]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - fs/xfs/xfs_aops.c
mm, fs: remove remaining PAGE_CACHE_* and page_cache_{get,release} usage
[mirror_ubuntu-bionic-kernel.git] / fs / xfs / xfs_aops.c
CommitLineData
1da177e4 1/*
7b718769
NS
2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
1da177e4 4 *
7b718769
NS
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
1da177e4
LT
7 * published by the Free Software Foundation.
8 *
7b718769
NS
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
1da177e4 13 *
7b718769
NS
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
1da177e4 17 */
1da177e4 18#include "xfs.h"
70a9883c 19#include "xfs_shared.h"
239880ef
DC
20#include "xfs_format.h"
21#include "xfs_log_format.h"
22#include "xfs_trans_resv.h"
1da177e4 23#include "xfs_mount.h"
1da177e4 24#include "xfs_inode.h"
239880ef 25#include "xfs_trans.h"
281627df 26#include "xfs_inode_item.h"
a844f451 27#include "xfs_alloc.h"
1da177e4 28#include "xfs_error.h"
1da177e4 29#include "xfs_iomap.h"
0b1b213f 30#include "xfs_trace.h"
3ed3a434 31#include "xfs_bmap.h"
68988114 32#include "xfs_bmap_util.h"
a4fbe6ab 33#include "xfs_bmap_btree.h"
5a0e3ad6 34#include <linux/gfp.h>
1da177e4 35#include <linux/mpage.h>
10ce4444 36#include <linux/pagevec.h>
1da177e4
LT
37#include <linux/writeback.h>
38
273dda76
CH
39/* flags for direct write completions */
40#define XFS_DIO_FLAG_UNWRITTEN (1 << 0)
41#define XFS_DIO_FLAG_APPEND (1 << 1)
42
fbcc0256
DC
43/*
44 * structure owned by writepages passed to individual writepage calls
45 */
46struct xfs_writepage_ctx {
47 struct xfs_bmbt_irec imap;
48 bool imap_valid;
49 unsigned int io_type;
fbcc0256
DC
50 struct xfs_ioend *ioend;
51 sector_t last_block;
52};
53
0b1b213f 54void
f51623b2
NS
55xfs_count_page_state(
56 struct page *page,
57 int *delalloc,
f51623b2
NS
58 int *unwritten)
59{
60 struct buffer_head *bh, *head;
61
20cb52eb 62 *delalloc = *unwritten = 0;
f51623b2
NS
63
64 bh = head = page_buffers(page);
65 do {
20cb52eb 66 if (buffer_unwritten(bh))
f51623b2
NS
67 (*unwritten) = 1;
68 else if (buffer_delay(bh))
69 (*delalloc) = 1;
70 } while ((bh = bh->b_this_page) != head);
71}
72
20a90f58 73struct block_device *
6214ed44 74xfs_find_bdev_for_inode(
046f1685 75 struct inode *inode)
6214ed44 76{
046f1685 77 struct xfs_inode *ip = XFS_I(inode);
6214ed44
CH
78 struct xfs_mount *mp = ip->i_mount;
79
71ddabb9 80 if (XFS_IS_REALTIME_INODE(ip))
6214ed44
CH
81 return mp->m_rtdev_targp->bt_bdev;
82 else
83 return mp->m_ddev_targp->bt_bdev;
84}
85
f6d6d4fc
CH
86/*
87 * We're now finished for good with this ioend structure.
88 * Update the page state via the associated buffer_heads,
89 * release holds on the inode and bio, and finally free
90 * up memory. Do not use the ioend after this.
91 */
0829c360
CH
92STATIC void
93xfs_destroy_ioend(
94 xfs_ioend_t *ioend)
95{
f6d6d4fc
CH
96 struct buffer_head *bh, *next;
97
98 for (bh = ioend->io_buffer_head; bh; bh = next) {
99 next = bh->b_private;
7d04a335 100 bh->b_end_io(bh, !ioend->io_error);
f6d6d4fc 101 }
583fa586 102
0829c360
CH
103 mempool_free(ioend, xfs_ioend_pool);
104}
105
fc0063c4
CH
106/*
107 * Fast and loose check if this write could update the on-disk inode size.
108 */
109static inline bool xfs_ioend_is_append(struct xfs_ioend *ioend)
110{
111 return ioend->io_offset + ioend->io_size >
112 XFS_I(ioend->io_inode)->i_d.di_size;
113}
114
281627df
CH
115STATIC int
116xfs_setfilesize_trans_alloc(
117 struct xfs_ioend *ioend)
118{
119 struct xfs_mount *mp = XFS_I(ioend->io_inode)->i_mount;
120 struct xfs_trans *tp;
121 int error;
122
123 tp = xfs_trans_alloc(mp, XFS_TRANS_FSYNC_TS);
124
3d3c8b52 125 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_fsyncts, 0, 0);
281627df 126 if (error) {
4906e215 127 xfs_trans_cancel(tp);
281627df
CH
128 return error;
129 }
130
131 ioend->io_append_trans = tp;
132
d9457dc0 133 /*
437a255a 134 * We may pass freeze protection with a transaction. So tell lockdep
d9457dc0
JK
135 * we released it.
136 */
bee9182d 137 __sb_writers_release(ioend->io_inode->i_sb, SB_FREEZE_FS);
281627df
CH
138 /*
139 * We hand off the transaction to the completion thread now, so
140 * clear the flag here.
141 */
142 current_restore_flags_nested(&tp->t_pflags, PF_FSTRANS);
143 return 0;
144}
145
ba87ea69 146/*
2813d682 147 * Update on-disk file size now that data has been written to disk.
ba87ea69 148 */
281627df 149STATIC int
ba87ea69 150xfs_setfilesize(
2ba66237
CH
151 struct xfs_inode *ip,
152 struct xfs_trans *tp,
153 xfs_off_t offset,
154 size_t size)
ba87ea69 155{
ba87ea69 156 xfs_fsize_t isize;
ba87ea69 157
aa6bf01d 158 xfs_ilock(ip, XFS_ILOCK_EXCL);
2ba66237 159 isize = xfs_new_eof(ip, offset + size);
281627df
CH
160 if (!isize) {
161 xfs_iunlock(ip, XFS_ILOCK_EXCL);
4906e215 162 xfs_trans_cancel(tp);
281627df 163 return 0;
ba87ea69
LM
164 }
165
2ba66237 166 trace_xfs_setfilesize(ip, offset, size);
281627df
CH
167
168 ip->i_d.di_size = isize;
169 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
170 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
171
70393313 172 return xfs_trans_commit(tp);
77d7a0c2
DC
173}
174
2ba66237
CH
175STATIC int
176xfs_setfilesize_ioend(
177 struct xfs_ioend *ioend)
178{
179 struct xfs_inode *ip = XFS_I(ioend->io_inode);
180 struct xfs_trans *tp = ioend->io_append_trans;
181
182 /*
183 * The transaction may have been allocated in the I/O submission thread,
184 * thus we need to mark ourselves as being in a transaction manually.
185 * Similarly for freeze protection.
186 */
187 current_set_flags_nested(&tp->t_pflags, PF_FSTRANS);
bee9182d 188 __sb_writers_acquired(VFS_I(ip)->i_sb, SB_FREEZE_FS);
2ba66237 189
5cb13dcd
Z
190 /* we abort the update if there was an IO error */
191 if (ioend->io_error) {
192 xfs_trans_cancel(tp);
193 return ioend->io_error;
194 }
195
2ba66237
CH
196 return xfs_setfilesize(ip, tp, ioend->io_offset, ioend->io_size);
197}
198
77d7a0c2 199/*
209fb87a 200 * Schedule IO completion handling on the final put of an ioend.
fc0063c4
CH
201 *
202 * If there is no work to do we might as well call it a day and free the
203 * ioend right now.
77d7a0c2
DC
204 */
205STATIC void
206xfs_finish_ioend(
209fb87a 207 struct xfs_ioend *ioend)
77d7a0c2
DC
208{
209 if (atomic_dec_and_test(&ioend->io_remaining)) {
aa6bf01d
CH
210 struct xfs_mount *mp = XFS_I(ioend->io_inode)->i_mount;
211
0d882a36 212 if (ioend->io_type == XFS_IO_UNWRITTEN)
aa6bf01d 213 queue_work(mp->m_unwritten_workqueue, &ioend->io_work);
2ba66237 214 else if (ioend->io_append_trans)
aa6bf01d 215 queue_work(mp->m_data_workqueue, &ioend->io_work);
fc0063c4
CH
216 else
217 xfs_destroy_ioend(ioend);
77d7a0c2 218 }
ba87ea69
LM
219}
220
0829c360 221/*
5ec4fabb 222 * IO write completion.
f6d6d4fc
CH
223 */
224STATIC void
5ec4fabb 225xfs_end_io(
77d7a0c2 226 struct work_struct *work)
0829c360 227{
77d7a0c2
DC
228 xfs_ioend_t *ioend = container_of(work, xfs_ioend_t, io_work);
229 struct xfs_inode *ip = XFS_I(ioend->io_inode);
69418932 230 int error = 0;
ba87ea69 231
af055e37
BF
232 /*
233 * Set an error if the mount has shut down and proceed with end I/O
234 * processing so it can perform whatever cleanups are necessary.
235 */
236 if (XFS_FORCED_SHUTDOWN(ip->i_mount))
810627d9 237 ioend->io_error = -EIO;
04f658ee 238
5ec4fabb
CH
239 /*
240 * For unwritten extents we need to issue transactions to convert a
241 * range to normal written extens after the data I/O has finished.
