]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - fs/xfs/xfs_buf.c
Merge tag 'for-5.15-rc5-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave...
[mirror_ubuntu-jammy-kernel.git] / fs / xfs / xfs_buf.c
CommitLineData
0b61f8a4 1// SPDX-License-Identifier: GPL-2.0
1da177e4 2/*
f07c2250 3 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
7b718769 4 * All Rights Reserved.
1da177e4 5 */
93c189c1 6#include "xfs.h"
3fcfab16 7#include <linux/backing-dev.h>
1da177e4 8
5467b34b 9#include "xfs_shared.h"
4fb6e8ad 10#include "xfs_format.h"
239880ef 11#include "xfs_log_format.h"
7fd36c44 12#include "xfs_trans_resv.h"
b7963133 13#include "xfs_mount.h"
0b1b213f 14#include "xfs_trace.h"
239880ef 15#include "xfs_log.h"
9fe5c77c 16#include "xfs_log_recover.h"
f593bf14
DC
17#include "xfs_trans.h"
18#include "xfs_buf_item.h"
e9e899a2 19#include "xfs_errortag.h"
7561d27e 20#include "xfs_error.h"
9bbafc71 21#include "xfs_ag.h"
b7963133 22
7989cb8e 23static kmem_zone_t *xfs_buf_zone;
23ea4032 24
37fd1678
DC
25/*
26 * Locking orders
27 *
28 * xfs_buf_ioacct_inc:
29 * xfs_buf_ioacct_dec:
30 * b_sema (caller holds)
31 * b_lock
32 *
33 * xfs_buf_stale:
34 * b_sema (caller holds)
35 * b_lock
36 * lru_lock
37 *
38 * xfs_buf_rele:
39 * b_lock
40 * pag_buf_lock
41 * lru_lock
42 *
10fb9ac1 43 * xfs_buftarg_drain_rele
37fd1678
DC
44 * lru_lock
45 * b_lock (trylock due to inversion)
46 *
47 * xfs_buftarg_isolate
48 * lru_lock
49 * b_lock (trylock due to inversion)
50 */
1da177e4 51
26e32875
CH
52static int __xfs_buf_submit(struct xfs_buf *bp, bool wait);
53
54static inline int
55xfs_buf_submit(
56 struct xfs_buf *bp)
57{
58 return __xfs_buf_submit(bp, !(bp->b_flags & XBF_ASYNC));
59}
60
73c77e2c
JB
61static inline int
62xfs_buf_is_vmapped(
63 struct xfs_buf *bp)
64{
65 /*
66 * Return true if the buffer is vmapped.
67 *
611c9946
DC
68 * b_addr is null if the buffer is not mapped, but the code is clever
69 * enough to know it doesn't have to map a single page, so the check has
70 * to be both for b_addr and bp->b_page_count > 1.
73c77e2c 71 */
611c9946 72 return bp->b_addr && bp->b_page_count > 1;
73c77e2c
JB
73}
74
75static inline int
76xfs_buf_vmap_len(
77 struct xfs_buf *bp)
78{
54cd3aa6 79 return (bp->b_page_count * PAGE_SIZE);
73c77e2c
JB
80}
81
9c7504aa
BF
82/*
83 * Bump the I/O in flight count on the buftarg if we haven't yet done so for
84 * this buffer. The count is incremented once per buffer (per hold cycle)
85 * because the corresponding decrement is deferred to buffer release. Buffers
86 * can undergo I/O multiple times in a hold-release cycle and per buffer I/O
87 * tracking adds unnecessary overhead. This is used for sychronization purposes
10fb9ac1 88 * with unmount (see xfs_buftarg_drain()), so all we really need is a count of
9c7504aa
BF
89 * in-flight buffers.
90 *
91 * Buffers that are never released (e.g., superblock, iclog buffers) must set
92 * the XBF_NO_IOACCT flag before I/O submission. Otherwise, the buftarg count
93 * never reaches zero and unmount hangs indefinitely.
94 */
95static inline void
96xfs_buf_ioacct_inc(
97 struct xfs_buf *bp)
98{
63db7c81 99 if (bp->b_flags & XBF_NO_IOACCT)
9c7504aa
BF
100 return;
101
102 ASSERT(bp->b_flags & XBF_ASYNC);
63db7c81
BF
103 spin_lock(&bp->b_lock);
104 if (!(bp->b_state & XFS_BSTATE_IN_FLIGHT)) {
105 bp->b_state |= XFS_BSTATE_IN_FLIGHT;
106 percpu_counter_inc(&bp->b_target->bt_io_count);
107 }
108 spin_unlock(&bp->b_lock);
9c7504aa
BF
109}
110
111/*
112 * Clear the in-flight state on a buffer about to be released to the LRU or
113 * freed and unaccount from the buftarg.
114 */
115static inline void
63db7c81 116__xfs_buf_ioacct_dec(
9c7504aa
BF
117 struct xfs_buf *bp)
118{
95989c46 119 lockdep_assert_held(&bp->b_lock);
9c7504aa 120
63db7c81
BF
121 if (bp->b_state & XFS_BSTATE_IN_FLIGHT) {
122 bp->b_state &= ~XFS_BSTATE_IN_FLIGHT;
123 percpu_counter_dec(&bp->b_target->bt_io_count);
124 }
125}
126
127static inline void
128xfs_buf_ioacct_dec(
129 struct xfs_buf *bp)
130{
131 spin_lock(&bp->b_lock);
132 __xfs_buf_ioacct_dec(bp);
133 spin_unlock(&bp->b_lock);
9c7504aa
BF
134}
135
430cbeb8
DC
136/*
137 * When we mark a buffer stale, we remove the buffer from the LRU and clear the
138 * b_lru_ref count so that the buffer is freed immediately when the buffer
139 * reference count falls to zero. If the buffer is already on the LRU, we need
140 * to remove the reference that LRU holds on the buffer.
141 *
142 * This prevents build-up of stale buffers on the LRU.
143 */
144void
145xfs_buf_stale(
146 struct xfs_buf *bp)
147{
43ff2122
CH
148 ASSERT(xfs_buf_islocked(bp));
149
430cbeb8 150 bp->b_flags |= XBF_STALE;
43ff2122
CH
151
152 /*
153 * Clear the delwri status so that a delwri queue walker will not
154 * flush this buffer to disk now that it is stale. The delwri queue has
155 * a reference to the buffer, so this is safe to do.
156 */
157 bp->b_flags &= ~_XBF_DELWRI_Q;
158
9c7504aa
BF
159 /*
160 * Once the buffer is marked stale and unlocked, a subsequent lookup
161 * could reset b_flags. There is no guarantee that the buffer is
162 * unaccounted (released to LRU) before that occurs. Drop in-flight
163 * status now to preserve accounting consistency.
164 */
a4082357 165 spin_lock(&bp->b_lock);
63db7c81
BF
166 __xfs_buf_ioacct_dec(bp);
167
a4082357
DC
168 atomic_set(&bp->b_lru_ref, 0);
169 if (!(bp->b_state & XFS_BSTATE_DISPOSE) &&
e80dfa19
DC
170 (list_lru_del(&bp->b_target->bt_lru, &bp->b_lru)))
171 atomic_dec(&bp->b_hold);
172
430cbeb8 173 ASSERT(atomic_read(&bp->b_hold) >= 1);
a4082357 174 spin_unlock(&bp->b_lock);
430cbeb8 175}
1da177e4 176
3e85c868
DC
177static int
178xfs_buf_get_maps(
179 struct xfs_buf *bp,
180 int map_count)
181{
182 ASSERT(bp->b_maps == NULL);
183 bp->b_map_count = map_count;
184
185 if (map_count == 1) {
f4b42421 186 bp->b_maps = &bp->__b_map;
3e85c868
DC
187 return 0;
188 }
189
190 bp->b_maps = kmem_zalloc(map_count * sizeof(struct xfs_buf_map),
191 KM_NOFS);
192 if (!bp->b_maps)
2451337d 193 return -ENOMEM;
3e85c868
DC
194 return 0;
195}
196
197/*
198 * Frees b_pages if it was allocated.
