]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - fs/xfs/xfs_aops.c
xfs: byte range granularity for XFS_IOC_ZERO_RANGE
[mirror_ubuntu-artful-kernel.git] / fs / xfs / xfs_aops.c
CommitLineData
1da177e4 1/*
7b718769
NS
2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
1da177e4 4 *
7b718769
NS
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
1da177e4
LT
7 * published by the Free Software Foundation.
8 *
7b718769
NS
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
1da177e4 13 *
7b718769
NS
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
1da177e4 17 */
1da177e4 18#include "xfs.h"
1da177e4
LT
19#include "xfs_log.h"
20#include "xfs_sb.h"
a844f451 21#include "xfs_ag.h"
1da177e4 22#include "xfs_trans.h"
1da177e4
LT
23#include "xfs_mount.h"
24#include "xfs_bmap_btree.h"
1da177e4
LT
25#include "xfs_dinode.h"
26#include "xfs_inode.h"
281627df 27#include "xfs_inode_item.h"
a844f451 28#include "xfs_alloc.h"
1da177e4 29#include "xfs_error.h"
1da177e4 30#include "xfs_iomap.h"
739bfb2a 31#include "xfs_vnodeops.h"
0b1b213f 32#include "xfs_trace.h"
3ed3a434 33#include "xfs_bmap.h"
5a0e3ad6 34#include <linux/gfp.h>
1da177e4 35#include <linux/mpage.h>
10ce4444 36#include <linux/pagevec.h>
1da177e4
LT
37#include <linux/writeback.h>
38
0b1b213f 39void
f51623b2
NS
40xfs_count_page_state(
41 struct page *page,
42 int *delalloc,
f51623b2
NS
43 int *unwritten)
44{
45 struct buffer_head *bh, *head;
46
20cb52eb 47 *delalloc = *unwritten = 0;
f51623b2
NS
48
49 bh = head = page_buffers(page);
50 do {
20cb52eb 51 if (buffer_unwritten(bh))
f51623b2
NS
52 (*unwritten) = 1;
53 else if (buffer_delay(bh))
54 (*delalloc) = 1;
55 } while ((bh = bh->b_this_page) != head);
56}
57
6214ed44
CH
58STATIC struct block_device *
59xfs_find_bdev_for_inode(
046f1685 60 struct inode *inode)
6214ed44 61{
046f1685 62 struct xfs_inode *ip = XFS_I(inode);
6214ed44
CH
63 struct xfs_mount *mp = ip->i_mount;
64
71ddabb9 65 if (XFS_IS_REALTIME_INODE(ip))
6214ed44
CH
66 return mp->m_rtdev_targp->bt_bdev;
67 else
68 return mp->m_ddev_targp->bt_bdev;
69}
70
f6d6d4fc
CH
71/*
72 * We're now finished for good with this ioend structure.
73 * Update the page state via the associated buffer_heads,
74 * release holds on the inode and bio, and finally free
75 * up memory. Do not use the ioend after this.
76 */
0829c360
CH
77STATIC void
78xfs_destroy_ioend(
79 xfs_ioend_t *ioend)
80{
f6d6d4fc
CH
81 struct buffer_head *bh, *next;
82
83 for (bh = ioend->io_buffer_head; bh; bh = next) {
84 next = bh->b_private;
7d04a335 85 bh->b_end_io(bh, !ioend->io_error);
f6d6d4fc 86 }
583fa586 87
c859cdd1 88 if (ioend->io_iocb) {
04f658ee
CH
89 if (ioend->io_isasync) {
90 aio_complete(ioend->io_iocb, ioend->io_error ?
91 ioend->io_error : ioend->io_result, 0);
92 }
c859cdd1
CH
93 inode_dio_done(ioend->io_inode);
94 }
4a06fd26 95
0829c360
CH
96 mempool_free(ioend, xfs_ioend_pool);
97}
98
fc0063c4
CH
99/*
100 * Fast and loose check if this write could update the on-disk inode size.
101 */
102static inline bool xfs_ioend_is_append(struct xfs_ioend *ioend)
103{
104 return ioend->io_offset + ioend->io_size >
105 XFS_I(ioend->io_inode)->i_d.di_size;
106}
107
281627df
CH
108STATIC int
109xfs_setfilesize_trans_alloc(
110 struct xfs_ioend *ioend)
111{
112 struct xfs_mount *mp = XFS_I(ioend->io_inode)->i_mount;
113 struct xfs_trans *tp;
114 int error;
115
116 tp = xfs_trans_alloc(mp, XFS_TRANS_FSYNC_TS);
117
118 error = xfs_trans_reserve(tp, 0, XFS_FSYNC_TS_LOG_RES(mp), 0, 0, 0);
119 if (error) {
120 xfs_trans_cancel(tp, 0);
121 return error;
122 }
123
124 ioend->io_append_trans = tp;
125
d9457dc0
JK
126 /*
127 * We will pass freeze protection with a transaction. So tell lockdep
128 * we released it.
129 */
130 rwsem_release(&ioend->io_inode->i_sb->s_writers.lock_map[SB_FREEZE_FS-1],
131 1, _THIS_IP_);
281627df
CH
132 /*
133 * We hand off the transaction to the completion thread now, so
134 * clear the flag here.
135 */
136 current_restore_flags_nested(&tp->t_pflags, PF_FSTRANS);
137 return 0;
138}
139
ba87ea69 140/*
2813d682 141 * Update on-disk file size now that data has been written to disk.
ba87ea69 142 */
281627df 143STATIC int
ba87ea69 144xfs_setfilesize(
aa6bf01d 145 struct xfs_ioend *ioend)
ba87ea69 146{
aa6bf01d 147 struct xfs_inode *ip = XFS_I(ioend->io_inode);
281627df 148 struct xfs_trans *tp = ioend->io_append_trans;
ba87ea69 149 xfs_fsize_t isize;
ba87ea69 150
281627df
CH
151 /*
152 * The transaction was allocated in the I/O submission thread,
153 * thus we need to mark ourselves as beeing in a transaction
154 * manually.
155 */
156 current_set_flags_nested(&tp->t_pflags, PF_FSTRANS);
157
aa6bf01d 158 xfs_ilock(ip, XFS_ILOCK_EXCL);
6923e686 159 isize = xfs_new_eof(ip, ioend->io_offset + ioend->io_size);
281627df
CH
160 if (!isize) {
161 xfs_iunlock(ip, XFS_ILOCK_EXCL);
162 xfs_trans_cancel(tp, 0);
163 return 0;
ba87ea69
LM
164 }
165
281627df
CH
166 trace_xfs_setfilesize(ip, ioend->io_offset, ioend->io_size);
167
168 ip->i_d.di_size = isize;
169 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
170 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
171
172 return xfs_trans_commit(tp, 0);
77d7a0c2
DC
173}
174
175/*
209fb87a 176 * Schedule IO completion handling on the final put of an ioend.
fc0063c4
CH
177 *
178 * If there is no work to do we might as well call it a day and free the
179 * ioend right now.
77d7a0c2
DC
180 */
181STATIC void
182xfs_finish_ioend(
209fb87a 183 struct xfs_ioend *ioend)
77d7a0c2
DC
184{
185 if (atomic_dec_and_test(&ioend->io_remaining)) {
aa6bf01d
CH
186 struct xfs_mount *mp = XFS_I(ioend->io_inode)->i_mount;
187
0d882a36 188 if (ioend->io_type == XFS_IO_UNWRITTEN)
aa6bf01d 189 queue_work(mp->m_unwritten_workqueue, &ioend->io_work);
281627df 190 else if (ioend->io_append_trans)
aa6bf01d 191 queue_work(mp->m_data_workqueue, &ioend->io_work);
fc0063c4
CH
192 else
193 xfs_destroy_ioend(ioend);
77d7a0c2 194 }
ba87ea69
LM
195}
196
0829c360 197/*
5ec4fabb 198 * IO write completion.
f6d6d4fc
CH
199 */
200STATIC void
5ec4fabb 201xfs_end_io(
77d7a0c2 202 struct work_struct *work)
0829c360 203{
77d7a0c2
DC
204 xfs_ioend_t *ioend = container_of(work, xfs_ioend_t, io_work);
205 struct xfs_inode *ip = XFS_I(ioend->io_inode);
69418932 206 int error = 0;
ba87ea69 207
d9457dc0
JK
208 if (ioend->io_append_trans) {
209 /*
210 * We've got freeze protection passed with the transaction.
211 * Tell lockdep about it.
212 */
213 rwsem_acquire_read(
214 &ioend->io_inode->i_sb->s_writers.lock_map[SB_FREEZE_FS-1],
215 0, 1, _THIS_IP_);
216 }
04f658ee 217 if (XFS_FORCED_SHUTDOWN(ip->i_mount)) {
810627d9 218 ioend->io_error = -EIO;
04f658ee
CH
219 goto done;
220 }
221 if (ioend->io_error)
222 goto done;
223
5ec4fabb
CH
224 /*
225 * For unwritten extents we need to issue transactions to convert a
226 * range to normal written extens after the data I/O has finished.