5cb13dcd
Z
242 * Detecting and handling completion IO errors is done individually
243 * for each case as different cleanup operations need to be performed
244 * on error.
5ec4fabb 245 */
0d882a36 246 if (ioend->io_type == XFS_IO_UNWRITTEN) {
5cb13dcd
Z
247 if (ioend->io_error)
248 goto done;
437a255a
DC
249 error = xfs_iomap_write_unwritten(ip, ioend->io_offset,
250 ioend->io_size);
281627df 251 } else if (ioend->io_append_trans) {
2ba66237 252 error = xfs_setfilesize_ioend(ioend);
84803fb7 253 } else {
281627df 254 ASSERT(!xfs_ioend_is_append(ioend));
5ec4fabb 255 }
ba87ea69 256
04f658ee 257done:
437a255a 258 if (error)
2451337d 259 ioend->io_error = error;
aa6bf01d 260 xfs_destroy_ioend(ioend);
c626d174
DC
261}
262
0829c360
CH
263/*
264 * Allocate and initialise an IO completion structure.
265 * We need to track unwritten extent write completion here initially.
266 * We'll need to extend this for updating the ondisk inode size later
267 * (vs. incore size).
268 */
269STATIC xfs_ioend_t *
270xfs_alloc_ioend(
f6d6d4fc
CH
271 struct inode *inode,
272 unsigned int type)
0829c360
CH
273{
274 xfs_ioend_t *ioend;
275
276 ioend = mempool_alloc(xfs_ioend_pool, GFP_NOFS);
277
278 /*
279 * Set the count to 1 initially, which will prevent an I/O
280 * completion callback from happening before we have started
281 * all the I/O from calling the completion routine too early.
282 */
283 atomic_set(&ioend->io_remaining, 1);
7d04a335 284 ioend->io_error = 0;
e10de372 285 INIT_LIST_HEAD(&ioend->io_list);
f6d6d4fc 286 ioend->io_type = type;
b677c210 287 ioend->io_inode = inode;
c1a073bd 288 ioend->io_buffer_head = NULL;
f6d6d4fc 289 ioend->io_buffer_tail = NULL;
0829c360
CH
290 ioend->io_offset = 0;
291 ioend->io_size = 0;
281627df 292 ioend->io_append_trans = NULL;
0829c360 293
5ec4fabb 294 INIT_WORK(&ioend->io_work, xfs_end_io);
0829c360
CH
295 return ioend;
296}
297
1da177e4
LT
298STATIC int
299xfs_map_blocks(
300 struct inode *inode,
301 loff_t offset,
207d0416 302 struct xfs_bmbt_irec *imap,
988ef927 303 int type)
1da177e4 304{
a206c817
CH
305 struct xfs_inode *ip = XFS_I(inode);
306 struct xfs_mount *mp = ip->i_mount;
ed1e7b7e 307 ssize_t count = 1 << inode->i_blkbits;
a206c817
CH
308 xfs_fileoff_t offset_fsb, end_fsb;
309 int error = 0;
a206c817
CH
310 int bmapi_flags = XFS_BMAPI_ENTIRE;
311 int nimaps = 1;
312
313 if (XFS_FORCED_SHUTDOWN(mp))
b474c7ae 314 return -EIO;
a206c817 315
0d882a36 316 if (type == XFS_IO_UNWRITTEN)
a206c817 317 bmapi_flags |= XFS_BMAPI_IGSTATE;
8ff2957d 318
988ef927 319 xfs_ilock(ip, XFS_ILOCK_SHARED);
8ff2957d
CH
320 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
321 (ip->i_df.if_flags & XFS_IFEXTENTS));
d2c28191 322 ASSERT(offset <= mp->m_super->s_maxbytes);
8ff2957d 323
d2c28191
DC
324 if (offset + count > mp->m_super->s_maxbytes)
325 count = mp->m_super->s_maxbytes - offset;
a206c817
CH
326 end_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)offset + count);
327 offset_fsb = XFS_B_TO_FSBT(mp, offset);
5c8ed202
DC
328 error = xfs_bmapi_read(ip, offset_fsb, end_fsb - offset_fsb,
329 imap, &nimaps, bmapi_flags);
8ff2957d 330 xfs_iunlock(ip, XFS_ILOCK_SHARED);
a206c817 331
8ff2957d 332 if (error)
2451337d 333 return error;
a206c817 334
0d882a36 335 if (type == XFS_IO_DELALLOC &&
8ff2957d 336 (!nimaps || isnullstartblock(imap->br_startblock))) {
0799a3e8 337 error = xfs_iomap_write_allocate(ip, offset, imap);
a206c817
CH
338 if (!error)
339 trace_xfs_map_blocks_alloc(ip, offset, count, type, imap);
2451337d 340 return error;
a206c817
CH
341 }
342
8ff2957d 343#ifdef DEBUG
0d882a36 344 if (type == XFS_IO_UNWRITTEN) {
8ff2957d
CH
345 ASSERT(nimaps);
346 ASSERT(imap->br_startblock != HOLESTARTBLOCK);
347 ASSERT(imap->br_startblock != DELAYSTARTBLOCK);
348 }
349#endif
350 if (nimaps)
351 trace_xfs_map_blocks_found(ip, offset, count, type, imap);
352 return 0;
1da177e4
LT
353}
354
fbcc0256 355STATIC bool
558e6891 356xfs_imap_valid(
8699bb0a 357 struct inode *inode,
207d0416 358 struct xfs_bmbt_irec *imap,
558e6891 359 xfs_off_t offset)
1da177e4 360{
558e6891 361 offset >>= inode->i_blkbits;
8699bb0a 362
558e6891
CH
363 return offset >= imap->br_startoff &&
364 offset < imap->br_startoff + imap->br_blockcount;
1da177e4
LT
365}
366
f6d6d4fc
CH
367/*
368 * BIO completion handler for buffered IO.
369 */
782e3b3b 370STATIC void
f6d6d4fc 371xfs_end_bio(
4246a0b6 372 struct bio *bio)
f6d6d4fc
CH
373{
374 xfs_ioend_t *ioend = bio->bi_private;
375
77a78806
LT
376 if (!ioend->io_error)
377 ioend->io_error = bio->bi_error;
f6d6d4fc
CH
378
379 /* Toss bio and pass work off to an xfsdatad thread */
f6d6d4fc
CH
380 bio->bi_private = NULL;
381 bio->bi_end_io = NULL;
f6d6d4fc 382 bio_put(bio);
7d04a335 383
209fb87a 384 xfs_finish_ioend(ioend);
f6d6d4fc
CH
385}
386
387STATIC void
388xfs_submit_ioend_bio(
06342cf8
CH
389 struct writeback_control *wbc,
390 xfs_ioend_t *ioend,
391 struct bio *bio)
f6d6d4fc
CH
392{
393 atomic_inc(&ioend->io_remaining);
f6d6d4fc
CH
394 bio->bi_private = ioend;
395 bio->bi_end_io = xfs_end_bio;
721a9602 396 submit_bio(wbc->sync_mode == WB_SYNC_ALL ? WRITE_SYNC : WRITE, bio);
f6d6d4fc
CH
397}
398
399STATIC struct bio *
400xfs_alloc_ioend_bio(
401 struct buffer_head *bh)
402{
b54ffb73 403 struct bio *bio = bio_alloc(GFP_NOIO, BIO_MAX_PAGES);
f6d6d4fc
CH
404
405 ASSERT(bio->bi_private == NULL);
4f024f37 406 bio->bi_iter.bi_sector = bh->b_blocknr * (bh->b_size >> 9);
f6d6d4fc 407 bio->bi_bdev = bh->b_bdev;
f6d6d4fc
CH
408 return bio;
409}
410
411STATIC void
412xfs_start_buffer_writeback(
413 struct buffer_head *bh)
414{
415 ASSERT(buffer_mapped(bh));
416 ASSERT(buffer_locked(bh));
417 ASSERT(!buffer_delay(bh));
418 ASSERT(!buffer_unwritten(bh));
419
420 mark_buffer_async_write(bh);
421 set_buffer_uptodate(bh);
422 clear_buffer_dirty(bh);
423}
424
425STATIC void
426xfs_start_page_writeback(
427 struct page *page,
e10de372 428 int clear_dirty)
f6d6d4fc
CH
429{
430 ASSERT(PageLocked(page));
431 ASSERT(!PageWriteback(page));
0d085a52
DC
432
433 /*
434 * if the page was not fully cleaned, we need to ensure that the higher
435 * layers come back to it correctly. That means we need to keep the page
436 * dirty, and for WB_SYNC_ALL writeback we need to ensure the
437 * PAGECACHE_TAG_TOWRITE index mark is not removed so another attempt to
438 * write this page in this writeback sweep will be made.
439 */
440 if (clear_dirty) {
92132021 441 clear_page_dirty_for_io(page);
0d085a52
DC
442 set_page_writeback(page);
443 } else
444 set_page_writeback_keepwrite(page);
445
f6d6d4fc 446 unlock_page(page);
f6d6d4fc
CH
447}
448
c7c1a7d8 449static inline int xfs_bio_add_buffer(struct bio *bio, struct buffer_head *bh)
f6d6d4fc
CH
450{
451 return bio_add_page(bio, bh->b_page, bh->b_size, bh_offset(bh));
452}
453
454/*
e10de372
DC
455 * Submit all of the bios for an ioend. We are only passed a single ioend at a
456 * time; the caller is responsible for chaining prior to submission.
