses ->bmap to get a block mapping and then
1354 * bypasseѕ the file system for actual I/O. We really can't allow
1355 * that on reflinks inodes, so we have to skip out here. And yes,
eb5e248d
DW
1356 * 0 is the magic code for a bmap error.
1357 *
1358 * Since we don't pass back blockdev info, we can't return bmap
1359 * information for rt files either.
db1327b1 1360 */
eb5e248d 1361 if (xfs_is_reflink_inode(ip) || XFS_IS_REALTIME_INODE(ip))
db1327b1 1362 return 0;
65523218 1363
4bc1ea6b 1364 filemap_write_and_wait(mapping);
c2536668 1365 return generic_block_bmap(mapping, block, xfs_get_blocks);
1da177e4
LT
1366}
1367
1368STATIC int
e4c573bb 1369xfs_vm_readpage(
1da177e4
LT
1370 struct file *unused,
1371 struct page *page)
1372{
121e213e 1373 trace_xfs_vm_readpage(page->mapping->host, 1);
c2536668 1374 return mpage_readpage(page, xfs_get_blocks);
1da177e4
LT
1375}
1376
1377STATIC int
e4c573bb 1378xfs_vm_readpages(
1da177e4
LT
1379 struct file *unused,
1380 struct address_space *mapping,
1381 struct list_head *pages,
1382 unsigned nr_pages)
1383{
121e213e 1384 trace_xfs_vm_readpages(mapping->host, nr_pages);
c2536668 1385 return mpage_readpages(mapping, pages, nr_pages, xfs_get_blocks);
1da177e4
LT
1386}
1387
22e757a4
DC
1388/*
1389 * This is basically a copy of __set_page_dirty_buffers() with one
1390 * small tweak: buffers beyond EOF do not get marked dirty. If we mark them
1391 * dirty, we'll never be able to clean them because we don't write buffers
1392 * beyond EOF, and that means we can't invalidate pages that span EOF
1393 * that have been marked dirty. Further, the dirty state can leak into
1394 * the file interior if the file is extended, resulting in all sorts of
1395 * bad things happening as the state does not match the underlying data.
1396 *
1397 * XXX: this really indicates that bufferheads in XFS need to die. Warts like
1398 * this only exist because of bufferheads and how the generic code manages them.
1399 */
1400STATIC int
1401xfs_vm_set_page_dirty(
1402 struct page *page)
1403{
1404 struct address_space *mapping = page->mapping;
1405 struct inode *inode = mapping->host;
1406 loff_t end_offset;
1407 loff_t offset;
1408 int newly_dirty;
1409
1410 if (unlikely(!mapping))
1411 return !TestSetPageDirty(page);
1412
1413 end_offset = i_size_read(inode);
1414 offset = page_offset(page);
1415
1416 spin_lock(&mapping->private_lock);
1417 if (page_has_buffers(page)) {
1418 struct buffer_head *head = page_buffers(page);
1419 struct buffer_head *bh = head;
1420
1421 do {
1422 if (offset < end_offset)
1423 set_buffer_dirty(bh);
1424 bh = bh->b_this_page;
93407472 1425 offset += i_blocksize(inode);
22e757a4
DC
1426 } while (bh != head);
1427 }
c4843a75 1428 /*
81f8c3a4
JW
1429 * Lock out page->mem_cgroup migration to keep PageDirty
1430 * synchronized with per-memcg dirty page counters.
c4843a75 1431 */
62cccb8c 1432 lock_page_memcg(page);
22e757a4
DC
1433 newly_dirty = !TestSetPageDirty(page);
1434 spin_unlock(&mapping->private_lock);
1435
1436 if (newly_dirty) {
1437 /* sigh - __set_page_dirty() is static, so copy it here, too */
1438 unsigned long flags;
1439
1440 spin_lock_irqsave(&mapping->tree_lock, flags);
1441 if (page->mapping) { /* Race with truncate? */
1442 WARN_ON_ONCE(!PageUptodate(page));
62cccb8c 1443 account_page_dirtied(page, mapping);
22e757a4
DC
1444 radix_tree_tag_set(&mapping->page_tree,
1445 page_index(page), PAGECACHE_TAG_DIRTY);
1446 }
1447 spin_unlock_irqrestore(&mapping->tree_lock, flags);
22e757a4 1448 }
62cccb8c 1449 unlock_page_memcg(page);
c4843a75
GT
1450 if (newly_dirty)
1451 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
22e757a4
DC
1452 return newly_dirty;
1453}
1454
f5e54d6e 1455const struct address_space_operations xfs_address_space_operations = {
e4c573bb
NS
1456 .readpage = xfs_vm_readpage,
1457 .readpages = xfs_vm_readpages,
1458 .writepage = xfs_vm_writepage,
7d4fb40a 1459 .writepages = xfs_vm_writepages,
22e757a4 1460 .set_page_dirty = xfs_vm_set_page_dirty,
238f4c54
NS
1461 .releasepage = xfs_vm_releasepage,
1462 .invalidatepage = xfs_vm_invalidatepage,
e4c573bb
NS
1463 .bmap = xfs_vm_bmap,
1464 .direct_IO = xfs_vm_direct_IO,
e965f963 1465 .migratepage = buffer_migrate_page,
bddaafa1 1466 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 1467 .error_remove_page = generic_error_remove_page,
1da177e4 1468};