227 */
0d882a36 228 if (ioend->io_type == XFS_IO_UNWRITTEN) {
281627df
CH
229 /*
230 * For buffered I/O we never preallocate a transaction when
231 * doing the unwritten extent conversion, but for direct I/O
232 * we do not know if we are converting an unwritten extent
233 * or not at the point where we preallocate the transaction.
234 */
235 if (ioend->io_append_trans) {
236 ASSERT(ioend->io_isdirect);
237
238 current_set_flags_nested(
239 &ioend->io_append_trans->t_pflags, PF_FSTRANS);
240 xfs_trans_cancel(ioend->io_append_trans, 0);
241 }
242
5ec4fabb
CH
243 error = xfs_iomap_write_unwritten(ip, ioend->io_offset,
244 ioend->io_size);
04f658ee
CH
245 if (error) {
246 ioend->io_error = -error;
247 goto done;
248 }
281627df
CH
249 } else if (ioend->io_append_trans) {
250 error = xfs_setfilesize(ioend);
251 if (error)
252 ioend->io_error = -error;
84803fb7 253 } else {
281627df 254 ASSERT(!xfs_ioend_is_append(ioend));
5ec4fabb 255 }
ba87ea69 256
04f658ee 257done:
aa6bf01d 258 xfs_destroy_ioend(ioend);
c626d174
DC
259}
260
209fb87a
CH
261/*
262 * Call IO completion handling in caller context on the final put of an ioend.
263 */
264STATIC void
265xfs_finish_ioend_sync(
266 struct xfs_ioend *ioend)
267{
268 if (atomic_dec_and_test(&ioend->io_remaining))
269 xfs_end_io(&ioend->io_work);
270}
271
0829c360
CH
272/*
273 * Allocate and initialise an IO completion structure.
274 * We need to track unwritten extent write completion here initially.
275 * We'll need to extend this for updating the ondisk inode size later
276 * (vs. incore size).
277 */
278STATIC xfs_ioend_t *
279xfs_alloc_ioend(
f6d6d4fc
CH
280 struct inode *inode,
281 unsigned int type)
0829c360
CH
282{
283 xfs_ioend_t *ioend;
284
285 ioend = mempool_alloc(xfs_ioend_pool, GFP_NOFS);
286
287 /*
288 * Set the count to 1 initially, which will prevent an I/O
289 * completion callback from happening before we have started
290 * all the I/O from calling the completion routine too early.
291 */
292 atomic_set(&ioend->io_remaining, 1);
c859cdd1 293 ioend->io_isasync = 0;
281627df 294 ioend->io_isdirect = 0;
7d04a335 295 ioend->io_error = 0;
f6d6d4fc
CH
296 ioend->io_list = NULL;
297 ioend->io_type = type;
b677c210 298 ioend->io_inode = inode;
c1a073bd 299 ioend->io_buffer_head = NULL;
f6d6d4fc 300 ioend->io_buffer_tail = NULL;
0829c360
CH
301 ioend->io_offset = 0;
302 ioend->io_size = 0;
fb511f21
CH
303 ioend->io_iocb = NULL;
304 ioend->io_result = 0;
281627df 305 ioend->io_append_trans = NULL;
0829c360 306
5ec4fabb 307 INIT_WORK(&ioend->io_work, xfs_end_io);
0829c360
CH
308 return ioend;
309}
310
1da177e4
LT
311STATIC int
312xfs_map_blocks(
313 struct inode *inode,
314 loff_t offset,
207d0416 315 struct xfs_bmbt_irec *imap,
a206c817
CH
316 int type,
317 int nonblocking)
1da177e4 318{
a206c817
CH
319 struct xfs_inode *ip = XFS_I(inode);
320 struct xfs_mount *mp = ip->i_mount;
ed1e7b7e 321 ssize_t count = 1 << inode->i_blkbits;
a206c817
CH
322 xfs_fileoff_t offset_fsb, end_fsb;
323 int error = 0;
a206c817
CH
324 int bmapi_flags = XFS_BMAPI_ENTIRE;
325 int nimaps = 1;
326
327 if (XFS_FORCED_SHUTDOWN(mp))
328 return -XFS_ERROR(EIO);
329
0d882a36 330 if (type == XFS_IO_UNWRITTEN)
a206c817 331 bmapi_flags |= XFS_BMAPI_IGSTATE;
8ff2957d
CH
332
333 if (!xfs_ilock_nowait(ip, XFS_ILOCK_SHARED)) {
334 if (nonblocking)
335 return -XFS_ERROR(EAGAIN);
336 xfs_ilock(ip, XFS_ILOCK_SHARED);
a206c817
CH
337 }
338
8ff2957d
CH
339 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
340 (ip->i_df.if_flags & XFS_IFEXTENTS));
d2c28191 341 ASSERT(offset <= mp->m_super->s_maxbytes);
8ff2957d 342
d2c28191
DC
343 if (offset + count > mp->m_super->s_maxbytes)
344 count = mp->m_super->s_maxbytes - offset;
a206c817
CH
345 end_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)offset + count);
346 offset_fsb = XFS_B_TO_FSBT(mp, offset);
5c8ed202
DC
347 error = xfs_bmapi_read(ip, offset_fsb, end_fsb - offset_fsb,
348 imap, &nimaps, bmapi_flags);
8ff2957d 349 xfs_iunlock(ip, XFS_ILOCK_SHARED);
a206c817 350
8ff2957d
CH
351 if (error)
352 return -XFS_ERROR(error);
a206c817 353
0d882a36 354 if (type == XFS_IO_DELALLOC &&
8ff2957d 355 (!nimaps || isnullstartblock(imap->br_startblock))) {
a206c817
CH
356 error = xfs_iomap_write_allocate(ip, offset, count, imap);
357 if (!error)
358 trace_xfs_map_blocks_alloc(ip, offset, count, type, imap);
8ff2957d 359 return -XFS_ERROR(error);
a206c817
CH
360 }
361
8ff2957d 362#ifdef DEBUG
0d882a36 363 if (type == XFS_IO_UNWRITTEN) {
8ff2957d
CH
364 ASSERT(nimaps);
365 ASSERT(imap->br_startblock != HOLESTARTBLOCK);
366 ASSERT(imap->br_startblock != DELAYSTARTBLOCK);
367 }
368#endif
369 if (nimaps)
370 trace_xfs_map_blocks_found(ip, offset, count, type, imap);
371 return 0;
1da177e4
LT
372}
373
b8f82a4a 374STATIC int
558e6891 375xfs_imap_valid(
8699bb0a 376 struct inode *inode,
207d0416 377 struct xfs_bmbt_irec *imap,
558e6891 378 xfs_off_t offset)
1da177e4 379{
558e6891 380 offset >>= inode->i_blkbits;
8699bb0a 381
558e6891
CH
382 return offset >= imap->br_startoff &&
383 offset < imap->br_startoff + imap->br_blockcount;
1da177e4
LT
384}
385
f6d6d4fc
CH
386/*
387 * BIO completion handler for buffered IO.
