]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - fs/xfs/xfs_aops.c
xfs: use per-filesystem I/O completion workqueues
[mirror_ubuntu-bionic-kernel.git] / fs / xfs / xfs_aops.c
CommitLineData
1da177e4 1/*
7b718769
NS
2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
1da177e4 4 *
7b718769
NS
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
1da177e4
LT
7 * published by the Free Software Foundation.
8 *
7b718769
NS
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
1da177e4 13 *
7b718769
NS
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
1da177e4 17 */
1da177e4 18#include "xfs.h"
a844f451 19#include "xfs_bit.h"
1da177e4 20#include "xfs_log.h"
a844f451 21#include "xfs_inum.h"
1da177e4 22#include "xfs_sb.h"
a844f451 23#include "xfs_ag.h"
1da177e4 24#include "xfs_trans.h"
1da177e4
LT
25#include "xfs_mount.h"
26#include "xfs_bmap_btree.h"
1da177e4
LT
27#include "xfs_dinode.h"
28#include "xfs_inode.h"
a844f451 29#include "xfs_alloc.h"
1da177e4
LT
30#include "xfs_error.h"
31#include "xfs_rw.h"
32#include "xfs_iomap.h"
739bfb2a 33#include "xfs_vnodeops.h"
0b1b213f 34#include "xfs_trace.h"
3ed3a434 35#include "xfs_bmap.h"
5a0e3ad6 36#include <linux/gfp.h>
1da177e4 37#include <linux/mpage.h>
10ce4444 38#include <linux/pagevec.h>
1da177e4
LT
39#include <linux/writeback.h>
40
0b1b213f 41void
f51623b2
NS
42xfs_count_page_state(
43 struct page *page,
44 int *delalloc,
f51623b2
NS
45 int *unwritten)
46{
47 struct buffer_head *bh, *head;
48
20cb52eb 49 *delalloc = *unwritten = 0;
f51623b2
NS
50
51 bh = head = page_buffers(page);
52 do {
20cb52eb 53 if (buffer_unwritten(bh))
f51623b2
NS
54 (*unwritten) = 1;
55 else if (buffer_delay(bh))
56 (*delalloc) = 1;
57 } while ((bh = bh->b_this_page) != head);
58}
59
6214ed44
CH
60STATIC struct block_device *
61xfs_find_bdev_for_inode(
046f1685 62 struct inode *inode)
6214ed44 63{
046f1685 64 struct xfs_inode *ip = XFS_I(inode);
6214ed44
CH
65 struct xfs_mount *mp = ip->i_mount;
66
71ddabb9 67 if (XFS_IS_REALTIME_INODE(ip))
6214ed44
CH
68 return mp->m_rtdev_targp->bt_bdev;
69 else
70 return mp->m_ddev_targp->bt_bdev;
71}
72
f6d6d4fc
CH
73/*
74 * We're now finished for good with this ioend structure.
75 * Update the page state via the associated buffer_heads,
76 * release holds on the inode and bio, and finally free
77 * up memory. Do not use the ioend after this.
78 */
0829c360
CH
79STATIC void
80xfs_destroy_ioend(
81 xfs_ioend_t *ioend)
82{
f6d6d4fc
CH
83 struct buffer_head *bh, *next;
84
85 for (bh = ioend->io_buffer_head; bh; bh = next) {
86 next = bh->b_private;
7d04a335 87 bh->b_end_io(bh, !ioend->io_error);
f6d6d4fc 88 }
583fa586 89
c859cdd1 90 if (ioend->io_iocb) {
04f658ee
CH
91 if (ioend->io_isasync) {
92 aio_complete(ioend->io_iocb, ioend->io_error ?
93 ioend->io_error : ioend->io_result, 0);
94 }
c859cdd1
CH
95 inode_dio_done(ioend->io_inode);
96 }
4a06fd26 97
0829c360
CH
98 mempool_free(ioend, xfs_ioend_pool);
99}
100
932640e8
DC
101/*
102 * If the end of the current ioend is beyond the current EOF,
103 * return the new EOF value, otherwise zero.
104 */
105STATIC xfs_fsize_t
106xfs_ioend_new_eof(
107 xfs_ioend_t *ioend)
108{
109 xfs_inode_t *ip = XFS_I(ioend->io_inode);
110 xfs_fsize_t isize;
111 xfs_fsize_t bsize;
112
113 bsize = ioend->io_offset + ioend->io_size;
2813d682 114 isize = MIN(i_size_read(VFS_I(ip)), bsize);
932640e8
DC
115 return isize > ip->i_d.di_size ? isize : 0;
116}
117
fc0063c4
CH
118/*
119 * Fast and loose check if this write could update the on-disk inode size.
120 */
121static inline bool xfs_ioend_is_append(struct xfs_ioend *ioend)
122{
123 return ioend->io_offset + ioend->io_size >
124 XFS_I(ioend->io_inode)->i_d.di_size;
125}
126
ba87ea69 127/*
2813d682 128 * Update on-disk file size now that data has been written to disk.
ba87ea69 129 */
aa6bf01d 130STATIC void
ba87ea69 131xfs_setfilesize(
aa6bf01d 132 struct xfs_ioend *ioend)
ba87ea69 133{
aa6bf01d 134 struct xfs_inode *ip = XFS_I(ioend->io_inode);
ba87ea69 135 xfs_fsize_t isize;
ba87ea69 136
aa6bf01d 137 xfs_ilock(ip, XFS_ILOCK_EXCL);
932640e8
DC
138 isize = xfs_ioend_new_eof(ioend);
139 if (isize) {
55fb25d5 140 trace_xfs_setfilesize(ip, ioend->io_offset, ioend->io_size);
ba87ea69 141 ip->i_d.di_size = isize;
66d834ea 142 xfs_mark_inode_dirty(ip);
ba87ea69
LM
143 }
144
145 xfs_iunlock(ip, XFS_ILOCK_EXCL);
77d7a0c2
DC
146}
147
148/*
209fb87a 149 * Schedule IO completion handling on the final put of an ioend.
fc0063c4
CH
150 *
151 * If there is no work to do we might as well call it a day and free the
152 * ioend right now.
77d7a0c2
DC
153 */
154STATIC void
155xfs_finish_ioend(
209fb87a 156 struct xfs_ioend *ioend)
77d7a0c2
DC
157{
158 if (atomic_dec_and_test(&ioend->io_remaining)) {
aa6bf01d
CH
159 struct xfs_mount *mp = XFS_I(ioend->io_inode)->i_mount;
160
209fb87a 161 if (ioend->io_type == IO_UNWRITTEN)
aa6bf01d 162 queue_work(mp->m_unwritten_workqueue, &ioend->io_work);
fc0063c4 163 else if (xfs_ioend_is_append(ioend))
aa6bf01d 164 queue_work(mp->m_data_workqueue, &ioend->io_work);
fc0063c4
CH
165 else
166 xfs_destroy_ioend(ioend);
77d7a0c2 167 }
ba87ea69
LM
168}
169
0829c360 170/*
5ec4fabb 171 * IO write completion.
f6d6d4fc
CH
172 */
173STATIC void
5ec4fabb 174xfs_end_io(
77d7a0c2 175 struct work_struct *work)
0829c360 176{
77d7a0c2
DC
177 xfs_ioend_t *ioend = container_of(work, xfs_ioend_t, io_work);
178 struct xfs_inode *ip = XFS_I(ioend->io_inode);
69418932 179 int error = 0;
ba87ea69 180
04f658ee 181 if (XFS_FORCED_SHUTDOWN(ip->i_mount)) {
810627d9 182 ioend->io_error = -EIO;
04f658ee
CH
183 goto done;
184 }
185 if (ioend->io_error)
186 goto done;
187
5ec4fabb
CH
188 /*
189 * For unwritten extents we need to issue transactions to convert a
190 * range to normal written extens after the data I/O has finished.
