]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - fs/xfs/xfs_buf.c
drm/nouveau: check kind validity against mmu object
[mirror_ubuntu-bionic-kernel.git] / fs / xfs / xfs_buf.c
CommitLineData
1da177e4 1/*
f07c2250 2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
7b718769 3 * All Rights Reserved.
1da177e4 4 *
7b718769
NS
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
1da177e4
LT
7 * published by the Free Software Foundation.
8 *
7b718769
NS
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
1da177e4 13 *
7b718769
NS
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
1da177e4 17 */
93c189c1 18#include "xfs.h"
1da177e4
LT
19#include <linux/stddef.h>
20#include <linux/errno.h>
5a0e3ad6 21#include <linux/gfp.h>
1da177e4
LT
22#include <linux/pagemap.h>
23#include <linux/init.h>
24#include <linux/vmalloc.h>
25#include <linux/bio.h>
26#include <linux/sysctl.h>
27#include <linux/proc_fs.h>
28#include <linux/workqueue.h>
29#include <linux/percpu.h>
30#include <linux/blkdev.h>
31#include <linux/hash.h>
4df08c52 32#include <linux/kthread.h>
b20a3503 33#include <linux/migrate.h>
3fcfab16 34#include <linux/backing-dev.h>
7dfb7103 35#include <linux/freezer.h>
5b3cc15a 36#include <linux/sched/mm.h>
1da177e4 37
4fb6e8ad 38#include "xfs_format.h"
239880ef 39#include "xfs_log_format.h"
7fd36c44 40#include "xfs_trans_resv.h"
239880ef 41#include "xfs_sb.h"
b7963133 42#include "xfs_mount.h"
0b1b213f 43#include "xfs_trace.h"
239880ef 44#include "xfs_log.h"
b7963133 45
7989cb8e 46static kmem_zone_t *xfs_buf_zone;
23ea4032 47
ce8e922c
NS
48#ifdef XFS_BUF_LOCK_TRACKING
49# define XB_SET_OWNER(bp) ((bp)->b_last_holder = current->pid)
50# define XB_CLEAR_OWNER(bp) ((bp)->b_last_holder = -1)
51# define XB_GET_OWNER(bp) ((bp)->b_last_holder)
1da177e4 52#else
ce8e922c
NS
53# define XB_SET_OWNER(bp) do { } while (0)
54# define XB_CLEAR_OWNER(bp) do { } while (0)
55# define XB_GET_OWNER(bp) do { } while (0)
1da177e4
LT
56#endif
57
ce8e922c 58#define xb_to_gfp(flags) \
aa5c158e 59 ((((flags) & XBF_READ_AHEAD) ? __GFP_NORETRY : GFP_NOFS) | __GFP_NOWARN)
1da177e4 60
1da177e4 61
73c77e2c
JB
62static inline int
63xfs_buf_is_vmapped(
64 struct xfs_buf *bp)
65{
66 /*
67 * Return true if the buffer is vmapped.
68 *
611c9946
DC
69 * b_addr is null if the buffer is not mapped, but the code is clever
70 * enough to know it doesn't have to map a single page, so the check has
71 * to be both for b_addr and bp->b_page_count > 1.
73c77e2c 72 */
611c9946 73 return bp->b_addr && bp->b_page_count > 1;
73c77e2c
JB
74}
75
76static inline int
77xfs_buf_vmap_len(
78 struct xfs_buf *bp)
79{
80 return (bp->b_page_count * PAGE_SIZE) - bp->b_offset;
81}
82
9c7504aa
BF
83/*
84 * Bump the I/O in flight count on the buftarg if we haven't yet done so for
85 * this buffer. The count is incremented once per buffer (per hold cycle)
86 * because the corresponding decrement is deferred to buffer release. Buffers
87 * can undergo I/O multiple times in a hold-release cycle and per buffer I/O
88 * tracking adds unnecessary overhead. This is used for sychronization purposes
89 * with unmount (see xfs_wait_buftarg()), so all we really need is a count of
90 * in-flight buffers.
91 *
92 * Buffers that are never released (e.g., superblock, iclog buffers) must set
93 * the XBF_NO_IOACCT flag before I/O submission. Otherwise, the buftarg count
94 * never reaches zero and unmount hangs indefinitely.
95 */
96static inline void
97xfs_buf_ioacct_inc(
98 struct xfs_buf *bp)
99{
63db7c81 100 if (bp->b_flags & XBF_NO_IOACCT)
9c7504aa
BF
101 return;
102
103 ASSERT(bp->b_flags & XBF_ASYNC);
63db7c81
BF
104 spin_lock(&bp->b_lock);
105 if (!(bp->b_state & XFS_BSTATE_IN_FLIGHT)) {
106 bp->b_state |= XFS_BSTATE_IN_FLIGHT;
107 percpu_counter_inc(&bp->b_target->bt_io_count);
108 }
109 spin_unlock(&bp->b_lock);
9c7504aa
BF
110}
111
112/*
113 * Clear the in-flight state on a buffer about to be released to the LRU or
114 * freed and unaccount from the buftarg.
115 */
116static inline void
63db7c81 117__xfs_buf_ioacct_dec(
9c7504aa
BF
118 struct xfs_buf *bp)
119{
95989c46 120 lockdep_assert_held(&bp->b_lock);
9c7504aa 121
63db7c81
BF
122 if (bp->b_state & XFS_BSTATE_IN_FLIGHT) {
123 bp->b_state &= ~XFS_BSTATE_IN_FLIGHT;
124 percpu_counter_dec(&bp->b_target->bt_io_count);
125 }
126}
127
128static inline void
129xfs_buf_ioacct_dec(
130 struct xfs_buf *bp)
131{
132 spin_lock(&bp->b_lock);
133 __xfs_buf_ioacct_dec(bp);
134 spin_unlock(&bp->b_lock);
9c7504aa
BF
135}
136
430cbeb8
DC
137/*
138 * When we mark a buffer stale, we remove the buffer from the LRU and clear the
139 * b_lru_ref count so that the buffer is freed immediately when the buffer
140 * reference count falls to zero. If the buffer is already on the LRU, we need
141 * to remove the reference that LRU holds on the buffer.
142 *
143 * This prevents build-up of stale buffers on the LRU.
144 */
145void
146xfs_buf_stale(
147 struct xfs_buf *bp)
148{
43ff2122
CH
149 ASSERT(xfs_buf_islocked(bp));
150
430cbeb8 151 bp->b_flags |= XBF_STALE;
43ff2122
CH
152
153 /*
154 * Clear the delwri status so that a delwri queue walker will not
155 * flush this buffer to disk now that it is stale. The delwri queue has
156 * a reference to the buffer, so this is safe to do.
157 */
158 bp->b_flags &= ~_XBF_DELWRI_Q;
159
9c7504aa
BF
160 /*
161 * Once the buffer is marked stale and unlocked, a subsequent lookup
162 * could reset b_flags. There is no guarantee that the buffer is
163 * unaccounted (released to LRU) before that occurs. Drop in-flight
164 * status now to preserve accounting consistency.
165 */
a4082357 166 spin_lock(&bp->b_lock);
63db7c81
BF
167 __xfs_buf_ioacct_dec(bp);
168
a4082357
DC
169 atomic_set(&bp->b_lru_ref, 0);
170 if (!(bp->b_state & XFS_BSTATE_DISPOSE) &&
e80dfa19
DC
171 (list_lru_del(&bp->b_target->bt_lru, &bp->b_lru)))
172 atomic_dec(&bp->b_hold);
173
430cbeb8 174 ASSERT(atomic_read(&bp->b_hold) >= 1);
a4082357 175 spin_unlock(&bp->b_lock);
430cbeb8 176}
1da177e4 177
3e85c868
DC
178static int
179xfs_buf_get_maps(
180 struct xfs_buf *bp,
181 int map_count)
182{
183 ASSERT(bp->b_maps == NULL);
184 bp->b_map_count = map_count;
185
186 if (map_count == 1) {
f4b42421 187 bp->b_maps = &bp->__b_map;
3e85c868
DC
188 return 0;
189 }
190
191 bp->b_maps = kmem_zalloc(map_count * sizeof(struct xfs_buf_map),
192 KM_NOFS);
193 if (!bp->b_maps)
2451337d 194 return -ENOMEM;
3e85c868
DC
195 return 0;
196}
197
198/*
199 * Frees b_pages if it was allocated.
200 */
201static void
202xfs_buf_free_maps(
203 struct xfs_buf *bp)
204{
f4b42421 205 if (bp->b_maps != &bp->__b_map) {
3e85c868
DC
206 kmem_free(bp->b_maps);
207 bp->b_maps = NULL;
208 }
209}
210
4347b9d7 211struct xfs_buf *
3e85c868 212_xfs_buf_alloc(
4347b9d7 213 struct xfs_buftarg *target,
3e85c868
DC
214 struct xfs_buf_map *map,
215 int nmaps,
ce8e922c 216 xfs_buf_flags_t flags)
1da177e4 217{
4347b9d7 218 struct xfs_buf *bp;
3e85c868
DC
219 int error;
220 int i;
4347b9d7 221
aa5c158e 222 bp = kmem_zone_zalloc(xfs_buf_zone, KM_NOFS);
4347b9d7
CH
223 if (unlikely(!bp))
224 return NULL;
225
1da177e4 226 /*
12bcb3f7
DC
227 * We don't want certain flags to appear in b_flags unless they are
228 * specifically set by later operations on the buffer.
1da177e4 229 */
611c9946 230 flags &= ~(XBF_UNMAPPED | XBF_TRYLOCK | XBF_ASYNC | XBF_READ_AHEAD);
ce8e922c 231
ce8e922c 232 atomic_set(&bp->b_hold, 1);
430cbeb8 233 atomic_set(&bp->b_lru_ref, 1);
b4dd330b 234 init_completion(&bp->b_iowait);
430cbeb8 235 INIT_LIST_HEAD(&bp->b_lru);
ce8e922c 236 INIT_LIST_HEAD(&bp->b_list);
a731cd11 237 sema_init(&bp->b_sema, 0); /* held, no waiters */
a4082357 238 spin_lock_init(&bp->b_lock);
ce8e922c
NS
239 XB_SET_OWNER(bp);
240 bp->b_target = target;
3e85c868 241 bp->b_flags = flags;
de1cbee4 242
1da177e4 243 /*
aa0e8833
DC
244 * Set length and io_length to the same value initially.
245 * I/O routines should use io_length, which will be the same in
1da177e4
LT
246 * most cases but may be reset (e.g. XFS recovery).
247 */
3e85c868
DC
248 error = xfs_buf_get_maps(bp, nmaps);
249 if (error) {
250 kmem_zone_free(xfs_buf_zone, bp);
251 return NULL;
252 }
253
254 bp->b_bn = map[0].bm_bn;
255 bp->b_length = 0;
256 for (i = 0; i < nmaps; i++) {
257 bp->b_maps[i].bm_bn = map[i].bm_bn;
258 bp->b_maps[i].bm_len = map[i].bm_len;
259 bp->b_length += map[i].bm_len;
260 }
261 bp->b_io_length = bp->b_length;
262
ce8e922c
NS
263 atomic_set(&bp->b_pin_count, 0);
264 init_waitqueue_head(&bp->b_waiters);
265
ff6d6af2 266 XFS_STATS_INC(target->bt_mount, xb_create);
0b1b213f 267 trace_xfs_buf_init(bp, _RET_IP_);
4347b9d7
CH
268
269 return bp;
1da177e4
LT
270}
271
272/*
ce8e922c
NS
273 * Allocate a page array capable of holding a specified number
274 * of pages, and point the page buf at it.