388 */
782e3b3b 389STATIC void
f6d6d4fc
CH
390xfs_end_bio(
391 struct bio *bio,
f6d6d4fc
CH
392 int error)
393{
394 xfs_ioend_t *ioend = bio->bi_private;
395
f6d6d4fc 396 ASSERT(atomic_read(&bio->bi_cnt) >= 1);
7d04a335 397 ioend->io_error = test_bit(BIO_UPTODATE, &bio->bi_flags) ? 0 : error;
f6d6d4fc
CH
398
399 /* Toss bio and pass work off to an xfsdatad thread */
f6d6d4fc
CH
400 bio->bi_private = NULL;
401 bio->bi_end_io = NULL;
f6d6d4fc 402 bio_put(bio);
7d04a335 403
209fb87a 404 xfs_finish_ioend(ioend);
f6d6d4fc
CH
405}
406
407STATIC void
408xfs_submit_ioend_bio(
06342cf8
CH
409 struct writeback_control *wbc,
410 xfs_ioend_t *ioend,
411 struct bio *bio)
f6d6d4fc
CH
412{
413 atomic_inc(&ioend->io_remaining);
f6d6d4fc
CH
414 bio->bi_private = ioend;
415 bio->bi_end_io = xfs_end_bio;
721a9602 416 submit_bio(wbc->sync_mode == WB_SYNC_ALL ? WRITE_SYNC : WRITE, bio);
f6d6d4fc
CH
417}
418
419STATIC struct bio *
420xfs_alloc_ioend_bio(
421 struct buffer_head *bh)
422{
f6d6d4fc 423 int nvecs = bio_get_nr_vecs(bh->b_bdev);
221cb251 424 struct bio *bio = bio_alloc(GFP_NOIO, nvecs);
f6d6d4fc
CH
425
426 ASSERT(bio->bi_private == NULL);
427 bio->bi_sector = bh->b_blocknr * (bh->b_size >> 9);
428 bio->bi_bdev = bh->b_bdev;
f6d6d4fc
CH
429 return bio;
430}
431
432STATIC void
433xfs_start_buffer_writeback(
434 struct buffer_head *bh)
435{
436 ASSERT(buffer_mapped(bh));
437 ASSERT(buffer_locked(bh));
438 ASSERT(!buffer_delay(bh));
439 ASSERT(!buffer_unwritten(bh));
440
441 mark_buffer_async_write(bh);
442 set_buffer_uptodate(bh);
443 clear_buffer_dirty(bh);
444}
445
446STATIC void
447xfs_start_page_writeback(
448 struct page *page,
f6d6d4fc
CH
449 int clear_dirty,
450 int buffers)
451{
452 ASSERT(PageLocked(page));
453 ASSERT(!PageWriteback(page));
f6d6d4fc 454 if (clear_dirty)
92132021
DC
455 clear_page_dirty_for_io(page);
456 set_page_writeback(page);
f6d6d4fc 457 unlock_page(page);
1f7decf6
FW
458 /* If no buffers on the page are to be written, finish it here */
459 if (!buffers)
f6d6d4fc 460 end_page_writeback(page);
f6d6d4fc
CH
461}
462
463static inline int bio_add_buffer(struct bio *bio, struct buffer_head *bh)
464{
465 return bio_add_page(bio, bh->b_page, bh->b_size, bh_offset(bh));
466}
467
468/*
d88992f6
DC
469 * Submit all of the bios for all of the ioends we have saved up, covering the
470 * initial writepage page and also any probed pages.
471 *
472 * Because we may have multiple ioends spanning a page, we need to start
473 * writeback on all the buffers before we submit them for I/O. If we mark the
474 * buffers as we got, then we can end up with a page that only has buffers
475 * marked async write and I/O complete on can occur before we mark the other
476 * buffers async write.
477 *
478 * The end result of this is that we trip a bug in end_page_writeback() because
479 * we call it twice for the one page as the code in end_buffer_async_write()
480 * assumes that all buffers on the page are started at the same time.
481 *
482 * The fix is two passes across the ioend list - one to start writeback on the
c41564b5 483 * buffer_heads, and then submit them for I/O on the second pass.
7bf7f352
DC
484 *
485 * If @fail is non-zero, it means that we have a situation where some part of
486 * the submission process has failed after we have marked paged for writeback
487 * and unlocked them. In this situation, we need to fail the ioend chain rather
488 * than submit it to IO. This typically only happens on a filesystem shutdown.
f6d6d4fc
CH
489 */
490STATIC void
491xfs_submit_ioend(
06342cf8 492 struct writeback_control *wbc,
7bf7f352
DC
493 xfs_ioend_t *ioend,
494 int fail)
f6d6d4fc 495{
d88992f6 496 xfs_ioend_t *head = ioend;
f6d6d4fc
CH
497 xfs_ioend_t *next;
498 struct buffer_head *bh;
499 struct bio *bio;
500 sector_t lastblock = 0;
501
d88992f6
DC
502 /* Pass 1 - start writeback */
503 do {
504 next = ioend->io_list;
221cb251 505 for (bh = ioend->io_buffer_head; bh; bh = bh->b_private)
d88992f6 506 xfs_start_buffer_writeback(bh);
d88992f6
DC
507 } while ((ioend = next) != NULL);
508
509 /* Pass 2 - submit I/O */
510 ioend = head;
f6d6d4fc
CH
511 do {
512 next = ioend->io_list;
513 bio = NULL;
514
7bf7f352
DC
515 /*
516 * If we are failing the IO now, just mark the ioend with an
517 * error and finish it. This will run IO completion immediately
518 * as there is only one reference to the ioend at this point in
519 * time.
520 */
521 if (fail) {
522 ioend->io_error = -fail;
523 xfs_finish_ioend(ioend);
524 continue;
525 }
526
f6d6d4fc 527 for (bh = ioend->io_buffer_head; bh; bh = bh->b_private) {
f6d6d4fc
CH
528
529 if (!bio) {
530 retry:
531 bio = xfs_alloc_ioend_bio(bh);
532 } else if (bh->b_blocknr != lastblock + 1) {
06342cf8 533 xfs_submit_ioend_bio(wbc, ioend, bio);
f6d6d4fc
CH
534 goto retry;
535 }
536
537 if (bio_add_buffer(bio, bh) != bh->b_size) {
06342cf8 538 xfs_submit_ioend_bio(wbc, ioend, bio);
f6d6d4fc
CH
539 goto retry;
540 }
541
542 lastblock = bh->b_blocknr;
543 }
544 if (bio)
06342cf8 545 xfs_submit_ioend_bio(wbc, ioend, bio);
209fb87a 546 xfs_finish_ioend(ioend);
f6d6d4fc
CH
547 } while ((ioend = next) != NULL);
548}
549
550/*
551 * Cancel submission of all buffer_heads so far in this endio.
552 * Toss the endio too. Only ever called for the initial page
553 * in a writepage request, so only ever one page.
554 */
555STATIC void
556xfs_cancel_ioend(
557 xfs_ioend_t *ioend)
558{
559 xfs_ioend_t *next;
560 struct buffer_head *bh, *next_bh;
561
562 do {
563 next = ioend->io_list;
564 bh = ioend->io_buffer_head;
565 do {
566 next_bh = bh->b_private;
567 clear_buffer_async_write(bh);
568 unlock_buffer(bh);
569 } while ((bh = next_bh) != NULL);
570
f6d6d4fc
CH
571 mempool_free(ioend, xfs_ioend_pool);
572 } while ((ioend = next) != NULL);
573}
574
575/*
576 * Test to see if we've been building up a completion structure for
577 * earlier buffers -- if so, we try to append to this ioend if we
578 * can, otherwise we finish off any current ioend and start another.
579 * Return true if we've finished the given ioend.
580 */
581STATIC void
582xfs_add_to_ioend(
583 struct inode *inode,
584 struct buffer_head *bh,
7336cea8 585 xfs_off_t offset,
f6d6d4fc
CH
586 unsigned int type,
587 xfs_ioend_t **result,
588 int need_ioend)
589{
590 xfs_ioend_t *ioend = *result;
591
592 if (!ioend || need_ioend || type != ioend->io_type) {
593 xfs_ioend_t *previous = *result;
f6d6d4fc 594
f6d6d4fc
CH
595 ioend = xfs_alloc_ioend(inode, type);
596 ioend->io_offset = offset;
597 ioend->io_buffer_head = bh;
598 ioend->io_buffer_tail = bh;
599 if (previous)
600 previous->io_list = ioend;
601 *result = ioend;
602 } else {
603 ioend->io_buffer_tail->b_private = bh;
604 ioend->io_buffer_tail = bh;
605 }
606
607 bh->b_private = NULL;
608 ioend->io_size += bh->b_size;
609}
610
87cbc49c
NS
611STATIC void
612xfs_map_buffer(
046f1685 613 struct inode *inode,
87cbc49c 614 struct buffer_head *bh,
207d0416 615 struct xfs_bmbt_irec *imap,
046f1685 616 xfs_off_t offset)
87cbc49c
NS
617{
618 sector_t bn;
8699bb0a 619 struct xfs_mount *m = XFS_I(inode)->i_mount;
207d0416
CH
620 xfs_off_t iomap_offset = XFS_FSB_TO_B(m, imap->br_startoff);
621 xfs_daddr_t iomap_bn = xfs_fsb_to_db(XFS_I(inode), imap->br_startblock);
87cbc49c 622
207d0416
CH
623 ASSERT(imap->br_startblock != HOLESTARTBLOCK);
624 ASSERT(imap->br_startblock != DELAYSTARTBLOCK);
87cbc49c 625
e513182d 626 bn = (iomap_bn >> (inode->i_blkbits - BBSHIFT)) +
8699bb0a 627 ((offset - iomap_offset) >> inode->i_blkbits);
87cbc49c 628
046f1685 629 ASSERT(bn || XFS_IS_REALTIME_INODE(XFS_I(inode)));
87cbc49c
NS
630
631 bh->b_blocknr = bn;
632 set_buffer_mapped(bh);
633}
634
1da177e4
LT
635STATIC void
636xfs_map_at_offset(
046f1685 637 struct inode *inode,
1da177e4 638 struct buffer_head *bh,
207d0416 639 struct xfs_bmbt_irec *imap,
046f1685 640 xfs_off_t offset)
1da177e4 641{
207d0416
CH
642 ASSERT(imap->br_startblock != HOLESTARTBLOCK);
643 ASSERT(imap->br_startblock != DELAYSTARTBLOCK);
1da177e4 644
207d0416 645 xfs_map_buffer(inode, bh, imap, offset);
1da177e4
LT
646 set_buffer_mapped(bh);
647 clear_buffer_delay(bh);
f6d6d4fc 648 clear_buffer_unwritten(bh);
1da177e4
LT
649}
650
1da177e4 651/*
10ce4444
CH
652 * Test if a given page is suitable for writing as part of an unwritten
653 * or delayed allocate extent.