191 */
04f658ee 192 if (ioend->io_type == IO_UNWRITTEN) {
5ec4fabb
CH
193 error = xfs_iomap_write_unwritten(ip, ioend->io_offset,
194 ioend->io_size);
04f658ee
CH
195 if (error) {
196 ioend->io_error = -error;
197 goto done;
198 }
5ec4fabb 199 }
ba87ea69 200
5ec4fabb
CH
201 /*
202 * We might have to update the on-disk file size after extending
203 * writes.
204 */
aa6bf01d 205 xfs_setfilesize(ioend);
04f658ee 206done:
aa6bf01d 207 xfs_destroy_ioend(ioend);
c626d174
DC
208}
209
209fb87a
CH
210/*
211 * Call IO completion handling in caller context on the final put of an ioend.
212 */
213STATIC void
214xfs_finish_ioend_sync(
215 struct xfs_ioend *ioend)
216{
217 if (atomic_dec_and_test(&ioend->io_remaining))
218 xfs_end_io(&ioend->io_work);
219}
220
0829c360
CH
221/*
222 * Allocate and initialise an IO completion structure.
223 * We need to track unwritten extent write completion here initially.
224 * We'll need to extend this for updating the ondisk inode size later
225 * (vs. incore size).
226 */
227STATIC xfs_ioend_t *
228xfs_alloc_ioend(
f6d6d4fc
CH
229 struct inode *inode,
230 unsigned int type)
0829c360
CH
231{
232 xfs_ioend_t *ioend;
233
234 ioend = mempool_alloc(xfs_ioend_pool, GFP_NOFS);
235
236 /*
237 * Set the count to 1 initially, which will prevent an I/O
238 * completion callback from happening before we have started
239 * all the I/O from calling the completion routine too early.
240 */
241 atomic_set(&ioend->io_remaining, 1);
c859cdd1 242 ioend->io_isasync = 0;
7d04a335 243 ioend->io_error = 0;
f6d6d4fc
CH
244 ioend->io_list = NULL;
245 ioend->io_type = type;
b677c210 246 ioend->io_inode = inode;
c1a073bd 247 ioend->io_buffer_head = NULL;
f6d6d4fc 248 ioend->io_buffer_tail = NULL;
0829c360
CH
249 ioend->io_offset = 0;
250 ioend->io_size = 0;
fb511f21
CH
251 ioend->io_iocb = NULL;
252 ioend->io_result = 0;
0829c360 253
5ec4fabb 254 INIT_WORK(&ioend->io_work, xfs_end_io);
0829c360
CH
255 return ioend;
256}
257
1da177e4
LT
258STATIC int
259xfs_map_blocks(
260 struct inode *inode,
261 loff_t offset,
207d0416 262 struct xfs_bmbt_irec *imap,
a206c817
CH
263 int type,
264 int nonblocking)
1da177e4 265{
a206c817
CH
266 struct xfs_inode *ip = XFS_I(inode);
267 struct xfs_mount *mp = ip->i_mount;
ed1e7b7e 268 ssize_t count = 1 << inode->i_blkbits;
a206c817
CH
269 xfs_fileoff_t offset_fsb, end_fsb;
270 int error = 0;
a206c817
CH
271 int bmapi_flags = XFS_BMAPI_ENTIRE;
272 int nimaps = 1;
273
274 if (XFS_FORCED_SHUTDOWN(mp))
275 return -XFS_ERROR(EIO);
276
8ff2957d 277 if (type == IO_UNWRITTEN)
a206c817 278 bmapi_flags |= XFS_BMAPI_IGSTATE;
8ff2957d
CH
279
280 if (!xfs_ilock_nowait(ip, XFS_ILOCK_SHARED)) {
281 if (nonblocking)
282 return -XFS_ERROR(EAGAIN);
283 xfs_ilock(ip, XFS_ILOCK_SHARED);
a206c817
CH
284 }
285
8ff2957d
CH
286 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
287 (ip->i_df.if_flags & XFS_IFEXTENTS));
a206c817 288 ASSERT(offset <= mp->m_maxioffset);
8ff2957d 289
a206c817
CH
290 if (offset + count > mp->m_maxioffset)
291 count = mp->m_maxioffset - offset;
292 end_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)offset + count);
293 offset_fsb = XFS_B_TO_FSBT(mp, offset);
5c8ed202
DC
294 error = xfs_bmapi_read(ip, offset_fsb, end_fsb - offset_fsb,
295 imap, &nimaps, bmapi_flags);
8ff2957d 296 xfs_iunlock(ip, XFS_ILOCK_SHARED);
a206c817 297
8ff2957d
CH
298 if (error)
299 return -XFS_ERROR(error);
a206c817 300
8ff2957d
CH
301 if (type == IO_DELALLOC &&
302 (!nimaps || isnullstartblock(imap->br_startblock))) {
a206c817
CH
303 error = xfs_iomap_write_allocate(ip, offset, count, imap);
304 if (!error)
305 trace_xfs_map_blocks_alloc(ip, offset, count, type, imap);
8ff2957d 306 return -XFS_ERROR(error);
a206c817
CH
307 }
308
8ff2957d
CH
309#ifdef DEBUG
310 if (type == IO_UNWRITTEN) {
311 ASSERT(nimaps);
312 ASSERT(imap->br_startblock != HOLESTARTBLOCK);
313 ASSERT(imap->br_startblock != DELAYSTARTBLOCK);
314 }
315#endif
316 if (nimaps)
317 trace_xfs_map_blocks_found(ip, offset, count, type, imap);
318 return 0;
1da177e4
LT
319}
320
b8f82a4a 321STATIC int
558e6891 322xfs_imap_valid(
8699bb0a 323 struct inode *inode,
207d0416 324 struct xfs_bmbt_irec *imap,
558e6891 325 xfs_off_t offset)
1da177e4 326{
558e6891 327 offset >>= inode->i_blkbits;
8699bb0a 328
558e6891
CH
329 return offset >= imap->br_startoff &&
330 offset < imap->br_startoff + imap->br_blockcount;
1da177e4
LT
331}
332
f6d6d4fc
CH
333/*
334 * BIO completion handler for buffered IO.
335 */
782e3b3b 336STATIC void
f6d6d4fc
CH
337xfs_end_bio(
338 struct bio *bio,
f6d6d4fc
CH
339 int error)
340{
341 xfs_ioend_t *ioend = bio->bi_private;
342
f6d6d4fc 343 ASSERT(atomic_read(&bio->bi_cnt) >= 1);
7d04a335 344 ioend->io_error = test_bit(BIO_UPTODATE, &bio->bi_flags) ? 0 : error;
f6d6d4fc
CH
345
346 /* Toss bio and pass work off to an xfsdatad thread */
f6d6d4fc
CH
347 bio->bi_private = NULL;
348 bio->bi_end_io = NULL;
f6d6d4fc 349 bio_put(bio);
7d04a335 350
209fb87a 351 xfs_finish_ioend(ioend);
f6d6d4fc
CH
352}
353
354STATIC void
355xfs_submit_ioend_bio(
06342cf8
CH
356 struct writeback_control *wbc,
357 xfs_ioend_t *ioend,
358 struct bio *bio)
f6d6d4fc
CH
359{
360 atomic_inc(&ioend->io_remaining);
f6d6d4fc
CH
361 bio->bi_private = ioend;
362 bio->bi_end_io = xfs_end_bio;
363
932640e8
DC
364 /*
365 * If the I/O is beyond EOF we mark the inode dirty immediately
366 * but don't update the inode size until I/O completion.