1da177e4
LT
275 */
276STATIC int
ce8e922c
NS
277_xfs_buf_get_pages(
278 xfs_buf_t *bp,
87937bf8 279 int page_count)
1da177e4
LT
280{
281 /* Make sure that we have a page list */
ce8e922c 282 if (bp->b_pages == NULL) {
ce8e922c
NS
283 bp->b_page_count = page_count;
284 if (page_count <= XB_PAGES) {
285 bp->b_pages = bp->b_page_array;
1da177e4 286 } else {
ce8e922c 287 bp->b_pages = kmem_alloc(sizeof(struct page *) *
aa5c158e 288 page_count, KM_NOFS);
ce8e922c 289 if (bp->b_pages == NULL)
1da177e4
LT
290 return -ENOMEM;
291 }
ce8e922c 292 memset(bp->b_pages, 0, sizeof(struct page *) * page_count);
1da177e4
LT
293 }
294 return 0;
295}
296
297/*
ce8e922c 298 * Frees b_pages if it was allocated.
1da177e4
LT
299 */
300STATIC void
ce8e922c 301_xfs_buf_free_pages(
1da177e4
LT
302 xfs_buf_t *bp)
303{
ce8e922c 304 if (bp->b_pages != bp->b_page_array) {
f0e2d93c 305 kmem_free(bp->b_pages);
3fc98b1a 306 bp->b_pages = NULL;
1da177e4
LT
307 }
308}
309
310/*
311 * Releases the specified buffer.
312 *
313 * The modification state of any associated pages is left unchanged.
b46fe825 314 * The buffer must not be on any hash - use xfs_buf_rele instead for
1da177e4
LT
315 * hashed and refcounted buffers
316 */
317void
ce8e922c 318xfs_buf_free(
1da177e4
LT
319 xfs_buf_t *bp)
320{
0b1b213f 321 trace_xfs_buf_free(bp, _RET_IP_);
1da177e4 322
430cbeb8
DC
323 ASSERT(list_empty(&bp->b_lru));
324
0e6e847f 325 if (bp->b_flags & _XBF_PAGES) {
1da177e4
LT
326 uint i;
327
73c77e2c 328 if (xfs_buf_is_vmapped(bp))
8a262e57
AE
329 vm_unmap_ram(bp->b_addr - bp->b_offset,
330 bp->b_page_count);
1da177e4 331
948ecdb4
NS
332 for (i = 0; i < bp->b_page_count; i++) {
333 struct page *page = bp->b_pages[i];
334
0e6e847f 335 __free_page(page);
948ecdb4 336 }
0e6e847f
DC
337 } else if (bp->b_flags & _XBF_KMEM)
338 kmem_free(bp->b_addr);
3fc98b1a 339 _xfs_buf_free_pages(bp);
3e85c868 340 xfs_buf_free_maps(bp);
4347b9d7 341 kmem_zone_free(xfs_buf_zone, bp);
1da177e4
LT
342}
343
344/*
0e6e847f 345 * Allocates all the pages for buffer in question and builds it's page list.
1da177e4
LT
346 */
347STATIC int
0e6e847f 348xfs_buf_allocate_memory(
1da177e4
LT
349 xfs_buf_t *bp,
350 uint flags)
351{
aa0e8833 352 size_t size;
1da177e4 353 size_t nbytes, offset;
ce8e922c 354 gfp_t gfp_mask = xb_to_gfp(flags);
1da177e4 355 unsigned short page_count, i;
795cac72 356 xfs_off_t start, end;
1da177e4
LT
357 int error;
358
0e6e847f
DC
359 /*
360 * for buffers that are contained within a single page, just allocate
361 * the memory from the heap - there's no need for the complexity of
362 * page arrays to keep allocation down to order 0.
363 */
795cac72
DC
364 size = BBTOB(bp->b_length);
365 if (size < PAGE_SIZE) {
aa5c158e 366 bp->b_addr = kmem_alloc(size, KM_NOFS);
0e6e847f
DC
367 if (!bp->b_addr) {
368 /* low memory - use alloc_page loop instead */
369 goto use_alloc_page;
370 }
371
795cac72 372 if (((unsigned long)(bp->b_addr + size - 1) & PAGE_MASK) !=
0e6e847f
DC
373 ((unsigned long)bp->b_addr & PAGE_MASK)) {
374 /* b_addr spans two pages - use alloc_page instead */
375 kmem_free(bp->b_addr);
376 bp->b_addr = NULL;
377 goto use_alloc_page;
378 }
379 bp->b_offset = offset_in_page(bp->b_addr);
380 bp->b_pages = bp->b_page_array;
381 bp->b_pages[0] = virt_to_page(bp->b_addr);
382 bp->b_page_count = 1;
611c9946 383 bp->b_flags |= _XBF_KMEM;
0e6e847f
DC
384 return 0;
385 }
386
387use_alloc_page:
f4b42421
MT
388 start = BBTOB(bp->b_maps[0].bm_bn) >> PAGE_SHIFT;
389 end = (BBTOB(bp->b_maps[0].bm_bn + bp->b_length) + PAGE_SIZE - 1)
cbb7baab 390 >> PAGE_SHIFT;
795cac72 391 page_count = end - start;
87937bf8 392 error = _xfs_buf_get_pages(bp, page_count);
1da177e4
LT
393 if (unlikely(error))
394 return error;
1da177e4 395
ce8e922c 396 offset = bp->b_offset;
0e6e847f 397 bp->b_flags |= _XBF_PAGES;
1da177e4 398
ce8e922c 399 for (i = 0; i < bp->b_page_count; i++) {
1da177e4
LT
400 struct page *page;
401 uint retries = 0;
0e6e847f
DC
402retry:
403 page = alloc_page(gfp_mask);
1da177e4 404 if (unlikely(page == NULL)) {
ce8e922c
NS
405 if (flags & XBF_READ_AHEAD) {
406 bp->b_page_count = i;
2451337d 407 error = -ENOMEM;
0e6e847f 408 goto out_free_pages;
1da177e4
LT
409 }
410
411 /*
412 * This could deadlock.
413 *
414 * But until all the XFS lowlevel code is revamped to
415 * handle buffer allocation failures we can't do much.
416 */
417 if (!(++retries % 100))
4f10700a 418 xfs_err(NULL,
5bf97b1c
TH
419 "%s(%u) possible memory allocation deadlock in %s (mode:0x%x)",
420 current->comm, current->pid,
34a622b2 421 __func__, gfp_mask);
1da177e4 422
ff6d6af2 423 XFS_STATS_INC(bp->b_target->bt_mount, xb_page_retries);
8aa7e847 424 congestion_wait(BLK_RW_ASYNC, HZ/50);
1da177e4
LT
425 goto retry;
426 }
427
ff6d6af2 428 XFS_STATS_INC(bp->b_target->bt_mount, xb_page_found);
1da177e4 429
0e6e847f 430 nbytes = min_t(size_t, size, PAGE_SIZE - offset);
1da177e4 431 size -= nbytes;
ce8e922c 432 bp->b_pages[i] = page;
1da177e4
LT
433 offset = 0;
434 }
0e6e847f 435 return 0;
1da177e4 436
0e6e847f
DC
437out_free_pages:
438 for (i = 0; i < bp->b_page_count; i++)
439 __free_page(bp->b_pages[i]);
2aa6ba7b 440 bp->b_flags &= ~_XBF_PAGES;
1da177e4
LT
441 return error;
442}
443
444/*
25985edc 445 * Map buffer into kernel address-space if necessary.
1da177e4
LT
446 */
447STATIC int
ce8e922c 448_xfs_buf_map_pages(
1da177e4
LT
449 xfs_buf_t *bp,
450 uint flags)
451{
0e6e847f 452 ASSERT(bp->b_flags & _XBF_PAGES);
ce8e922c 453 if (bp->b_page_count == 1) {
0e6e847f 454 /* A single page buffer is always mappable */
ce8e922c 455 bp->b_addr = page_address(bp->b_pages[0]) + bp->b_offset;
611c9946
DC
456 } else if (flags & XBF_UNMAPPED) {
457 bp->b_addr = NULL;
458 } else {
a19fb380 459 int retried = 0;
9ba1fb2c 460 unsigned nofs_flag;
ae687e58
DC
461
462 /*
463 * vm_map_ram() will allocate auxillary structures (e.g.
464 * pagetables) with GFP_KERNEL, yet we are likely to be under
465 * GFP_NOFS context here. Hence we need to tell memory reclaim
9ba1fb2c 466 * that we are in such a context via PF_MEMALLOC_NOFS to prevent
ae687e58
DC
467 * memory reclaim re-entering the filesystem here and
468 * potentially deadlocking.
469 */
9ba1fb2c 470 nofs_flag = memalloc_nofs_save();
a19fb380
DC
471 do {
472 bp->b_addr = vm_map_ram(bp->b_pages, bp->b_page_count,
473 -1, PAGE_KERNEL);
474 if (bp->b_addr)
475 break;
476 vm_unmap_aliases();
477 } while (retried++ <= 1);
9ba1fb2c 478 memalloc_nofs_restore(nofs_flag);
a19fb380
DC
479
480 if (!bp->b_addr)
1da177e4 481 return -ENOMEM;
ce8e922c 482 bp->b_addr += bp->b_offset;
1da177e4
LT
483 }
484
485 return 0;
486}
487
488/*
489 * Finding and Reading Buffers
490 */
6031e73a
LS
491static int
492_xfs_buf_obj_cmp(
493 struct rhashtable_compare_arg *arg,
494 const void *obj)
495{
496 const struct xfs_buf_map *map = arg->key;
497 const struct xfs_buf *bp = obj;
498
499 /*
500 * The key hashing in the lookup path depends on the key being the
501 * first element of the compare_arg, make sure to assert this.
502 */
503 BUILD_BUG_ON(offsetof(struct xfs_buf_map, bm_bn) != 0);
504
505 if (bp->b_bn != map->bm_bn)
506 return 1;
507
508 if (unlikely(bp->b_length != map->bm_len)) {
509 /*
510 * found a block number match. If the range doesn't
511 * match, the only way this is allowed is if the buffer
512 * in the cache is stale and the transaction that made
513 * it stale has not yet committed. i.e. we are
514 * reallocating a busy extent. Skip this buffer and
515 * continue searching for an exact match.
516 */
517 ASSERT(bp->b_flags & XBF_STALE);
518 return 1;
519 }
520 return 0;
521}
522
523static const struct rhashtable_params xfs_buf_hash_params = {
524 .min_size = 32, /* empty AGs have minimal footprint */
525 .nelem_hint = 16,
526 .key_len = sizeof(xfs_daddr_t),
527 .key_offset = offsetof(struct xfs_buf, b_bn),
528 .head_offset = offsetof(struct xfs_buf, b_rhash_head),
529 .automatic_shrinking = true,
530 .obj_cmpfn = _xfs_buf_obj_cmp,
531};
532
533int
534xfs_buf_hash_init(
535 struct xfs_perag *pag)
536{
537 spin_lock_init(&pag->pag_buf_lock);
538 return rhashtable_init(&pag->pag_buf_hash, &xfs_buf_hash_params);
539}
540
541void
542xfs_buf_hash_destroy(
543 struct xfs_perag *pag)
544{
545 rhashtable_destroy(&pag->pag_buf_hash);
546}
1da177e4
LT
547
548/*
ce8e922c 549 * Look up, and creates if absent, a lockable buffer for
1da177e4 550 * a given range of an inode. The buffer is returned
eabbaf11 551 * locked. No I/O is implied by this call.