7bf7f352
DC
457 *
458 * If @fail is non-zero, it means that we have a situation where some part of
459 * the submission process has failed after we have marked paged for writeback
460 * and unlocked them. In this situation, we need to fail the ioend chain rather
461 * than submit it to IO. This typically only happens on a filesystem shutdown.
f6d6d4fc 462 */
e10de372 463STATIC int
f6d6d4fc 464xfs_submit_ioend(
06342cf8 465 struct writeback_control *wbc,
7bf7f352 466 xfs_ioend_t *ioend,
e10de372 467 int status)
f6d6d4fc 468{
f6d6d4fc
CH
469 struct buffer_head *bh;
470 struct bio *bio;
471 sector_t lastblock = 0;
472
e10de372
DC
473 /* Reserve log space if we might write beyond the on-disk inode size. */
474 if (!status &&
475 ioend->io_type != XFS_IO_UNWRITTEN && xfs_ioend_is_append(ioend))
476 status = xfs_setfilesize_trans_alloc(ioend);
477 /*
478 * If we are failing the IO now, just mark the ioend with an
479 * error and finish it. This will run IO completion immediately
480 * as there is only one reference to the ioend at this point in
481 * time.
482 */
483 if (status) {
484 ioend->io_error = status;
485 xfs_finish_ioend(ioend);
486 return status;
487 }
d88992f6 488
e10de372
DC
489 bio = NULL;
490 for (bh = ioend->io_buffer_head; bh; bh = bh->b_private) {
f6d6d4fc 491
e10de372
DC
492 if (!bio) {
493retry:
494 bio = xfs_alloc_ioend_bio(bh);
495 } else if (bh->b_blocknr != lastblock + 1) {
496 xfs_submit_ioend_bio(wbc, ioend, bio);
497 goto retry;
7bf7f352
DC
498 }
499
e10de372 500 if (xfs_bio_add_buffer(bio, bh) != bh->b_size) {
06342cf8 501 xfs_submit_ioend_bio(wbc, ioend, bio);
e10de372
DC
502 goto retry;
503 }
f6d6d4fc 504
e10de372
DC
505 lastblock = bh->b_blocknr;
506 }
507 if (bio)
508 xfs_submit_ioend_bio(wbc, ioend, bio);
509 xfs_finish_ioend(ioend);
510 return 0;
f6d6d4fc
CH
511}
512
513/*
514 * Test to see if we've been building up a completion structure for
515 * earlier buffers -- if so, we try to append to this ioend if we
516 * can, otherwise we finish off any current ioend and start another.
e10de372
DC
517 * Return the ioend we finished off so that the caller can submit it
518 * once it has finished processing the dirty page.
f6d6d4fc
CH
519 */
520STATIC void
521xfs_add_to_ioend(
522 struct inode *inode,
523 struct buffer_head *bh,
7336cea8 524 xfs_off_t offset,
e10de372
DC
525 struct xfs_writepage_ctx *wpc,
526 struct list_head *iolist)
f6d6d4fc 527{
fbcc0256 528 if (!wpc->ioend || wpc->io_type != wpc->ioend->io_type ||
0df61da8
DW
529 bh->b_blocknr != wpc->last_block + 1 ||
530 offset != wpc->ioend->io_offset + wpc->ioend->io_size) {
fbcc0256
DC
531 struct xfs_ioend *new;
532
e10de372
DC
533 if (wpc->ioend)
534 list_add(&wpc->ioend->io_list, iolist);
535
fbcc0256
DC
536 new = xfs_alloc_ioend(inode, wpc->io_type);
537 new->io_offset = offset;
538 new->io_buffer_head = bh;
539 new->io_buffer_tail = bh;
fbcc0256 540 wpc->ioend = new;
f6d6d4fc 541 } else {
fbcc0256
DC
542 wpc->ioend->io_buffer_tail->b_private = bh;
543 wpc->ioend->io_buffer_tail = bh;
f6d6d4fc
CH
544 }
545
546 bh->b_private = NULL;
fbcc0256
DC
547 wpc->ioend->io_size += bh->b_size;
548 wpc->last_block = bh->b_blocknr;
e10de372 549 xfs_start_buffer_writeback(bh);
f6d6d4fc
CH
550}
551
87cbc49c
NS
552STATIC void
553xfs_map_buffer(
046f1685 554 struct inode *inode,
87cbc49c 555 struct buffer_head *bh,
207d0416 556 struct xfs_bmbt_irec *imap,
046f1685 557 xfs_off_t offset)
87cbc49c
NS
558{
559 sector_t bn;
8699bb0a 560 struct xfs_mount *m = XFS_I(inode)->i_mount;
207d0416
CH
561 xfs_off_t iomap_offset = XFS_FSB_TO_B(m, imap->br_startoff);
562 xfs_daddr_t iomap_bn = xfs_fsb_to_db(XFS_I(inode), imap->br_startblock);
87cbc49c 563
207d0416
CH
564 ASSERT(imap->br_startblock != HOLESTARTBLOCK);
565 ASSERT(imap->br_startblock != DELAYSTARTBLOCK);
87cbc49c 566
e513182d 567 bn = (iomap_bn >> (inode->i_blkbits - BBSHIFT)) +
8699bb0a 568 ((offset - iomap_offset) >> inode->i_blkbits);
87cbc49c 569
046f1685 570 ASSERT(bn || XFS_IS_REALTIME_INODE(XFS_I(inode)));
87cbc49c
NS
571
572 bh->b_blocknr = bn;
573 set_buffer_mapped(bh);
574}
575
1da177e4
LT
576STATIC void
577xfs_map_at_offset(
046f1685 578 struct inode *inode,
1da177e4 579 struct buffer_head *bh,
207d0416 580 struct xfs_bmbt_irec *imap,
046f1685 581 xfs_off_t offset)
1da177e4 582{
207d0416
CH
583 ASSERT(imap->br_startblock != HOLESTARTBLOCK);
584 ASSERT(imap->br_startblock != DELAYSTARTBLOCK);
1da177e4 585
207d0416 586 xfs_map_buffer(inode, bh, imap, offset);
1da177e4
LT
587 set_buffer_mapped(bh);
588 clear_buffer_delay(bh);
f6d6d4fc 589 clear_buffer_unwritten(bh);
1da177e4
LT
590}
591
1da177e4 592/*
a49935f2
DC
593 * Test if a given page contains at least one buffer of a given @type.
594 * If @check_all_buffers is true, then we walk all the buffers in the page to
595 * try to find one of the type passed in. If it is not set, then the caller only
596 * needs to check the first buffer on the page for a match.
1da177e4 597 */
a49935f2 598STATIC bool
6ffc4db5 599xfs_check_page_type(
10ce4444 600 struct page *page,
a49935f2
DC
601 unsigned int type,
602 bool check_all_buffers)
1da177e4 603{
a49935f2
DC
604 struct buffer_head *bh;
605 struct buffer_head *head;
1da177e4 606
a49935f2
DC
607 if (PageWriteback(page))
608 return false;
609 if (!page->mapping)
610 return false;
611 if (!page_has_buffers(page))
612 return false;
1da177e4 613
a49935f2
DC
614 bh = head = page_buffers(page);
615 do {
616 if (buffer_unwritten(bh)) {
617 if (type == XFS_IO_UNWRITTEN)
618 return true;
619 } else if (buffer_delay(bh)) {
805eeb8e 620 if (type == XFS_IO_DELALLOC)
a49935f2
DC
621 return true;
622 } else if (buffer_dirty(bh) && buffer_mapped(bh)) {
805eeb8e 623 if (type == XFS_IO_OVERWRITE)
a49935f2
DC
624 return true;
625 }
1da177e4 626
a49935f2
DC
627 /* If we are only checking the first buffer, we are done now. */
628 if (!check_all_buffers)
629 break;
630 } while ((bh = bh->b_this_page) != head);
1da177e4 631
a49935f2 632 return false;
1da177e4
LT
633}
634
3ed3a434
DC
635STATIC void
636xfs_vm_invalidatepage(
637 struct page *page,
d47992f8
LC
638 unsigned int offset,
639 unsigned int length)
3ed3a434 640{
34097dfe
LC
641 trace_xfs_invalidatepage(page->mapping->host, page, offset,
642 length);
643 block_invalidatepage(page, offset, length);
3ed3a434
DC
644}
645
646/*
647 * If the page has delalloc buffers on it, we need to punch them out before we
648 * invalidate the page. If we don't, we leave a stale delalloc mapping on the
649 * inode that can trip a BUG() in xfs_get_blocks() later on if a direct IO read
650 * is done on that same region - the delalloc extent is returned when none is
651 * supposed to be there.
652 *
653 * We prevent this by truncating away the delalloc regions on the page before
654 * invalidating it. Because they are delalloc, we can do this without needing a
655 * transaction. Indeed - if we get ENOSPC errors, we have to be able to do this
656 * truncation without a transaction as there is no space left for block
657 * reservation (typically why we see a ENOSPC in writeback).
658 *
659 * This is not a performance critical path, so for now just do the punching a
660 * buffer head at a time.