367 */
368 if (xfs_ioend_new_eof(ioend))
66d834ea 369 xfs_mark_inode_dirty(XFS_I(ioend->io_inode));
932640e8 370
721a9602 371 submit_bio(wbc->sync_mode == WB_SYNC_ALL ? WRITE_SYNC : WRITE, bio);
f6d6d4fc
CH
372}
373
374STATIC struct bio *
375xfs_alloc_ioend_bio(
376 struct buffer_head *bh)
377{
f6d6d4fc 378 int nvecs = bio_get_nr_vecs(bh->b_bdev);
221cb251 379 struct bio *bio = bio_alloc(GFP_NOIO, nvecs);
f6d6d4fc
CH
380
381 ASSERT(bio->bi_private == NULL);
382 bio->bi_sector = bh->b_blocknr * (bh->b_size >> 9);
383 bio->bi_bdev = bh->b_bdev;
f6d6d4fc
CH
384 return bio;
385}
386
387STATIC void
388xfs_start_buffer_writeback(
389 struct buffer_head *bh)
390{
391 ASSERT(buffer_mapped(bh));
392 ASSERT(buffer_locked(bh));
393 ASSERT(!buffer_delay(bh));
394 ASSERT(!buffer_unwritten(bh));
395
396 mark_buffer_async_write(bh);
397 set_buffer_uptodate(bh);
398 clear_buffer_dirty(bh);
399}
400
401STATIC void
402xfs_start_page_writeback(
403 struct page *page,
f6d6d4fc
CH
404 int clear_dirty,
405 int buffers)
406{
407 ASSERT(PageLocked(page));
408 ASSERT(!PageWriteback(page));
f6d6d4fc 409 if (clear_dirty)
92132021
DC
410 clear_page_dirty_for_io(page);
411 set_page_writeback(page);
f6d6d4fc 412 unlock_page(page);
1f7decf6
FW
413 /* If no buffers on the page are to be written, finish it here */
414 if (!buffers)
f6d6d4fc 415 end_page_writeback(page);
f6d6d4fc
CH
416}
417
418static inline int bio_add_buffer(struct bio *bio, struct buffer_head *bh)
419{
420 return bio_add_page(bio, bh->b_page, bh->b_size, bh_offset(bh));
421}
422
423/*
d88992f6
DC
424 * Submit all of the bios for all of the ioends we have saved up, covering the
425 * initial writepage page and also any probed pages.
426 *
427 * Because we may have multiple ioends spanning a page, we need to start
428 * writeback on all the buffers before we submit them for I/O. If we mark the
429 * buffers as we got, then we can end up with a page that only has buffers
430 * marked async write and I/O complete on can occur before we mark the other
431 * buffers async write.
432 *
433 * The end result of this is that we trip a bug in end_page_writeback() because
434 * we call it twice for the one page as the code in end_buffer_async_write()
435 * assumes that all buffers on the page are started at the same time.
436 *
437 * The fix is two passes across the ioend list - one to start writeback on the
c41564b5 438 * buffer_heads, and then submit them for I/O on the second pass.
f6d6d4fc
CH
439 */
440STATIC void
441xfs_submit_ioend(
06342cf8 442 struct writeback_control *wbc,
f6d6d4fc
CH
443 xfs_ioend_t *ioend)
444{
d88992f6 445 xfs_ioend_t *head = ioend;
f6d6d4fc
CH
446 xfs_ioend_t *next;
447 struct buffer_head *bh;
448 struct bio *bio;
449 sector_t lastblock = 0;
450
d88992f6
DC
451 /* Pass 1 - start writeback */
452 do {
453 next = ioend->io_list;
221cb251 454 for (bh = ioend->io_buffer_head; bh; bh = bh->b_private)
d88992f6 455 xfs_start_buffer_writeback(bh);
d88992f6
DC
456 } while ((ioend = next) != NULL);
457
458 /* Pass 2 - submit I/O */
459 ioend = head;
f6d6d4fc
CH
460 do {
461 next = ioend->io_list;
462 bio = NULL;
463
464 for (bh = ioend->io_buffer_head; bh; bh = bh->b_private) {
f6d6d4fc
CH
465
466 if (!bio) {
467 retry:
468 bio = xfs_alloc_ioend_bio(bh);
469 } else if (bh->b_blocknr != lastblock + 1) {
06342cf8 470 xfs_submit_ioend_bio(wbc, ioend, bio);
f6d6d4fc
CH
471 goto retry;
472 }
473
474 if (bio_add_buffer(bio, bh) != bh->b_size) {
06342cf8 475 xfs_submit_ioend_bio(wbc, ioend, bio);
f6d6d4fc
CH
476 goto retry;
477 }
478
479 lastblock = bh->b_blocknr;
480 }
481 if (bio)
06342cf8 482 xfs_submit_ioend_bio(wbc, ioend, bio);
209fb87a 483 xfs_finish_ioend(ioend);
f6d6d4fc
CH
484 } while ((ioend = next) != NULL);
485}
486
487/*
488 * Cancel submission of all buffer_heads so far in this endio.
489 * Toss the endio too. Only ever called for the initial page
490 * in a writepage request, so only ever one page.
491 */
492STATIC void
493xfs_cancel_ioend(
494 xfs_ioend_t *ioend)
495{
496 xfs_ioend_t *next;
497 struct buffer_head *bh, *next_bh;
498
499 do {
500 next = ioend->io_list;
501 bh = ioend->io_buffer_head;
502 do {
503 next_bh = bh->b_private;
504 clear_buffer_async_write(bh);
505 unlock_buffer(bh);
506 } while ((bh = next_bh) != NULL);
507
f6d6d4fc
CH
508 mempool_free(ioend, xfs_ioend_pool);
509 } while ((ioend = next) != NULL);
510}
511
512/*
513 * Test to see if we've been building up a completion structure for
514 * earlier buffers -- if so, we try to append to this ioend if we
515 * can, otherwise we finish off any current ioend and start another.
516 * Return true if we've finished the given ioend.