1da177e4
LT
552 */
553xfs_buf_t *
ce8e922c 554_xfs_buf_find(
e70b73f8 555 struct xfs_buftarg *btp,
3e85c868
DC
556 struct xfs_buf_map *map,
557 int nmaps,
ce8e922c
NS
558 xfs_buf_flags_t flags,
559 xfs_buf_t *new_bp)
1da177e4 560{
74f75a0c 561 struct xfs_perag *pag;
74f75a0c 562 xfs_buf_t *bp;
6031e73a 563 struct xfs_buf_map cmap = { .bm_bn = map[0].bm_bn };
10616b80 564 xfs_daddr_t eofs;
3e85c868 565 int i;
1da177e4 566
3e85c868 567 for (i = 0; i < nmaps; i++)
6031e73a 568 cmap.bm_len += map[i].bm_len;
1da177e4
LT
569
570 /* Check for IOs smaller than the sector size / not sector aligned */
6031e73a
LS
571 ASSERT(!(BBTOB(cmap.bm_len) < btp->bt_meta_sectorsize));
572 ASSERT(!(BBTOB(cmap.bm_bn) & (xfs_off_t)btp->bt_meta_sectormask));
1da177e4 573
10616b80
DC
574 /*
575 * Corrupted block numbers can get through to here, unfortunately, so we
576 * have to check that the buffer falls within the filesystem bounds.
577 */
578 eofs = XFS_FSB_TO_BB(btp->bt_mount, btp->bt_mount->m_sb.sb_dblocks);
6031e73a 579 if (cmap.bm_bn < 0 || cmap.bm_bn >= eofs) {
10616b80 580 /*
2451337d 581 * XXX (dgc): we should really be returning -EFSCORRUPTED here,
10616b80
DC
582 * but none of the higher level infrastructure supports
583 * returning a specific error on buffer lookup failures.
584 */
585 xfs_alert(btp->bt_mount,
586 "%s: Block out of range: block 0x%llx, EOFS 0x%llx ",
6031e73a 587 __func__, cmap.bm_bn, eofs);
7bc0dc27 588 WARN_ON(1);
10616b80
DC
589 return NULL;
590 }
591
74f75a0c 592 pag = xfs_perag_get(btp->bt_mount,
6031e73a 593 xfs_daddr_to_agno(btp->bt_mount, cmap.bm_bn));
74f75a0c 594
74f75a0c 595 spin_lock(&pag->pag_buf_lock);
6031e73a
LS
596 bp = rhashtable_lookup_fast(&pag->pag_buf_hash, &cmap,
597 xfs_buf_hash_params);
598 if (bp) {
599 atomic_inc(&bp->b_hold);
600 goto found;
1da177e4
LT
601 }
602
603 /* No match found */
ce8e922c 604 if (new_bp) {
74f75a0c
DC
605 /* the buffer keeps the perag reference until it is freed */
606 new_bp->b_pag = pag;
6031e73a
LS
607 rhashtable_insert_fast(&pag->pag_buf_hash,
608 &new_bp->b_rhash_head,
609 xfs_buf_hash_params);
74f75a0c 610 spin_unlock(&pag->pag_buf_lock);
1da177e4 611 } else {
ff6d6af2 612 XFS_STATS_INC(btp->bt_mount, xb_miss_locked);
74f75a0c
DC
613 spin_unlock(&pag->pag_buf_lock);
614 xfs_perag_put(pag);
1da177e4 615 }
ce8e922c 616 return new_bp;
1da177e4
LT
617
618found:
74f75a0c
DC
619 spin_unlock(&pag->pag_buf_lock);
620 xfs_perag_put(pag);
1da177e4 621
0c842ad4
CH
622 if (!xfs_buf_trylock(bp)) {
623 if (flags & XBF_TRYLOCK) {
ce8e922c 624 xfs_buf_rele(bp);
ff6d6af2 625 XFS_STATS_INC(btp->bt_mount, xb_busy_locked);
ce8e922c 626 return NULL;
1da177e4 627 }
0c842ad4 628 xfs_buf_lock(bp);
ff6d6af2 629 XFS_STATS_INC(btp->bt_mount, xb_get_locked_waited);
1da177e4
LT
630 }
631
0e6e847f
DC
632 /*
633 * if the buffer is stale, clear all the external state associated with
634 * it. We need to keep flags such as how we allocated the buffer memory
635 * intact here.
636 */
ce8e922c
NS
637 if (bp->b_flags & XBF_STALE) {
638 ASSERT((bp->b_flags & _XBF_DELWRI_Q) == 0);
cfb02852 639 ASSERT(bp->b_iodone == NULL);
611c9946 640 bp->b_flags &= _XBF_KMEM | _XBF_PAGES;
1813dd64 641 bp->b_ops = NULL;
2f926587 642 }
0b1b213f
CH
643
644 trace_xfs_buf_find(bp, flags, _RET_IP_);
ff6d6af2 645 XFS_STATS_INC(btp->bt_mount, xb_get_locked);
ce8e922c 646 return bp;
1da177e4
LT
647}
648
649/*
3815832a
DC
650 * Assembles a buffer covering the specified range. The code is optimised for
651 * cache hits, as metadata intensive workloads will see 3 orders of magnitude
652 * more hits than misses.
1da177e4 653 */
3815832a 654struct xfs_buf *
6dde2707
DC
655xfs_buf_get_map(
656 struct xfs_buftarg *target,
657 struct xfs_buf_map *map,
658 int nmaps,
ce8e922c 659 xfs_buf_flags_t flags)
1da177e4 660{
3815832a
DC
661 struct xfs_buf *bp;
662 struct xfs_buf *new_bp;
0e6e847f 663 int error = 0;
1da177e4 664
6dde2707 665 bp = _xfs_buf_find(target, map, nmaps, flags, NULL);
3815832a
DC
666 if (likely(bp))
667 goto found;
668
6dde2707 669 new_bp = _xfs_buf_alloc(target, map, nmaps, flags);
ce8e922c 670 if (unlikely(!new_bp))
1da177e4
LT
671 return NULL;
672
fe2429b0
DC
673 error = xfs_buf_allocate_memory(new_bp, flags);
674 if (error) {
3e85c868 675 xfs_buf_free(new_bp);
fe2429b0
DC
676 return NULL;
677 }
678
6dde2707 679 bp = _xfs_buf_find(target, map, nmaps, flags, new_bp);
3815832a 680 if (!bp) {
fe2429b0 681 xfs_buf_free(new_bp);
3815832a
DC
682 return NULL;
683 }
684
fe2429b0
DC
685 if (bp != new_bp)
686 xfs_buf_free(new_bp);
1da177e4 687
3815832a 688found:
611c9946 689 if (!bp->b_addr) {
ce8e922c 690 error = _xfs_buf_map_pages(bp, flags);
1da177e4 691 if (unlikely(error)) {
4f10700a 692 xfs_warn(target->bt_mount,
08e96e1a 693 "%s: failed to map pagesn", __func__);
a8acad70
DC
694 xfs_buf_relse(bp);
695 return NULL;
1da177e4
LT
696 }
697 }
698
b79f4a1c
DC
699 /*
700 * Clear b_error if this is a lookup from a caller that doesn't expect
701 * valid data to be found in the buffer.
702 */
703 if (!(flags & XBF_READ))
704 xfs_buf_ioerror(bp, 0);
705
ff6d6af2 706 XFS_STATS_INC(target->bt_mount, xb_get);
0b1b213f 707 trace_xfs_buf_get(bp, flags, _RET_IP_);
ce8e922c 708 return bp;
1da177e4
LT
709}
710
5d765b97
CH
711STATIC int
712_xfs_buf_read(
713 xfs_buf_t *bp,
714 xfs_buf_flags_t flags)
715{
43ff2122 716 ASSERT(!(flags & XBF_WRITE));
f4b42421 717 ASSERT(bp->b_maps[0].bm_bn != XFS_BUF_DADDR_NULL);
5d765b97 718
43ff2122 719 bp->b_flags &= ~(XBF_WRITE | XBF_ASYNC | XBF_READ_AHEAD);
1d5ae5df 720 bp->b_flags |= flags & (XBF_READ | XBF_ASYNC | XBF_READ_AHEAD);
5d765b97 721
595bff75
DC
722 if (flags & XBF_ASYNC) {
723 xfs_buf_submit(bp);
0e95f19a 724 return 0;
595bff75
DC
725 }
726 return xfs_buf_submit_wait(bp);
5d765b97
CH
727}
728
1da177e4 729xfs_buf_t *
6dde2707
DC
730xfs_buf_read_map(
731 struct xfs_buftarg *target,
732 struct xfs_buf_map *map,
733 int nmaps,
c3f8fc73 734 xfs_buf_flags_t flags,
1813dd64 735 const struct xfs_buf_ops *ops)
1da177e4 736{
6dde2707 737 struct xfs_buf *bp;
ce8e922c
NS
738
739 flags |= XBF_READ;
740
6dde2707 741 bp = xfs_buf_get_map(target, map, nmaps, flags);
ce8e922c 742 if (bp) {
0b1b213f
CH
743 trace_xfs_buf_read(bp, flags, _RET_IP_);
744
b0388bf1 745 if (!(bp->b_flags & XBF_DONE)) {
ff6d6af2 746 XFS_STATS_INC(target->bt_mount, xb_get_read);
1813dd64 747 bp->b_ops = ops;
5d765b97 748 _xfs_buf_read(bp, flags);
ce8e922c 749 } else if (flags & XBF_ASYNC) {
1da177e4
LT
750 /*
751 * Read ahead call which is already satisfied,
752 * drop the buffer
753 */
a8acad70
DC
754 xfs_buf_relse(bp);
755 return NULL;
1da177e4 756 } else {
1da177e4 757 /* We do not want read in the flags */
ce8e922c 758 bp->b_flags &= ~XBF_READ;
1da177e4
LT
759 }
760 }
761
ce8e922c 762 return bp;
1da177e4
LT
763}
764
1da177e4 765/*
ce8e922c
NS
766 * If we are not low on memory then do the readahead in a deadlock
767 * safe manner.
1da177e4
LT
768 */
769void
6dde2707
DC
770xfs_buf_readahead_map(
771 struct xfs_buftarg *target,
772 struct xfs_buf_map *map,
c3f8fc73 773 int nmaps,
1813dd64 774 const struct xfs_buf_ops *ops)
1da177e4 775{
efa7c9f9 776 if (bdi_read_congested(target->bt_bdev->bd_bdi))
1da177e4
LT
777 return;
778
6dde2707 779 xfs_buf_read_map(target, map, nmaps,
1813dd64 780 XBF_TRYLOCK|XBF_ASYNC|XBF_READ_AHEAD, ops);
1da177e4
LT
781}
782
5adc94c2
DC
783/*
784 * Read an uncached buffer from disk. Allocates and returns a locked
785 * buffer containing the disk contents or nothing.