661 */
662STATIC void
663xfs_aops_discard_page(
664 struct page *page)
665{
666 struct inode *inode = page->mapping->host;
667 struct xfs_inode *ip = XFS_I(inode);
668 struct buffer_head *bh, *head;
669 loff_t offset = page_offset(page);
3ed3a434 670
a49935f2 671 if (!xfs_check_page_type(page, XFS_IO_DELALLOC, true))
3ed3a434
DC
672 goto out_invalidate;
673
e8c3753c
DC
674 if (XFS_FORCED_SHUTDOWN(ip->i_mount))
675 goto out_invalidate;
676
4f10700a 677 xfs_alert(ip->i_mount,
3ed3a434
DC
678 "page discard on page %p, inode 0x%llx, offset %llu.",
679 page, ip->i_ino, offset);
680
681 xfs_ilock(ip, XFS_ILOCK_EXCL);
682 bh = head = page_buffers(page);
683 do {
3ed3a434 684 int error;
c726de44 685 xfs_fileoff_t start_fsb;
3ed3a434
DC
686
687 if (!buffer_delay(bh))
688 goto next_buffer;
689
c726de44
DC
690 start_fsb = XFS_B_TO_FSBT(ip->i_mount, offset);
691 error = xfs_bmap_punch_delalloc_range(ip, start_fsb, 1);
3ed3a434
DC
692 if (error) {
693 /* something screwed, just bail */
e8c3753c 694 if (!XFS_FORCED_SHUTDOWN(ip->i_mount)) {
4f10700a 695 xfs_alert(ip->i_mount,
3ed3a434 696 "page discard unable to remove delalloc mapping.");
e8c3753c 697 }
3ed3a434
DC
698 break;
699 }
700next_buffer:
c726de44 701 offset += 1 << inode->i_blkbits;
3ed3a434
DC
702
703 } while ((bh = bh->b_this_page) != head);
704
705 xfs_iunlock(ip, XFS_ILOCK_EXCL);
706out_invalidate:
09cbfeaf 707 xfs_vm_invalidatepage(page, 0, PAGE_SIZE);
3ed3a434
DC
708 return;
709}
710
e10de372
DC
711/*
712 * We implement an immediate ioend submission policy here to avoid needing to
713 * chain multiple ioends and hence nest mempool allocations which can violate
714 * forward progress guarantees we need to provide. The current ioend we are
715 * adding buffers to is cached on the writepage context, and if the new buffer
716 * does not append to the cached ioend it will create a new ioend and cache that
717 * instead.
718 *
719 * If a new ioend is created and cached, the old ioend is returned and queued
720 * locally for submission once the entire page is processed or an error has been
721 * detected. While ioends are submitted immediately after they are completed,
722 * batching optimisations are provided by higher level block plugging.
723 *
724 * At the end of a writeback pass, there will be a cached ioend remaining on the
725 * writepage context that the caller will need to submit.
726 */
bfce7d2e
DC
727static int
728xfs_writepage_map(
729 struct xfs_writepage_ctx *wpc,
e10de372 730 struct writeback_control *wbc,
bfce7d2e
DC
731 struct inode *inode,
732 struct page *page,
733 loff_t offset,
734 __uint64_t end_offset)
735{
e10de372
DC
736 LIST_HEAD(submit_list);
737 struct xfs_ioend *ioend, *next;
bfce7d2e
DC
738 struct buffer_head *bh, *head;
739 ssize_t len = 1 << inode->i_blkbits;
740 int error = 0;
bfce7d2e 741 int count = 0;
e10de372 742 int uptodate = 1;
bfce7d2e
DC
743
744 bh = head = page_buffers(page);
745 offset = page_offset(page);
bfce7d2e
DC
746 do {
747 if (offset >= end_offset)
748 break;
749 if (!buffer_uptodate(bh))
750 uptodate = 0;
751
752 /*
753 * set_page_dirty dirties all buffers in a page, independent
754 * of their state. The dirty state however is entirely
755 * meaningless for holes (!mapped && uptodate), so skip
756 * buffers covering holes here.
757 */
758 if (!buffer_mapped(bh) && buffer_uptodate(bh)) {
759 wpc->imap_valid = false;
760 continue;
761 }
762
763 if (buffer_unwritten(bh)) {
764 if (wpc->io_type != XFS_IO_UNWRITTEN) {
765 wpc->io_type = XFS_IO_UNWRITTEN;
766 wpc->imap_valid = false;
767 }
768 } else if (buffer_delay(bh)) {
769 if (wpc->io_type != XFS_IO_DELALLOC) {
770 wpc->io_type = XFS_IO_DELALLOC;
771 wpc->imap_valid = false;
772 }
773 } else if (buffer_uptodate(bh)) {
774 if (wpc->io_type != XFS_IO_OVERWRITE) {
775 wpc->io_type = XFS_IO_OVERWRITE;
776 wpc->imap_valid = false;
777 }
778 } else {
779 if (PageUptodate(page))
780 ASSERT(buffer_mapped(bh));
781 /*
782 * This buffer is not uptodate and will not be
783 * written to disk. Ensure that we will put any
784 * subsequent writeable buffers into a new
785 * ioend.
786 */
787 wpc->imap_valid = false;
788 continue;
789 }
790
791 if (wpc->imap_valid)
792 wpc->imap_valid = xfs_imap_valid(inode, &wpc->imap,
793 offset);
794 if (!wpc->imap_valid) {
795 error = xfs_map_blocks(inode, offset, &wpc->imap,
796 wpc->io_type);
797 if (error)
e10de372 798 goto out;
bfce7d2e
DC
799 wpc->imap_valid = xfs_imap_valid(inode, &wpc->imap,
800 offset);
801 }
802 if (wpc->imap_valid) {
803 lock_buffer(bh);
804 if (wpc->io_type != XFS_IO_OVERWRITE)
805 xfs_map_at_offset(inode, bh, &wpc->imap, offset);
e10de372 806 xfs_add_to_ioend(inode, bh, offset, wpc, &submit_list);
bfce7d2e
DC
807 count++;
808 }
809
bfce7d2e
DC
810 } while (offset += len, ((bh = bh->b_this_page) != head));
811
812 if (uptodate && bh == head)
813 SetPageUptodate(page);
814
e10de372 815 ASSERT(wpc->ioend || list_empty(&submit_list));
bfce7d2e 816
e10de372 817out:
bfce7d2e 818 /*
e10de372
DC
819 * On error, we have to fail the ioend here because we have locked
820 * buffers in the ioend. If we don't do this, we'll deadlock
821 * invalidating the page as that tries to lock the buffers on the page.
822 * Also, because we may have set pages under writeback, we have to make
823 * sure we run IO completion to mark the error state of the IO
824 * appropriately, so we can't cancel the ioend directly here. That means
825 * we have to mark this page as under writeback if we included any
826 * buffers from it in the ioend chain so that completion treats it
827 * correctly.
bfce7d2e 828 *
e10de372
DC
829 * If we didn't include the page in the ioend, the on error we can
830 * simply discard and unlock it as there are no other users of the page
831 * or it's buffers right now. The caller will still need to trigger
832 * submission of outstanding ioends on the writepage context so they are
833 * treated correctly on error.
bfce7d2e 834 */
e10de372
DC
835 if (count) {
836 xfs_start_page_writeback(page, !error);
837
838 /*
839 * Preserve the original error if there was one, otherwise catch
840 * submission errors here and propagate into subsequent ioend
841 * submissions.
842 */
843 list_for_each_entry_safe(ioend, next, &submit_list, io_list) {
844 int error2;
845
846 list_del_init(&ioend->io_list);
847 error2 = xfs_submit_ioend(wbc, ioend, error);
848 if (error2 && !error)
849 error = error2;
850 }
851 } else if (error) {
bfce7d2e
DC
852 xfs_aops_discard_page(page);
853 ClearPageUptodate(page);
854 unlock_page(page);
e10de372
DC
855 } else {
856 /*
857 * We can end up here with no error and nothing to write if we
858 * race with a partial page truncate on a sub-page block sized
859 * filesystem. In that case we need to mark the page clean.
860 */
861 xfs_start_page_writeback(page, 1);
862 end_page_writeback(page);
bfce7d2e 863 }
e10de372 864
bfce7d2e
DC
865 mapping_set_error(page->mapping, error);
866 return error;
867}
868
1da177e4 869/*
89f3b363
CH
870 * Write out a dirty page.
871 *
872 * For delalloc space on the page we need to allocate space and flush it.
873 * For unwritten space on the page we need to start the conversion to
874 * regular allocated space.
89f3b363 875 * For any other dirty buffer heads on the page we should flush them.
1da177e4 876 */
1da177e4 877STATIC int
fbcc0256 878xfs_do_writepage(
89f3b363 879 struct page *page,
fbcc0256
DC
880 struct writeback_control *wbc,
881 void *data)
1da177e4 882{
fbcc0256 883 struct xfs_writepage_ctx *wpc = data;
89f3b363 884 struct inode *inode = page->mapping->host;
1da177e4 885 loff_t offset;
1da177e4 886 __uint64_t end_offset;
ad68972a 887 pgoff_t end_index;
89f3b363 888
34097dfe 889 trace_xfs_writepage(inode, page, 0, 0);
89f3b363 890
20cb52eb
CH
891 ASSERT(page_has_buffers(page));
892
89f3b363
CH
893 /*
894 * Refuse to write the page out if we are called from reclaim context.
895 *
d4f7a5cb
CH
896 * This avoids stack overflows when called from deeply used stacks in
897 * random callers for direct reclaim or memcg reclaim. We explicitly
898 * allow reclaim from kswapd as the stack usage there is relatively low.
89f3b363 899 *
94054fa3
MG
900 * This should never happen except in the case of a VM regression so
901 * warn about it.
89f3b363 902 */
94054fa3
MG
903 if (WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD)) ==
904 PF_MEMALLOC))
b5420f23 905 goto redirty;
1da177e4 906
89f3b363 907 /*
680a647b
CH
908 * Given that we do not allow direct reclaim to call us, we should
909 * never be called while in a filesystem transaction.