1da177e4 654 */
10ce4444 655STATIC int
6ffc4db5 656xfs_check_page_type(
10ce4444 657 struct page *page,
f6d6d4fc 658 unsigned int type)
1da177e4 659{
1da177e4 660 if (PageWriteback(page))
10ce4444 661 return 0;
1da177e4
LT
662
663 if (page->mapping && page_has_buffers(page)) {
664 struct buffer_head *bh, *head;
665 int acceptable = 0;
666
667 bh = head = page_buffers(page);
668 do {
f6d6d4fc 669 if (buffer_unwritten(bh))
0d882a36 670 acceptable += (type == XFS_IO_UNWRITTEN);
f6d6d4fc 671 else if (buffer_delay(bh))
0d882a36 672 acceptable += (type == XFS_IO_DELALLOC);
2ddee844 673 else if (buffer_dirty(bh) && buffer_mapped(bh))
0d882a36 674 acceptable += (type == XFS_IO_OVERWRITE);
f6d6d4fc 675 else
1da177e4 676 break;
1da177e4
LT
677 } while ((bh = bh->b_this_page) != head);
678
679 if (acceptable)
10ce4444 680 return 1;
1da177e4
LT
681 }
682
10ce4444 683 return 0;
1da177e4
LT
684}
685
1da177e4
LT
686/*
687 * Allocate & map buffers for page given the extent map. Write it out.
688 * except for the original page of a writepage, this is called on
689 * delalloc/unwritten pages only, for the original page it is possible
690 * that the page has no mapping at all.
691 */
f6d6d4fc 692STATIC int
1da177e4
LT
693xfs_convert_page(
694 struct inode *inode,
695 struct page *page,
10ce4444 696 loff_t tindex,
207d0416 697 struct xfs_bmbt_irec *imap,
f6d6d4fc 698 xfs_ioend_t **ioendp,
2fa24f92 699 struct writeback_control *wbc)
1da177e4 700{
f6d6d4fc 701 struct buffer_head *bh, *head;
9260dc6b
CH
702 xfs_off_t end_offset;
703 unsigned long p_offset;
f6d6d4fc 704 unsigned int type;
24e17b5f 705 int len, page_dirty;
f6d6d4fc 706 int count = 0, done = 0, uptodate = 1;
9260dc6b 707 xfs_off_t offset = page_offset(page);
1da177e4 708
10ce4444
CH
709 if (page->index != tindex)
710 goto fail;
529ae9aa 711 if (!trylock_page(page))
10ce4444
CH
712 goto fail;
713 if (PageWriteback(page))
714 goto fail_unlock_page;
715 if (page->mapping != inode->i_mapping)
716 goto fail_unlock_page;
6ffc4db5 717 if (!xfs_check_page_type(page, (*ioendp)->io_type))
10ce4444
CH
718 goto fail_unlock_page;
719
24e17b5f
NS
720 /*
721 * page_dirty is initially a count of buffers on the page before
c41564b5 722 * EOF and is decremented as we move each into a cleanable state.
9260dc6b
CH
723 *
724 * Derivation:
725 *
726 * End offset is the highest offset that this page should represent.
727 * If we are on the last page, (end_offset & (PAGE_CACHE_SIZE - 1))
728 * will evaluate non-zero and be less than PAGE_CACHE_SIZE and
729 * hence give us the correct page_dirty count. On any other page,
730 * it will be zero and in that case we need page_dirty to be the
731 * count of buffers on the page.
24e17b5f 732 */
9260dc6b
CH
733 end_offset = min_t(unsigned long long,
734 (xfs_off_t)(page->index + 1) << PAGE_CACHE_SHIFT,
735 i_size_read(inode));
736
24e17b5f 737 len = 1 << inode->i_blkbits;
9260dc6b
CH
738 p_offset = min_t(unsigned long, end_offset & (PAGE_CACHE_SIZE - 1),
739 PAGE_CACHE_SIZE);
740 p_offset = p_offset ? roundup(p_offset, len) : PAGE_CACHE_SIZE;
741 page_dirty = p_offset / len;
24e17b5f 742
1da177e4
LT
743 bh = head = page_buffers(page);
744 do {
9260dc6b 745 if (offset >= end_offset)
1da177e4 746 break;
f6d6d4fc
CH
747 if (!buffer_uptodate(bh))
748 uptodate = 0;
749 if (!(PageUptodate(page) || buffer_uptodate(bh))) {
750 done = 1;
1da177e4 751 continue;
f6d6d4fc
CH
752 }
753
2fa24f92
CH
754 if (buffer_unwritten(bh) || buffer_delay(bh) ||
755 buffer_mapped(bh)) {
9260dc6b 756 if (buffer_unwritten(bh))
0d882a36 757 type = XFS_IO_UNWRITTEN;
2fa24f92 758 else if (buffer_delay(bh))
0d882a36 759 type = XFS_IO_DELALLOC;
2fa24f92 760 else
0d882a36 761 type = XFS_IO_OVERWRITE;
9260dc6b 762
558e6891 763 if (!xfs_imap_valid(inode, imap, offset)) {
f6d6d4fc 764 done = 1;
9260dc6b
CH
765 continue;
766 }
767
ecff71e6 768 lock_buffer(bh);
0d882a36 769 if (type != XFS_IO_OVERWRITE)
2fa24f92 770 xfs_map_at_offset(inode, bh, imap, offset);
89f3b363
CH
771 xfs_add_to_ioend(inode, bh, offset, type,
772 ioendp, done);
773
9260dc6b
CH
774 page_dirty--;
775 count++;
776 } else {
2fa24f92 777 done = 1;
1da177e4 778 }
7336cea8 779 } while (offset += len, (bh = bh->b_this_page) != head);
1da177e4 780
f6d6d4fc
CH
781 if (uptodate && bh == head)
782 SetPageUptodate(page);
783
89f3b363 784 if (count) {
efceab1d
DC
785 if (--wbc->nr_to_write <= 0 &&
786 wbc->sync_mode == WB_SYNC_NONE)
89f3b363 787 done = 1;
1da177e4 788 }
89f3b363 789 xfs_start_page_writeback(page, !page_dirty, count);
f6d6d4fc
CH
790
791 return done;
10ce4444
CH
792 fail_unlock_page:
793 unlock_page(page);
794 fail:
795 return 1;
1da177e4
LT
796}
797
798/*
799 * Convert & write out a cluster of pages in the same extent as defined
800 * by mp and following the start page.
801 */
802STATIC void
803xfs_cluster_write(
804 struct inode *inode,
805 pgoff_t tindex,
207d0416 806 struct xfs_bmbt_irec *imap,
f6d6d4fc 807 xfs_ioend_t **ioendp,
1da177e4 808 struct writeback_control *wbc,
1da177e4
LT
809 pgoff_t tlast)
810{
10ce4444
CH
811 struct pagevec pvec;
812 int done = 0, i;
1da177e4 813
10ce4444
CH
814 pagevec_init(&pvec, 0);
815 while (!done && tindex <= tlast) {
816 unsigned len = min_t(pgoff_t, PAGEVEC_SIZE, tlast - tindex + 1);
817
818 if (!pagevec_lookup(&pvec, inode->i_mapping, tindex, len))
1da177e4 819 break;
10ce4444
CH
820
821 for (i = 0; i < pagevec_count(&pvec); i++) {
822 done = xfs_convert_page(inode, pvec.pages[i], tindex++,
2fa24f92 823 imap, ioendp, wbc);
10ce4444
CH
824 if (done)
825 break;
826 }
827
828 pagevec_release(&pvec);
829 cond_resched();
1da177e4
LT
830 }
831}
832
3ed3a434
DC
833STATIC void
834xfs_vm_invalidatepage(
835 struct page *page,
836 unsigned long offset)
837{
838 trace_xfs_invalidatepage(page->mapping->host, page, offset);
839 block_invalidatepage(page, offset);
840}
841
842/*
843 * If the page has delalloc buffers on it, we need to punch them out before we
844 * invalidate the page. If we don't, we leave a stale delalloc mapping on the
845 * inode that can trip a BUG() in xfs_get_blocks() later on if a direct IO read
846 * is done on that same region - the delalloc extent is returned when none is
847 * supposed to be there.