786 */
ba372674 787int
5adc94c2 788xfs_buf_read_uncached(
5adc94c2
DC
789 struct xfs_buftarg *target,
790 xfs_daddr_t daddr,
e70b73f8 791 size_t numblks,
c3f8fc73 792 int flags,
ba372674 793 struct xfs_buf **bpp,
1813dd64 794 const struct xfs_buf_ops *ops)
5adc94c2 795{
eab4e633 796 struct xfs_buf *bp;
5adc94c2 797
ba372674
DC
798 *bpp = NULL;
799
e70b73f8 800 bp = xfs_buf_get_uncached(target, numblks, flags);
5adc94c2 801 if (!bp)
ba372674 802 return -ENOMEM;
5adc94c2
DC
803
804 /* set up the buffer for a read IO */
3e85c868 805 ASSERT(bp->b_map_count == 1);
ba372674 806 bp->b_bn = XFS_BUF_DADDR_NULL; /* always null for uncached buffers */
3e85c868 807 bp->b_maps[0].bm_bn = daddr;
cbb7baab 808 bp->b_flags |= XBF_READ;
1813dd64 809 bp->b_ops = ops;
5adc94c2 810
595bff75 811 xfs_buf_submit_wait(bp);
ba372674
DC
812 if (bp->b_error) {
813 int error = bp->b_error;
83a0adc3 814 xfs_buf_relse(bp);
ba372674 815 return error;
83a0adc3 816 }
ba372674
DC
817
818 *bpp = bp;
819 return 0;
1da177e4
LT
820}
821
44396476
DC
822/*
823 * Return a buffer allocated as an empty buffer and associated to external
824 * memory via xfs_buf_associate_memory() back to it's empty state.
825 */
826void
827xfs_buf_set_empty(
828 struct xfs_buf *bp,
e70b73f8 829 size_t numblks)
44396476
DC
830{
831 if (bp->b_pages)
832 _xfs_buf_free_pages(bp);
833
834 bp->b_pages = NULL;
835 bp->b_page_count = 0;
836 bp->b_addr = NULL;
4e94b71b 837 bp->b_length = numblks;
aa0e8833 838 bp->b_io_length = numblks;
3e85c868
DC
839
840 ASSERT(bp->b_map_count == 1);
44396476 841 bp->b_bn = XFS_BUF_DADDR_NULL;
3e85c868
DC
842 bp->b_maps[0].bm_bn = XFS_BUF_DADDR_NULL;
843 bp->b_maps[0].bm_len = bp->b_length;
44396476
DC
844}
845
1da177e4
LT
846static inline struct page *
847mem_to_page(
848 void *addr)
849{
9e2779fa 850 if ((!is_vmalloc_addr(addr))) {
1da177e4
LT
851 return virt_to_page(addr);
852 } else {
853 return vmalloc_to_page(addr);
854 }
855}
856
857int
ce8e922c
NS
858xfs_buf_associate_memory(
859 xfs_buf_t *bp,
1da177e4
LT
860 void *mem,
861 size_t len)
862{
863 int rval;
864 int i = 0;
d1afb678
LM
865 unsigned long pageaddr;
866 unsigned long offset;
867 size_t buflen;
1da177e4
LT
868 int page_count;
869
0e6e847f 870 pageaddr = (unsigned long)mem & PAGE_MASK;
d1afb678 871 offset = (unsigned long)mem - pageaddr;
0e6e847f
DC
872 buflen = PAGE_ALIGN(len + offset);
873 page_count = buflen >> PAGE_SHIFT;
1da177e4
LT
874
875 /* Free any previous set of page pointers */
ce8e922c
NS
876 if (bp->b_pages)
877 _xfs_buf_free_pages(bp);
1da177e4 878
ce8e922c
NS
879 bp->b_pages = NULL;
880 bp->b_addr = mem;
1da177e4 881
87937bf8 882 rval = _xfs_buf_get_pages(bp, page_count);
1da177e4
LT
883 if (rval)
884 return rval;
885
ce8e922c 886 bp->b_offset = offset;
d1afb678
LM
887
888 for (i = 0; i < bp->b_page_count; i++) {
889 bp->b_pages[i] = mem_to_page((void *)pageaddr);
0e6e847f 890 pageaddr += PAGE_SIZE;
1da177e4 891 }
1da177e4 892
aa0e8833 893 bp->b_io_length = BTOBB(len);
4e94b71b 894 bp->b_length = BTOBB(buflen);
1da177e4
LT
895
896 return 0;
897}
898
899xfs_buf_t *
686865f7
DC
900xfs_buf_get_uncached(
901 struct xfs_buftarg *target,
e70b73f8 902 size_t numblks,
686865f7 903 int flags)
1da177e4 904{
e70b73f8 905 unsigned long page_count;
1fa40b01 906 int error, i;
3e85c868
DC
907 struct xfs_buf *bp;
908 DEFINE_SINGLE_BUF_MAP(map, XFS_BUF_DADDR_NULL, numblks);
1da177e4 909
c891c30a
BF
910 /* flags might contain irrelevant bits, pass only what we care about */
911 bp = _xfs_buf_alloc(target, &map, 1, flags & XBF_NO_IOACCT);
1da177e4
LT
912 if (unlikely(bp == NULL))
913 goto fail;
1da177e4 914
e70b73f8 915 page_count = PAGE_ALIGN(numblks << BBSHIFT) >> PAGE_SHIFT;
87937bf8 916 error = _xfs_buf_get_pages(bp, page_count);
1fa40b01 917 if (error)
1da177e4
LT
918 goto fail_free_buf;
919
1fa40b01 920 for (i = 0; i < page_count; i++) {
686865f7 921 bp->b_pages[i] = alloc_page(xb_to_gfp(flags));
1fa40b01
CH
922 if (!bp->b_pages[i])
923 goto fail_free_mem;
1da177e4 924 }
1fa40b01 925 bp->b_flags |= _XBF_PAGES;
1da177e4 926
611c9946 927 error = _xfs_buf_map_pages(bp, 0);
1fa40b01 928 if (unlikely(error)) {
4f10700a 929 xfs_warn(target->bt_mount,
08e96e1a 930 "%s: failed to map pages", __func__);
1da177e4 931 goto fail_free_mem;
1fa40b01 932 }
1da177e4 933
686865f7 934 trace_xfs_buf_get_uncached(bp, _RET_IP_);
1da177e4 935 return bp;
1fa40b01 936
1da177e4 937 fail_free_mem:
1fa40b01
CH
938 while (--i >= 0)
939 __free_page(bp->b_pages[i]);
ca165b88 940 _xfs_buf_free_pages(bp);
1da177e4 941 fail_free_buf:
3e85c868 942 xfs_buf_free_maps(bp);
4347b9d7 943 kmem_zone_free(xfs_buf_zone, bp);
1da177e4
LT
944 fail:
945 return NULL;
946}
947
948/*
1da177e4
LT
949 * Increment reference count on buffer, to hold the buffer concurrently
950 * with another thread which may release (free) the buffer asynchronously.
1da177e4
LT
951 * Must hold the buffer already to call this function.
952 */
953void
ce8e922c
NS
954xfs_buf_hold(
955 xfs_buf_t *bp)
1da177e4 956{
0b1b213f 957 trace_xfs_buf_hold(bp, _RET_IP_);
ce8e922c 958 atomic_inc(&bp->b_hold);
1da177e4
LT
959}
960
961/*
9c7504aa
BF
962 * Release a hold on the specified buffer. If the hold count is 1, the buffer is
963 * placed on LRU or freed (depending on b_lru_ref).
1da177e4
LT
964 */
965void
ce8e922c
NS
966xfs_buf_rele(
967 xfs_buf_t *bp)
1da177e4 968{
74f75a0c 969 struct xfs_perag *pag = bp->b_pag;
9c7504aa
BF
970 bool release;
971 bool freebuf = false;
1da177e4 972
0b1b213f 973 trace_xfs_buf_rele(bp, _RET_IP_);
1da177e4 974
74f75a0c 975 if (!pag) {
430cbeb8 976 ASSERT(list_empty(&bp->b_lru));
9c7504aa
BF
977 if (atomic_dec_and_test(&bp->b_hold)) {
978 xfs_buf_ioacct_dec(bp);
fad3aa1e 979 xfs_buf_free(bp);
9c7504aa 980 }
fad3aa1e
NS
981 return;
982 }
983
3790689f 984 ASSERT(atomic_read(&bp->b_hold) > 0);
a4082357 985
9c7504aa
BF
986 release = atomic_dec_and_lock(&bp->b_hold, &pag->pag_buf_lock);
987 spin_lock(&bp->b_lock);
988 if (!release) {
989 /*
990 * Drop the in-flight state if the buffer is already on the LRU
991 * and it holds the only reference. This is racy because we
992 * haven't acquired the pag lock, but the use of _XBF_IN_FLIGHT
993 * ensures the decrement occurs only once per-buf.
994 */
995 if ((atomic_read(&bp->b_hold) == 1) && !list_empty(&bp->b_lru))
63db7c81 996 __xfs_buf_ioacct_dec(bp);
9c7504aa
BF
997 goto out_unlock;
998 }
999
1000 /* the last reference has been dropped ... */
63db7c81 1001 __xfs_buf_ioacct_dec(bp);
9c7504aa
BF
1002 if (!(bp->b_flags & XBF_STALE) && atomic_read(&bp->b_lru_ref)) {
1003 /*
1004 * If the buffer is added to the LRU take a new reference to the
1005 * buffer for the LRU and clear the (now stale) dispose list
1006 * state flag
1007 */
1008 if (list_lru_add(&bp->b_target->bt_lru, &bp->b_lru)) {
1009 bp->b_state &= ~XFS_BSTATE_DISPOSE;
1010 atomic_inc(&bp->b_hold);
1da177e4 1011 }
9c7504aa
BF
1012 spin_unlock(&pag->pag_buf_lock);
1013 } else {
1014 /*
1015 * most of the time buffers will already be removed from the
1016 * LRU, so optimise that case by checking for the
1017 * XFS_BSTATE_DISPOSE flag indicating the last list the buffer
1018 * was on was the disposal list
1019 */
1020 if (!(bp->b_state & XFS_BSTATE_DISPOSE)) {
1021 list_lru_del(&bp->b_target->bt_lru, &bp->b_lru);
1022 } else {
1023 ASSERT(list_empty(&bp->b_lru));
1da177e4 1024 }
9c7504aa
BF
1025
1026 ASSERT(!(bp->b_flags & _XBF_DELWRI_Q));
6031e73a
LS
1027 rhashtable_remove_fast(&pag->pag_buf_hash, &bp->b_rhash_head,
1028 xfs_buf_hash_params);
9c7504aa
BF
1029 spin_unlock(&pag->pag_buf_lock);
1030 xfs_perag_put(pag);
1031 freebuf = true;
1da177e4 1032 }
9c7504aa
BF
1033
1034out_unlock:
1035 spin_unlock(&bp->b_lock);
1036
1037 if (freebuf)
1038 xfs_buf_free(bp);
1da177e4
LT
1039}
1040
1041
1042/*
0e6e847f 1043 * Lock a buffer object, if it is not already locked.
90810b9e
DC
1044 *
1045 * If we come across a stale, pinned, locked buffer, we know that we are
1046 * being asked to lock a buffer that has been reallocated. Because it is
1047 * pinned, we know that the log has not been pushed to disk and hence it
1048 * will still be locked. Rather than continuing to have trylock attempts
1049 * fail until someone else pushes the log, push it ourselves before
1050 * returning. This means that the xfsaild will not get stuck trying
1051 * to push on stale inode buffers.
1da177e4
LT
1052 */
1053int
0c842ad4
CH
1054xfs_buf_trylock(
1055 struct xfs_buf *bp)
1da177e4
LT
1056{
1057 int locked;
1058
ce8e922c 1059 locked = down_trylock(&bp->b_sema) == 0;
479c6412 1060 if (locked) {
ce8e922c 1061 XB_SET_OWNER(bp);
479c6412
DW
1062 trace_xfs_buf_trylock(bp, _RET_IP_);
1063 } else {
1064 trace_xfs_buf_trylock_fail(bp, _RET_IP_);
1065 }
0c842ad4 1066 return locked;
1da177e4 1067}
1da177e4
LT
1068
1069/*
0e6e847f 1070 * Lock a buffer object.
ed3b4d6c
DC
1071 *
1072 * If we come across a stale, pinned, locked buffer, we know that we
1073 * are being asked to lock a buffer that has been reallocated. Because
1074 * it is pinned, we know that the log has not been pushed to disk and
1075 * hence it will still be locked. Rather than sleeping until someone
1076 * else pushes the log, push it ourselves before trying to get the lock.