517 */
518STATIC void
519xfs_add_to_ioend(
520 struct inode *inode,
521 struct buffer_head *bh,
7336cea8 522 xfs_off_t offset,
f6d6d4fc
CH
523 unsigned int type,
524 xfs_ioend_t **result,
525 int need_ioend)
526{
527 xfs_ioend_t *ioend = *result;
528
529 if (!ioend || need_ioend || type != ioend->io_type) {
530 xfs_ioend_t *previous = *result;
f6d6d4fc 531
f6d6d4fc
CH
532 ioend = xfs_alloc_ioend(inode, type);
533 ioend->io_offset = offset;
534 ioend->io_buffer_head = bh;
535 ioend->io_buffer_tail = bh;
536 if (previous)
537 previous->io_list = ioend;
538 *result = ioend;
539 } else {
540 ioend->io_buffer_tail->b_private = bh;
541 ioend->io_buffer_tail = bh;
542 }
543
544 bh->b_private = NULL;
545 ioend->io_size += bh->b_size;
546}
547
87cbc49c
NS
548STATIC void
549xfs_map_buffer(
046f1685 550 struct inode *inode,
87cbc49c 551 struct buffer_head *bh,
207d0416 552 struct xfs_bmbt_irec *imap,
046f1685 553 xfs_off_t offset)
87cbc49c
NS
554{
555 sector_t bn;
8699bb0a 556 struct xfs_mount *m = XFS_I(inode)->i_mount;
207d0416
CH
557 xfs_off_t iomap_offset = XFS_FSB_TO_B(m, imap->br_startoff);
558 xfs_daddr_t iomap_bn = xfs_fsb_to_db(XFS_I(inode), imap->br_startblock);
87cbc49c 559
207d0416
CH
560 ASSERT(imap->br_startblock != HOLESTARTBLOCK);
561 ASSERT(imap->br_startblock != DELAYSTARTBLOCK);
87cbc49c 562
e513182d 563 bn = (iomap_bn >> (inode->i_blkbits - BBSHIFT)) +
8699bb0a 564 ((offset - iomap_offset) >> inode->i_blkbits);
87cbc49c 565
046f1685 566 ASSERT(bn || XFS_IS_REALTIME_INODE(XFS_I(inode)));
87cbc49c
NS
567
568 bh->b_blocknr = bn;
569 set_buffer_mapped(bh);
570}
571
1da177e4
LT
572STATIC void
573xfs_map_at_offset(
046f1685 574 struct inode *inode,
1da177e4 575 struct buffer_head *bh,
207d0416 576 struct xfs_bmbt_irec *imap,
046f1685 577 xfs_off_t offset)
1da177e4 578{
207d0416
CH
579 ASSERT(imap->br_startblock != HOLESTARTBLOCK);
580 ASSERT(imap->br_startblock != DELAYSTARTBLOCK);
1da177e4 581
207d0416 582 xfs_map_buffer(inode, bh, imap, offset);
1da177e4
LT
583 set_buffer_mapped(bh);
584 clear_buffer_delay(bh);
f6d6d4fc 585 clear_buffer_unwritten(bh);
1da177e4
LT
586}
587
1da177e4 588/*
10ce4444
CH
589 * Test if a given page is suitable for writing as part of an unwritten
590 * or delayed allocate extent.
1da177e4 591 */
10ce4444
CH
592STATIC int
593xfs_is_delayed_page(
594 struct page *page,
f6d6d4fc 595 unsigned int type)
1da177e4 596{
1da177e4 597 if (PageWriteback(page))
10ce4444 598 return 0;
1da177e4
LT
599
600 if (page->mapping && page_has_buffers(page)) {
601 struct buffer_head *bh, *head;
602 int acceptable = 0;
603
604 bh = head = page_buffers(page);
605 do {
f6d6d4fc 606 if (buffer_unwritten(bh))
34a52c6c 607 acceptable = (type == IO_UNWRITTEN);
f6d6d4fc 608 else if (buffer_delay(bh))
a206c817 609 acceptable = (type == IO_DELALLOC);
2ddee844 610 else if (buffer_dirty(bh) && buffer_mapped(bh))
a206c817 611 acceptable = (type == IO_OVERWRITE);
f6d6d4fc 612 else
1da177e4 613 break;
1da177e4
LT
614 } while ((bh = bh->b_this_page) != head);
615
616 if (acceptable)
10ce4444 617 return 1;
1da177e4
LT
618 }
619
10ce4444 620 return 0;
1da177e4
LT
621}
622
1da177e4
LT
623/*
624 * Allocate & map buffers for page given the extent map. Write it out.
625 * except for the original page of a writepage, this is called on
626 * delalloc/unwritten pages only, for the original page it is possible
627 * that the page has no mapping at all.
628 */
f6d6d4fc 629STATIC int
1da177e4
LT
630xfs_convert_page(
631 struct inode *inode,
632 struct page *page,
10ce4444 633 loff_t tindex,
207d0416 634 struct xfs_bmbt_irec *imap,
f6d6d4fc 635 xfs_ioend_t **ioendp,
2fa24f92 636 struct writeback_control *wbc)
1da177e4 637{
f6d6d4fc 638 struct buffer_head *bh, *head;
9260dc6b
CH
639 xfs_off_t end_offset;
640 unsigned long p_offset;
f6d6d4fc 641 unsigned int type;
24e17b5f 642 int len, page_dirty;
f6d6d4fc 643 int count = 0, done = 0, uptodate = 1;
9260dc6b 644 xfs_off_t offset = page_offset(page);
1da177e4 645
10ce4444
CH
646 if (page->index != tindex)
647 goto fail;
529ae9aa 648 if (!trylock_page(page))
10ce4444
CH
649 goto fail;
650 if (PageWriteback(page))
651 goto fail_unlock_page;
652 if (page->mapping != inode->i_mapping)
653 goto fail_unlock_page;
654 if (!xfs_is_delayed_page(page, (*ioendp)->io_type))
655 goto fail_unlock_page;
656
24e17b5f
NS
657 /*
658 * page_dirty is initially a count of buffers on the page before
c41564b5 659 * EOF and is decremented as we move each into a cleanable state.
9260dc6b
CH
660 *
661 * Derivation:
662 *
663 * End offset is the highest offset that this page should represent.
664 * If we are on the last page, (end_offset & (PAGE_CACHE_SIZE - 1))
665 * will evaluate non-zero and be less than PAGE_CACHE_SIZE and
666 * hence give us the correct page_dirty count. On any other page,
667 * it will be zero and in that case we need page_dirty to be the
668 * count of buffers on the page.
24e17b5f 669 */
9260dc6b
CH
670 end_offset = min_t(unsigned long long,
671 (xfs_off_t)(page->index + 1) << PAGE_CACHE_SHIFT,
672 i_size_read(inode));
673
24e17b5f 674 len = 1 << inode->i_blkbits;
9260dc6b
CH
675 p_offset = min_t(unsigned long, end_offset & (PAGE_CACHE_SIZE - 1),
676 PAGE_CACHE_SIZE);
677 p_offset = p_offset ? roundup(p_offset, len) : PAGE_CACHE_SIZE;
678 page_dirty = p_offset / len;
24e17b5f 679
1da177e4
LT
680 bh = head = page_buffers(page);
681 do {
9260dc6b 682 if (offset >= end_offset)
1da177e4 683 break;
f6d6d4fc
CH
684 if (!buffer_uptodate(bh))
685 uptodate = 0;
686 if (!(PageUptodate(page) || buffer_uptodate(bh))) {
687 done = 1;
1da177e4 688 continue;
f6d6d4fc
CH
689 }
690
2fa24f92
CH
691 if (buffer_unwritten(bh) || buffer_delay(bh) ||
692 buffer_mapped(bh)) {
9260dc6b 693 if (buffer_unwritten(bh))
34a52c6c 694 type = IO_UNWRITTEN;
2fa24f92 695 else if (buffer_delay(bh))
a206c817 696 type = IO_DELALLOC;
2fa24f92
CH
697 else
698 type = IO_OVERWRITE;
9260dc6b 699
558e6891 700 if (!xfs_imap_valid(inode, imap, offset)) {
f6d6d4fc 701 done = 1;
9260dc6b
CH
702 continue;
703 }
704
ecff71e6
CH
705 lock_buffer(bh);
706 if (type != IO_OVERWRITE)
2fa24f92 707 xfs_map_at_offset(inode, bh, imap, offset);
89f3b363
CH
708 xfs_add_to_ioend(inode, bh, offset, type,
709 ioendp, done);
710
9260dc6b
CH
711 page_dirty--;
712 count++;
713 } else {
2fa24f92 714 done = 1;
1da177e4 715 }
7336cea8 716 } while (offset += len, (bh = bh->b_this_page) != head);
1da177e4 717
f6d6d4fc
CH
718 if (uptodate && bh == head)
719 SetPageUptodate(page);
720
89f3b363 721 if (count) {
efceab1d
DC
722 if (--wbc->nr_to_write <= 0 &&
723 wbc->sync_mode == WB_SYNC_NONE)
89f3b363 724 done = 1;
1da177e4 725 }
89f3b363 726 xfs_start_page_writeback(page, !page_dirty, count);
f6d6d4fc
CH
727
728 return done;
10ce4444
CH
729 fail_unlock_page:
730 unlock_page(page);
731 fail:
732 return 1;
1da177e4
LT
733}
734
735/*
736 * Convert & write out a cluster of pages in the same extent as defined
737 * by mp and following the start page.