848 *
849 * We prevent this by truncating away the delalloc regions on the page before
850 * invalidating it. Because they are delalloc, we can do this without needing a
851 * transaction. Indeed - if we get ENOSPC errors, we have to be able to do this
852 * truncation without a transaction as there is no space left for block
853 * reservation (typically why we see a ENOSPC in writeback).
854 *
855 * This is not a performance critical path, so for now just do the punching a
856 * buffer head at a time.
857 */
858STATIC void
859xfs_aops_discard_page(
860 struct page *page)
861{
862 struct inode *inode = page->mapping->host;
863 struct xfs_inode *ip = XFS_I(inode);
864 struct buffer_head *bh, *head;
865 loff_t offset = page_offset(page);
3ed3a434 866
0d882a36 867 if (!xfs_check_page_type(page, XFS_IO_DELALLOC))
3ed3a434
DC
868 goto out_invalidate;
869
e8c3753c
DC
870 if (XFS_FORCED_SHUTDOWN(ip->i_mount))
871 goto out_invalidate;
872
4f10700a 873 xfs_alert(ip->i_mount,
3ed3a434
DC
874 "page discard on page %p, inode 0x%llx, offset %llu.",
875 page, ip->i_ino, offset);
876
877 xfs_ilock(ip, XFS_ILOCK_EXCL);
878 bh = head = page_buffers(page);
879 do {
3ed3a434 880 int error;
c726de44 881 xfs_fileoff_t start_fsb;
3ed3a434
DC
882
883 if (!buffer_delay(bh))
884 goto next_buffer;
885
c726de44
DC
886 start_fsb = XFS_B_TO_FSBT(ip->i_mount, offset);
887 error = xfs_bmap_punch_delalloc_range(ip, start_fsb, 1);
3ed3a434
DC
888 if (error) {
889 /* something screwed, just bail */
e8c3753c 890 if (!XFS_FORCED_SHUTDOWN(ip->i_mount)) {
4f10700a 891 xfs_alert(ip->i_mount,
3ed3a434 892 "page discard unable to remove delalloc mapping.");
e8c3753c 893 }
3ed3a434
DC
894 break;
895 }
896next_buffer:
c726de44 897 offset += 1 << inode->i_blkbits;
3ed3a434
DC
898
899 } while ((bh = bh->b_this_page) != head);
900
901 xfs_iunlock(ip, XFS_ILOCK_EXCL);
902out_invalidate:
903 xfs_vm_invalidatepage(page, 0);
904 return;
905}
906
1da177e4 907/*
89f3b363
CH
908 * Write out a dirty page.
909 *
910 * For delalloc space on the page we need to allocate space and flush it.
911 * For unwritten space on the page we need to start the conversion to
912 * regular allocated space.
89f3b363 913 * For any other dirty buffer heads on the page we should flush them.
1da177e4 914 */
1da177e4 915STATIC int
89f3b363
CH
916xfs_vm_writepage(
917 struct page *page,
918 struct writeback_control *wbc)
1da177e4 919{
89f3b363 920 struct inode *inode = page->mapping->host;
f6d6d4fc 921 struct buffer_head *bh, *head;
207d0416 922 struct xfs_bmbt_irec imap;
f6d6d4fc 923 xfs_ioend_t *ioend = NULL, *iohead = NULL;
1da177e4 924 loff_t offset;
f6d6d4fc 925 unsigned int type;
1da177e4 926 __uint64_t end_offset;
bd1556a1 927 pgoff_t end_index, last_index;
ed1e7b7e 928 ssize_t len;
a206c817 929 int err, imap_valid = 0, uptodate = 1;
89f3b363 930 int count = 0;
a206c817 931 int nonblocking = 0;
89f3b363
CH
932
933 trace_xfs_writepage(inode, page, 0);
934
20cb52eb
CH
935 ASSERT(page_has_buffers(page));
936
89f3b363
CH
937 /*
938 * Refuse to write the page out if we are called from reclaim context.
939 *
d4f7a5cb
CH
940 * This avoids stack overflows when called from deeply used stacks in
941 * random callers for direct reclaim or memcg reclaim. We explicitly
942 * allow reclaim from kswapd as the stack usage there is relatively low.
89f3b363 943 *
94054fa3
MG
944 * This should never happen except in the case of a VM regression so
945 * warn about it.
89f3b363 946 */
94054fa3
MG
947 if (WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD)) ==
948 PF_MEMALLOC))
b5420f23 949 goto redirty;
1da177e4 950
89f3b363 951 /*
680a647b
CH
952 * Given that we do not allow direct reclaim to call us, we should
953 * never be called while in a filesystem transaction.
89f3b363 954 */
680a647b 955 if (WARN_ON(current->flags & PF_FSTRANS))
b5420f23 956 goto redirty;
89f3b363 957
1da177e4
LT
958 /* Is this page beyond the end of the file? */
959 offset = i_size_read(inode);
960 end_index = offset >> PAGE_CACHE_SHIFT;
961 last_index = (offset - 1) >> PAGE_CACHE_SHIFT;
962 if (page->index >= end_index) {
6b7a03f0
CH
963 unsigned offset_into_page = offset & (PAGE_CACHE_SIZE - 1);
964
965 /*
966 * Just skip the page if it is fully outside i_size, e.g. due
967 * to a truncate operation that is in progress.
968 */
969 if (page->index >= end_index + 1 || offset_into_page == 0) {
89f3b363 970 unlock_page(page);
19d5bcf3 971 return 0;
1da177e4 972 }
6b7a03f0
CH
973
974 /*
975 * The page straddles i_size. It must be zeroed out on each
976 * and every writepage invocation because it may be mmapped.
977 * "A file is mapped in multiples of the page size. For a file
978 * that is not a multiple of the page size, the remaining
979 * memory is zeroed when mapped, and writes to that region are
980 * not written out to the file."
981 */
982 zero_user_segment(page, offset_into_page, PAGE_CACHE_SIZE);
1da177e4
LT
983 }
984
f6d6d4fc 985 end_offset = min_t(unsigned long long,
20cb52eb
CH
986 (xfs_off_t)(page->index + 1) << PAGE_CACHE_SHIFT,
987 offset);
24e17b5f 988 len = 1 << inode->i_blkbits;
24e17b5f 989
24e17b5f 990 bh = head = page_buffers(page);
f6d6d4fc 991 offset = page_offset(page);
0d882a36 992 type = XFS_IO_OVERWRITE;
a206c817 993
dbcdde3e 994 if (wbc->sync_mode == WB_SYNC_NONE)
a206c817 995 nonblocking = 1;
f6d6d4fc 996
1da177e4 997 do {
6ac7248e
CH
998 int new_ioend = 0;
999
1da177e4
LT
1000 if (offset >= end_offset)
1001 break;
1002 if (!buffer_uptodate(bh))
1003 uptodate = 0;
1da177e4 1004
3d9b02e3 1005 /*
ece413f5
CH
1006 * set_page_dirty dirties all buffers in a page, independent
1007 * of their state. The dirty state however is entirely
1008 * meaningless for holes (!mapped && uptodate), so skip
1009 * buffers covering holes here.
3d9b02e3
ES
1010 */
1011 if (!buffer_mapped(bh) && buffer_uptodate(bh)) {
3d9b02e3
ES
1012 imap_valid = 0;
1013 continue;
1014 }
1015
aeea1b1f 1016 if (buffer_unwritten(bh)) {
0d882a36
AR
1017 if (type != XFS_IO_UNWRITTEN) {
1018 type = XFS_IO_UNWRITTEN;
aeea1b1f 1019 imap_valid = 0;
1da177e4 1020 }
aeea1b1f 1021 } else if (buffer_delay(bh)) {
0d882a36
AR
1022 if (type != XFS_IO_DELALLOC) {
1023 type = XFS_IO_DELALLOC;
aeea1b1f 1024 imap_valid = 0;
1da177e4 1025 }
89f3b363 1026 } else if (buffer_uptodate(bh)) {
0d882a36
AR
1027 if (type != XFS_IO_OVERWRITE) {
1028 type = XFS_IO_OVERWRITE;
85da94c6
CH
1029 imap_valid = 0;
1030 }
aeea1b1f 1031 } else {
7d0fa3ec 1032 if (PageUptodate(page))
aeea1b1f 1033 ASSERT(buffer_mapped(bh));
7d0fa3ec
AR
1034 /*
1035 * This buffer is not uptodate and will not be
1036 * written to disk. Ensure that we will put any
1037 * subsequent writeable buffers into a new
1038 * ioend.
1039 */
1040 imap_valid = 0;
aeea1b1f
CH
1041 continue;
1042 }
d5cb48aa 1043
aeea1b1f
CH
1044 if (imap_valid)
1045 imap_valid = xfs_imap_valid(inode, &imap, offset);
1046 if (!imap_valid) {
1047 /*
1048 * If we didn't have a valid mapping then we need to
1049 * put the new mapping into a separate ioend structure.