1da177e4 1077 */
ce8e922c
NS
1078void
1079xfs_buf_lock(
0c842ad4 1080 struct xfs_buf *bp)
1da177e4 1081{
0b1b213f
CH
1082 trace_xfs_buf_lock(bp, _RET_IP_);
1083
ed3b4d6c 1084 if (atomic_read(&bp->b_pin_count) && (bp->b_flags & XBF_STALE))
ebad861b 1085 xfs_log_force(bp->b_target->bt_mount, 0);
ce8e922c
NS
1086 down(&bp->b_sema);
1087 XB_SET_OWNER(bp);
0b1b213f
CH
1088
1089 trace_xfs_buf_lock_done(bp, _RET_IP_);
1da177e4
LT
1090}
1091
1da177e4 1092void
ce8e922c 1093xfs_buf_unlock(
0c842ad4 1094 struct xfs_buf *bp)
1da177e4 1095{
20e8a063
BF
1096 ASSERT(xfs_buf_islocked(bp));
1097
ce8e922c
NS
1098 XB_CLEAR_OWNER(bp);
1099 up(&bp->b_sema);
0b1b213f
CH
1100
1101 trace_xfs_buf_unlock(bp, _RET_IP_);
1da177e4
LT
1102}
1103
ce8e922c
NS
1104STATIC void
1105xfs_buf_wait_unpin(
1106 xfs_buf_t *bp)
1da177e4
LT
1107{
1108 DECLARE_WAITQUEUE (wait, current);
1109
ce8e922c 1110 if (atomic_read(&bp->b_pin_count) == 0)
1da177e4
LT
1111 return;
1112
ce8e922c 1113 add_wait_queue(&bp->b_waiters, &wait);
1da177e4
LT
1114 for (;;) {
1115 set_current_state(TASK_UNINTERRUPTIBLE);
ce8e922c 1116 if (atomic_read(&bp->b_pin_count) == 0)
1da177e4 1117 break;
7eaceacc 1118 io_schedule();
1da177e4 1119 }
ce8e922c 1120 remove_wait_queue(&bp->b_waiters, &wait);
1da177e4
LT
1121 set_current_state(TASK_RUNNING);
1122}
1123
1124/*
1125 * Buffer Utility Routines
1126 */
1127
e8aaba9a
DC
1128void
1129xfs_buf_ioend(
1130 struct xfs_buf *bp)
1da177e4 1131{
e8aaba9a
DC
1132 bool read = bp->b_flags & XBF_READ;
1133
1134 trace_xfs_buf_iodone(bp, _RET_IP_);
1813dd64
DC
1135
1136 bp->b_flags &= ~(XBF_READ | XBF_WRITE | XBF_READ_AHEAD);
d5929de8 1137
61be9c52
DC
1138 /*
1139 * Pull in IO completion errors now. We are guaranteed to be running
1140 * single threaded, so we don't need the lock to read b_io_error.
1141 */
1142 if (!bp->b_error && bp->b_io_error)
1143 xfs_buf_ioerror(bp, bp->b_io_error);
1144
e8aaba9a
DC
1145 /* Only validate buffers that were read without errors */
1146 if (read && !bp->b_error && bp->b_ops) {
1147 ASSERT(!bp->b_iodone);
1813dd64 1148 bp->b_ops->verify_read(bp);
e8aaba9a
DC
1149 }
1150
1151 if (!bp->b_error)
1152 bp->b_flags |= XBF_DONE;
1da177e4 1153
80f6c29d 1154 if (bp->b_iodone)
ce8e922c
NS
1155 (*(bp->b_iodone))(bp);
1156 else if (bp->b_flags & XBF_ASYNC)
1da177e4 1157 xfs_buf_relse(bp);
595bff75 1158 else
1813dd64 1159 complete(&bp->b_iowait);
1da177e4
LT
1160}
1161
e8aaba9a
DC
1162static void
1163xfs_buf_ioend_work(
1164 struct work_struct *work)
1da177e4 1165{
e8aaba9a 1166 struct xfs_buf *bp =
b29c70f5 1167 container_of(work, xfs_buf_t, b_ioend_work);
0b1b213f 1168
e8aaba9a
DC
1169 xfs_buf_ioend(bp);
1170}
1da177e4 1171
211fe1a4 1172static void
e8aaba9a
DC
1173xfs_buf_ioend_async(
1174 struct xfs_buf *bp)
1175{
b29c70f5
BF
1176 INIT_WORK(&bp->b_ioend_work, xfs_buf_ioend_work);
1177 queue_work(bp->b_ioend_wq, &bp->b_ioend_work);
1da177e4
LT
1178}
1179
1da177e4 1180void
ce8e922c
NS
1181xfs_buf_ioerror(
1182 xfs_buf_t *bp,
1183 int error)
1da177e4 1184{
2451337d
DC
1185 ASSERT(error <= 0 && error >= -1000);
1186 bp->b_error = error;
0b1b213f 1187 trace_xfs_buf_ioerror(bp, error, _RET_IP_);
1da177e4
LT
1188}
1189
901796af
CH
1190void
1191xfs_buf_ioerror_alert(
1192 struct xfs_buf *bp,
1193 const char *func)
1194{
1195 xfs_alert(bp->b_target->bt_mount,
aa0e8833 1196"metadata I/O error: block 0x%llx (\"%s\") error %d numblks %d",
c8ce540d 1197 (uint64_t)XFS_BUF_ADDR(bp), func, -bp->b_error, bp->b_length);
901796af
CH
1198}
1199
a2dcf5df
CH
1200int
1201xfs_bwrite(
1202 struct xfs_buf *bp)
1203{
1204 int error;
1205
1206 ASSERT(xfs_buf_islocked(bp));
1207
1208 bp->b_flags |= XBF_WRITE;
27187754
DC
1209 bp->b_flags &= ~(XBF_ASYNC | XBF_READ | _XBF_DELWRI_Q |
1210 XBF_WRITE_FAIL | XBF_DONE);
a2dcf5df 1211
595bff75 1212 error = xfs_buf_submit_wait(bp);
a2dcf5df
CH
1213 if (error) {
1214 xfs_force_shutdown(bp->b_target->bt_mount,
1215 SHUTDOWN_META_IO_ERROR);
1216 }
1217 return error;
1218}
1219
9bdd9bd6 1220static void
ce8e922c 1221xfs_buf_bio_end_io(
4246a0b6 1222 struct bio *bio)
1da177e4 1223{
9bdd9bd6 1224 struct xfs_buf *bp = (struct xfs_buf *)bio->bi_private;
1da177e4 1225
37eb17e6
DC
1226 /*
1227 * don't overwrite existing errors - otherwise we can lose errors on
1228 * buffers that require multiple bios to complete.
1229 */
4e4cbee9
CH
1230 if (bio->bi_status) {
1231 int error = blk_status_to_errno(bio->bi_status);
1232
1233 cmpxchg(&bp->b_io_error, 0, error);
1234 }
1da177e4 1235
37eb17e6 1236 if (!bp->b_error && xfs_buf_is_vmapped(bp) && (bp->b_flags & XBF_READ))
73c77e2c
JB
1237 invalidate_kernel_vmap_range(bp->b_addr, xfs_buf_vmap_len(bp));
1238
e8aaba9a
DC
1239 if (atomic_dec_and_test(&bp->b_io_remaining) == 1)
1240 xfs_buf_ioend_async(bp);
1da177e4 1241 bio_put(bio);
1da177e4
LT
1242}
1243
3e85c868
DC
1244static void
1245xfs_buf_ioapply_map(
1246 struct xfs_buf *bp,
1247 int map,
1248 int *buf_offset,
1249 int *count,
50bfcd0c
MC
1250 int op,
1251 int op_flags)
1da177e4 1252{
3e85c868
DC
1253 int page_index;
1254 int total_nr_pages = bp->b_page_count;
1255 int nr_pages;
1256 struct bio *bio;
1257 sector_t sector = bp->b_maps[map].bm_bn;
1258 int size;
1259 int offset;
1da177e4 1260
3e85c868
DC
1261 /* skip the pages in the buffer before the start offset */
1262 page_index = 0;
1263 offset = *buf_offset;
1264 while (offset >= PAGE_SIZE) {
1265 page_index++;
1266 offset -= PAGE_SIZE;
f538d4da
CH
1267 }
1268
3e85c868
DC
1269 /*
1270 * Limit the IO size to the length of the current vector, and update the
1271 * remaining IO count for the next time around.
1272 */
1273 size = min_t(int, BBTOB(bp->b_maps[map].bm_len), *count);
1274 *count -= size;
1275 *buf_offset += size;
34951f5c 1276
1da177e4 1277next_chunk:
ce8e922c 1278 atomic_inc(&bp->b_io_remaining);
c908e380 1279 nr_pages = min(total_nr_pages, BIO_MAX_PAGES);
1da177e4
LT
1280
1281 bio = bio_alloc(GFP_NOIO, nr_pages);
74d46992 1282 bio_set_dev(bio, bp->b_target->bt_bdev);
4f024f37 1283 bio->bi_iter.bi_sector = sector;
ce8e922c
NS
1284 bio->bi_end_io = xfs_buf_bio_end_io;
1285 bio->bi_private = bp;
50bfcd0c 1286 bio_set_op_attrs(bio, op, op_flags);
0e6e847f 1287
3e85c868 1288 for (; size && nr_pages; nr_pages--, page_index++) {
0e6e847f 1289 int rbytes, nbytes = PAGE_SIZE - offset;
1da177e4
LT
1290
1291 if (nbytes > size)
1292 nbytes = size;
1293
3e85c868
DC
1294 rbytes = bio_add_page(bio, bp->b_pages[page_index], nbytes,
1295 offset);
ce8e922c 1296 if (rbytes < nbytes)
1da177e4
LT
1297 break;
1298
1299 offset = 0;
aa0e8833 1300 sector += BTOBB(nbytes);
1da177e4
LT
1301 size -= nbytes;
1302 total_nr_pages--;
1303 }
1304
4f024f37 1305 if (likely(bio->bi_iter.bi_size)) {
73c77e2c
JB
1306 if (xfs_buf_is_vmapped(bp)) {
1307 flush_kernel_vmap_range(bp->b_addr,
1308 xfs_buf_vmap_len(bp));
1309 }
4e49ea4a 1310 submit_bio(bio);
1da177e4
LT
1311 if (size)
1312 goto next_chunk;
1313 } else {
37eb17e6
DC
1314 /*
1315 * This is guaranteed not to be the last io reference count
595bff75 1316 * because the caller (xfs_buf_submit) holds a count itself.
37eb17e6
DC
1317 */
1318 atomic_dec(&bp->b_io_remaining);
2451337d 1319 xfs_buf_ioerror(bp, -EIO);
ec53d1db 1320 bio_put(bio);
1da177e4 1321 }
3e85c868
DC
1322
1323}
1324
1325STATIC void
1326_xfs_buf_ioapply(
1327 struct xfs_buf *bp)
1328{
1329 struct blk_plug plug;
50bfcd0c
MC
1330 int op;
1331 int op_flags = 0;
3e85c868
DC
1332 int offset;
1333 int size;
1334 int i;
1335
c163f9a1
DC
1336 /*
1337 * Make sure we capture only current IO errors rather than stale errors
1338 * left over from previous use of the buffer (e.g. failed readahead).