89f3b363 910 */
448011e2 911 if (WARN_ON_ONCE(current->flags & PF_FSTRANS))
b5420f23 912 goto redirty;
89f3b363 913
8695d27e 914 /*
ad68972a
DC
915 * Is this page beyond the end of the file?
916 *
8695d27e
JL
917 * The page index is less than the end_index, adjust the end_offset
918 * to the highest offset that this page should represent.
919 * -----------------------------------------------------
920 * | file mapping | <EOF> |
921 * -----------------------------------------------------
922 * | Page ... | Page N-2 | Page N-1 | Page N | |
923 * ^--------------------------------^----------|--------
924 * | desired writeback range | see else |
925 * ---------------------------------^------------------|
926 */
ad68972a 927 offset = i_size_read(inode);
09cbfeaf 928 end_index = offset >> PAGE_SHIFT;
8695d27e 929 if (page->index < end_index)
09cbfeaf 930 end_offset = (xfs_off_t)(page->index + 1) << PAGE_SHIFT;
8695d27e
JL
931 else {
932 /*
933 * Check whether the page to write out is beyond or straddles
934 * i_size or not.
935 * -------------------------------------------------------
936 * | file mapping | <EOF> |
937 * -------------------------------------------------------
938 * | Page ... | Page N-2 | Page N-1 | Page N | Beyond |
939 * ^--------------------------------^-----------|---------
940 * | | Straddles |
941 * ---------------------------------^-----------|--------|
942 */
09cbfeaf 943 unsigned offset_into_page = offset & (PAGE_SIZE - 1);
6b7a03f0
CH
944
945 /*
ff9a28f6
JK
946 * Skip the page if it is fully outside i_size, e.g. due to a
947 * truncate operation that is in progress. We must redirty the
948 * page so that reclaim stops reclaiming it. Otherwise
949 * xfs_vm_releasepage() is called on it and gets confused.
8695d27e
JL
950 *
951 * Note that the end_index is unsigned long, it would overflow
952 * if the given offset is greater than 16TB on 32-bit system
953 * and if we do check the page is fully outside i_size or not
954 * via "if (page->index >= end_index + 1)" as "end_index + 1"
955 * will be evaluated to 0. Hence this page will be redirtied
956 * and be written out repeatedly which would result in an
957 * infinite loop, the user program that perform this operation
958 * will hang. Instead, we can verify this situation by checking
959 * if the page to write is totally beyond the i_size or if it's
960 * offset is just equal to the EOF.
6b7a03f0 961 */
8695d27e
JL
962 if (page->index > end_index ||
963 (page->index == end_index && offset_into_page == 0))
ff9a28f6 964 goto redirty;
6b7a03f0
CH
965
966 /*
967 * The page straddles i_size. It must be zeroed out on each
968 * and every writepage invocation because it may be mmapped.
969 * "A file is mapped in multiples of the page size. For a file
8695d27e 970 * that is not a multiple of the page size, the remaining
6b7a03f0
CH
971 * memory is zeroed when mapped, and writes to that region are
972 * not written out to the file."
973 */
09cbfeaf 974 zero_user_segment(page, offset_into_page, PAGE_SIZE);
8695d27e
JL
975
976 /* Adjust the end_offset to the end of file */
977 end_offset = offset;
1da177e4
LT
978 }
979
e10de372 980 return xfs_writepage_map(wpc, wbc, inode, page, offset, end_offset);
f51623b2 981
b5420f23 982redirty:
f51623b2
NS
983 redirty_page_for_writepage(wbc, page);
984 unlock_page(page);
985 return 0;
f51623b2
NS
986}
987
fbcc0256
DC
988STATIC int
989xfs_vm_writepage(
990 struct page *page,
991 struct writeback_control *wbc)
992{
993 struct xfs_writepage_ctx wpc = {
994 .io_type = XFS_IO_INVALID,
995 };
996 int ret;
997
998 ret = xfs_do_writepage(page, wbc, &wpc);
e10de372
DC
999 if (wpc.ioend)
1000 ret = xfs_submit_ioend(wbc, wpc.ioend, ret);
1001 return ret;
fbcc0256
DC
1002}
1003
7d4fb40a
NS
1004STATIC int
1005xfs_vm_writepages(
1006 struct address_space *mapping,
1007 struct writeback_control *wbc)
1008{
fbcc0256
DC
1009 struct xfs_writepage_ctx wpc = {
1010 .io_type = XFS_IO_INVALID,
1011 };
1012 int ret;
1013
b3aea4ed 1014 xfs_iflags_clear(XFS_I(mapping->host), XFS_ITRUNCATED);
7f6d5b52
RZ
1015 if (dax_mapping(mapping))
1016 return dax_writeback_mapping_range(mapping,
1017 xfs_find_bdev_for_inode(mapping->host), wbc);
1018
fbcc0256 1019 ret = write_cache_pages(mapping, wbc, xfs_do_writepage, &wpc);
e10de372
DC
1020 if (wpc.ioend)
1021 ret = xfs_submit_ioend(wbc, wpc.ioend, ret);
1022 return ret;
7d4fb40a
NS
1023}
1024
f51623b2
NS
1025/*
1026 * Called to move a page into cleanable state - and from there
89f3b363 1027 * to be released. The page should already be clean. We always
f51623b2
NS
1028 * have buffer heads in this call.
1029 *
89f3b363 1030 * Returns 1 if the page is ok to release, 0 otherwise.
f51623b2
NS
1031 */
1032STATIC int
238f4c54 1033xfs_vm_releasepage(
f51623b2
NS
1034 struct page *page,
1035 gfp_t gfp_mask)
1036{
20cb52eb 1037 int delalloc, unwritten;
f51623b2 1038
34097dfe 1039 trace_xfs_releasepage(page->mapping->host, page, 0, 0);
238f4c54 1040
20cb52eb 1041 xfs_count_page_state(page, &delalloc, &unwritten);
f51623b2 1042
448011e2 1043 if (WARN_ON_ONCE(delalloc))
f51623b2 1044 return 0;
448011e2 1045 if (WARN_ON_ONCE(unwritten))
f51623b2
NS
1046 return 0;
1047
f51623b2
NS
1048 return try_to_free_buffers(page);
1049}
1050
a719370b 1051/*
273dda76
CH
1052 * When we map a DIO buffer, we may need to pass flags to
1053 * xfs_end_io_direct_write to tell it what kind of write IO we are doing.
3e12dbbd
DC
1054 *
1055 * Note that for DIO, an IO to the highest supported file block offset (i.e.
1056 * 2^63 - 1FSB bytes) will result in the offset + count overflowing a signed 64
1057 * bit variable. Hence if we see this overflow, we have to assume that the IO is
1058 * extending the file size. We won't know for sure until IO completion is run
1059 * and the actual max write offset is communicated to the IO completion
1060 * routine.
a719370b
DC
1061 */
1062static void
1063xfs_map_direct(
1064 struct inode *inode,
1065 struct buffer_head *bh_result,
1066 struct xfs_bmbt_irec *imap,
273dda76 1067 xfs_off_t offset)
a719370b 1068{
273dda76 1069 uintptr_t *flags = (uintptr_t *)&bh_result->b_private;
d5cc2e3f 1070 xfs_off_t size = bh_result->b_size;
d5cc2e3f 1071
273dda76
CH
1072 trace_xfs_get_blocks_map_direct(XFS_I(inode), offset, size,
1073 ISUNWRITTEN(imap) ? XFS_IO_UNWRITTEN : XFS_IO_OVERWRITE, imap);
d5cc2e3f 1074
273dda76
CH
1075 if (ISUNWRITTEN(imap)) {
1076 *flags |= XFS_DIO_FLAG_UNWRITTEN;
1077 set_buffer_defer_completion(bh_result);
1078 } else if (offset + size > i_size_read(inode) || offset + size < 0) {
1079 *flags |= XFS_DIO_FLAG_APPEND;
a06c277a 1080 set_buffer_defer_completion(bh_result);
a719370b
DC
1081 }
1082}
1083
1fdca9c2
DC
1084/*
1085 * If this is O_DIRECT or the mpage code calling tell them how large the mapping
1086 * is, so that we can avoid repeated get_blocks calls.
1087 *
1088 * If the mapping spans EOF, then we have to break the mapping up as the mapping
1089 * for blocks beyond EOF must be marked new so that sub block regions can be
1090 * correctly zeroed. We can't do this for mappings within EOF unless the mapping
1091 * was just allocated or is unwritten, otherwise the callers would overwrite
1092 * existing data with zeros. Hence we have to split the mapping into a range up
1093 * to and including EOF, and a second mapping for beyond EOF.