738 */
739STATIC void
740xfs_cluster_write(
741 struct inode *inode,
742 pgoff_t tindex,
207d0416 743 struct xfs_bmbt_irec *imap,
f6d6d4fc 744 xfs_ioend_t **ioendp,
1da177e4 745 struct writeback_control *wbc,
1da177e4
LT
746 pgoff_t tlast)
747{
10ce4444
CH
748 struct pagevec pvec;
749 int done = 0, i;
1da177e4 750
10ce4444
CH
751 pagevec_init(&pvec, 0);
752 while (!done && tindex <= tlast) {
753 unsigned len = min_t(pgoff_t, PAGEVEC_SIZE, tlast - tindex + 1);
754
755 if (!pagevec_lookup(&pvec, inode->i_mapping, tindex, len))
1da177e4 756 break;
10ce4444
CH
757
758 for (i = 0; i < pagevec_count(&pvec); i++) {
759 done = xfs_convert_page(inode, pvec.pages[i], tindex++,
2fa24f92 760 imap, ioendp, wbc);
10ce4444
CH
761 if (done)
762 break;
763 }
764
765 pagevec_release(&pvec);
766 cond_resched();
1da177e4
LT
767 }
768}
769
3ed3a434
DC
770STATIC void
771xfs_vm_invalidatepage(
772 struct page *page,
773 unsigned long offset)
774{
775 trace_xfs_invalidatepage(page->mapping->host, page, offset);
776 block_invalidatepage(page, offset);
777}
778
779/*
780 * If the page has delalloc buffers on it, we need to punch them out before we
781 * invalidate the page. If we don't, we leave a stale delalloc mapping on the
782 * inode that can trip a BUG() in xfs_get_blocks() later on if a direct IO read
783 * is done on that same region - the delalloc extent is returned when none is
784 * supposed to be there.
785 *
786 * We prevent this by truncating away the delalloc regions on the page before
787 * invalidating it. Because they are delalloc, we can do this without needing a
788 * transaction. Indeed - if we get ENOSPC errors, we have to be able to do this
789 * truncation without a transaction as there is no space left for block
790 * reservation (typically why we see a ENOSPC in writeback).
791 *
792 * This is not a performance critical path, so for now just do the punching a
793 * buffer head at a time.
794 */
795STATIC void
796xfs_aops_discard_page(
797 struct page *page)
798{
799 struct inode *inode = page->mapping->host;
800 struct xfs_inode *ip = XFS_I(inode);
801 struct buffer_head *bh, *head;
802 loff_t offset = page_offset(page);
3ed3a434 803
a206c817 804 if (!xfs_is_delayed_page(page, IO_DELALLOC))
3ed3a434
DC
805 goto out_invalidate;
806
e8c3753c
DC
807 if (XFS_FORCED_SHUTDOWN(ip->i_mount))
808 goto out_invalidate;
809
4f10700a 810 xfs_alert(ip->i_mount,
3ed3a434
DC
811 "page discard on page %p, inode 0x%llx, offset %llu.",
812 page, ip->i_ino, offset);
813
814 xfs_ilock(ip, XFS_ILOCK_EXCL);
815 bh = head = page_buffers(page);
816 do {
3ed3a434 817 int error;
c726de44 818 xfs_fileoff_t start_fsb;
3ed3a434
DC
819
820 if (!buffer_delay(bh))
821 goto next_buffer;
822
c726de44
DC
823 start_fsb = XFS_B_TO_FSBT(ip->i_mount, offset);
824 error = xfs_bmap_punch_delalloc_range(ip, start_fsb, 1);
3ed3a434
DC
825 if (error) {
826 /* something screwed, just bail */
e8c3753c 827 if (!XFS_FORCED_SHUTDOWN(ip->i_mount)) {
4f10700a 828 xfs_alert(ip->i_mount,
3ed3a434 829 "page discard unable to remove delalloc mapping.");
e8c3753c 830 }
3ed3a434
DC
831 break;
832 }
833next_buffer:
c726de44 834 offset += 1 << inode->i_blkbits;
3ed3a434
DC
835
836 } while ((bh = bh->b_this_page) != head);
837
838 xfs_iunlock(ip, XFS_ILOCK_EXCL);
839out_invalidate:
840 xfs_vm_invalidatepage(page, 0);
841 return;
842}
843
1da177e4 844/*
89f3b363
CH
845 * Write out a dirty page.
846 *
847 * For delalloc space on the page we need to allocate space and flush it.
848 * For unwritten space on the page we need to start the conversion to
849 * regular allocated space.
89f3b363 850 * For any other dirty buffer heads on the page we should flush them.
1da177e4 851 */
1da177e4 852STATIC int
89f3b363
CH
853xfs_vm_writepage(
854 struct page *page,
855 struct writeback_control *wbc)
1da177e4 856{
89f3b363 857 struct inode *inode = page->mapping->host;
f6d6d4fc 858 struct buffer_head *bh, *head;
207d0416 859 struct xfs_bmbt_irec imap;
f6d6d4fc 860 xfs_ioend_t *ioend = NULL, *iohead = NULL;
1da177e4 861 loff_t offset;
f6d6d4fc 862 unsigned int type;
1da177e4 863 __uint64_t end_offset;
bd1556a1 864 pgoff_t end_index, last_index;
ed1e7b7e 865 ssize_t len;
a206c817 866 int err, imap_valid = 0, uptodate = 1;
89f3b363 867 int count = 0;
a206c817 868 int nonblocking = 0;
89f3b363
CH
869
870 trace_xfs_writepage(inode, page, 0);
871
20cb52eb
CH
872 ASSERT(page_has_buffers(page));
873
89f3b363
CH
874 /*
875 * Refuse to write the page out if we are called from reclaim context.
876 *
d4f7a5cb
CH
877 * This avoids stack overflows when called from deeply used stacks in
878 * random callers for direct reclaim or memcg reclaim. We explicitly
879 * allow reclaim from kswapd as the stack usage there is relatively low.
89f3b363 880 *
94054fa3
MG
881 * This should never happen except in the case of a VM regression so
882 * warn about it.
89f3b363 883 */
94054fa3
MG
884 if (WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD)) ==
885 PF_MEMALLOC))
b5420f23 886 goto redirty;
1da177e4 887
89f3b363 888 /*
680a647b
CH
889 * Given that we do not allow direct reclaim to call us, we should
890 * never be called while in a filesystem transaction.