1339 */
1340 bp->b_error = 0;
1341
b29c70f5
BF
1342 /*
1343 * Initialize the I/O completion workqueue if we haven't yet or the
1344 * submitter has not opted to specify a custom one.
1345 */
1346 if (!bp->b_ioend_wq)
1347 bp->b_ioend_wq = bp->b_target->bt_mount->m_buf_workqueue;
1348
3e85c868 1349 if (bp->b_flags & XBF_WRITE) {
50bfcd0c 1350 op = REQ_OP_WRITE;
3e85c868 1351 if (bp->b_flags & XBF_SYNCIO)
70fd7614 1352 op_flags = REQ_SYNC;
3e85c868 1353 if (bp->b_flags & XBF_FUA)
50bfcd0c 1354 op_flags |= REQ_FUA;
3e85c868 1355 if (bp->b_flags & XBF_FLUSH)
28a8f0d3 1356 op_flags |= REQ_PREFLUSH;
1813dd64
DC
1357
1358 /*
1359 * Run the write verifier callback function if it exists. If
1360 * this function fails it will mark the buffer with an error and
1361 * the IO should not be dispatched.
1362 */
1363 if (bp->b_ops) {
1364 bp->b_ops->verify_write(bp);
1365 if (bp->b_error) {
1366 xfs_force_shutdown(bp->b_target->bt_mount,
1367 SHUTDOWN_CORRUPT_INCORE);
1368 return;
1369 }
400b9d88
DC
1370 } else if (bp->b_bn != XFS_BUF_DADDR_NULL) {
1371 struct xfs_mount *mp = bp->b_target->bt_mount;
1372
1373 /*
1374 * non-crc filesystems don't attach verifiers during
1375 * log recovery, so don't warn for such filesystems.
1376 */
1377 if (xfs_sb_version_hascrc(&mp->m_sb)) {
1378 xfs_warn(mp,
1379 "%s: no ops on block 0x%llx/0x%x",
1380 __func__, bp->b_bn, bp->b_length);
1381 xfs_hex_dump(bp->b_addr, 64);
1382 dump_stack();
1383 }
1813dd64 1384 }
3e85c868 1385 } else if (bp->b_flags & XBF_READ_AHEAD) {
50bfcd0c
MC
1386 op = REQ_OP_READ;
1387 op_flags = REQ_RAHEAD;
3e85c868 1388 } else {
50bfcd0c 1389 op = REQ_OP_READ;
3e85c868
DC
1390 }
1391
1392 /* we only use the buffer cache for meta-data */
50bfcd0c 1393 op_flags |= REQ_META;
3e85c868
DC
1394
1395 /*
1396 * Walk all the vectors issuing IO on them. Set up the initial offset
1397 * into the buffer and the desired IO size before we start -
1398 * _xfs_buf_ioapply_vec() will modify them appropriately for each
1399 * subsequent call.
1400 */
1401 offset = bp->b_offset;
1402 size = BBTOB(bp->b_io_length);
1403 blk_start_plug(&plug);
1404 for (i = 0; i < bp->b_map_count; i++) {
50bfcd0c 1405 xfs_buf_ioapply_map(bp, i, &offset, &size, op, op_flags);
3e85c868
DC
1406 if (bp->b_error)
1407 break;
1408 if (size <= 0)
1409 break; /* all done */
1410 }
1411 blk_finish_plug(&plug);
1da177e4
LT
1412}
1413
595bff75
DC
1414/*
1415 * Asynchronous IO submission path. This transfers the buffer lock ownership and
1416 * the current reference to the IO. It is not safe to reference the buffer after
1417 * a call to this function unless the caller holds an additional reference
1418 * itself.
1419 */
0e95f19a 1420void
595bff75
DC
1421xfs_buf_submit(
1422 struct xfs_buf *bp)
1da177e4 1423{
595bff75 1424 trace_xfs_buf_submit(bp, _RET_IP_);
1da177e4 1425
43ff2122 1426 ASSERT(!(bp->b_flags & _XBF_DELWRI_Q));
595bff75
DC
1427 ASSERT(bp->b_flags & XBF_ASYNC);
1428
1429 /* on shutdown we stale and complete the buffer immediately */
1430 if (XFS_FORCED_SHUTDOWN(bp->b_target->bt_mount)) {
1431 xfs_buf_ioerror(bp, -EIO);
1432 bp->b_flags &= ~XBF_DONE;
1433 xfs_buf_stale(bp);
1434 xfs_buf_ioend(bp);
1435 return;
1436 }
1da177e4 1437
375ec69d 1438 if (bp->b_flags & XBF_WRITE)
ce8e922c 1439 xfs_buf_wait_unpin(bp);
e11bb805 1440
61be9c52
DC
1441 /* clear the internal error state to avoid spurious errors */
1442 bp->b_io_error = 0;
1443
e11bb805 1444 /*
595bff75
DC
1445 * The caller's reference is released during I/O completion.
1446 * This occurs some time after the last b_io_remaining reference is
1447 * released, so after we drop our Io reference we have to have some
1448 * other reference to ensure the buffer doesn't go away from underneath
1449 * us. Take a direct reference to ensure we have safe access to the
1450 * buffer until we are finished with it.
e11bb805 1451 */
ce8e922c 1452 xfs_buf_hold(bp);
1da177e4 1453
8d6c1210 1454 /*
e11bb805
DC
1455 * Set the count to 1 initially, this will stop an I/O completion
1456 * callout which happens before we have started all the I/O from calling
1457 * xfs_buf_ioend too early.
1da177e4 1458 */
ce8e922c 1459 atomic_set(&bp->b_io_remaining, 1);
9c7504aa 1460 xfs_buf_ioacct_inc(bp);
ce8e922c 1461 _xfs_buf_ioapply(bp);
e11bb805 1462
8d6c1210 1463 /*
595bff75
DC
1464 * If _xfs_buf_ioapply failed, we can get back here with only the IO
1465 * reference we took above. If we drop it to zero, run completion so
1466 * that we don't return to the caller with completion still pending.
8d6c1210 1467 */
e8aaba9a 1468 if (atomic_dec_and_test(&bp->b_io_remaining) == 1) {
595bff75 1469 if (bp->b_error)
e8aaba9a
DC
1470 xfs_buf_ioend(bp);
1471 else
1472 xfs_buf_ioend_async(bp);
1473 }
1da177e4 1474
ce8e922c 1475 xfs_buf_rele(bp);
595bff75 1476 /* Note: it is not safe to reference bp now we've dropped our ref */
1da177e4
LT
1477}
1478
1479/*
595bff75 1480 * Synchronous buffer IO submission path, read or write.
1da177e4
LT
1481 */
1482int
595bff75
DC
1483xfs_buf_submit_wait(
1484 struct xfs_buf *bp)
1da177e4 1485{
595bff75 1486 int error;
0b1b213f 1487
595bff75
DC
1488 trace_xfs_buf_submit_wait(bp, _RET_IP_);
1489
1490 ASSERT(!(bp->b_flags & (_XBF_DELWRI_Q | XBF_ASYNC)));
0b1b213f 1491
595bff75
DC
1492 if (XFS_FORCED_SHUTDOWN(bp->b_target->bt_mount)) {
1493 xfs_buf_ioerror(bp, -EIO);
1494 xfs_buf_stale(bp);
1495 bp->b_flags &= ~XBF_DONE;
1496 return -EIO;
1497 }
1498
1499 if (bp->b_flags & XBF_WRITE)
1500 xfs_buf_wait_unpin(bp);
1501
1502 /* clear the internal error state to avoid spurious errors */
1503 bp->b_io_error = 0;
1504
1505 /*
1506 * For synchronous IO, the IO does not inherit the submitters reference
1507 * count, nor the buffer lock. Hence we cannot release the reference we
1508 * are about to take until we've waited for all IO completion to occur,
1509 * including any xfs_buf_ioend_async() work that may be pending.
1510 */
1511 xfs_buf_hold(bp);
1512
1513 /*
1514 * Set the count to 1 initially, this will stop an I/O completion
1515 * callout which happens before we have started all the I/O from calling
1516 * xfs_buf_ioend too early.
1517 */
1518 atomic_set(&bp->b_io_remaining, 1);
1519 _xfs_buf_ioapply(bp);
1520
1521 /*
1522 * make sure we run completion synchronously if it raced with us and is
1523 * already complete.
1524 */
1525 if (atomic_dec_and_test(&bp->b_io_remaining) == 1)
1526 xfs_buf_ioend(bp);
0b1b213f 1527
595bff75
DC
1528 /* wait for completion before gathering the error from the buffer */
1529 trace_xfs_buf_iowait(bp, _RET_IP_);
1530 wait_for_completion(&bp->b_iowait);
0b1b213f 1531 trace_xfs_buf_iowait_done(bp, _RET_IP_);
595bff75
DC
1532 error = bp->b_error;
1533
1534 /*
1535 * all done now, we can release the hold that keeps the buffer
1536 * referenced for the entire IO.
1537 */
1538 xfs_buf_rele(bp);
1539 return error;
1da177e4
LT
1540}
1541
88ee2df7 1542void *
ce8e922c 1543xfs_buf_offset(
88ee2df7 1544 struct xfs_buf *bp,
1da177e4
LT
1545 size_t offset)
1546{
1547 struct page *page;
1548
611c9946 1549 if (bp->b_addr)
62926044 1550 return bp->b_addr + offset;
1da177e4 1551
ce8e922c 1552 offset += bp->b_offset;
0e6e847f 1553 page = bp->b_pages[offset >> PAGE_SHIFT];
88ee2df7 1554 return page_address(page) + (offset & (PAGE_SIZE-1));
1da177e4
LT
1555}
1556
1557/*
1da177e4
LT
1558 * Move data into or out of a buffer.
1559 */
1560void
ce8e922c
NS
1561xfs_buf_iomove(
1562 xfs_buf_t *bp, /* buffer to process */
1da177e4
LT
1563 size_t boff, /* starting buffer offset */
1564 size_t bsize, /* length to copy */
b9c48649 1565 void *data, /* data address */
ce8e922c 1566 xfs_buf_rw_t mode) /* read/write/zero flag */
1da177e4 1567{
795cac72 1568 size_t bend;
1da177e4
LT
1569
1570 bend = boff + bsize;
1571 while (boff < bend) {
795cac72
DC
1572 struct page *page;
1573 int page_index, page_offset, csize;
1574
1575 page_index = (boff + bp->b_offset) >> PAGE_SHIFT;
1576 page_offset = (boff + bp->b_offset) & ~PAGE_MASK;
1577 page = bp->b_pages[page_index];
1578 csize = min_t(size_t, PAGE_SIZE - page_offset,
1579 BBTOB(bp->b_io_length) - boff);
1da177e4 1580
795cac72 1581 ASSERT((csize + page_offset) <= PAGE_SIZE);
1da177e4
LT
1582
1583 switch (mode) {
ce8e922c 1584 case XBRW_ZERO:
795cac72 1585 memset(page_address(page) + page_offset, 0, csize);
1da177e4 1586 break;
ce8e922c 1587 case XBRW_READ:
795cac72 1588 memcpy(data, page_address(page) + page_offset, csize);
1da177e4 1589 break;
ce8e922c 1590 case XBRW_WRITE:
795cac72 1591 memcpy(page_address(page) + page_offset, data, csize);
1da177e4
LT
1592 }
1593
1594 boff += csize;
1595 data += csize;
1596 }
1597}
1598
1599/*
ce8e922c 1600 * Handling of buffer targets (buftargs).
1da177e4
LT
1601 */
1602
1603/*
430cbeb8
DC
1604 * Wait for any bufs with callbacks that have been submitted but have not yet
1605 * returned. These buffers will have an elevated hold count, so wait on those
1606 * while freeing all the buffers only held by the LRU.