199 */
200static void
201xfs_buf_free_maps(
202 struct xfs_buf *bp)
203{
f4b42421 204 if (bp->b_maps != &bp->__b_map) {
3e85c868
DC
205 kmem_free(bp->b_maps);
206 bp->b_maps = NULL;
207 }
208}
209
32dff5e5 210static int
3e85c868 211_xfs_buf_alloc(
4347b9d7 212 struct xfs_buftarg *target,
3e85c868
DC
213 struct xfs_buf_map *map,
214 int nmaps,
32dff5e5
DW
215 xfs_buf_flags_t flags,
216 struct xfs_buf **bpp)
1da177e4 217{
4347b9d7 218 struct xfs_buf *bp;
3e85c868
DC
219 int error;
220 int i;
4347b9d7 221
32dff5e5 222 *bpp = NULL;
32a2b11f 223 bp = kmem_cache_zalloc(xfs_buf_zone, GFP_NOFS | __GFP_NOFAIL);
4347b9d7 224
1da177e4 225 /*
12bcb3f7
DC
226 * We don't want certain flags to appear in b_flags unless they are
227 * specifically set by later operations on the buffer.
1da177e4 228 */
611c9946 229 flags &= ~(XBF_UNMAPPED | XBF_TRYLOCK | XBF_ASYNC | XBF_READ_AHEAD);
ce8e922c 230
ce8e922c 231 atomic_set(&bp->b_hold, 1);
430cbeb8 232 atomic_set(&bp->b_lru_ref, 1);
b4dd330b 233 init_completion(&bp->b_iowait);
430cbeb8 234 INIT_LIST_HEAD(&bp->b_lru);
ce8e922c 235 INIT_LIST_HEAD(&bp->b_list);
643c8c05 236 INIT_LIST_HEAD(&bp->b_li_list);
a731cd11 237 sema_init(&bp->b_sema, 0); /* held, no waiters */
a4082357 238 spin_lock_init(&bp->b_lock);
ce8e922c 239 bp->b_target = target;
dbd329f1 240 bp->b_mount = target->bt_mount;
3e85c868 241 bp->b_flags = flags;
de1cbee4 242
1da177e4 243 /*
aa0e8833
DC
244 * Set length and io_length to the same value initially.
245 * I/O routines should use io_length, which will be the same in
1da177e4
LT
246 * most cases but may be reset (e.g. XFS recovery).
247 */
3e85c868
DC
248 error = xfs_buf_get_maps(bp, nmaps);
249 if (error) {
377bcd5f 250 kmem_cache_free(xfs_buf_zone, bp);
32dff5e5 251 return error;
3e85c868
DC
252 }
253
4c7f65ae 254 bp->b_rhash_key = map[0].bm_bn;
3e85c868
DC
255 bp->b_length = 0;
256 for (i = 0; i < nmaps; i++) {
257 bp->b_maps[i].bm_bn = map[i].bm_bn;
258 bp->b_maps[i].bm_len = map[i].bm_len;
259 bp->b_length += map[i].bm_len;
260 }
3e85c868 261
ce8e922c
NS
262 atomic_set(&bp->b_pin_count, 0);
263 init_waitqueue_head(&bp->b_waiters);
264
dbd329f1 265 XFS_STATS_INC(bp->b_mount, xb_create);
0b1b213f 266 trace_xfs_buf_init(bp, _RET_IP_);
4347b9d7 267
32dff5e5
DW
268 *bpp = bp;
269 return 0;
1da177e4
LT
270}
271
e7d236a6
DC
272static void
273xfs_buf_free_pages(
e8222613 274 struct xfs_buf *bp)
1da177e4 275{
e7d236a6
DC
276 uint i;
277
278 ASSERT(bp->b_flags & _XBF_PAGES);
279
280 if (xfs_buf_is_vmapped(bp))
54cd3aa6 281 vm_unmap_ram(bp->b_addr, bp->b_page_count);
e7d236a6
DC
282
283 for (i = 0; i < bp->b_page_count; i++) {
284 if (bp->b_pages[i])
285 __free_page(bp->b_pages[i]);
286 }
287 if (current->reclaim_state)
288 current->reclaim_state->reclaimed_slab += bp->b_page_count;
289
02c51173 290 if (bp->b_pages != bp->b_page_array)
f0e2d93c 291 kmem_free(bp->b_pages);
02c51173 292 bp->b_pages = NULL;
e7d236a6 293 bp->b_flags &= ~_XBF_PAGES;
1da177e4
LT
294}
295
25a40957 296static void
ce8e922c 297xfs_buf_free(
e8222613 298 struct xfs_buf *bp)
1da177e4 299{
0b1b213f 300 trace_xfs_buf_free(bp, _RET_IP_);
1da177e4 301
430cbeb8
DC
302 ASSERT(list_empty(&bp->b_lru));
303
e7d236a6
DC
304 if (bp->b_flags & _XBF_PAGES)
305 xfs_buf_free_pages(bp);
306 else if (bp->b_flags & _XBF_KMEM)
0e6e847f 307 kmem_free(bp->b_addr);
e7d236a6 308
3e85c868 309 xfs_buf_free_maps(bp);
377bcd5f 310 kmem_cache_free(xfs_buf_zone, bp);
1da177e4
LT
311}
312
0a683794
DC
313static int
314xfs_buf_alloc_kmem(
315 struct xfs_buf *bp,
0a683794 316 xfs_buf_flags_t flags)
1da177e4 317{
0a683794 318 xfs_km_flags_t kmflag_mask = KM_NOFS;
8bcac744 319 size_t size = BBTOB(bp->b_length);
3219e8cf 320
0a683794
DC
321 /* Assure zeroed buffer for non-read cases. */
322 if (!(flags & XBF_READ))
3219e8cf 323 kmflag_mask |= KM_ZERO;
1da177e4 324
98fe2c3c 325 bp->b_addr = kmem_alloc(size, kmflag_mask);
0a683794
DC
326 if (!bp->b_addr)
327 return -ENOMEM;
0e6e847f 328
0a683794
DC
329 if (((unsigned long)(bp->b_addr + size - 1) & PAGE_MASK) !=
330 ((unsigned long)bp->b_addr & PAGE_MASK)) {
331 /* b_addr spans two pages - use alloc_page instead */
332 kmem_free(bp->b_addr);
333 bp->b_addr = NULL;
334 return -ENOMEM;
0e6e847f 335 }
0a683794
DC
336 bp->b_offset = offset_in_page(bp->b_addr);
337 bp->b_pages = bp->b_page_array;
338 bp->b_pages[0] = kmem_to_page(bp->b_addr);
339 bp->b_page_count = 1;
340 bp->b_flags |= _XBF_KMEM;
341 return 0;
342}
343
344static int
345xfs_buf_alloc_pages(
346 struct xfs_buf *bp,
0a683794
DC
347 xfs_buf_flags_t flags)
348{
289ae7b4 349 gfp_t gfp_mask = __GFP_NOWARN;
c9fa5630 350 long filled = 0;
0a683794 351
289ae7b4
DC
352 if (flags & XBF_READ_AHEAD)
353 gfp_mask |= __GFP_NORETRY;
354 else
355 gfp_mask |= GFP_NOFS;
356
02c51173 357 /* Make sure that we have a page list */
934d1076 358 bp->b_page_count = DIV_ROUND_UP(BBTOB(bp->b_length), PAGE_SIZE);
02c51173
DC
359 if (bp->b_page_count <= XB_PAGES) {
360 bp->b_pages = bp->b_page_array;
361 } else {
362 bp->b_pages = kzalloc(sizeof(struct page *) * bp->b_page_count,
363 gfp_mask);
364 if (!bp->b_pages)
365 return -ENOMEM;
366 }
367 bp->b_flags |= _XBF_PAGES;
368
0a683794
DC
369 /* Assure zeroed buffer for non-read cases. */
370 if (!(flags & XBF_READ))
371 gfp_mask |= __GFP_ZERO;
0e6e847f 372
c9fa5630
DC
373 /*
374 * Bulk filling of pages can take multiple calls. Not filling the entire
375 * array is not an allocation failure, so don't back off if we get at
376 * least one extra page.