89f3b363 891 */
680a647b 892 if (WARN_ON(current->flags & PF_FSTRANS))
b5420f23 893 goto redirty;
89f3b363 894
1da177e4
LT
895 /* Is this page beyond the end of the file? */
896 offset = i_size_read(inode);
897 end_index = offset >> PAGE_CACHE_SHIFT;
898 last_index = (offset - 1) >> PAGE_CACHE_SHIFT;
899 if (page->index >= end_index) {
900 if ((page->index >= end_index + 1) ||
901 !(i_size_read(inode) & (PAGE_CACHE_SIZE - 1))) {
89f3b363 902 unlock_page(page);
19d5bcf3 903 return 0;
1da177e4
LT
904 }
905 }
906
f6d6d4fc 907 end_offset = min_t(unsigned long long,
20cb52eb
CH
908 (xfs_off_t)(page->index + 1) << PAGE_CACHE_SHIFT,
909 offset);
24e17b5f 910 len = 1 << inode->i_blkbits;
24e17b5f 911
24e17b5f 912 bh = head = page_buffers(page);
f6d6d4fc 913 offset = page_offset(page);
a206c817
CH
914 type = IO_OVERWRITE;
915
dbcdde3e 916 if (wbc->sync_mode == WB_SYNC_NONE)
a206c817 917 nonblocking = 1;
f6d6d4fc 918
1da177e4 919 do {
6ac7248e
CH
920 int new_ioend = 0;
921
1da177e4
LT
922 if (offset >= end_offset)
923 break;
924 if (!buffer_uptodate(bh))
925 uptodate = 0;
1da177e4 926
3d9b02e3 927 /*
ece413f5
CH
928 * set_page_dirty dirties all buffers in a page, independent
929 * of their state. The dirty state however is entirely
930 * meaningless for holes (!mapped && uptodate), so skip
931 * buffers covering holes here.
3d9b02e3
ES
932 */
933 if (!buffer_mapped(bh) && buffer_uptodate(bh)) {
3d9b02e3
ES
934 imap_valid = 0;
935 continue;
936 }
937
aeea1b1f
CH
938 if (buffer_unwritten(bh)) {
939 if (type != IO_UNWRITTEN) {
940 type = IO_UNWRITTEN;
941 imap_valid = 0;
1da177e4 942 }
aeea1b1f
CH
943 } else if (buffer_delay(bh)) {
944 if (type != IO_DELALLOC) {
945 type = IO_DELALLOC;
946 imap_valid = 0;
1da177e4 947 }
89f3b363 948 } else if (buffer_uptodate(bh)) {
a206c817
CH
949 if (type != IO_OVERWRITE) {
950 type = IO_OVERWRITE;
85da94c6
CH
951 imap_valid = 0;
952 }
aeea1b1f
CH
953 } else {
954 if (PageUptodate(page)) {
955 ASSERT(buffer_mapped(bh));
956 imap_valid = 0;
6c4fe19f 957 }
aeea1b1f
CH
958 continue;
959 }
d5cb48aa 960
aeea1b1f
CH
961 if (imap_valid)
962 imap_valid = xfs_imap_valid(inode, &imap, offset);
963 if (!imap_valid) {
964 /*
965 * If we didn't have a valid mapping then we need to
966 * put the new mapping into a separate ioend structure.
967 * This ensures non-contiguous extents always have
968 * separate ioends, which is particularly important
969 * for unwritten extent conversion at I/O completion
970 * time.
971 */
972 new_ioend = 1;
973 err = xfs_map_blocks(inode, offset, &imap, type,
974 nonblocking);
975 if (err)
976 goto error;
977 imap_valid = xfs_imap_valid(inode, &imap, offset);
978 }
979 if (imap_valid) {
ecff71e6
CH
980 lock_buffer(bh);
981 if (type != IO_OVERWRITE)
aeea1b1f
CH
982 xfs_map_at_offset(inode, bh, &imap, offset);
983 xfs_add_to_ioend(inode, bh, offset, type, &ioend,
984 new_ioend);
985 count++;
1da177e4 986 }
f6d6d4fc
CH
987
988 if (!iohead)
989 iohead = ioend;
990
991 } while (offset += len, ((bh = bh->b_this_page) != head));
1da177e4
LT
992
993 if (uptodate && bh == head)
994 SetPageUptodate(page);
995
89f3b363 996 xfs_start_page_writeback(page, 1, count);
1da177e4 997
558e6891 998 if (ioend && imap_valid) {
bd1556a1
CH
999 xfs_off_t end_index;
1000
1001 end_index = imap.br_startoff + imap.br_blockcount;
1002
1003 /* to bytes */
1004 end_index <<= inode->i_blkbits;
1005
1006 /* to pages */
1007 end_index = (end_index - 1) >> PAGE_CACHE_SHIFT;
1008
1009 /* check against file size */
1010 if (end_index > last_index)
1011 end_index = last_index;
8699bb0a 1012
207d0416 1013 xfs_cluster_write(inode, page->index + 1, &imap, &ioend,
2fa24f92 1014 wbc, end_index);
1da177e4
LT
1015 }
1016
f6d6d4fc 1017 if (iohead)
06342cf8 1018 xfs_submit_ioend(wbc, iohead);
f6d6d4fc 1019
89f3b363 1020 return 0;
1da177e4
LT
1021
1022error:
f6d6d4fc
CH
1023 if (iohead)
1024 xfs_cancel_ioend(iohead);
1da177e4 1025
b5420f23
CH
1026 if (err == -EAGAIN)
1027 goto redirty;
1028
20cb52eb 1029 xfs_aops_discard_page(page);
89f3b363
CH
1030 ClearPageUptodate(page);
1031 unlock_page(page);
1da177e4 1032 return err;
f51623b2 1033
b5420f23 1034redirty:
f51623b2
NS
1035 redirty_page_for_writepage(wbc, page);
1036 unlock_page(page);
1037 return 0;
f51623b2
NS
1038}
1039
7d4fb40a
NS
1040STATIC int
1041xfs_vm_writepages(
1042 struct address_space *mapping,
1043 struct writeback_control *wbc)
1044{
b3aea4ed 1045 xfs_iflags_clear(XFS_I(mapping->host), XFS_ITRUNCATED);
7d4fb40a
NS
1046 return generic_writepages(mapping, wbc);
1047}
1048
f51623b2
NS
1049/*
1050 * Called to move a page into cleanable state - and from there
89f3b363 1051 * to be released. The page should already be clean. We always
f51623b2
NS
1052 * have buffer heads in this call.
1053 *
89f3b363 1054 * Returns 1 if the page is ok to release, 0 otherwise.