1da177e4 1607 */
e80dfa19
DC
1608static enum lru_status
1609xfs_buftarg_wait_rele(
1610 struct list_head *item,
3f97b163 1611 struct list_lru_one *lru,
e80dfa19
DC
1612 spinlock_t *lru_lock,
1613 void *arg)
1614
1da177e4 1615{
e80dfa19 1616 struct xfs_buf *bp = container_of(item, struct xfs_buf, b_lru);
a4082357 1617 struct list_head *dispose = arg;
430cbeb8 1618
e80dfa19 1619 if (atomic_read(&bp->b_hold) > 1) {
a4082357 1620 /* need to wait, so skip it this pass */
e80dfa19 1621 trace_xfs_buf_wait_buftarg(bp, _RET_IP_);
a4082357 1622 return LRU_SKIP;
1da177e4 1623 }
a4082357
DC
1624 if (!spin_trylock(&bp->b_lock))
1625 return LRU_SKIP;
e80dfa19 1626
a4082357
DC
1627 /*
1628 * clear the LRU reference count so the buffer doesn't get
1629 * ignored in xfs_buf_rele().
1630 */
1631 atomic_set(&bp->b_lru_ref, 0);
1632 bp->b_state |= XFS_BSTATE_DISPOSE;
3f97b163 1633 list_lru_isolate_move(lru, item, dispose);
a4082357
DC
1634 spin_unlock(&bp->b_lock);
1635 return LRU_REMOVED;
1da177e4
LT
1636}
1637
e80dfa19
DC
1638void
1639xfs_wait_buftarg(
1640 struct xfs_buftarg *btp)
1641{
a4082357
DC
1642 LIST_HEAD(dispose);
1643 int loop = 0;
1644
85bec546 1645 /*
9c7504aa
BF
1646 * First wait on the buftarg I/O count for all in-flight buffers to be
1647 * released. This is critical as new buffers do not make the LRU until
1648 * they are released.
1649 *
1650 * Next, flush the buffer workqueue to ensure all completion processing
1651 * has finished. Just waiting on buffer locks is not sufficient for
1652 * async IO as the reference count held over IO is not released until
1653 * after the buffer lock is dropped. Hence we need to ensure here that
1654 * all reference counts have been dropped before we start walking the
1655 * LRU list.
85bec546 1656 */
9c7504aa
BF
1657 while (percpu_counter_sum(&btp->bt_io_count))
1658 delay(100);
800b2694 1659 flush_workqueue(btp->bt_mount->m_buf_workqueue);
85bec546 1660
a4082357
DC
1661 /* loop until there is nothing left on the lru list. */
1662 while (list_lru_count(&btp->bt_lru)) {
e80dfa19 1663 list_lru_walk(&btp->bt_lru, xfs_buftarg_wait_rele,
a4082357
DC
1664 &dispose, LONG_MAX);
1665
1666 while (!list_empty(&dispose)) {
1667 struct xfs_buf *bp;
1668 bp = list_first_entry(&dispose, struct xfs_buf, b_lru);
1669 list_del_init(&bp->b_lru);
ac8809f9
DC
1670 if (bp->b_flags & XBF_WRITE_FAIL) {
1671 xfs_alert(btp->bt_mount,
f41febd2 1672"Corruption Alert: Buffer at block 0x%llx had permanent write failures!",
ac8809f9 1673 (long long)bp->b_bn);
f41febd2
JP
1674 xfs_alert(btp->bt_mount,
1675"Please run xfs_repair to determine the extent of the problem.");
ac8809f9 1676 }
a4082357
DC
1677 xfs_buf_rele(bp);
1678 }
1679 if (loop++ != 0)
1680 delay(100);
1681 }
e80dfa19
DC
1682}
1683
1684static enum lru_status
1685xfs_buftarg_isolate(
1686 struct list_head *item,
3f97b163 1687 struct list_lru_one *lru,
e80dfa19
DC
1688 spinlock_t *lru_lock,
1689 void *arg)
1690{
1691 struct xfs_buf *bp = container_of(item, struct xfs_buf, b_lru);
1692 struct list_head *dispose = arg;
1693
a4082357
DC
1694 /*
1695 * we are inverting the lru lock/bp->b_lock here, so use a trylock.
1696 * If we fail to get the lock, just skip it.
1697 */
1698 if (!spin_trylock(&bp->b_lock))
1699 return LRU_SKIP;
e80dfa19
DC
1700 /*
1701 * Decrement the b_lru_ref count unless the value is already
1702 * zero. If the value is already zero, we need to reclaim the
1703 * buffer, otherwise it gets another trip through the LRU.
1704 */
a4082357
DC
1705 if (!atomic_add_unless(&bp->b_lru_ref, -1, 0)) {
1706 spin_unlock(&bp->b_lock);
e80dfa19 1707 return LRU_ROTATE;
a4082357 1708 }
e80dfa19 1709
a4082357 1710 bp->b_state |= XFS_BSTATE_DISPOSE;
3f97b163 1711 list_lru_isolate_move(lru, item, dispose);
a4082357 1712 spin_unlock(&bp->b_lock);
e80dfa19
DC
1713 return LRU_REMOVED;
1714}
1715
addbda40 1716static unsigned long
e80dfa19 1717xfs_buftarg_shrink_scan(
ff57ab21 1718 struct shrinker *shrink,
1495f230 1719 struct shrink_control *sc)
a6867a68 1720{
ff57ab21
DC
1721 struct xfs_buftarg *btp = container_of(shrink,
1722 struct xfs_buftarg, bt_shrinker);
430cbeb8 1723 LIST_HEAD(dispose);
addbda40 1724 unsigned long freed;
430cbeb8 1725
503c358c
VD
1726 freed = list_lru_shrink_walk(&btp->bt_lru, sc,
1727 xfs_buftarg_isolate, &dispose);
430cbeb8
DC
1728
1729 while (!list_empty(&dispose)) {
e80dfa19 1730 struct xfs_buf *bp;
430cbeb8
DC
1731 bp = list_first_entry(&dispose, struct xfs_buf, b_lru);
1732 list_del_init(&bp->b_lru);
1733 xfs_buf_rele(bp);
1734 }
1735
e80dfa19
DC
1736 return freed;
1737}
1738
addbda40 1739static unsigned long
e80dfa19
DC
1740xfs_buftarg_shrink_count(
1741 struct shrinker *shrink,
1742 struct shrink_control *sc)
1743{
1744 struct xfs_buftarg *btp = container_of(shrink,
1745 struct xfs_buftarg, bt_shrinker);
503c358c 1746 return list_lru_shrink_count(&btp->bt_lru, sc);
a6867a68
DC
1747}
1748
1da177e4
LT
1749void
1750xfs_free_buftarg(
b7963133
CH
1751 struct xfs_mount *mp,
1752 struct xfs_buftarg *btp)
1da177e4 1753{
ff57ab21 1754 unregister_shrinker(&btp->bt_shrinker);
9c7504aa
BF
1755 ASSERT(percpu_counter_sum(&btp->bt_io_count) == 0);
1756 percpu_counter_destroy(&btp->bt_io_count);
f5e1dd34 1757 list_lru_destroy(&btp->bt_lru);
ff57ab21 1758
2291dab2 1759 xfs_blkdev_issue_flush(btp);
a6867a68 1760
f0e2d93c 1761 kmem_free(btp);
1da177e4
LT
1762}
1763
3fefdeee
ES
1764int
1765xfs_setsize_buftarg(
1da177e4 1766 xfs_buftarg_t *btp,
3fefdeee 1767 unsigned int sectorsize)
1da177e4 1768{
7c71ee78 1769 /* Set up metadata sector size info */
6da54179
ES
1770 btp->bt_meta_sectorsize = sectorsize;
1771 btp->bt_meta_sectormask = sectorsize - 1;
1da177e4 1772
ce8e922c 1773 if (set_blocksize(btp->bt_bdev, sectorsize)) {
4f10700a 1774 xfs_warn(btp->bt_mount,
a1c6f057
DM
1775 "Cannot set_blocksize to %u on device %pg",
1776 sectorsize, btp->bt_bdev);
2451337d 1777 return -EINVAL;
1da177e4
LT
1778 }
1779
7c71ee78
ES
1780 /* Set up device logical sector size mask */
1781 btp->bt_logical_sectorsize = bdev_logical_block_size(btp->bt_bdev);
1782 btp->bt_logical_sectormask = bdev_logical_block_size(btp->bt_bdev) - 1;
1783
1da177e4
LT
1784 return 0;
1785}
1786
1787/*
3fefdeee
ES
1788 * When allocating the initial buffer target we have not yet
1789 * read in the superblock, so don't know what sized sectors
1790 * are being used at this early stage. Play safe.
ce8e922c 1791 */
1da177e4
LT
1792STATIC int
1793xfs_setsize_buftarg_early(
1794 xfs_buftarg_t *btp,
1795 struct block_device *bdev)
1796{
a96c4151 1797 return xfs_setsize_buftarg(btp, bdev_logical_block_size(bdev));
1da177e4
LT
1798}
1799
1da177e4
LT
1800xfs_buftarg_t *
1801xfs_alloc_buftarg(
ebad861b 1802 struct xfs_mount *mp,
486aff5e
DW
1803 struct block_device *bdev,
1804 struct dax_device *dax_dev)
1da177e4
LT
1805{
1806 xfs_buftarg_t *btp;
1807
b17cb364 1808 btp = kmem_zalloc(sizeof(*btp), KM_SLEEP | KM_NOFS);
1da177e4 1809
ebad861b 1810 btp->bt_mount = mp;
ce8e922c
NS
1811 btp->bt_dev = bdev->bd_dev;
1812 btp->bt_bdev = bdev;
486aff5e 1813 btp->bt_daxdev = dax_dev;
0e6e847f 1814
1da177e4
LT
1815 if (xfs_setsize_buftarg_early(btp, bdev))
1816 goto error;
5ca302c8
GC
1817
1818 if (list_lru_init(&btp->bt_lru))
1819 goto error;
1820
9c7504aa
BF
1821 if (percpu_counter_init(&btp->bt_io_count, 0, GFP_KERNEL))
1822 goto error;
1823
e80dfa19
DC
1824 btp->bt_shrinker.count_objects = xfs_buftarg_shrink_count;
1825 btp->bt_shrinker.scan_objects = xfs_buftarg_shrink_scan;
ff57ab21 1826 btp->bt_shrinker.seeks = DEFAULT_SEEKS;
e80dfa19 1827 btp->bt_shrinker.flags = SHRINKER_NUMA_AWARE;
ff57ab21 1828 register_shrinker(&btp->bt_shrinker);
1da177e4
LT
1829 return btp;
1830
1831error:
f0e2d93c 1832 kmem_free(btp);
1da177e4
LT
1833 return NULL;
1834}
1835
20e8a063
BF
1836/*
1837 * Cancel a delayed write list.
1838 *
1839 * Remove each buffer from the list, clear the delwri queue flag and drop the
1840 * associated buffer reference.
1841 */
1842void
1843xfs_buf_delwri_cancel(
1844 struct list_head *list)
1845{
1846 struct xfs_buf *bp;
1847
1848 while (!list_empty(list)) {
1849 bp = list_first_entry(list, struct xfs_buf, b_list);
1850
1851 xfs_buf_lock(bp);
1852 bp->b_flags &= ~_XBF_DELWRI_Q;
1853 list_del_init(&bp->b_list);
1854 xfs_buf_relse(bp);
1855 }
1856}
1857
1da177e4 1858/*
43ff2122
CH
1859 * Add a buffer to the delayed write list.