377 */
378 for (;;) {
379 long last = filled;
380
381 filled = alloc_pages_bulk_array(gfp_mask, bp->b_page_count,
382 bp->b_pages);
383 if (filled == bp->b_page_count) {
384 XFS_STATS_INC(bp->b_mount, xb_page_found);
385 break;
1da177e4
LT
386 }
387
c9fa5630
DC
388 if (filled != last)
389 continue;
390
391 if (flags & XBF_READ_AHEAD) {
e7d236a6
DC
392 xfs_buf_free_pages(bp);
393 return -ENOMEM;
c9fa5630 394 }
1da177e4 395
c9fa5630
DC
396 XFS_STATS_INC(bp->b_mount, xb_page_retries);
397 congestion_wait(BLK_RW_ASYNC, HZ / 50);
1da177e4 398 }
0e6e847f 399 return 0;
1da177e4
LT
400}
401
402/*
25985edc 403 * Map buffer into kernel address-space if necessary.
1da177e4
LT
404 */
405STATIC int
ce8e922c 406_xfs_buf_map_pages(
e8222613 407 struct xfs_buf *bp,
1da177e4
LT
408 uint flags)
409{
0e6e847f 410 ASSERT(bp->b_flags & _XBF_PAGES);
ce8e922c 411 if (bp->b_page_count == 1) {
0e6e847f 412 /* A single page buffer is always mappable */
54cd3aa6 413 bp->b_addr = page_address(bp->b_pages[0]);
611c9946
DC
414 } else if (flags & XBF_UNMAPPED) {
415 bp->b_addr = NULL;
416 } else {
a19fb380 417 int retried = 0;
9ba1fb2c 418 unsigned nofs_flag;
ae687e58
DC
419
420 /*
cf085a1b 421 * vm_map_ram() will allocate auxiliary structures (e.g.
ae687e58
DC
422 * pagetables) with GFP_KERNEL, yet we are likely to be under
423 * GFP_NOFS context here. Hence we need to tell memory reclaim
9ba1fb2c 424 * that we are in such a context via PF_MEMALLOC_NOFS to prevent
ae687e58
DC
425 * memory reclaim re-entering the filesystem here and
426 * potentially deadlocking.
427 */
9ba1fb2c 428 nofs_flag = memalloc_nofs_save();
a19fb380
DC
429 do {
430 bp->b_addr = vm_map_ram(bp->b_pages, bp->b_page_count,
d4efd79a 431 -1);
a19fb380
DC
432 if (bp->b_addr)
433 break;
434 vm_unmap_aliases();
435 } while (retried++ <= 1);
9ba1fb2c 436 memalloc_nofs_restore(nofs_flag);
a19fb380
DC
437
438 if (!bp->b_addr)
1da177e4 439 return -ENOMEM;
1da177e4
LT
440 }
441
442 return 0;
443}
444
445/*
446 * Finding and Reading Buffers
447 */
6031e73a
LS
448static int
449_xfs_buf_obj_cmp(
450 struct rhashtable_compare_arg *arg,
451 const void *obj)
452{
453 const struct xfs_buf_map *map = arg->key;
454 const struct xfs_buf *bp = obj;
455
456 /*
457 * The key hashing in the lookup path depends on the key being the
458 * first element of the compare_arg, make sure to assert this.
459 */
460 BUILD_BUG_ON(offsetof(struct xfs_buf_map, bm_bn) != 0);
461
4c7f65ae 462 if (bp->b_rhash_key != map->bm_bn)
6031e73a
LS
463 return 1;
464
465 if (unlikely(bp->b_length != map->bm_len)) {
466 /*
467 * found a block number match. If the range doesn't
468 * match, the only way this is allowed is if the buffer
469 * in the cache is stale and the transaction that made
470 * it stale has not yet committed. i.e. we are
471 * reallocating a busy extent. Skip this buffer and
472 * continue searching for an exact match.
473 */
474 ASSERT(bp->b_flags & XBF_STALE);
475 return 1;
476 }
477 return 0;
478}
479
480static const struct rhashtable_params xfs_buf_hash_params = {
481 .min_size = 32, /* empty AGs have minimal footprint */
482 .nelem_hint = 16,
483 .key_len = sizeof(xfs_daddr_t),
4c7f65ae 484 .key_offset = offsetof(struct xfs_buf, b_rhash_key),
6031e73a
LS
485 .head_offset = offsetof(struct xfs_buf, b_rhash_head),
486 .automatic_shrinking = true,
487 .obj_cmpfn = _xfs_buf_obj_cmp,
488};
489
490int
491xfs_buf_hash_init(
492 struct xfs_perag *pag)
493{
494 spin_lock_init(&pag->pag_buf_lock);
495 return rhashtable_init(&pag->pag_buf_hash, &xfs_buf_hash_params);
496}
497
498void
499xfs_buf_hash_destroy(
500 struct xfs_perag *pag)
501{
502 rhashtable_destroy(&pag->pag_buf_hash);
503}
1da177e4
LT
504
505/*
b027d4c9
DC
506 * Look up a buffer in the buffer cache and return it referenced and locked
507 * in @found_bp.
508 *
509 * If @new_bp is supplied and we have a lookup miss, insert @new_bp into the
510 * cache.
511 *
512 * If XBF_TRYLOCK is set in @flags, only try to lock the buffer and return
513 * -EAGAIN if we fail to lock it.
514 *
515 * Return values are:
516 * -EFSCORRUPTED if have been supplied with an invalid address
517 * -EAGAIN on trylock failure
518 * -ENOENT if we fail to find a match and @new_bp was NULL
519 * 0, with @found_bp:
520 * - @new_bp if we inserted it into the cache
521 * - the buffer we found and locked.
1da177e4 522 */
b027d4c9
DC
523static int
524xfs_buf_find(
e70b73f8 525 struct xfs_buftarg *btp,
3e85c868
DC
526 struct xfs_buf_map *map,
527 int nmaps,
ce8e922c 528 xfs_buf_flags_t flags,
b027d4c9
DC
529 struct xfs_buf *new_bp,
530 struct xfs_buf **found_bp)
1da177e4 531{
74f75a0c 532 struct xfs_perag *pag;
e8222613 533 struct xfs_buf *bp;
6031e73a 534 struct xfs_buf_map cmap = { .bm_bn = map[0].bm_bn };
10616b80 535 xfs_daddr_t eofs;
3e85c868 536 int i;
1da177e4 537
b027d4c9
DC
538 *found_bp = NULL;
539
3e85c868 540 for (i = 0; i < nmaps; i++)
6031e73a 541 cmap.bm_len += map[i].bm_len;
1da177e4
LT
542
543 /* Check for IOs smaller than the sector size / not sector aligned */
6031e73a
LS
544 ASSERT(!(BBTOB(cmap.bm_len) < btp->bt_meta_sectorsize));
545 ASSERT(!(BBTOB(cmap.bm_bn) & (xfs_off_t)btp->bt_meta_sectormask));
1da177e4 546
10616b80
DC
547 /*
548 * Corrupted block numbers can get through to here, unfortunately, so we
549 * have to check that the buffer falls within the filesystem bounds.