1094 */
1095static void
1096xfs_map_trim_size(
1097 struct inode *inode,
1098 sector_t iblock,
1099 struct buffer_head *bh_result,
1100 struct xfs_bmbt_irec *imap,
1101 xfs_off_t offset,
1102 ssize_t size)
1103{
1104 xfs_off_t mapping_size;
1105
1106 mapping_size = imap->br_startoff + imap->br_blockcount - iblock;
1107 mapping_size <<= inode->i_blkbits;
1108
1109 ASSERT(mapping_size > 0);
1110 if (mapping_size > size)
1111 mapping_size = size;
1112 if (offset < i_size_read(inode) &&
1113 offset + mapping_size >= i_size_read(inode)) {
1114 /* limit mapping to block that spans EOF */
1115 mapping_size = roundup_64(i_size_read(inode) - offset,
1116 1 << inode->i_blkbits);
1117 }
1118 if (mapping_size > LONG_MAX)
1119 mapping_size = LONG_MAX;
1120
1121 bh_result->b_size = mapping_size;
1122}
1123
1da177e4 1124STATIC int
c2536668 1125__xfs_get_blocks(
1da177e4
LT
1126 struct inode *inode,
1127 sector_t iblock,
1da177e4
LT
1128 struct buffer_head *bh_result,
1129 int create,
3e12dbbd
DC
1130 bool direct,
1131 bool dax_fault)
1da177e4 1132{
a206c817
CH
1133 struct xfs_inode *ip = XFS_I(inode);
1134 struct xfs_mount *mp = ip->i_mount;
1135 xfs_fileoff_t offset_fsb, end_fsb;
1136 int error = 0;
1137 int lockmode = 0;
207d0416 1138 struct xfs_bmbt_irec imap;
a206c817 1139 int nimaps = 1;
fdc7ed75
NS
1140 xfs_off_t offset;
1141 ssize_t size;
207d0416 1142 int new = 0;
a206c817
CH
1143
1144 if (XFS_FORCED_SHUTDOWN(mp))
b474c7ae 1145 return -EIO;
1da177e4 1146
fdc7ed75 1147 offset = (xfs_off_t)iblock << inode->i_blkbits;
c2536668
NS
1148 ASSERT(bh_result->b_size >= (1 << inode->i_blkbits));
1149 size = bh_result->b_size;
364f358a
LM
1150
1151 if (!create && direct && offset >= i_size_read(inode))
1152 return 0;
1153
507630b2
DC
1154 /*
1155 * Direct I/O is usually done on preallocated files, so try getting
1156 * a block mapping without an exclusive lock first. For buffered
1157 * writes we already have the exclusive iolock anyway, so avoiding
1158 * a lock roundtrip here by taking the ilock exclusive from the
1159 * beginning is a useful micro optimization.
1160 */
1161 if (create && !direct) {
a206c817
CH
1162 lockmode = XFS_ILOCK_EXCL;
1163 xfs_ilock(ip, lockmode);
1164 } else {
309ecac8 1165 lockmode = xfs_ilock_data_map_shared(ip);
a206c817 1166 }
f2bde9b8 1167
d2c28191
DC
1168 ASSERT(offset <= mp->m_super->s_maxbytes);
1169 if (offset + size > mp->m_super->s_maxbytes)
1170 size = mp->m_super->s_maxbytes - offset;
a206c817
CH
1171 end_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)offset + size);
1172 offset_fsb = XFS_B_TO_FSBT(mp, offset);
1173
5c8ed202
DC
1174 error = xfs_bmapi_read(ip, offset_fsb, end_fsb - offset_fsb,
1175 &imap, &nimaps, XFS_BMAPI_ENTIRE);
1da177e4 1176 if (error)
a206c817
CH
1177 goto out_unlock;
1178
1ca19157 1179 /* for DAX, we convert unwritten extents directly */
a206c817
CH
1180 if (create &&
1181 (!nimaps ||
1182 (imap.br_startblock == HOLESTARTBLOCK ||
1ca19157
DC
1183 imap.br_startblock == DELAYSTARTBLOCK) ||
1184 (IS_DAX(inode) && ISUNWRITTEN(&imap)))) {
aff3a9ed 1185 if (direct || xfs_get_extsz_hint(ip)) {
507630b2 1186 /*
009c6e87
BF
1187 * xfs_iomap_write_direct() expects the shared lock. It
1188 * is unlocked on return.
507630b2 1189 */
009c6e87
BF
1190 if (lockmode == XFS_ILOCK_EXCL)
1191 xfs_ilock_demote(ip, lockmode);
1192
a206c817
CH
1193 error = xfs_iomap_write_direct(ip, offset, size,
1194 &imap, nimaps);
507630b2 1195 if (error)
2451337d 1196 return error;
d3bc815a 1197 new = 1;
6b698ede 1198
a206c817 1199 } else {
507630b2
DC
1200 /*
1201 * Delalloc reservations do not require a transaction,
d3bc815a
DC
1202 * we can go on without dropping the lock here. If we
1203 * are allocating a new delalloc block, make sure that
1204 * we set the new flag so that we mark the buffer new so
1205 * that we know that it is newly allocated if the write
1206 * fails.
507630b2 1207 */
d3bc815a
DC
1208 if (nimaps && imap.br_startblock == HOLESTARTBLOCK)
1209 new = 1;
a206c817 1210 error = xfs_iomap_write_delay(ip, offset, size, &imap);
507630b2
DC
1211 if (error)
1212 goto out_unlock;
1213
1214 xfs_iunlock(ip, lockmode);
a206c817 1215 }
d5cc2e3f
DC
1216 trace_xfs_get_blocks_alloc(ip, offset, size,
1217 ISUNWRITTEN(&imap) ? XFS_IO_UNWRITTEN
1218 : XFS_IO_DELALLOC, &imap);
a206c817 1219 } else if (nimaps) {
d5cc2e3f
DC
1220 trace_xfs_get_blocks_found(ip, offset, size,
1221 ISUNWRITTEN(&imap) ? XFS_IO_UNWRITTEN
1222 : XFS_IO_OVERWRITE, &imap);
507630b2 1223 xfs_iunlock(ip, lockmode);
a206c817
CH
1224 } else {
1225 trace_xfs_get_blocks_notfound(ip, offset, size);
1226 goto out_unlock;
1227 }
1da177e4 1228
1ca19157
DC
1229 if (IS_DAX(inode) && create) {
1230 ASSERT(!ISUNWRITTEN(&imap));
1231 /* zeroing is not needed at a higher layer */
1232 new = 0;
1233 }
1234
1fdca9c2
DC
1235 /* trim mapping down to size requested */
1236 if (direct || size > (1 << inode->i_blkbits))
1237 xfs_map_trim_size(inode, iblock, bh_result,
1238 &imap, offset, size);
1239
a719370b
DC
1240 /*
1241 * For unwritten extents do not report a disk address in the buffered
1242 * read case (treat as if we're reading into a hole).
1243 */
207d0416 1244 if (imap.br_startblock != HOLESTARTBLOCK &&
a719370b
DC
1245 imap.br_startblock != DELAYSTARTBLOCK &&
1246 (create || !ISUNWRITTEN(&imap))) {
1247 xfs_map_buffer(inode, bh_result, &imap, offset);
1248 if (ISUNWRITTEN(&imap))
1da177e4 1249 set_buffer_unwritten(bh_result);
a719370b 1250 /* direct IO needs special help */
273dda76
CH
1251 if (create && direct) {
1252 if (dax_fault)
1253 ASSERT(!ISUNWRITTEN(&imap));
1254 else
1255 xfs_map_direct(inode, bh_result, &imap, offset);
1256 }
1da177e4
LT
1257 }
1258
c2536668
NS
1259 /*
1260 * If this is a realtime file, data may be on a different device.
1261 * to that pointed to from the buffer_head b_bdev currently.
1262 */
046f1685 1263 bh_result->b_bdev = xfs_find_bdev_for_inode(inode);
1da177e4 1264
c2536668 1265 /*
549054af
DC
1266 * If we previously allocated a block out beyond eof and we are now
1267 * coming back to use it then we will need to flag it as new even if it
1268 * has a disk address.
1269 *
1270 * With sub-block writes into unwritten extents we also need to mark
1271 * the buffer as new so that the unwritten parts of the buffer gets
1272 * correctly zeroed.
1da177e4
LT
1273 */
1274 if (create &&
1275 ((!buffer_mapped(bh_result) && !buffer_uptodate(bh_result)) ||
549054af 1276 (offset >= i_size_read(inode)) ||
207d0416 1277 (new || ISUNWRITTEN(&imap))))
1da177e4 1278 set_buffer_new(bh_result);
1da177e4 1279
207d0416 1280 if (imap.br_startblock == DELAYSTARTBLOCK) {
1da177e4
LT
1281 BUG_ON(direct);
1282 if (create) {
1283 set_buffer_uptodate(bh_result);
1284 set_buffer_mapped(bh_result);
1285 set_buffer_delay(bh_result);
1286 }
1287 }
1288
1da177e4 1289 return 0;
a206c817
CH
1290
1291out_unlock:
1292 xfs_iunlock(ip, lockmode);
2451337d 1293 return error;
1da177e4
LT
1294}
1295
1296int
c2536668 1297xfs_get_blocks(
1da177e4
LT
1298 struct inode *inode,
1299 sector_t iblock,
1300 struct buffer_head *bh_result,
1301 int create)
1302{
3e12dbbd 1303 return __xfs_get_blocks(inode, iblock, bh_result, create, false, false);
1da177e4
LT
1304}
1305
6b698ede 1306int
e4c573bb 1307xfs_get_blocks_direct(
1da177e4
LT
1308 struct inode *inode,
1309 sector_t iblock,
1da177e4
LT
1310 struct buffer_head *bh_result,
1311 int create)
1312{
3e12dbbd
DC
1313 return __xfs_get_blocks(inode, iblock, bh_result, create, true, false);
1314}
1315
1316int
1317xfs_get_blocks_dax_fault(
1318 struct inode *inode,
1319 sector_t iblock,
1320 struct buffer_head *bh_result,
1321 int create)
1322{
1323 return __xfs_get_blocks(inode, iblock, bh_result, create, true, true);
1da177e4
LT
1324}
1325
273dda76
CH
1326/*
1327 * Complete a direct I/O write request.