1050 * This ensures non-contiguous extents always have
1051 * separate ioends, which is particularly important
1052 * for unwritten extent conversion at I/O completion
1053 * time.
1054 */
1055 new_ioend = 1;
1056 err = xfs_map_blocks(inode, offset, &imap, type,
1057 nonblocking);
1058 if (err)
1059 goto error;
1060 imap_valid = xfs_imap_valid(inode, &imap, offset);
1061 }
1062 if (imap_valid) {
ecff71e6 1063 lock_buffer(bh);
0d882a36 1064 if (type != XFS_IO_OVERWRITE)
aeea1b1f
CH
1065 xfs_map_at_offset(inode, bh, &imap, offset);
1066 xfs_add_to_ioend(inode, bh, offset, type, &ioend,
1067 new_ioend);
1068 count++;
1da177e4 1069 }
f6d6d4fc
CH
1070
1071 if (!iohead)
1072 iohead = ioend;
1073
1074 } while (offset += len, ((bh = bh->b_this_page) != head));
1da177e4
LT
1075
1076 if (uptodate && bh == head)
1077 SetPageUptodate(page);
1078
89f3b363 1079 xfs_start_page_writeback(page, 1, count);
1da177e4 1080
7bf7f352
DC
1081 /* if there is no IO to be submitted for this page, we are done */
1082 if (!ioend)
1083 return 0;
1084
1085 ASSERT(iohead);
1086
1087 /*
1088 * Any errors from this point onwards need tobe reported through the IO
1089 * completion path as we have marked the initial page as under writeback
1090 * and unlocked it.
1091 */
1092 if (imap_valid) {
bd1556a1
CH
1093 xfs_off_t end_index;
1094
1095 end_index = imap.br_startoff + imap.br_blockcount;
1096
1097 /* to bytes */
1098 end_index <<= inode->i_blkbits;
1099
1100 /* to pages */
1101 end_index = (end_index - 1) >> PAGE_CACHE_SHIFT;
1102
1103 /* check against file size */
1104 if (end_index > last_index)
1105 end_index = last_index;
8699bb0a 1106
207d0416 1107 xfs_cluster_write(inode, page->index + 1, &imap, &ioend,
2fa24f92 1108 wbc, end_index);
1da177e4
LT
1109 }
1110
281627df 1111
7bf7f352
DC
1112 /*
1113 * Reserve log space if we might write beyond the on-disk inode size.
1114 */
1115 err = 0;
1116 if (ioend->io_type != XFS_IO_UNWRITTEN && xfs_ioend_is_append(ioend))
1117 err = xfs_setfilesize_trans_alloc(ioend);
1118
1119 xfs_submit_ioend(wbc, iohead, err);
f6d6d4fc 1120
89f3b363 1121 return 0;
1da177e4
LT
1122
1123error:
f6d6d4fc
CH
1124 if (iohead)
1125 xfs_cancel_ioend(iohead);
1da177e4 1126
b5420f23
CH
1127 if (err == -EAGAIN)
1128 goto redirty;
1129
20cb52eb 1130 xfs_aops_discard_page(page);
89f3b363
CH
1131 ClearPageUptodate(page);
1132 unlock_page(page);
1da177e4 1133 return err;
f51623b2 1134
b5420f23 1135redirty:
f51623b2
NS
1136 redirty_page_for_writepage(wbc, page);
1137 unlock_page(page);
1138 return 0;
f51623b2
NS
1139}
1140
7d4fb40a
NS
1141STATIC int
1142xfs_vm_writepages(
1143 struct address_space *mapping,
1144 struct writeback_control *wbc)
1145{
b3aea4ed 1146 xfs_iflags_clear(XFS_I(mapping->host), XFS_ITRUNCATED);
7d4fb40a
NS
1147 return generic_writepages(mapping, wbc);
1148}
1149
f51623b2
NS
1150/*
1151 * Called to move a page into cleanable state - and from there
89f3b363 1152 * to be released. The page should already be clean. We always
f51623b2
NS
1153 * have buffer heads in this call.
1154 *
89f3b363 1155 * Returns 1 if the page is ok to release, 0 otherwise.
f51623b2
NS
1156 */
1157STATIC int
238f4c54 1158xfs_vm_releasepage(
f51623b2
NS
1159 struct page *page,
1160 gfp_t gfp_mask)
1161{
20cb52eb 1162 int delalloc, unwritten;
f51623b2 1163
89f3b363 1164 trace_xfs_releasepage(page->mapping->host, page, 0);
238f4c54 1165
20cb52eb 1166 xfs_count_page_state(page, &delalloc, &unwritten);
f51623b2 1167
89f3b363 1168 if (WARN_ON(delalloc))
f51623b2 1169 return 0;
89f3b363 1170 if (WARN_ON(unwritten))
f51623b2
NS
1171 return 0;
1172
f51623b2
NS
1173 return try_to_free_buffers(page);
1174}
1175
1da177e4 1176STATIC int
c2536668 1177__xfs_get_blocks(
1da177e4
LT
1178 struct inode *inode,
1179 sector_t iblock,
1da177e4
LT
1180 struct buffer_head *bh_result,
1181 int create,
f2bde9b8 1182 int direct)
1da177e4 1183{
a206c817
CH
1184 struct xfs_inode *ip = XFS_I(inode);
1185 struct xfs_mount *mp = ip->i_mount;
1186 xfs_fileoff_t offset_fsb, end_fsb;
1187 int error = 0;
1188 int lockmode = 0;
207d0416 1189 struct xfs_bmbt_irec imap;
a206c817 1190 int nimaps = 1;
fdc7ed75
NS
1191 xfs_off_t offset;
1192 ssize_t size;
207d0416 1193 int new = 0;
a206c817
CH
1194
1195 if (XFS_FORCED_SHUTDOWN(mp))
1196 return -XFS_ERROR(EIO);
1da177e4 1197
fdc7ed75 1198 offset = (xfs_off_t)iblock << inode->i_blkbits;
c2536668
NS
1199 ASSERT(bh_result->b_size >= (1 << inode->i_blkbits));
1200 size = bh_result->b_size;
364f358a
LM
1201
1202 if (!create && direct && offset >= i_size_read(inode))
1203 return 0;
1204
507630b2
DC
1205 /*
1206 * Direct I/O is usually done on preallocated files, so try getting
1207 * a block mapping without an exclusive lock first. For buffered
1208 * writes we already have the exclusive iolock anyway, so avoiding
1209 * a lock roundtrip here by taking the ilock exclusive from the
1210 * beginning is a useful micro optimization.
1211 */
1212 if (create && !direct) {
a206c817
CH
1213 lockmode = XFS_ILOCK_EXCL;
1214 xfs_ilock(ip, lockmode);
1215 } else {
1216 lockmode = xfs_ilock_map_shared(ip);
1217 }
f2bde9b8 1218
d2c28191
DC
1219 ASSERT(offset <= mp->m_super->s_maxbytes);
1220 if (offset + size > mp->m_super->s_maxbytes)
1221 size = mp->m_super->s_maxbytes - offset;
a206c817
CH
1222 end_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)offset + size);
1223 offset_fsb = XFS_B_TO_FSBT(mp, offset);
1224
5c8ed202
DC
1225 error = xfs_bmapi_read(ip, offset_fsb, end_fsb - offset_fsb,
1226 &imap, &nimaps, XFS_BMAPI_ENTIRE);
1da177e4 1227 if (error)
a206c817
CH
1228 goto out_unlock;
1229
1230 if (create &&
1231 (!nimaps ||
1232 (imap.br_startblock == HOLESTARTBLOCK ||
1233 imap.br_startblock == DELAYSTARTBLOCK))) {
aff3a9ed 1234 if (direct || xfs_get_extsz_hint(ip)) {
507630b2
DC
1235 /*
1236 * Drop the ilock in preparation for starting the block
1237 * allocation transaction. It will be retaken
1238 * exclusively inside xfs_iomap_write_direct for the
1239 * actual allocation.
1240 */
1241 xfs_iunlock(ip, lockmode);
a206c817
CH
1242 error = xfs_iomap_write_direct(ip, offset, size,
1243 &imap, nimaps);
507630b2
DC
1244 if (error)
1245 return -error;
d3bc815a 1246 new = 1;
a206c817 1247 } else {
507630b2
DC
1248 /*
1249 * Delalloc reservations do not require a transaction,
d3bc815a
DC
1250 * we can go on without dropping the lock here. If we
1251 * are allocating a new delalloc block, make sure that
1252 * we set the new flag so that we mark the buffer new so
1253 * that we know that it is newly allocated if the write
1254 * fails.