550 */
551 eofs = XFS_FSB_TO_BB(btp->bt_mount, btp->bt_mount->m_sb.sb_dblocks);
6031e73a 552 if (cmap.bm_bn < 0 || cmap.bm_bn >= eofs) {
10616b80 553 xfs_alert(btp->bt_mount,
c219b015 554 "%s: daddr 0x%llx out of range, EOFS 0x%llx",
6031e73a 555 __func__, cmap.bm_bn, eofs);
7bc0dc27 556 WARN_ON(1);
b027d4c9 557 return -EFSCORRUPTED;
10616b80
DC
558 }
559
74f75a0c 560 pag = xfs_perag_get(btp->bt_mount,
6031e73a 561 xfs_daddr_to_agno(btp->bt_mount, cmap.bm_bn));
74f75a0c 562
74f75a0c 563 spin_lock(&pag->pag_buf_lock);
6031e73a
LS
564 bp = rhashtable_lookup_fast(&pag->pag_buf_hash, &cmap,
565 xfs_buf_hash_params);
566 if (bp) {
567 atomic_inc(&bp->b_hold);
568 goto found;
1da177e4
LT
569 }
570
571 /* No match found */
b027d4c9 572 if (!new_bp) {
ff6d6af2 573 XFS_STATS_INC(btp->bt_mount, xb_miss_locked);
74f75a0c
DC
574 spin_unlock(&pag->pag_buf_lock);
575 xfs_perag_put(pag);
b027d4c9 576 return -ENOENT;
1da177e4 577 }
b027d4c9
DC
578
579 /* the buffer keeps the perag reference until it is freed */
580 new_bp->b_pag = pag;
581 rhashtable_insert_fast(&pag->pag_buf_hash, &new_bp->b_rhash_head,
582 xfs_buf_hash_params);
583 spin_unlock(&pag->pag_buf_lock);
584 *found_bp = new_bp;
585 return 0;
1da177e4
LT
586
587found:
74f75a0c
DC
588 spin_unlock(&pag->pag_buf_lock);
589 xfs_perag_put(pag);
1da177e4 590
0c842ad4
CH
591 if (!xfs_buf_trylock(bp)) {
592 if (flags & XBF_TRYLOCK) {
ce8e922c 593 xfs_buf_rele(bp);
ff6d6af2 594 XFS_STATS_INC(btp->bt_mount, xb_busy_locked);
b027d4c9 595 return -EAGAIN;
1da177e4 596 }
0c842ad4 597 xfs_buf_lock(bp);
ff6d6af2 598 XFS_STATS_INC(btp->bt_mount, xb_get_locked_waited);
1da177e4
LT
599 }
600
0e6e847f
DC
601 /*
602 * if the buffer is stale, clear all the external state associated with
603 * it. We need to keep flags such as how we allocated the buffer memory
604 * intact here.
605 */
ce8e922c
NS
606 if (bp->b_flags & XBF_STALE) {
607 ASSERT((bp->b_flags & _XBF_DELWRI_Q) == 0);
611c9946 608 bp->b_flags &= _XBF_KMEM | _XBF_PAGES;
1813dd64 609 bp->b_ops = NULL;
2f926587 610 }
0b1b213f
CH
611
612 trace_xfs_buf_find(bp, flags, _RET_IP_);
ff6d6af2 613 XFS_STATS_INC(btp->bt_mount, xb_get_locked);
b027d4c9
DC
614 *found_bp = bp;
615 return 0;
1da177e4
LT
616}
617
8925a3dc
DC
618struct xfs_buf *
619xfs_buf_incore(
620 struct xfs_buftarg *target,
621 xfs_daddr_t blkno,
622 size_t numblks,
623 xfs_buf_flags_t flags)
624{
b027d4c9
DC
625 struct xfs_buf *bp;
626 int error;
8925a3dc 627 DEFINE_SINGLE_BUF_MAP(map, blkno, numblks);
b027d4c9
DC
628
629 error = xfs_buf_find(target, &map, 1, flags, NULL, &bp);
630 if (error)
631 return NULL;
632 return bp;
8925a3dc
DC
633}
634
1da177e4 635/*
3815832a
DC
636 * Assembles a buffer covering the specified range. The code is optimised for
637 * cache hits, as metadata intensive workloads will see 3 orders of magnitude
638 * more hits than misses.
1da177e4 639 */
3848b5f6 640int
6dde2707
DC
641xfs_buf_get_map(
642 struct xfs_buftarg *target,
643 struct xfs_buf_map *map,
644 int nmaps,
3848b5f6
DW
645 xfs_buf_flags_t flags,
646 struct xfs_buf **bpp)
1da177e4 647{
3815832a
DC
648 struct xfs_buf *bp;
649 struct xfs_buf *new_bp;
9bb38aa0 650 int error;
1da177e4 651
3848b5f6 652 *bpp = NULL;
b027d4c9 653 error = xfs_buf_find(target, map, nmaps, flags, NULL, &bp);
3848b5f6 654 if (!error)
3815832a 655 goto found;
3848b5f6
DW
656 if (error != -ENOENT)
657 return error;
3815832a 658
32dff5e5
DW
659 error = _xfs_buf_alloc(target, map, nmaps, flags, &new_bp);
660 if (error)
3848b5f6 661 return error;
1da177e4 662
8bcac744
DC
663 /*
664 * For buffers that fit entirely within a single page, first attempt to
665 * allocate the memory from the heap to minimise memory usage. If we
666 * can't get heap memory for these small buffers, we fall back to using
667 * the page allocator.
668 */
669 if (BBTOB(new_bp->b_length) >= PAGE_SIZE ||
670 xfs_buf_alloc_kmem(new_bp, flags) < 0) {
671 error = xfs_buf_alloc_pages(new_bp, flags);
672 if (error)
673 goto out_free_buf;
674 }
fe2429b0 675
b027d4c9 676 error = xfs_buf_find(target, map, nmaps, flags, new_bp, &bp);
170041f7
CH
677 if (error)
678 goto out_free_buf;
3815832a 679
fe2429b0
DC
680 if (bp != new_bp)
681 xfs_buf_free(new_bp);
1da177e4 682
3815832a 683found:
611c9946 684 if (!bp->b_addr) {
ce8e922c 685 error = _xfs_buf_map_pages(bp, flags);
1da177e4 686 if (unlikely(error)) {
93baa55a
DW
687 xfs_warn_ratelimited(target->bt_mount,
688 "%s: failed to map %u pages", __func__,
689 bp->b_page_count);
a8acad70 690 xfs_buf_relse(bp);
3848b5f6 691 return error;
1da177e4
LT
692 }
693 }
694
b79f4a1c
DC
695 /*
696 * Clear b_error if this is a lookup from a caller that doesn't expect
697 * valid data to be found in the buffer.
698 */
699 if (!(flags & XBF_READ))
700 xfs_buf_ioerror(bp, 0);
701
ff6d6af2 702 XFS_STATS_INC(target->bt_mount, xb_get);
0b1b213f 703 trace_xfs_buf_get(bp, flags, _RET_IP_);
3848b5f6
DW
704 *bpp = bp;
705 return 0;
170041f7
CH
706out_free_buf:
707 xfs_buf_free(new_bp);
708 return error;
1da177e4
LT
709}
710
26e32875 711int
5d765b97 712_xfs_buf_read(
e8222613 713 struct xfs_buf *bp,
5d765b97
CH
714 xfs_buf_flags_t flags)
715{
43ff2122 716 ASSERT(!(flags & XBF_WRITE));
f4b42421 717 ASSERT(bp->b_maps[0].bm_bn != XFS_BUF_DADDR_NULL);
5d765b97 718
26e32875 719 bp->b_flags &= ~(XBF_WRITE | XBF_ASYNC | XBF_READ_AHEAD | XBF_DONE);
1d5ae5df 720 bp->b_flags |= flags & (XBF_READ | XBF_ASYNC | XBF_READ_AHEAD);
5d765b97 721
6af88cda 722 return xfs_buf_submit(bp);
5d765b97
CH
723}
724
1aff5696 725/*
75d02303 726 * Reverify a buffer found in cache without an attached ->b_ops.
add46b3b 727 *
75d02303
BF
728 * If the caller passed an ops structure and the buffer doesn't have ops
729 * assigned, set the ops and use it to verify the contents. If verification
730 * fails, clear XBF_DONE. We assume the buffer has no recorded errors and is
731 * already in XBF_DONE state on entry.
add46b3b 732 *
75d02303
BF
733 * Under normal operations, every in-core buffer is verified on read I/O
734 * completion. There are two scenarios that can lead to in-core buffers without
735 * an assigned ->b_ops. The first is during log recovery of buffers on a V4
736 * filesystem, though these buffers are purged at the end of recovery. The
737 * other is online repair, which intentionally reads with a NULL buffer ops to
738 * run several verifiers across an in-core buffer in order to establish buffer
739 * type. If repair can't establish that, the buffer will be left in memory
740 * with NULL buffer ops.