1328 *
1329 * xfs_map_direct passes us some flags in the private data to tell us what to
1330 * do. If no flags are set, then the write IO is an overwrite wholly within
1331 * the existing allocated file size and so there is nothing for us to do.
1332 *
1333 * Note that in this case the completion can be called in interrupt context,
1334 * whereas if we have flags set we will always be called in task context
1335 * (i.e. from a workqueue).
1336 */
1337STATIC int
1338xfs_end_io_direct_write(
1339 struct kiocb *iocb,
209fb87a 1340 loff_t offset,
273dda76
CH
1341 ssize_t size,
1342 void *private)
f0973863 1343{
273dda76
CH
1344 struct inode *inode = file_inode(iocb->ki_filp);
1345 struct xfs_inode *ip = XFS_I(inode);
1346 struct xfs_mount *mp = ip->i_mount;
1347 uintptr_t flags = (uintptr_t)private;
1348 int error = 0;
a06c277a 1349
273dda76 1350 trace_xfs_end_io_direct_write(ip, offset, size);
f0973863 1351
273dda76
CH
1352 if (XFS_FORCED_SHUTDOWN(mp))
1353 return -EIO;
d5cc2e3f 1354
273dda76
CH
1355 if (size <= 0)
1356 return size;
f0973863 1357
2813d682 1358 /*
273dda76 1359 * The flags tell us whether we are doing unwritten extent conversions
6dfa1b67
DC
1360 * or an append transaction that updates the on-disk file size. These
1361 * cases are the only cases where we should *potentially* be needing
a06c277a 1362 * to update the VFS inode size.
273dda76
CH
1363 */
1364 if (flags == 0) {
1365 ASSERT(offset + size <= i_size_read(inode));
1366 return 0;
1367 }
1368
1369 /*
6dfa1b67 1370 * We need to update the in-core inode size here so that we don't end up
a06c277a
DC
1371 * with the on-disk inode size being outside the in-core inode size. We
1372 * have no other method of updating EOF for AIO, so always do it here
1373 * if necessary.
b9d59846
DC
1374 *
1375 * We need to lock the test/set EOF update as we can be racing with
1376 * other IO completions here to update the EOF. Failing to serialise
1377 * here can result in EOF moving backwards and Bad Things Happen when
1378 * that occurs.
2813d682 1379 */
273dda76 1380 spin_lock(&ip->i_flags_lock);
2ba66237
CH
1381 if (offset + size > i_size_read(inode))
1382 i_size_write(inode, offset + size);
273dda76 1383 spin_unlock(&ip->i_flags_lock);
2813d682 1384
273dda76
CH
1385 if (flags & XFS_DIO_FLAG_UNWRITTEN) {
1386 trace_xfs_end_io_direct_write_unwritten(ip, offset, size);
209fb87a 1387
273dda76
CH
1388 error = xfs_iomap_write_unwritten(ip, offset, size);
1389 } else if (flags & XFS_DIO_FLAG_APPEND) {
1390 struct xfs_trans *tp;
f0973863 1391
273dda76 1392 trace_xfs_end_io_direct_write_append(ip, offset, size);
6b698ede 1393
273dda76
CH
1394 tp = xfs_trans_alloc(mp, XFS_TRANS_FSYNC_TS);
1395 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_fsyncts, 0, 0);
1396 if (error) {
1397 xfs_trans_cancel(tp);
1398 return error;
1399 }
1400 error = xfs_setfilesize(ip, tp, offset, size);
6b698ede
DC
1401 }
1402
273dda76 1403 return error;
6b698ede
DC
1404}
1405
c19b104a
CH
1406STATIC ssize_t
1407xfs_vm_direct_IO(
6e1ba0bc
DC
1408 struct kiocb *iocb,
1409 struct iov_iter *iter,
c19b104a 1410 loff_t offset)
6e1ba0bc 1411{
c19b104a
CH
1412 struct inode *inode = iocb->ki_filp->f_mapping->host;
1413 dio_iodone_t *endio = NULL;
1414 int flags = 0;
6e1ba0bc
DC
1415 struct block_device *bdev;
1416
c19b104a
CH
1417 if (iov_iter_rw(iter) == WRITE) {
1418 endio = xfs_end_io_direct_write;
1419 flags = DIO_ASYNC_EXTEND;
1420 }
1421
1422 if (IS_DAX(inode)) {
6e1ba0bc
DC
1423 return dax_do_io(iocb, inode, iter, offset,
1424 xfs_get_blocks_direct, endio, 0);
c19b104a 1425 }
6e1ba0bc
DC
1426
1427 bdev = xfs_find_bdev_for_inode(inode);
1428 return __blockdev_direct_IO(iocb, inode, bdev, iter, offset,
c19b104a 1429 xfs_get_blocks_direct, endio, NULL, flags);
1da177e4
LT
1430}
1431
d3bc815a
DC
1432/*
1433 * Punch out the delalloc blocks we have already allocated.
1434 *
1435 * Don't bother with xfs_setattr given that nothing can have made it to disk yet
1436 * as the page is still locked at this point.
1437 */
1438STATIC void
1439xfs_vm_kill_delalloc_range(
1440 struct inode *inode,
1441 loff_t start,
1442 loff_t end)
1443{
1444 struct xfs_inode *ip = XFS_I(inode);
1445 xfs_fileoff_t start_fsb;
1446 xfs_fileoff_t end_fsb;
1447 int error;
1448
1449 start_fsb = XFS_B_TO_FSB(ip->i_mount, start);
1450 end_fsb = XFS_B_TO_FSB(ip->i_mount, end);
1451 if (end_fsb <= start_fsb)
1452 return;
1453
1454 xfs_ilock(ip, XFS_ILOCK_EXCL);
1455 error = xfs_bmap_punch_delalloc_range(ip, start_fsb,
1456 end_fsb - start_fsb);
1457 if (error) {
1458 /* something screwed, just bail */
1459 if (!XFS_FORCED_SHUTDOWN(ip->i_mount)) {
1460 xfs_alert(ip->i_mount,
1461 "xfs_vm_write_failed: unable to clean up ino %lld",
1462 ip->i_ino);
1463 }
1464 }
1465 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1466}
1467
fa9b227e
CH
1468STATIC void
1469xfs_vm_write_failed(
d3bc815a
DC
1470 struct inode *inode,
1471 struct page *page,
1472 loff_t pos,
1473 unsigned len)
fa9b227e 1474{
58e59854 1475 loff_t block_offset;
d3bc815a
DC
1476 loff_t block_start;
1477 loff_t block_end;
09cbfeaf 1478 loff_t from = pos & (PAGE_SIZE - 1);
d3bc815a
DC
1479 loff_t to = from + len;
1480 struct buffer_head *bh, *head;
801cc4e1 1481 struct xfs_mount *mp = XFS_I(inode)->i_mount;
fa9b227e 1482
58e59854
JL
1483 /*
1484 * The request pos offset might be 32 or 64 bit, this is all fine
1485 * on 64-bit platform. However, for 64-bit pos request on 32-bit
1486 * platform, the high 32-bit will be masked off if we evaluate the
1487 * block_offset via (pos & PAGE_MASK) because the PAGE_MASK is
1488 * 0xfffff000 as an unsigned long, hence the result is incorrect
1489 * which could cause the following ASSERT failed in most cases.
1490 * In order to avoid this, we can evaluate the block_offset of the
1491 * start of the page by using shifts rather than masks the mismatch
1492 * problem.
1493 */
09cbfeaf 1494 block_offset = (pos >> PAGE_SHIFT) << PAGE_SHIFT;
58e59854 1495
d3bc815a 1496 ASSERT(block_offset + from == pos);
c726de44 1497
d3bc815a
DC
1498 head = page_buffers(page);
1499 block_start = 0;
1500 for (bh = head; bh != head || !block_start;
1501 bh = bh->b_this_page, block_start = block_end,
1502 block_offset += bh->b_size) {
1503 block_end = block_start + bh->b_size;
c726de44 1504
d3bc815a
DC
1505 /* skip buffers before the write */
1506 if (block_end <= from)
1507 continue;
1508
1509 /* if the buffer is after the write, we're done */
1510 if (block_start >= to)
1511 break;
1512
60630fe6
BF
1513 /*
1514 * Process delalloc and unwritten buffers beyond EOF. We can
1515 * encounter unwritten buffers in the event that a file has
1516 * post-EOF unwritten extents and an extending write happens to
1517 * fail (e.g., an unaligned write that also involves a delalloc
1518 * to the same page).
1519 */
1520 if (!buffer_delay(bh) && !buffer_unwritten(bh))
d3bc815a
DC
1521 continue;
1522
801cc4e1
BF
1523 if (!xfs_mp_fail_writes(mp) && !buffer_new(bh) &&
1524 block_offset < i_size_read(inode))
d3bc815a
DC
1525 continue;
1526
60630fe6
BF
1527 if (buffer_delay(bh))
1528 xfs_vm_kill_delalloc_range(inode, block_offset,
1529 block_offset + bh->b_size);
4ab9ed57
DC
1530
1531 /*
1532 * This buffer does not contain data anymore. make sure anyone
1533 * who finds it knows that for certain.
1534 */
1535 clear_buffer_delay(bh);
1536 clear_buffer_uptodate(bh);
1537 clear_buffer_mapped(bh);
1538 clear_buffer_new(bh);
1539 clear_buffer_dirty(bh);
60630fe6 1540 clear_buffer_unwritten(bh);
fa9b227e 1541 }
d3bc815a 1542
fa9b227e
CH
1543}
1544
d3bc815a
DC
1545/*
1546 * This used to call block_write_begin(), but it unlocks and releases the page
1547 * on error, and we need that page to be able to punch stale delalloc blocks out
1548 * on failure. hence we copy-n-waste it here and call xfs_vm_write_failed() at
1549 * the appropriate point.