507630b2 1255 */
d3bc815a
DC
1256 if (nimaps && imap.br_startblock == HOLESTARTBLOCK)
1257 new = 1;
a206c817 1258 error = xfs_iomap_write_delay(ip, offset, size, &imap);
507630b2
DC
1259 if (error)
1260 goto out_unlock;
1261
1262 xfs_iunlock(ip, lockmode);
a206c817 1263 }
a206c817
CH
1264
1265 trace_xfs_get_blocks_alloc(ip, offset, size, 0, &imap);
1266 } else if (nimaps) {
1267 trace_xfs_get_blocks_found(ip, offset, size, 0, &imap);
507630b2 1268 xfs_iunlock(ip, lockmode);
a206c817
CH
1269 } else {
1270 trace_xfs_get_blocks_notfound(ip, offset, size);
1271 goto out_unlock;
1272 }
1da177e4 1273
207d0416
CH
1274 if (imap.br_startblock != HOLESTARTBLOCK &&
1275 imap.br_startblock != DELAYSTARTBLOCK) {
87cbc49c
NS
1276 /*
1277 * For unwritten extents do not report a disk address on
1da177e4
LT
1278 * the read case (treat as if we're reading into a hole).
1279 */
207d0416
CH
1280 if (create || !ISUNWRITTEN(&imap))
1281 xfs_map_buffer(inode, bh_result, &imap, offset);
1282 if (create && ISUNWRITTEN(&imap)) {
1da177e4
LT
1283 if (direct)
1284 bh_result->b_private = inode;
1285 set_buffer_unwritten(bh_result);
1da177e4
LT
1286 }
1287 }
1288
c2536668
NS
1289 /*
1290 * If this is a realtime file, data may be on a different device.
1291 * to that pointed to from the buffer_head b_bdev currently.
1292 */
046f1685 1293 bh_result->b_bdev = xfs_find_bdev_for_inode(inode);
1da177e4 1294
c2536668 1295 /*
549054af
DC
1296 * If we previously allocated a block out beyond eof and we are now
1297 * coming back to use it then we will need to flag it as new even if it
1298 * has a disk address.
1299 *
1300 * With sub-block writes into unwritten extents we also need to mark
1301 * the buffer as new so that the unwritten parts of the buffer gets
1302 * correctly zeroed.
1da177e4
LT
1303 */
1304 if (create &&
1305 ((!buffer_mapped(bh_result) && !buffer_uptodate(bh_result)) ||
549054af 1306 (offset >= i_size_read(inode)) ||
207d0416 1307 (new || ISUNWRITTEN(&imap))))
1da177e4 1308 set_buffer_new(bh_result);
1da177e4 1309
207d0416 1310 if (imap.br_startblock == DELAYSTARTBLOCK) {
1da177e4
LT
1311 BUG_ON(direct);
1312 if (create) {
1313 set_buffer_uptodate(bh_result);
1314 set_buffer_mapped(bh_result);
1315 set_buffer_delay(bh_result);
1316 }
1317 }
1318
2b8f12b7
CH
1319 /*
1320 * If this is O_DIRECT or the mpage code calling tell them how large
1321 * the mapping is, so that we can avoid repeated get_blocks calls.
1322 */
c2536668 1323 if (direct || size > (1 << inode->i_blkbits)) {
2b8f12b7
CH
1324 xfs_off_t mapping_size;
1325
1326 mapping_size = imap.br_startoff + imap.br_blockcount - iblock;
1327 mapping_size <<= inode->i_blkbits;
1328
1329 ASSERT(mapping_size > 0);
1330 if (mapping_size > size)
1331 mapping_size = size;
1332 if (mapping_size > LONG_MAX)
1333 mapping_size = LONG_MAX;
1334
1335 bh_result->b_size = mapping_size;
1da177e4
LT
1336 }
1337
1338 return 0;
a206c817
CH
1339
1340out_unlock:
1341 xfs_iunlock(ip, lockmode);
1342 return -error;
1da177e4
LT
1343}
1344
1345int
c2536668 1346xfs_get_blocks(
1da177e4
LT
1347 struct inode *inode,
1348 sector_t iblock,
1349 struct buffer_head *bh_result,
1350 int create)
1351{
f2bde9b8 1352 return __xfs_get_blocks(inode, iblock, bh_result, create, 0);
1da177e4
LT
1353}
1354
1355STATIC int
e4c573bb 1356xfs_get_blocks_direct(
1da177e4
LT
1357 struct inode *inode,
1358 sector_t iblock,
1da177e4
LT
1359 struct buffer_head *bh_result,
1360 int create)
1361{
f2bde9b8 1362 return __xfs_get_blocks(inode, iblock, bh_result, create, 1);
1da177e4
LT
1363}
1364
209fb87a
CH
1365/*
1366 * Complete a direct I/O write request.
1367 *
1368 * If the private argument is non-NULL __xfs_get_blocks signals us that we
1369 * need to issue a transaction to convert the range from unwritten to written
1370 * extents. In case this is regular synchronous I/O we just call xfs_end_io
25985edc 1371 * to do this and we are done. But in case this was a successful AIO
209fb87a
CH
1372 * request this handler is called from interrupt context, from which we
1373 * can't start transactions. In that case offload the I/O completion to
1374 * the workqueues we also use for buffered I/O completion.
1375 */
f0973863 1376STATIC void
209fb87a
CH
1377xfs_end_io_direct_write(
1378 struct kiocb *iocb,
1379 loff_t offset,
1380 ssize_t size,
1381 void *private,
1382 int ret,
1383 bool is_async)
f0973863 1384{
209fb87a 1385 struct xfs_ioend *ioend = iocb->private;
f0973863 1386
2813d682
CH
1387 /*
1388 * While the generic direct I/O code updates the inode size, it does
1389 * so only after the end_io handler is called, which means our
1390 * end_io handler thinks the on-disk size is outside the in-core
1391 * size. To prevent this just update it a little bit earlier here.
1392 */
1393 if (offset + size > i_size_read(ioend->io_inode))
1394 i_size_write(ioend->io_inode, offset + size);
1395
f0973863 1396 /*
209fb87a
CH
1397 * blockdev_direct_IO can return an error even after the I/O
1398 * completion handler was called. Thus we need to protect
1399 * against double-freeing.
f0973863 1400 */
209fb87a
CH
1401 iocb->private = NULL;
1402
ba87ea69
LM
1403 ioend->io_offset = offset;
1404 ioend->io_size = size;
c859cdd1
CH
1405 ioend->io_iocb = iocb;
1406 ioend->io_result = ret;
209fb87a 1407 if (private && size > 0)
0d882a36 1408 ioend->io_type = XFS_IO_UNWRITTEN;
209fb87a
CH
1409
1410 if (is_async) {
c859cdd1 1411 ioend->io_isasync = 1;
209fb87a 1412 xfs_finish_ioend(ioend);
f0973863 1413 } else {
209fb87a 1414 xfs_finish_ioend_sync(ioend);
f0973863 1415 }
f0973863
CH
1416}
1417
1da177e4 1418STATIC ssize_t
e4c573bb 1419xfs_vm_direct_IO(
1da177e4
LT
1420 int rw,
1421 struct kiocb *iocb,
1422 const struct iovec *iov,
1423 loff_t offset,
1424 unsigned long nr_segs)
1425{
209fb87a
CH
1426 struct inode *inode = iocb->ki_filp->f_mapping->host;
1427 struct block_device *bdev = xfs_find_bdev_for_inode(inode);
281627df 1428 struct xfs_ioend *ioend = NULL;
209fb87a
CH
1429 ssize_t ret;
1430
1431 if (rw & WRITE) {
281627df
CH
1432 size_t size = iov_length(iov, nr_segs);
1433
1434 /*
1435 * We need to preallocate a transaction for a size update
1436 * here. In the case that this write both updates the size
1437 * and converts at least on unwritten extent we will cancel
1438 * the still clean transaction after the I/O has finished.
1439 */
0d882a36 1440 iocb->private = ioend = xfs_alloc_ioend(inode, XFS_IO_DIRECT);
281627df
CH
1441 if (offset + size > XFS_I(inode)->i_d.di_size) {
1442 ret = xfs_setfilesize_trans_alloc(ioend);
1443 if (ret)
1444 goto out_destroy_ioend;
1445 ioend->io_isdirect = 1;
1446 }
209fb87a 1447
eafdc7d1
CH
1448 ret = __blockdev_direct_IO(rw, iocb, inode, bdev, iov,
1449 offset, nr_segs,
1450 xfs_get_blocks_direct,
1451 xfs_end_io_direct_write, NULL, 0);
209fb87a 1452 if (ret != -EIOCBQUEUED && iocb->private)
281627df 1453 goto out_trans_cancel;
209fb87a 1454 } else {
eafdc7d1
CH
1455 ret = __blockdev_direct_IO(rw, iocb, inode, bdev, iov,
1456 offset, nr_segs,
1457 xfs_get_blocks_direct,
1458 NULL, NULL, 0);
209fb87a 1459 }
f0973863 1460
f0973863 1461 return ret;
281627df
CH
1462
1463out_trans_cancel:
1464 if (ioend->io_append_trans) {
1465 current_set_flags_nested(&ioend->io_append_trans->t_pflags,
1466 PF_FSTRANS);
d9457dc0
JK
1467 rwsem_acquire_read(
1468 &inode->i_sb->s_writers.lock_map[SB_FREEZE_FS-1],
1469 0, 1, _THIS_IP_);
281627df
CH
1470 xfs_trans_cancel(ioend->io_append_trans, 0);
1471 }
1472out_destroy_ioend:
1473 xfs_destroy_ioend(ioend);
1474 return ret;
1da177e4
LT
1475}
1476
d3bc815a
DC
1477/*
1478 * Punch out the delalloc blocks we have already allocated.