1aff5696
DW
741 */
742int
75d02303 743xfs_buf_reverify(
1aff5696
DW
744 struct xfs_buf *bp,
745 const struct xfs_buf_ops *ops)
746{
747 ASSERT(bp->b_flags & XBF_DONE);
748 ASSERT(bp->b_error == 0);
749
750 if (!ops || bp->b_ops)
751 return 0;
752
753 bp->b_ops = ops;
754 bp->b_ops->verify_read(bp);
755 if (bp->b_error)
756 bp->b_flags &= ~XBF_DONE;
757 return bp->b_error;
758}
759
4ed8e27b 760int
6dde2707
DC
761xfs_buf_read_map(
762 struct xfs_buftarg *target,
763 struct xfs_buf_map *map,
764 int nmaps,
c3f8fc73 765 xfs_buf_flags_t flags,
4ed8e27b 766 struct xfs_buf **bpp,
cdbcf82b
DW
767 const struct xfs_buf_ops *ops,
768 xfs_failaddr_t fa)
1da177e4 769{
6dde2707 770 struct xfs_buf *bp;
3848b5f6 771 int error;
ce8e922c
NS
772
773 flags |= XBF_READ;
4ed8e27b 774 *bpp = NULL;
ce8e922c 775
3848b5f6
DW
776 error = xfs_buf_get_map(target, map, nmaps, flags, &bp);
777 if (error)
4ed8e27b 778 return error;
0b1b213f 779
1aff5696
DW
780 trace_xfs_buf_read(bp, flags, _RET_IP_);
781
782 if (!(bp->b_flags & XBF_DONE)) {
4ed8e27b 783 /* Initiate the buffer read and wait. */
1aff5696
DW
784 XFS_STATS_INC(target->bt_mount, xb_get_read);
785 bp->b_ops = ops;
4ed8e27b
DW
786 error = _xfs_buf_read(bp, flags);
787
788 /* Readahead iodone already dropped the buffer, so exit. */
789 if (flags & XBF_ASYNC)
790 return 0;
791 } else {
792 /* Buffer already read; all we need to do is check it. */
793 error = xfs_buf_reverify(bp, ops);
794
795 /* Readahead already finished; drop the buffer and exit. */
796 if (flags & XBF_ASYNC) {
797 xfs_buf_relse(bp);
798 return 0;
799 }
800
801 /* We do not want read in the flags */
802 bp->b_flags &= ~XBF_READ;
803 ASSERT(bp->b_ops != NULL || ops == NULL);
1aff5696
DW
804 }
805
4ed8e27b
DW
806 /*
807 * If we've had a read error, then the contents of the buffer are
808 * invalid and should not be used. To ensure that a followup read tries
809 * to pull the buffer from disk again, we clear the XBF_DONE flag and
810 * mark the buffer stale. This ensures that anyone who has a current
811 * reference to the buffer will interpret it's contents correctly and
812 * future cache lookups will also treat it as an empty, uninitialised
813 * buffer.
814 */
815 if (error) {
75c8c50f 816 if (!xfs_is_shutdown(target->bt_mount))
cdbcf82b 817 xfs_buf_ioerror_alert(bp, fa);
1aff5696 818
4ed8e27b
DW
819 bp->b_flags &= ~XBF_DONE;
820 xfs_buf_stale(bp);
1aff5696 821 xfs_buf_relse(bp);
4ed8e27b
DW
822
823 /* bad CRC means corrupted metadata */
824 if (error == -EFSBADCRC)
825 error = -EFSCORRUPTED;
826 return error;
1da177e4
LT
827 }
828
4ed8e27b
DW
829 *bpp = bp;
830 return 0;
1da177e4
LT
831}
832
1da177e4 833/*
ce8e922c
NS
834 * If we are not low on memory then do the readahead in a deadlock
835 * safe manner.
1da177e4
LT
836 */
837void
6dde2707
DC
838xfs_buf_readahead_map(
839 struct xfs_buftarg *target,
840 struct xfs_buf_map *map,
c3f8fc73 841 int nmaps,
1813dd64 842 const struct xfs_buf_ops *ops)
1da177e4 843{
4ed8e27b
DW
844 struct xfs_buf *bp;
845
a11d7fc2 846 if (bdi_read_congested(target->bt_bdev->bd_disk->bdi))
1da177e4
LT
847 return;
848
6dde2707 849 xfs_buf_read_map(target, map, nmaps,
cdbcf82b
DW
850 XBF_TRYLOCK | XBF_ASYNC | XBF_READ_AHEAD, &bp, ops,
851 __this_address);
1da177e4
LT
852}
853
5adc94c2
DC
854/*
855 * Read an uncached buffer from disk. Allocates and returns a locked
4c7f65ae
DC
856 * buffer containing the disk contents or nothing. Uncached buffers always have
857 * a cache index of XFS_BUF_DADDR_NULL so we can easily determine if the buffer
858 * is cached or uncached during fault diagnosis.
5adc94c2 859 */
ba372674 860int
5adc94c2 861xfs_buf_read_uncached(
5adc94c2
DC
862 struct xfs_buftarg *target,
863 xfs_daddr_t daddr,
e70b73f8 864 size_t numblks,
c3f8fc73 865 int flags,
ba372674 866 struct xfs_buf **bpp,
1813dd64 867 const struct xfs_buf_ops *ops)
5adc94c2 868{
eab4e633 869 struct xfs_buf *bp;
2842b6db 870 int error;
5adc94c2 871
ba372674
DC
872 *bpp = NULL;
873
2842b6db
DW
874 error = xfs_buf_get_uncached(target, numblks, flags, &bp);
875 if (error)
876 return error;
5adc94c2
DC
877
878 /* set up the buffer for a read IO */
3e85c868 879 ASSERT(bp->b_map_count == 1);
4c7f65ae 880 bp->b_rhash_key = XFS_BUF_DADDR_NULL;
3e85c868 881 bp->b_maps[0].bm_bn = daddr;
cbb7baab 882 bp->b_flags |= XBF_READ;
1813dd64 883 bp->b_ops = ops;
5adc94c2 884
6af88cda 885 xfs_buf_submit(bp);
ba372674 886 if (bp->b_error) {
2842b6db 887 error = bp->b_error;
83a0adc3 888 xfs_buf_relse(bp);
ba372674 889 return error;
83a0adc3 890 }
ba372674
DC
891
892 *bpp = bp;
893 return 0;
1da177e4
LT
894}
895
2842b6db 896int
686865f7
DC
897xfs_buf_get_uncached(
898 struct xfs_buftarg *target,
e70b73f8 899 size_t numblks,
2842b6db
DW
900 int flags,
901 struct xfs_buf **bpp)
1da177e4 902{
07b5c5ad 903 int error;
3e85c868
DC
904 struct xfs_buf *bp;
905 DEFINE_SINGLE_BUF_MAP(map, XFS_BUF_DADDR_NULL, numblks);
1da177e4 906
2842b6db
DW
907 *bpp = NULL;
908
c891c30a 909 /* flags might contain irrelevant bits, pass only what we care about */
32dff5e5
DW
910 error = _xfs_buf_alloc(target, &map, 1, flags & XBF_NO_IOACCT, &bp);
911 if (error)
07b5c5ad 912 return error;
1da177e4 913
934d1076 914 error = xfs_buf_alloc_pages(bp, flags);
1fa40b01 915 if (error)
1da177e4
LT
916 goto fail_free_buf;
917
611c9946 918 error = _xfs_buf_map_pages(bp, 0);
1fa40b01 919 if (unlikely(error)) {
4f10700a 920 xfs_warn(target->bt_mount,
08e96e1a 921 "%s: failed to map pages", __func__);
07b5c5ad 922 goto fail_free_buf;
1fa40b01 923 }
1da177e4 924
686865f7 925 trace_xfs_buf_get_uncached(bp, _RET_IP_);
2842b6db
DW
926 *bpp = bp;
927 return 0;
1fa40b01 928
07b5c5ad
DC
929fail_free_buf:
930 xfs_buf_free(bp);
2842b6db 931 return error;
1da177e4
LT
932}
933
934/*
1da177e4
LT
935 * Increment reference count on buffer, to hold the buffer concurrently
936 * with another thread which may release (free) the buffer asynchronously.
1da177e4
LT
937 * Must hold the buffer already to call this function.
938 */
939void
ce8e922c 940xfs_buf_hold(
e8222613 941 struct xfs_buf *bp)
1da177e4 942{
0b1b213f 943 trace_xfs_buf_hold(bp, _RET_IP_);
ce8e922c 944 atomic_inc(&bp->b_hold);
1da177e4
LT
945}
946
947/*
9c7504aa
BF
948 * Release a hold on the specified buffer. If the hold count is 1, the buffer is
949 * placed on LRU or freed (depending on b_lru_ref).