1550 */
f51623b2 1551STATIC int
d79689c7 1552xfs_vm_write_begin(
f51623b2 1553 struct file *file,
d79689c7
NP
1554 struct address_space *mapping,
1555 loff_t pos,
1556 unsigned len,
1557 unsigned flags,
1558 struct page **pagep,
1559 void **fsdata)
f51623b2 1560{
09cbfeaf 1561 pgoff_t index = pos >> PAGE_SHIFT;
d3bc815a
DC
1562 struct page *page;
1563 int status;
801cc4e1 1564 struct xfs_mount *mp = XFS_I(mapping->host)->i_mount;
155130a4 1565
ea1754a0 1566 ASSERT(len <= PAGE_SIZE);
d3bc815a 1567
ad22c7a0 1568 page = grab_cache_page_write_begin(mapping, index, flags);
d3bc815a
DC
1569 if (!page)
1570 return -ENOMEM;
1571
1572 status = __block_write_begin(page, pos, len, xfs_get_blocks);
801cc4e1
BF
1573 if (xfs_mp_fail_writes(mp))
1574 status = -EIO;
d3bc815a
DC
1575 if (unlikely(status)) {
1576 struct inode *inode = mapping->host;
72ab70a1 1577 size_t isize = i_size_read(inode);
d3bc815a
DC
1578
1579 xfs_vm_write_failed(inode, page, pos, len);
1580 unlock_page(page);
1581
72ab70a1
DC
1582 /*
1583 * If the write is beyond EOF, we only want to kill blocks
1584 * allocated in this write, not blocks that were previously
1585 * written successfully.
1586 */
801cc4e1
BF
1587 if (xfs_mp_fail_writes(mp))
1588 isize = 0;
72ab70a1
DC
1589 if (pos + len > isize) {
1590 ssize_t start = max_t(ssize_t, pos, isize);
1591
1592 truncate_pagecache_range(inode, start, pos + len);
1593 }
d3bc815a 1594
09cbfeaf 1595 put_page(page);
d3bc815a
DC
1596 page = NULL;
1597 }
1598
1599 *pagep = page;
1600 return status;
fa9b227e
CH
1601}
1602
d3bc815a 1603/*
aad3f375
DC
1604 * On failure, we only need to kill delalloc blocks beyond EOF in the range of
1605 * this specific write because they will never be written. Previous writes
1606 * beyond EOF where block allocation succeeded do not need to be trashed, so
1607 * only new blocks from this write should be trashed. For blocks within
1608 * EOF, generic_write_end() zeros them so they are safe to leave alone and be
1609 * written with all the other valid data.
d3bc815a 1610 */
fa9b227e
CH
1611STATIC int
1612xfs_vm_write_end(
1613 struct file *file,
1614 struct address_space *mapping,
1615 loff_t pos,
1616 unsigned len,
1617 unsigned copied,
1618 struct page *page,
1619 void *fsdata)
1620{
1621 int ret;
155130a4 1622
ea1754a0 1623 ASSERT(len <= PAGE_SIZE);
d3bc815a 1624
fa9b227e 1625 ret = generic_write_end(file, mapping, pos, len, copied, page, fsdata);
d3bc815a
DC
1626 if (unlikely(ret < len)) {
1627 struct inode *inode = mapping->host;
1628 size_t isize = i_size_read(inode);
1629 loff_t to = pos + len;
1630
1631 if (to > isize) {
aad3f375
DC
1632 /* only kill blocks in this write beyond EOF */
1633 if (pos > isize)
1634 isize = pos;
d3bc815a 1635 xfs_vm_kill_delalloc_range(inode, isize, to);
aad3f375 1636 truncate_pagecache_range(inode, isize, to);
d3bc815a
DC
1637 }
1638 }
155130a4 1639 return ret;
f51623b2 1640}
1da177e4
LT
1641
1642STATIC sector_t
e4c573bb 1643xfs_vm_bmap(
1da177e4
LT
1644 struct address_space *mapping,
1645 sector_t block)
1646{
1647 struct inode *inode = (struct inode *)mapping->host;
739bfb2a 1648 struct xfs_inode *ip = XFS_I(inode);
1da177e4 1649
cca28fb8 1650 trace_xfs_vm_bmap(XFS_I(inode));
126468b1 1651 xfs_ilock(ip, XFS_IOLOCK_SHARED);
4bc1ea6b 1652 filemap_write_and_wait(mapping);
126468b1 1653 xfs_iunlock(ip, XFS_IOLOCK_SHARED);
c2536668 1654 return generic_block_bmap(mapping, block, xfs_get_blocks);
1da177e4
LT
1655}
1656
1657STATIC int
e4c573bb 1658xfs_vm_readpage(
1da177e4
LT
1659 struct file *unused,
1660 struct page *page)
1661{
121e213e 1662 trace_xfs_vm_readpage(page->mapping->host, 1);
c2536668 1663 return mpage_readpage(page, xfs_get_blocks);
1da177e4
LT
1664}
1665
1666STATIC int
e4c573bb 1667xfs_vm_readpages(
1da177e4
LT
1668 struct file *unused,
1669 struct address_space *mapping,
1670 struct list_head *pages,
1671 unsigned nr_pages)
1672{
121e213e 1673 trace_xfs_vm_readpages(mapping->host, nr_pages);
c2536668 1674 return mpage_readpages(mapping, pages, nr_pages, xfs_get_blocks);
1da177e4
LT
1675}
1676
22e757a4
DC
1677/*
1678 * This is basically a copy of __set_page_dirty_buffers() with one
1679 * small tweak: buffers beyond EOF do not get marked dirty. If we mark them
1680 * dirty, we'll never be able to clean them because we don't write buffers
1681 * beyond EOF, and that means we can't invalidate pages that span EOF
1682 * that have been marked dirty. Further, the dirty state can leak into
1683 * the file interior if the file is extended, resulting in all sorts of
1684 * bad things happening as the state does not match the underlying data.
1685 *
1686 * XXX: this really indicates that bufferheads in XFS need to die. Warts like
1687 * this only exist because of bufferheads and how the generic code manages them.
1688 */
1689STATIC int
1690xfs_vm_set_page_dirty(
1691 struct page *page)
1692{
1693 struct address_space *mapping = page->mapping;
1694 struct inode *inode = mapping->host;
1695 loff_t end_offset;
1696 loff_t offset;
1697 int newly_dirty;
1698
1699 if (unlikely(!mapping))
1700 return !TestSetPageDirty(page);
1701
1702 end_offset = i_size_read(inode);
1703 offset = page_offset(page);
1704
1705 spin_lock(&mapping->private_lock);
1706 if (page_has_buffers(page)) {
1707 struct buffer_head *head = page_buffers(page);
1708 struct buffer_head *bh = head;
1709
1710 do {
1711 if (offset < end_offset)
1712 set_buffer_dirty(bh);
1713 bh = bh->b_this_page;
1714 offset += 1 << inode->i_blkbits;
1715 } while (bh != head);
1716 }
c4843a75 1717 /*
81f8c3a4
JW
1718 * Lock out page->mem_cgroup migration to keep PageDirty
1719 * synchronized with per-memcg dirty page counters.
c4843a75 1720 */
62cccb8c 1721 lock_page_memcg(page);
22e757a4
DC
1722 newly_dirty = !TestSetPageDirty(page);
1723 spin_unlock(&mapping->private_lock);
1724
1725 if (newly_dirty) {
1726 /* sigh - __set_page_dirty() is static, so copy it here, too */
1727 unsigned long flags;
1728
1729 spin_lock_irqsave(&mapping->tree_lock, flags);
1730 if (page->mapping) { /* Race with truncate? */
1731 WARN_ON_ONCE(!PageUptodate(page));
62cccb8c 1732 account_page_dirtied(page, mapping);
22e757a4
DC
1733 radix_tree_tag_set(&mapping->page_tree,
1734 page_index(page), PAGECACHE_TAG_DIRTY);
1735 }
1736 spin_unlock_irqrestore(&mapping->tree_lock, flags);
22e757a4 1737 }
62cccb8c 1738 unlock_page_memcg(page);
c4843a75
GT
1739 if (newly_dirty)
1740 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
22e757a4
DC
1741 return newly_dirty;
1742}
1743
f5e54d6e 1744const struct address_space_operations xfs_address_space_operations = {
e4c573bb
NS
1745 .readpage = xfs_vm_readpage,
1746 .readpages = xfs_vm_readpages,
1747 .writepage = xfs_vm_writepage,
7d4fb40a 1748 .writepages = xfs_vm_writepages,
22e757a4 1749 .set_page_dirty = xfs_vm_set_page_dirty,
238f4c54
NS
1750 .releasepage = xfs_vm_releasepage,
1751 .invalidatepage = xfs_vm_invalidatepage,
d79689c7 1752 .write_begin = xfs_vm_write_begin,
fa9b227e 1753 .write_end = xfs_vm_write_end,
e4c573bb
NS
1754 .bmap = xfs_vm_bmap,
1755 .direct_IO = xfs_vm_direct_IO,
e965f963 1756 .migratepage = buffer_migrate_page,
bddaafa1 1757 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 1758 .error_remove_page = generic_error_remove_page,
1da177e4 1759};