1479 *
1480 * Don't bother with xfs_setattr given that nothing can have made it to disk yet
1481 * as the page is still locked at this point.
1482 */
1483STATIC void
1484xfs_vm_kill_delalloc_range(
1485 struct inode *inode,
1486 loff_t start,
1487 loff_t end)
1488{
1489 struct xfs_inode *ip = XFS_I(inode);
1490 xfs_fileoff_t start_fsb;
1491 xfs_fileoff_t end_fsb;
1492 int error;
1493
1494 start_fsb = XFS_B_TO_FSB(ip->i_mount, start);
1495 end_fsb = XFS_B_TO_FSB(ip->i_mount, end);
1496 if (end_fsb <= start_fsb)
1497 return;
1498
1499 xfs_ilock(ip, XFS_ILOCK_EXCL);
1500 error = xfs_bmap_punch_delalloc_range(ip, start_fsb,
1501 end_fsb - start_fsb);
1502 if (error) {
1503 /* something screwed, just bail */
1504 if (!XFS_FORCED_SHUTDOWN(ip->i_mount)) {
1505 xfs_alert(ip->i_mount,
1506 "xfs_vm_write_failed: unable to clean up ino %lld",
1507 ip->i_ino);
1508 }
1509 }
1510 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1511}
1512
fa9b227e
CH
1513STATIC void
1514xfs_vm_write_failed(
d3bc815a
DC
1515 struct inode *inode,
1516 struct page *page,
1517 loff_t pos,
1518 unsigned len)
fa9b227e 1519{
d3bc815a
DC
1520 loff_t block_offset = pos & PAGE_MASK;
1521 loff_t block_start;
1522 loff_t block_end;
1523 loff_t from = pos & (PAGE_CACHE_SIZE - 1);
1524 loff_t to = from + len;
1525 struct buffer_head *bh, *head;
fa9b227e 1526
d3bc815a 1527 ASSERT(block_offset + from == pos);
c726de44 1528
d3bc815a
DC
1529 head = page_buffers(page);
1530 block_start = 0;
1531 for (bh = head; bh != head || !block_start;
1532 bh = bh->b_this_page, block_start = block_end,
1533 block_offset += bh->b_size) {
1534 block_end = block_start + bh->b_size;
c726de44 1535
d3bc815a
DC
1536 /* skip buffers before the write */
1537 if (block_end <= from)
1538 continue;
1539
1540 /* if the buffer is after the write, we're done */
1541 if (block_start >= to)
1542 break;
1543
1544 if (!buffer_delay(bh))
1545 continue;
1546
1547 if (!buffer_new(bh) && block_offset < i_size_read(inode))
1548 continue;
1549
1550 xfs_vm_kill_delalloc_range(inode, block_offset,
1551 block_offset + bh->b_size);
fa9b227e 1552 }
d3bc815a 1553
fa9b227e
CH
1554}
1555
d3bc815a
DC
1556/*
1557 * This used to call block_write_begin(), but it unlocks and releases the page
1558 * on error, and we need that page to be able to punch stale delalloc blocks out
1559 * on failure. hence we copy-n-waste it here and call xfs_vm_write_failed() at
1560 * the appropriate point.
1561 */
f51623b2 1562STATIC int
d79689c7 1563xfs_vm_write_begin(
f51623b2 1564 struct file *file,
d79689c7
NP
1565 struct address_space *mapping,
1566 loff_t pos,
1567 unsigned len,
1568 unsigned flags,
1569 struct page **pagep,
1570 void **fsdata)
f51623b2 1571{
d3bc815a
DC
1572 pgoff_t index = pos >> PAGE_CACHE_SHIFT;
1573 struct page *page;
1574 int status;
155130a4 1575
d3bc815a
DC
1576 ASSERT(len <= PAGE_CACHE_SIZE);
1577
1578 page = grab_cache_page_write_begin(mapping, index,
1579 flags | AOP_FLAG_NOFS);
1580 if (!page)
1581 return -ENOMEM;
1582
1583 status = __block_write_begin(page, pos, len, xfs_get_blocks);
1584 if (unlikely(status)) {
1585 struct inode *inode = mapping->host;
1586
1587 xfs_vm_write_failed(inode, page, pos, len);
1588 unlock_page(page);
1589
1590 if (pos + len > i_size_read(inode))
1591 truncate_pagecache(inode, pos + len, i_size_read(inode));
1592
1593 page_cache_release(page);
1594 page = NULL;
1595 }
1596
1597 *pagep = page;
1598 return status;
fa9b227e
CH
1599}
1600
d3bc815a
DC
1601/*
1602 * On failure, we only need to kill delalloc blocks beyond EOF because they
1603 * will never be written. For blocks within EOF, generic_write_end() zeros them
1604 * so they are safe to leave alone and be written with all the other valid data.
1605 */
fa9b227e
CH
1606STATIC int
1607xfs_vm_write_end(
1608 struct file *file,
1609 struct address_space *mapping,
1610 loff_t pos,
1611 unsigned len,
1612 unsigned copied,
1613 struct page *page,
1614 void *fsdata)
1615{
1616 int ret;
155130a4 1617
d3bc815a
DC
1618 ASSERT(len <= PAGE_CACHE_SIZE);
1619
fa9b227e 1620 ret = generic_write_end(file, mapping, pos, len, copied, page, fsdata);
d3bc815a
DC
1621 if (unlikely(ret < len)) {
1622 struct inode *inode = mapping->host;
1623 size_t isize = i_size_read(inode);
1624 loff_t to = pos + len;
1625
1626 if (to > isize) {
1627 truncate_pagecache(inode, to, isize);
1628 xfs_vm_kill_delalloc_range(inode, isize, to);
1629 }
1630 }
155130a4 1631 return ret;
f51623b2 1632}
1da177e4
LT
1633
1634STATIC sector_t
e4c573bb 1635xfs_vm_bmap(
1da177e4
LT
1636 struct address_space *mapping,
1637 sector_t block)
1638{
1639 struct inode *inode = (struct inode *)mapping->host;
739bfb2a 1640 struct xfs_inode *ip = XFS_I(inode);
1da177e4 1641
cca28fb8 1642 trace_xfs_vm_bmap(XFS_I(inode));
126468b1 1643 xfs_ilock(ip, XFS_IOLOCK_SHARED);
4bc1ea6b 1644 filemap_write_and_wait(mapping);
126468b1 1645 xfs_iunlock(ip, XFS_IOLOCK_SHARED);
c2536668 1646 return generic_block_bmap(mapping, block, xfs_get_blocks);
1da177e4
LT
1647}
1648
1649STATIC int
e4c573bb 1650xfs_vm_readpage(
1da177e4
LT
1651 struct file *unused,
1652 struct page *page)
1653{
c2536668 1654 return mpage_readpage(page, xfs_get_blocks);
1da177e4
LT
1655}
1656
1657STATIC int
e4c573bb 1658xfs_vm_readpages(
1da177e4
LT
1659 struct file *unused,
1660 struct address_space *mapping,
1661 struct list_head *pages,
1662 unsigned nr_pages)
1663{
c2536668 1664 return mpage_readpages(mapping, pages, nr_pages, xfs_get_blocks);
1da177e4
LT
1665}
1666
f5e54d6e 1667const struct address_space_operations xfs_address_space_operations = {
e4c573bb
NS
1668 .readpage = xfs_vm_readpage,
1669 .readpages = xfs_vm_readpages,
1670 .writepage = xfs_vm_writepage,
7d4fb40a 1671 .writepages = xfs_vm_writepages,
238f4c54
NS
1672 .releasepage = xfs_vm_releasepage,
1673 .invalidatepage = xfs_vm_invalidatepage,
d79689c7 1674 .write_begin = xfs_vm_write_begin,
fa9b227e 1675 .write_end = xfs_vm_write_end,
e4c573bb
NS
1676 .bmap = xfs_vm_bmap,
1677 .direct_IO = xfs_vm_direct_IO,
e965f963 1678 .migratepage = buffer_migrate_page,
bddaafa1 1679 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 1680 .error_remove_page = generic_error_remove_page,
1da177e4 1681};