1da177e4
LT
950 */
951void
ce8e922c 952xfs_buf_rele(
e8222613 953 struct xfs_buf *bp)
1da177e4 954{
74f75a0c 955 struct xfs_perag *pag = bp->b_pag;
9c7504aa
BF
956 bool release;
957 bool freebuf = false;
1da177e4 958
0b1b213f 959 trace_xfs_buf_rele(bp, _RET_IP_);
1da177e4 960
74f75a0c 961 if (!pag) {
430cbeb8 962 ASSERT(list_empty(&bp->b_lru));
9c7504aa
BF
963 if (atomic_dec_and_test(&bp->b_hold)) {
964 xfs_buf_ioacct_dec(bp);
fad3aa1e 965 xfs_buf_free(bp);
9c7504aa 966 }
fad3aa1e
NS
967 return;
968 }
969
3790689f 970 ASSERT(atomic_read(&bp->b_hold) > 0);
a4082357 971
37fd1678
DC
972 /*
973 * We grab the b_lock here first to serialise racing xfs_buf_rele()
974 * calls. The pag_buf_lock being taken on the last reference only
975 * serialises against racing lookups in xfs_buf_find(). IOWs, the second
976 * to last reference we drop here is not serialised against the last
977 * reference until we take bp->b_lock. Hence if we don't grab b_lock
978 * first, the last "release" reference can win the race to the lock and
979 * free the buffer before the second-to-last reference is processed,
980 * leading to a use-after-free scenario.
981 */
9c7504aa 982 spin_lock(&bp->b_lock);
37fd1678 983 release = atomic_dec_and_lock(&bp->b_hold, &pag->pag_buf_lock);
9c7504aa
BF
984 if (!release) {
985 /*
986 * Drop the in-flight state if the buffer is already on the LRU
987 * and it holds the only reference. This is racy because we
988 * haven't acquired the pag lock, but the use of _XBF_IN_FLIGHT
989 * ensures the decrement occurs only once per-buf.
990 */
991 if ((atomic_read(&bp->b_hold) == 1) && !list_empty(&bp->b_lru))
63db7c81 992 __xfs_buf_ioacct_dec(bp);
9c7504aa
BF
993 goto out_unlock;
994 }
995
996 /* the last reference has been dropped ... */
63db7c81 997 __xfs_buf_ioacct_dec(bp);
9c7504aa
BF
998 if (!(bp->b_flags & XBF_STALE) && atomic_read(&bp->b_lru_ref)) {
999 /*
1000 * If the buffer is added to the LRU take a new reference to the
1001 * buffer for the LRU and clear the (now stale) dispose list
1002 * state flag
1003 */
1004 if (list_lru_add(&bp->b_target->bt_lru, &bp->b_lru)) {
1005 bp->b_state &= ~XFS_BSTATE_DISPOSE;
1006 atomic_inc(&bp->b_hold);
1da177e4 1007 }
9c7504aa
BF
1008 spin_unlock(&pag->pag_buf_lock);
1009 } else {
1010 /*
1011 * most of the time buffers will already be removed from the
1012 * LRU, so optimise that case by checking for the
1013 * XFS_BSTATE_DISPOSE flag indicating the last list the buffer
1014 * was on was the disposal list
1015 */
1016 if (!(bp->b_state & XFS_BSTATE_DISPOSE)) {
1017 list_lru_del(&bp->b_target->bt_lru, &bp->b_lru);
1018 } else {
1019 ASSERT(list_empty(&bp->b_lru));
1da177e4 1020 }
9c7504aa
BF
1021
1022 ASSERT(!(bp->b_flags & _XBF_DELWRI_Q));
6031e73a
LS
1023 rhashtable_remove_fast(&pag->pag_buf_hash, &bp->b_rhash_head,
1024 xfs_buf_hash_params);
9c7504aa
BF
1025 spin_unlock(&pag->pag_buf_lock);
1026 xfs_perag_put(pag);
1027 freebuf = true;
1da177e4 1028 }
9c7504aa
BF
1029
1030out_unlock:
1031 spin_unlock(&bp->b_lock);
1032
1033 if (freebuf)
1034 xfs_buf_free(bp);
1da177e4
LT
1035}
1036
1037
1038/*
0e6e847f 1039 * Lock a buffer object, if it is not already locked.
90810b9e
DC
1040 *
1041 * If we come across a stale, pinned, locked buffer, we know that we are
1042 * being asked to lock a buffer that has been reallocated. Because it is
1043 * pinned, we know that the log has not been pushed to disk and hence it
1044 * will still be locked. Rather than continuing to have trylock attempts
1045 * fail until someone else pushes the log, push it ourselves before
1046 * returning. This means that the xfsaild will not get stuck trying
1047 * to push on stale inode buffers.
1da177e4
LT
1048 */
1049int
0c842ad4
CH
1050xfs_buf_trylock(
1051 struct xfs_buf *bp)
1da177e4
LT
1052{
1053 int locked;
1054
ce8e922c 1055 locked = down_trylock(&bp->b_sema) == 0;
fa6c668d 1056 if (locked)
479c6412 1057 trace_xfs_buf_trylock(bp, _RET_IP_);
fa6c668d 1058 else
479c6412 1059 trace_xfs_buf_trylock_fail(bp, _RET_IP_);
0c842ad4 1060 return locked;
1da177e4 1061}
1da177e4
LT
1062
1063/*
0e6e847f 1064 * Lock a buffer object.
ed3b4d6c
DC
1065 *
1066 * If we come across a stale, pinned, locked buffer, we know that we
1067 * are being asked to lock a buffer that has been reallocated. Because
1068 * it is pinned, we know that the log has not been pushed to disk and
1069 * hence it will still be locked. Rather than sleeping until someone
1070 * else pushes the log, push it ourselves before trying to get the lock.
1da177e4 1071 */
ce8e922c
NS
1072void
1073xfs_buf_lock(
0c842ad4 1074 struct xfs_buf *bp)
1da177e4 1075{
0b1b213f
CH
1076 trace_xfs_buf_lock(bp, _RET_IP_);
1077
ed3b4d6c 1078 if (atomic_read(&bp->b_pin_count) && (bp->b_flags & XBF_STALE))
dbd329f1 1079 xfs_log_force(bp->b_mount, 0);
ce8e922c 1080 down(&bp->b_sema);
0b1b213f
CH
1081
1082 trace_xfs_buf_lock_done(bp, _RET_IP_);
1da177e4
LT
1083}
1084
1da177e4 1085void
ce8e922c 1086xfs_buf_unlock(
0c842ad4 1087 struct xfs_buf *bp)
1da177e4 1088{
20e8a063
BF
1089 ASSERT(xfs_buf_islocked(bp));
1090
ce8e922c 1091 up(&bp->b_sema);
0b1b213f 1092 trace_xfs_buf_unlock(bp, _RET_IP_);
1da177e4
LT
1093}
1094
ce8e922c
NS
1095STATIC void
1096xfs_buf_wait_unpin(
e8222613 1097 struct xfs_buf *bp)
1da177e4
LT
1098{
1099 DECLARE_WAITQUEUE (wait, current);
1100
ce8e922c 1101 if (atomic_read(&bp->b_pin_count) == 0)
1da177e4
LT
1102 return;
1103
ce8e922c 1104 add_wait_queue(&bp->b_waiters, &wait);
1da177e4
LT
1105 for (;;) {
1106 set_current_state(TASK_UNINTERRUPTIBLE);
ce8e922c 1107 if (atomic_read(&bp->b_pin_count) == 0)
1da177e4 1108 break;
7eaceacc 1109 io_schedule();
1da177e4 1110 }
ce8e922c 1111 remove_wait_queue(&bp->b_waiters, &wait);
1da177e4
LT
1112 set_current_state(TASK_RUNNING);
1113}
1114
f58d0ea9
CH
1115static void
1116xfs_buf_ioerror_alert_ratelimited(
664ffb8a
CH
1117 struct xfs_buf *bp)
1118{
664ffb8a
CH
1119 static unsigned long lasttime;
1120 static struct xfs_buftarg *lasttarg;
1121
664ffb8a
CH
1122 if (bp->b_target != lasttarg ||
1123 time_after(jiffies, (lasttime + 5*HZ))) {
1124 lasttime = jiffies;
1125 xfs_buf_ioerror_alert(bp, __this_address);
1126 }
1127 lasttarg = bp->b_target;
664ffb8a
CH
1128}
1129
664ffb8a
CH
1130/*
1131 * Account for this latest trip around the retry handler, and decide if
1132 * we've failed enough times to constitute a permanent failure.