1860 *
1861 * This queues a buffer for writeout if it hasn't already been. Note that
1862 * neither this routine nor the buffer list submission functions perform
1863 * any internal synchronization. It is expected that the lists are thread-local
1864 * to the callers.
1865 *
1866 * Returns true if we queued up the buffer, or false if it already had
1867 * been on the buffer list.
1da177e4 1868 */
43ff2122 1869bool
ce8e922c 1870xfs_buf_delwri_queue(
43ff2122
CH
1871 struct xfs_buf *bp,
1872 struct list_head *list)
1da177e4 1873{
43ff2122 1874 ASSERT(xfs_buf_islocked(bp));
5a8ee6ba 1875 ASSERT(!(bp->b_flags & XBF_READ));
1da177e4 1876
43ff2122
CH
1877 /*
1878 * If the buffer is already marked delwri it already is queued up
1879 * by someone else for imediate writeout. Just ignore it in that
1880 * case.
1881 */
1882 if (bp->b_flags & _XBF_DELWRI_Q) {
1883 trace_xfs_buf_delwri_queued(bp, _RET_IP_);
1884 return false;
1da177e4 1885 }
1da177e4 1886
43ff2122 1887 trace_xfs_buf_delwri_queue(bp, _RET_IP_);
d808f617
DC
1888
1889 /*
43ff2122
CH
1890 * If a buffer gets written out synchronously or marked stale while it
1891 * is on a delwri list we lazily remove it. To do this, the other party
1892 * clears the _XBF_DELWRI_Q flag but otherwise leaves the buffer alone.
1893 * It remains referenced and on the list. In a rare corner case it
1894 * might get readded to a delwri list after the synchronous writeout, in
1895 * which case we need just need to re-add the flag here.
d808f617 1896 */
43ff2122
CH
1897 bp->b_flags |= _XBF_DELWRI_Q;
1898 if (list_empty(&bp->b_list)) {
1899 atomic_inc(&bp->b_hold);
1900 list_add_tail(&bp->b_list, list);
585e6d88 1901 }
585e6d88 1902
43ff2122 1903 return true;
585e6d88
DC
1904}
1905
089716aa
DC
1906/*
1907 * Compare function is more complex than it needs to be because
1908 * the return value is only 32 bits and we are doing comparisons
1909 * on 64 bit values
1910 */
1911static int
1912xfs_buf_cmp(
1913 void *priv,
1914 struct list_head *a,
1915 struct list_head *b)
1916{
1917 struct xfs_buf *ap = container_of(a, struct xfs_buf, b_list);
1918 struct xfs_buf *bp = container_of(b, struct xfs_buf, b_list);
1919 xfs_daddr_t diff;
1920
f4b42421 1921 diff = ap->b_maps[0].bm_bn - bp->b_maps[0].bm_bn;
089716aa
DC
1922 if (diff < 0)
1923 return -1;
1924 if (diff > 0)
1925 return 1;
1926 return 0;
1927}
1928
26f1fe85
DC
1929/*
1930 * submit buffers for write.
1931 *
1932 * When we have a large buffer list, we do not want to hold all the buffers
1933 * locked while we block on the request queue waiting for IO dispatch. To avoid
1934 * this problem, we lock and submit buffers in groups of 50, thereby minimising
1935 * the lock hold times for lists which may contain thousands of objects.
1936 *
1937 * To do this, we sort the buffer list before we walk the list to lock and
1938 * submit buffers, and we plug and unplug around each group of buffers we
1939 * submit.
1940 */
43ff2122 1941static int
26f1fe85 1942xfs_buf_delwri_submit_buffers(
43ff2122 1943 struct list_head *buffer_list,
26f1fe85 1944 struct list_head *wait_list)
1da177e4 1945{
43ff2122 1946 struct xfs_buf *bp, *n;
26f1fe85 1947 LIST_HEAD (submit_list);
43ff2122 1948 int pinned = 0;
26f1fe85 1949 struct blk_plug plug;
43ff2122 1950
26f1fe85 1951 list_sort(NULL, buffer_list, xfs_buf_cmp);
43ff2122 1952
26f1fe85 1953 blk_start_plug(&plug);
43ff2122 1954 list_for_each_entry_safe(bp, n, buffer_list, b_list) {
26f1fe85 1955 if (!wait_list) {
43ff2122
CH
1956 if (xfs_buf_ispinned(bp)) {
1957 pinned++;
1958 continue;
1959 }
1960 if (!xfs_buf_trylock(bp))
1961 continue;
1962 } else {
1963 xfs_buf_lock(bp);
1964 }
978c7b2f 1965
43ff2122
CH
1966 /*
1967 * Someone else might have written the buffer synchronously or
1968 * marked it stale in the meantime. In that case only the
1969 * _XBF_DELWRI_Q flag got cleared, and we have to drop the
1970 * reference and remove it from the list here.
1971 */
1972 if (!(bp->b_flags & _XBF_DELWRI_Q)) {
1973 list_del_init(&bp->b_list);
1974 xfs_buf_relse(bp);
1975 continue;
1976 }
c9c12971 1977
43ff2122 1978 trace_xfs_buf_delwri_split(bp, _RET_IP_);
a1b7ea5d 1979
cf53e99d 1980 /*
26f1fe85
DC
1981 * We do all IO submission async. This means if we need
1982 * to wait for IO completion we need to take an extra
1983 * reference so the buffer is still valid on the other
1984 * side. We need to move the buffer onto the io_list
1985 * at this point so the caller can still access it.
cf53e99d 1986 */
bbfeb614 1987 bp->b_flags &= ~(_XBF_DELWRI_Q | XBF_WRITE_FAIL);
26f1fe85
DC
1988 bp->b_flags |= XBF_WRITE | XBF_ASYNC;
1989 if (wait_list) {
cf53e99d 1990 xfs_buf_hold(bp);
26f1fe85
DC
1991 list_move_tail(&bp->b_list, wait_list);
1992 } else
ce8e922c 1993 list_del_init(&bp->b_list);
8dac3921 1994
595bff75 1995 xfs_buf_submit(bp);
43ff2122
CH
1996 }
1997 blk_finish_plug(&plug);
1da177e4 1998
43ff2122 1999 return pinned;
1da177e4
LT
2000}
2001
2002/*
43ff2122
CH
2003 * Write out a buffer list asynchronously.
2004 *
2005 * This will take the @buffer_list, write all non-locked and non-pinned buffers
2006 * out and not wait for I/O completion on any of the buffers. This interface
2007 * is only safely useable for callers that can track I/O completion by higher
2008 * level means, e.g. AIL pushing as the @buffer_list is consumed in this
2009 * function.
1da177e4
LT
2010 */
2011int
43ff2122
CH
2012xfs_buf_delwri_submit_nowait(
2013 struct list_head *buffer_list)
1da177e4 2014{
26f1fe85 2015 return xfs_buf_delwri_submit_buffers(buffer_list, NULL);
43ff2122 2016}
1da177e4 2017
43ff2122
CH
2018/*
2019 * Write out a buffer list synchronously.
2020 *
2021 * This will take the @buffer_list, write all buffers out and wait for I/O
2022 * completion on all of the buffers. @buffer_list is consumed by the function,
2023 * so callers must have some other way of tracking buffers if they require such
2024 * functionality.
2025 */
2026int
2027xfs_buf_delwri_submit(
2028 struct list_head *buffer_list)
2029{
26f1fe85 2030 LIST_HEAD (wait_list);
43ff2122
CH
2031 int error = 0, error2;
2032 struct xfs_buf *bp;
1da177e4 2033
26f1fe85 2034 xfs_buf_delwri_submit_buffers(buffer_list, &wait_list);
1da177e4 2035
43ff2122 2036 /* Wait for IO to complete. */
26f1fe85
DC
2037 while (!list_empty(&wait_list)) {
2038 bp = list_first_entry(&wait_list, struct xfs_buf, b_list);
a1b7ea5d 2039
089716aa 2040 list_del_init(&bp->b_list);
cf53e99d
DC
2041
2042 /* locking the buffer will wait for async IO completion. */
2043 xfs_buf_lock(bp);
2044 error2 = bp->b_error;
43ff2122
CH
2045 xfs_buf_relse(bp);
2046 if (!error)
2047 error = error2;
1da177e4
LT
2048 }
2049
43ff2122 2050 return error;
1da177e4
LT
2051}
2052
7912e7fe
BF
2053/*
2054 * Push a single buffer on a delwri queue.
2055 *
2056 * The purpose of this function is to submit a single buffer of a delwri queue
2057 * and return with the buffer still on the original queue. The waiting delwri
2058 * buffer submission infrastructure guarantees transfer of the delwri queue
2059 * buffer reference to a temporary wait list. We reuse this infrastructure to
2060 * transfer the buffer back to the original queue.
2061 *
2062 * Note the buffer transitions from the queued state, to the submitted and wait
2063 * listed state and back to the queued state during this call. The buffer
2064 * locking and queue management logic between _delwri_pushbuf() and
2065 * _delwri_queue() guarantee that the buffer cannot be queued to another list
2066 * before returning.
2067 */
2068int
2069xfs_buf_delwri_pushbuf(
2070 struct xfs_buf *bp,
2071 struct list_head *buffer_list)
2072{
2073 LIST_HEAD (submit_list);
2074 int error;
2075
2076 ASSERT(bp->b_flags & _XBF_DELWRI_Q);
2077
2078 trace_xfs_buf_delwri_pushbuf(bp, _RET_IP_);
2079
2080 /*
2081 * Isolate the buffer to a new local list so we can submit it for I/O
2082 * independently from the rest of the original list.
2083 */
2084 xfs_buf_lock(bp);
2085 list_move(&bp->b_list, &submit_list);
2086 xfs_buf_unlock(bp);
2087
2088 /*
2089 * Delwri submission clears the DELWRI_Q buffer flag and returns with
2090 * the buffer on the wait list with an associated reference. Rather than
2091 * bounce the buffer from a local wait list back to the original list
2092 * after I/O completion, reuse the original list as the wait list.
2093 */
2094 xfs_buf_delwri_submit_buffers(&submit_list, buffer_list);
2095
2096 /*
2097 * The buffer is now under I/O and wait listed as during typical delwri
2098 * submission. Lock the buffer to wait for I/O completion. Rather than
2099 * remove the buffer from the wait list and release the reference, we
2100 * want to return with the buffer queued to the original list. The
2101 * buffer already sits on the original list with a wait list reference,
2102 * however. If we let the queue inherit that wait list reference, all we
2103 * need to do is reset the DELWRI_Q flag.
2104 */
2105 xfs_buf_lock(bp);
2106 error = bp->b_error;
2107 bp->b_flags |= _XBF_DELWRI_Q;
2108 xfs_buf_unlock(bp);
2109
2110 return error;
2111}
2112
04d8b284 2113int __init
ce8e922c 2114xfs_buf_init(void)
1da177e4 2115{
8758280f
NS
2116 xfs_buf_zone = kmem_zone_init_flags(sizeof(xfs_buf_t), "xfs_buf",
2117 KM_ZONE_HWALIGN, NULL);
ce8e922c 2118 if (!xfs_buf_zone)
0b1b213f 2119 goto out;
04d8b284 2120
23ea4032 2121 return 0;
1da177e4 2122
0b1b213f 2123 out:
8758280f 2124 return -ENOMEM;
1da177e4
LT
2125}
2126
1da177e4 2127void
ce8e922c 2128xfs_buf_terminate(void)
1da177e4 2129{
ce8e922c 2130 kmem_zone_destroy(xfs_buf_zone);
1da177e4 2131}