f51623b2
NS
1055 */
1056STATIC int
238f4c54 1057xfs_vm_releasepage(
f51623b2
NS
1058 struct page *page,
1059 gfp_t gfp_mask)
1060{
20cb52eb 1061 int delalloc, unwritten;
f51623b2 1062
89f3b363 1063 trace_xfs_releasepage(page->mapping->host, page, 0);
238f4c54 1064
20cb52eb 1065 xfs_count_page_state(page, &delalloc, &unwritten);
f51623b2 1066
89f3b363 1067 if (WARN_ON(delalloc))
f51623b2 1068 return 0;
89f3b363 1069 if (WARN_ON(unwritten))
f51623b2
NS
1070 return 0;
1071
f51623b2
NS
1072 return try_to_free_buffers(page);
1073}
1074
1da177e4 1075STATIC int
c2536668 1076__xfs_get_blocks(
1da177e4
LT
1077 struct inode *inode,
1078 sector_t iblock,
1da177e4
LT
1079 struct buffer_head *bh_result,
1080 int create,
f2bde9b8 1081 int direct)
1da177e4 1082{
a206c817
CH
1083 struct xfs_inode *ip = XFS_I(inode);
1084 struct xfs_mount *mp = ip->i_mount;
1085 xfs_fileoff_t offset_fsb, end_fsb;
1086 int error = 0;
1087 int lockmode = 0;
207d0416 1088 struct xfs_bmbt_irec imap;
a206c817 1089 int nimaps = 1;
fdc7ed75
NS
1090 xfs_off_t offset;
1091 ssize_t size;
207d0416 1092 int new = 0;
a206c817
CH
1093
1094 if (XFS_FORCED_SHUTDOWN(mp))
1095 return -XFS_ERROR(EIO);
1da177e4 1096
fdc7ed75 1097 offset = (xfs_off_t)iblock << inode->i_blkbits;
c2536668
NS
1098 ASSERT(bh_result->b_size >= (1 << inode->i_blkbits));
1099 size = bh_result->b_size;
364f358a
LM
1100
1101 if (!create && direct && offset >= i_size_read(inode))
1102 return 0;
1103
a206c817
CH
1104 if (create) {
1105 lockmode = XFS_ILOCK_EXCL;
1106 xfs_ilock(ip, lockmode);
1107 } else {
1108 lockmode = xfs_ilock_map_shared(ip);
1109 }
f2bde9b8 1110
a206c817
CH
1111 ASSERT(offset <= mp->m_maxioffset);
1112 if (offset + size > mp->m_maxioffset)
1113 size = mp->m_maxioffset - offset;
1114 end_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)offset + size);
1115 offset_fsb = XFS_B_TO_FSBT(mp, offset);
1116
5c8ed202
DC
1117 error = xfs_bmapi_read(ip, offset_fsb, end_fsb - offset_fsb,
1118 &imap, &nimaps, XFS_BMAPI_ENTIRE);
1da177e4 1119 if (error)
a206c817
CH
1120 goto out_unlock;
1121
1122 if (create &&
1123 (!nimaps ||
1124 (imap.br_startblock == HOLESTARTBLOCK ||
1125 imap.br_startblock == DELAYSTARTBLOCK))) {
1126 if (direct) {
1127 error = xfs_iomap_write_direct(ip, offset, size,
1128 &imap, nimaps);
1129 } else {
1130 error = xfs_iomap_write_delay(ip, offset, size, &imap);
1131 }
1132 if (error)
1133 goto out_unlock;
1134
1135 trace_xfs_get_blocks_alloc(ip, offset, size, 0, &imap);
1136 } else if (nimaps) {
1137 trace_xfs_get_blocks_found(ip, offset, size, 0, &imap);
1138 } else {
1139 trace_xfs_get_blocks_notfound(ip, offset, size);
1140 goto out_unlock;
1141 }
1142 xfs_iunlock(ip, lockmode);
1da177e4 1143
207d0416
CH
1144 if (imap.br_startblock != HOLESTARTBLOCK &&
1145 imap.br_startblock != DELAYSTARTBLOCK) {
87cbc49c
NS
1146 /*
1147 * For unwritten extents do not report a disk address on
1da177e4
LT
1148 * the read case (treat as if we're reading into a hole).
1149 */
207d0416
CH
1150 if (create || !ISUNWRITTEN(&imap))
1151 xfs_map_buffer(inode, bh_result, &imap, offset);
1152 if (create && ISUNWRITTEN(&imap)) {
1da177e4
LT
1153 if (direct)
1154 bh_result->b_private = inode;
1155 set_buffer_unwritten(bh_result);
1da177e4
LT
1156 }
1157 }
1158
c2536668
NS
1159 /*
1160 * If this is a realtime file, data may be on a different device.
1161 * to that pointed to from the buffer_head b_bdev currently.
1162 */
046f1685 1163 bh_result->b_bdev = xfs_find_bdev_for_inode(inode);
1da177e4 1164
c2536668 1165 /*
549054af
DC
1166 * If we previously allocated a block out beyond eof and we are now
1167 * coming back to use it then we will need to flag it as new even if it
1168 * has a disk address.
1169 *
1170 * With sub-block writes into unwritten extents we also need to mark
1171 * the buffer as new so that the unwritten parts of the buffer gets
1172 * correctly zeroed.
1da177e4
LT
1173 */
1174 if (create &&
1175 ((!buffer_mapped(bh_result) && !buffer_uptodate(bh_result)) ||
549054af 1176 (offset >= i_size_read(inode)) ||
207d0416 1177 (new || ISUNWRITTEN(&imap))))
1da177e4 1178 set_buffer_new(bh_result);
1da177e4 1179
207d0416 1180 if (imap.br_startblock == DELAYSTARTBLOCK) {
1da177e4
LT
1181 BUG_ON(direct);
1182 if (create) {
1183 set_buffer_uptodate(bh_result);
1184 set_buffer_mapped(bh_result);
1185 set_buffer_delay(bh_result);
1186 }
1187 }
1188
2b8f12b7
CH
1189 /*
1190 * If this is O_DIRECT or the mpage code calling tell them how large
1191 * the mapping is, so that we can avoid repeated get_blocks calls.
1192 */
c2536668 1193 if (direct || size > (1 << inode->i_blkbits)) {
2b8f12b7
CH
1194 xfs_off_t mapping_size;
1195
1196 mapping_size = imap.br_startoff + imap.br_blockcount - iblock;
1197 mapping_size <<= inode->i_blkbits;
1198
1199 ASSERT(mapping_size > 0);
1200 if (mapping_size > size)
1201 mapping_size = size;
1202 if (mapping_size > LONG_MAX)
1203 mapping_size = LONG_MAX;
1204
1205 bh_result->b_size = mapping_size;
1da177e4
LT
1206 }
1207
1208 return 0;
a206c817
CH
1209
1210out_unlock:
1211 xfs_iunlock(ip, lockmode);
1212 return -error;
1da177e4
LT
1213}
1214
1215int
c2536668 1216xfs_get_blocks(
1da177e4
LT
1217 struct inode *inode,
1218 sector_t iblock,
1219 struct buffer_head *bh_result,
1220 int create)
1221{
f2bde9b8 1222 return __xfs_get_blocks(inode, iblock, bh_result, create, 0);
1da177e4
LT
1223}
1224
1225STATIC int
e4c573bb 1226xfs_get_blocks_direct(
1da177e4
LT
1227 struct inode *inode,
1228 sector_t iblock,
1da177e4
LT
1229 struct buffer_head *bh_result,
1230 int create)
1231{
f2bde9b8 1232 return __xfs_get_blocks(inode, iblock, bh_result, create, 1);
1da177e4
LT
1233}
1234
209fb87a
CH
1235/*
1236 * Complete a direct I/O write request.
1237 *
1238 * If the private argument is non-NULL __xfs_get_blocks signals us that we
1239 * need to issue a transaction to convert the range from unwritten to written
1240 * extents. In case this is regular synchronous I/O we just call xfs_end_io
25985edc 1241 * to do this and we are done. But in case this was a successful AIO
209fb87a
CH
1242 * request this handler is called from interrupt context, from which we
1243 * can't start transactions. In that case offload the I/O completion to
1244 * the workqueues we also use for buffered I/O completion.
1245 */
f0973863 1246STATIC void
209fb87a
CH
1247xfs_end_io_direct_write(
1248 struct kiocb *iocb,
1249 loff_t offset,
1250 ssize_t size,
1251 void *private,
1252 int ret,
1253 bool is_async)
f0973863 1254{
209fb87a 1255 struct xfs_ioend *ioend = iocb->private;
f0973863 1256
2813d682
CH
1257 /*
1258 * While the generic direct I/O code updates the inode size, it does
1259 * so only after the end_io handler is called, which means our
1260 * end_io handler thinks the on-disk size is outside the in-core
1261 * size. To prevent this just update it a little bit earlier here.