1133 */
1134static bool
1135xfs_buf_ioerror_permanent(
1136 struct xfs_buf *bp,
1137 struct xfs_error_cfg *cfg)
1138{
1139 struct xfs_mount *mp = bp->b_mount;
1140
1141 if (cfg->max_retries != XFS_ERR_RETRY_FOREVER &&
1142 ++bp->b_retries > cfg->max_retries)
1143 return true;
1144 if (cfg->retry_timeout != XFS_ERR_RETRY_FOREVER &&
1145 time_after(jiffies, cfg->retry_timeout + bp->b_first_retry_time))
1146 return true;
1147
1148 /* At unmount we may treat errors differently */
2e973b2c 1149 if (xfs_is_unmounting(mp) && mp->m_fail_unmount)
664ffb8a
CH
1150 return true;
1151
1152 return false;
1153}
1154
1155/*
1156 * On a sync write or shutdown we just want to stale the buffer and let the
1157 * caller handle the error in bp->b_error appropriately.
1158 *
1159 * If the write was asynchronous then no one will be looking for the error. If
1160 * this is the first failure of this type, clear the error state and write the
1161 * buffer out again. This means we always retry an async write failure at least
1162 * once, but we also need to set the buffer up to behave correctly now for
1163 * repeated failures.
1164 *
1165 * If we get repeated async write failures, then we take action according to the
1166 * error configuration we have been set up to use.
1167 *
70796c6b
CH
1168 * Returns true if this function took care of error handling and the caller must
1169 * not touch the buffer again. Return false if the caller should proceed with
1170 * normal I/O completion handling.
664ffb8a 1171 */
70796c6b
CH
1172static bool
1173xfs_buf_ioend_handle_error(
664ffb8a
CH
1174 struct xfs_buf *bp)
1175{
1176 struct xfs_mount *mp = bp->b_mount;
1177 struct xfs_error_cfg *cfg;
1178
f58d0ea9
CH
1179 /*
1180 * If we've already decided to shutdown the filesystem because of I/O
1181 * errors, there's no point in giving this a retry.
1182 */
75c8c50f 1183 if (xfs_is_shutdown(mp))
f58d0ea9
CH
1184 goto out_stale;
1185
1186 xfs_buf_ioerror_alert_ratelimited(bp);
1187
22c10589
CH
1188 /*
1189 * We're not going to bother about retrying this during recovery.
1190 * One strike!
1191 */
1192 if (bp->b_flags & _XBF_LOGRECOVERY) {
1193 xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
1194 return false;
1195 }
1196
f58d0ea9
CH
1197 /*
1198 * Synchronous writes will have callers process the error.
1199 */
1200 if (!(bp->b_flags & XBF_ASYNC))
664ffb8a
CH
1201 goto out_stale;
1202
1203 trace_xfs_buf_iodone_async(bp, _RET_IP_);
1204
1205 cfg = xfs_error_get_cfg(mp, XFS_ERR_METADATA, bp->b_error);
3cc49884
CH
1206 if (bp->b_last_error != bp->b_error ||
1207 !(bp->b_flags & (XBF_STALE | XBF_WRITE_FAIL))) {
1208 bp->b_last_error = bp->b_error;
1209 if (cfg->retry_timeout != XFS_ERR_RETRY_FOREVER &&
1210 !bp->b_first_retry_time)
1211 bp->b_first_retry_time = jiffies;
1212 goto resubmit;
664ffb8a
CH
1213 }
1214
1215 /*
1216 * Permanent error - we need to trigger a shutdown if we haven't already
1217 * to indicate that inconsistency will result from this action.
1218 */
1219 if (xfs_buf_ioerror_permanent(bp, cfg)) {
1220 xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
1221 goto out_stale;
1222 }
1223
1224 /* Still considered a transient error. Caller will schedule retries. */
844c9358
CH
1225 if (bp->b_flags & _XBF_INODES)
1226 xfs_buf_inode_io_fail(bp);
1227 else if (bp->b_flags & _XBF_DQUOTS)
1228 xfs_buf_dquot_io_fail(bp);
1229 else
1230 ASSERT(list_empty(&bp->b_li_list));
1231 xfs_buf_ioerror(bp, 0);
1232 xfs_buf_relse(bp);
70796c6b 1233 return true;
664ffb8a 1234
3cc49884
CH
1235resubmit:
1236 xfs_buf_ioerror(bp, 0);
55b7d711 1237 bp->b_flags |= (XBF_DONE | XBF_WRITE_FAIL);
3cc49884 1238 xfs_buf_submit(bp);
70796c6b 1239 return true;
664ffb8a
CH
1240out_stale:
1241 xfs_buf_stale(bp);
1242 bp->b_flags |= XBF_DONE;
55b7d711 1243 bp->b_flags &= ~XBF_WRITE;
664ffb8a 1244 trace_xfs_buf_error_relse(bp, _RET_IP_);
70796c6b 1245 return false;
664ffb8a 1246}
1da177e4 1247
76b2d323 1248static void
e8aaba9a
DC
1249xfs_buf_ioend(
1250 struct xfs_buf *bp)
1da177e4 1251{
e8aaba9a 1252 trace_xfs_buf_iodone(bp, _RET_IP_);
1813dd64 1253
61be9c52
DC
1254 /*
1255 * Pull in IO completion errors now. We are guaranteed to be running
1256 * single threaded, so we don't need the lock to read b_io_error.
1257 */
1258 if (!bp->b_error && bp->b_io_error)
1259 xfs_buf_ioerror(bp, bp->b_io_error);
1260
55b7d711 1261 if (bp->b_flags & XBF_READ) {
b01d1461
DC
1262 if (!bp->b_error && bp->b_ops)
1263 bp->b_ops->verify_read(bp);
1264 if (!bp->b_error)
1265 bp->b_flags |= XBF_DONE;
23fb5a93
CH
1266 } else {
1267 if (!bp->b_error) {
1268 bp->b_flags &= ~XBF_WRITE_FAIL;
1269 bp->b_flags |= XBF_DONE;
1270 }
f593bf14 1271
70796c6b 1272 if (unlikely(bp->b_error) && xfs_buf_ioend_handle_error(bp))
664ffb8a 1273 return;
664ffb8a
CH
1274
1275 /* clear the retry state */
1276 bp->b_last_error = 0;
1277 bp->b_retries = 0;
1278 bp->b_first_retry_time = 0;
1279
1280 /*
1281 * Note that for things like remote attribute buffers, there may
1282 * not be a buffer log item here, so processing the buffer log
1283 * item must remain optional.