1262 */
1263 if (offset + size > i_size_read(ioend->io_inode))
1264 i_size_write(ioend->io_inode, offset + size);
1265
f0973863 1266 /*
209fb87a
CH
1267 * blockdev_direct_IO can return an error even after the I/O
1268 * completion handler was called. Thus we need to protect
1269 * against double-freeing.
f0973863 1270 */
209fb87a
CH
1271 iocb->private = NULL;
1272
ba87ea69
LM
1273 ioend->io_offset = offset;
1274 ioend->io_size = size;
c859cdd1
CH
1275 ioend->io_iocb = iocb;
1276 ioend->io_result = ret;
209fb87a
CH
1277 if (private && size > 0)
1278 ioend->io_type = IO_UNWRITTEN;
1279
1280 if (is_async) {
c859cdd1 1281 ioend->io_isasync = 1;
209fb87a 1282 xfs_finish_ioend(ioend);
f0973863 1283 } else {
209fb87a 1284 xfs_finish_ioend_sync(ioend);
f0973863 1285 }
f0973863
CH
1286}
1287
1da177e4 1288STATIC ssize_t
e4c573bb 1289xfs_vm_direct_IO(
1da177e4
LT
1290 int rw,
1291 struct kiocb *iocb,
1292 const struct iovec *iov,
1293 loff_t offset,
1294 unsigned long nr_segs)
1295{
209fb87a
CH
1296 struct inode *inode = iocb->ki_filp->f_mapping->host;
1297 struct block_device *bdev = xfs_find_bdev_for_inode(inode);
1298 ssize_t ret;
1299
1300 if (rw & WRITE) {
a206c817 1301 iocb->private = xfs_alloc_ioend(inode, IO_DIRECT);
209fb87a 1302
eafdc7d1
CH
1303 ret = __blockdev_direct_IO(rw, iocb, inode, bdev, iov,
1304 offset, nr_segs,
1305 xfs_get_blocks_direct,
1306 xfs_end_io_direct_write, NULL, 0);
209fb87a
CH
1307 if (ret != -EIOCBQUEUED && iocb->private)
1308 xfs_destroy_ioend(iocb->private);
1309 } else {
eafdc7d1
CH
1310 ret = __blockdev_direct_IO(rw, iocb, inode, bdev, iov,
1311 offset, nr_segs,
1312 xfs_get_blocks_direct,
1313 NULL, NULL, 0);
209fb87a 1314 }
f0973863 1315
f0973863 1316 return ret;
1da177e4
LT
1317}
1318
fa9b227e
CH
1319STATIC void
1320xfs_vm_write_failed(
1321 struct address_space *mapping,
1322 loff_t to)
1323{
1324 struct inode *inode = mapping->host;
1325
1326 if (to > inode->i_size) {
c726de44 1327 /*
2813d682
CH
1328 * Punch out the delalloc blocks we have already allocated.
1329 *
1330 * Don't bother with xfs_setattr given that nothing can have
1331 * made it to disk yet as the page is still locked at this
1332 * point.
c726de44
DC
1333 */
1334 struct xfs_inode *ip = XFS_I(inode);
1335 xfs_fileoff_t start_fsb;
1336 xfs_fileoff_t end_fsb;
1337 int error;
1338
1339 truncate_pagecache(inode, to, inode->i_size);
1340
1341 /*
1342 * Check if there are any blocks that are outside of i_size
1343 * that need to be trimmed back.
1344 */
1345 start_fsb = XFS_B_TO_FSB(ip->i_mount, inode->i_size) + 1;
1346 end_fsb = XFS_B_TO_FSB(ip->i_mount, to);
1347 if (end_fsb <= start_fsb)
1348 return;
1349
1350 xfs_ilock(ip, XFS_ILOCK_EXCL);
1351 error = xfs_bmap_punch_delalloc_range(ip, start_fsb,
1352 end_fsb - start_fsb);
1353 if (error) {
1354 /* something screwed, just bail */
1355 if (!XFS_FORCED_SHUTDOWN(ip->i_mount)) {
4f10700a 1356 xfs_alert(ip->i_mount,
c726de44
DC
1357 "xfs_vm_write_failed: unable to clean up ino %lld",
1358 ip->i_ino);
1359 }
1360 }
1361 xfs_iunlock(ip, XFS_ILOCK_EXCL);
fa9b227e
CH
1362 }
1363}
1364
f51623b2 1365STATIC int
d79689c7 1366xfs_vm_write_begin(
f51623b2 1367 struct file *file,
d79689c7
NP
1368 struct address_space *mapping,
1369 loff_t pos,
1370 unsigned len,
1371 unsigned flags,
1372 struct page **pagep,
1373 void **fsdata)
f51623b2 1374{
155130a4
CH
1375 int ret;
1376
1377 ret = block_write_begin(mapping, pos, len, flags | AOP_FLAG_NOFS,
1378 pagep, xfs_get_blocks);
fa9b227e
CH
1379 if (unlikely(ret))
1380 xfs_vm_write_failed(mapping, pos + len);
1381 return ret;
1382}
1383
1384STATIC int
1385xfs_vm_write_end(
1386 struct file *file,
1387 struct address_space *mapping,
1388 loff_t pos,
1389 unsigned len,
1390 unsigned copied,
1391 struct page *page,
1392 void *fsdata)
1393{
1394 int ret;
155130a4 1395
fa9b227e
CH
1396 ret = generic_write_end(file, mapping, pos, len, copied, page, fsdata);
1397 if (unlikely(ret < len))
1398 xfs_vm_write_failed(mapping, pos + len);
155130a4 1399 return ret;
f51623b2 1400}
1da177e4
LT
1401
1402STATIC sector_t
e4c573bb 1403xfs_vm_bmap(
1da177e4
LT
1404 struct address_space *mapping,
1405 sector_t block)
1406{
1407 struct inode *inode = (struct inode *)mapping->host;
739bfb2a 1408 struct xfs_inode *ip = XFS_I(inode);
1da177e4 1409
cca28fb8 1410 trace_xfs_vm_bmap(XFS_I(inode));
126468b1 1411 xfs_ilock(ip, XFS_IOLOCK_SHARED);
739bfb2a 1412 xfs_flush_pages(ip, (xfs_off_t)0, -1, 0, FI_REMAPF);
126468b1 1413 xfs_iunlock(ip, XFS_IOLOCK_SHARED);
c2536668 1414 return generic_block_bmap(mapping, block, xfs_get_blocks);
1da177e4
LT
1415}
1416
1417STATIC int
e4c573bb 1418xfs_vm_readpage(
1da177e4
LT
1419 struct file *unused,
1420 struct page *page)
1421{
c2536668 1422 return mpage_readpage(page, xfs_get_blocks);
1da177e4
LT
1423}
1424
1425STATIC int
e4c573bb 1426xfs_vm_readpages(
1da177e4
LT
1427 struct file *unused,
1428 struct address_space *mapping,
1429 struct list_head *pages,
1430 unsigned nr_pages)
1431{
c2536668 1432 return mpage_readpages(mapping, pages, nr_pages, xfs_get_blocks);
1da177e4
LT
1433}
1434
f5e54d6e 1435const struct address_space_operations xfs_address_space_operations = {
e4c573bb
NS
1436 .readpage = xfs_vm_readpage,
1437 .readpages = xfs_vm_readpages,
1438 .writepage = xfs_vm_writepage,
7d4fb40a 1439 .writepages = xfs_vm_writepages,
238f4c54
NS
1440 .releasepage = xfs_vm_releasepage,
1441 .invalidatepage = xfs_vm_invalidatepage,
d79689c7 1442 .write_begin = xfs_vm_write_begin,
fa9b227e 1443 .write_end = xfs_vm_write_end,
e4c573bb
NS
1444 .bmap = xfs_vm_bmap,
1445 .direct_IO = xfs_vm_direct_IO,
e965f963 1446 .migratepage = buffer_migrate_page,
bddaafa1 1447 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 1448 .error_remove_page = generic_error_remove_page,
1da177e4 1449};