1284 */
1285 if (bp->b_log_item)
1286 xfs_buf_item_done(bp);
1287
23fb5a93
CH
1288 if (bp->b_flags & _XBF_INODES)
1289 xfs_buf_inode_iodone(bp);
1290 else if (bp->b_flags & _XBF_DQUOTS)
1291 xfs_buf_dquot_iodone(bp);
22c10589 1292
0c7e5afb 1293 }
6a7584b1 1294
22c10589
CH
1295 bp->b_flags &= ~(XBF_READ | XBF_WRITE | XBF_READ_AHEAD |
1296 _XBF_LOGRECOVERY);
55b7d711 1297
6a7584b1
CH
1298 if (bp->b_flags & XBF_ASYNC)
1299 xfs_buf_relse(bp);
1300 else
1301 complete(&bp->b_iowait);
1da177e4
LT
1302}
1303
e8aaba9a
DC
1304static void
1305xfs_buf_ioend_work(
1306 struct work_struct *work)
1da177e4 1307{
e8aaba9a 1308 struct xfs_buf *bp =
e8222613 1309 container_of(work, struct xfs_buf, b_ioend_work);
0b1b213f 1310
e8aaba9a
DC
1311 xfs_buf_ioend(bp);
1312}
1da177e4 1313
211fe1a4 1314static void
e8aaba9a
DC
1315xfs_buf_ioend_async(
1316 struct xfs_buf *bp)
1317{
b29c70f5 1318 INIT_WORK(&bp->b_ioend_work, xfs_buf_ioend_work);
dbd329f1 1319 queue_work(bp->b_mount->m_buf_workqueue, &bp->b_ioend_work);
1da177e4
LT
1320}
1321
1da177e4 1322void
31ca03c9 1323__xfs_buf_ioerror(
e8222613 1324 struct xfs_buf *bp,
31ca03c9
DW
1325 int error,
1326 xfs_failaddr_t failaddr)
1da177e4 1327{
2451337d
DC
1328 ASSERT(error <= 0 && error >= -1000);
1329 bp->b_error = error;
31ca03c9 1330 trace_xfs_buf_ioerror(bp, error, failaddr);
1da177e4
LT
1331}
1332
901796af
CH
1333void
1334xfs_buf_ioerror_alert(
1335 struct xfs_buf *bp,
cdbcf82b 1336 xfs_failaddr_t func)
901796af 1337{
f9bccfcc
BF
1338 xfs_buf_alert_ratelimited(bp, "XFS: metadata IO error",
1339 "metadata I/O error in \"%pS\" at daddr 0x%llx len %d error %d",
04fcad80 1340 func, (uint64_t)xfs_buf_daddr(bp),
f9bccfcc 1341 bp->b_length, -bp->b_error);
901796af
CH
1342}
1343
54b3b1f6
BF
1344/*
1345 * To simulate an I/O failure, the buffer must be locked and held with at least
1346 * three references. The LRU reference is dropped by the stale call. The buf
1347 * item reference is dropped via ioend processing. The third reference is owned
1348 * by the caller and is dropped on I/O completion if the buffer is XBF_ASYNC.
1349 */
1350void
1351xfs_buf_ioend_fail(
1352 struct xfs_buf *bp)
1353{
1354 bp->b_flags &= ~XBF_DONE;
1355 xfs_buf_stale(bp);
1356 xfs_buf_ioerror(bp, -EIO);
1357 xfs_buf_ioend(bp);
901796af
CH
1358}
1359
a2dcf5df
CH
1360int
1361xfs_bwrite(
1362 struct xfs_buf *bp)
1363{
1364 int error;
1365
1366 ASSERT(xfs_buf_islocked(bp));
1367
1368 bp->b_flags |= XBF_WRITE;
27187754 1369 bp->b_flags &= ~(XBF_ASYNC | XBF_READ | _XBF_DELWRI_Q |
b6983e80 1370 XBF_DONE);
a2dcf5df 1371
6af88cda 1372 error = xfs_buf_submit(bp);
dbd329f1
CH
1373 if (error)
1374 xfs_force_shutdown(bp->b_mount, SHUTDOWN_META_IO_ERROR);
a2dcf5df
CH
1375 return error;
1376}
1377
9bdd9bd6 1378static void
ce8e922c 1379xfs_buf_bio_end_io(
4246a0b6 1380 struct bio *bio)
1da177e4 1381{
9bdd9bd6 1382 struct xfs_buf *bp = (struct xfs_buf *)bio->bi_private;
1da177e4 1383
7376d745
BF
1384 if (!bio->bi_status &&
1385 (bp->b_flags & XBF_WRITE) && (bp->b_flags & XBF_ASYNC) &&
43dc0aa8 1386 XFS_TEST_ERROR(false, bp->b_mount, XFS_ERRTAG_BUF_IOERROR))
7376d745 1387 bio->bi_status = BLK_STS_IOERR;
1da177e4 1388
37eb17e6
DC
1389 /*
1390 * don't overwrite existing errors - otherwise we can lose errors on
1391 * buffers that require multiple bios to complete.
1392 */
4e4cbee9
CH
1393 if (bio->bi_status) {
1394 int error = blk_status_to_errno(bio->bi_status);
1395
1396 cmpxchg(&bp->b_io_error, 0, error);
1397 }
1da177e4 1398
37eb17e6 1399 if (!bp->b_error && xfs_buf_is_vmapped(bp) && (bp->b_flags & XBF_READ))
73c77e2c
JB
1400 invalidate_kernel_vmap_range(bp->b_addr, xfs_buf_vmap_len(bp));
1401
e8aaba9a
DC
1402 if (atomic_dec_and_test(&bp->b_io_remaining) == 1)
1403 xfs_buf_ioend_async(bp);
1da177e4 1404 bio_put(bio);
1da177e4
LT
1405}
1406
3e85c868
DC
1407static void
1408xfs_buf_ioapply_map(
1409 struct xfs_buf *bp,
1410 int map,
1411 int *buf_offset,
1412 int *count,
2123ef85 1413 int op)
1da177e4 1414{
3e85c868 1415 int page_index;
5f7136db 1416 unsigned int total_nr_pages = bp->b_page_count;
3e85c868
DC
1417 int nr_pages;
1418 struct bio *bio;
1419 sector_t sector = bp->b_maps[map].bm_bn;
1420 int size;
1421 int offset;
1da177e4 1422
3e85c868
DC
1423 /* skip the pages in the buffer before the start offset */
1424 page_index = 0;
1425 offset = *buf_offset;
1426 while (offset >= PAGE_SIZE) {
1427 page_index++;
1428 offset -= PAGE_SIZE;
f538d4da
CH
1429 }
1430
3e85c868
DC
1431 /*
1432 * Limit the IO size to the length of the current vector, and update the
1433 * remaining IO count for the next time around.
1434 */
1435 size = min_t(int, BBTOB(bp->b_maps[map].bm_len), *count);
1436 *count -= size;
1437 *buf_offset += size;
34951f5c 1438
1da177e4 1439next_chunk:
ce8e922c 1440 atomic_inc(&bp->b_io_remaining);
5f7136db 1441 nr_pages = bio_max_segs(total_nr_pages);
1da177e4
LT
1442
1443 bio = bio_alloc(GFP_NOIO, nr_pages);
74d46992 1444 bio_set_dev(bio, bp->b_target->bt_bdev);
4f024f37 1445 bio->bi_iter.bi_sector = sector;
ce8e922c
NS
1446 bio->bi_end_io = xfs_buf_bio_end_io;
1447 bio->bi_private = bp;
2123ef85 1448 bio->bi_opf = op;
0e6e847f 1449
3e85c868 1450 for (; size && nr_pages; nr_pages--, page_index++) {
0e6e847f 1451 int rbytes, nbytes = PAGE_SIZE - offset;
1da177e4
LT
1452
1453 if (nbytes > size)
1454 nbytes = size;
1455
3e85c868
DC
1456 rbytes = bio_add_page(bio, bp->b_pages[page_index], nbytes,
1457 offset);
ce8e922c 1458 if (rbytes < nbytes)
1da177e4
LT
1459 break;
1460
1461 offset = 0;
aa0e8833 1462 sector += BTOBB(nbytes);
1da177e4
LT
1463 size -= nbytes;
1464 total_nr_pages--;
1465 }
1466
4f024f37 1467 if (likely(bio->bi_iter.bi_size)) {
73c77e2c
JB
1468 if (xfs_buf_is_vmapped(bp)) {
1469 flush_kernel_vmap_range(bp->b_addr,
1470 xfs_buf_vmap_len(bp));
1471 }
4e49ea4a 1472 submit_bio(bio);
1da177e4
LT
1473 if (size)
1474 goto next_chunk;
1475 } else {
37eb17e6
DC
1476 /*
1477 * This is guaranteed not to be the last io reference count
595bff75 1478 * because the caller (xfs_buf_submit) holds a count itself.
37eb17e6
DC
1479 */
1480 atomic_dec(&bp->b_io_remaining);
2451337d 1481 xfs_buf_ioerror(bp, -EIO);
ec53d1db 1482 bio_put(bio);
1da177e4 1483 }
3e85c868
DC
1484
1485}
1486
1487STATIC void
1488_xfs_buf_ioapply(
1489 struct xfs_buf *bp)
1490{
1491 struct blk_plug plug;
50bfcd0c 1492 int op;
3e85c868
DC
1493 int offset;
1494 int size;
1495 int i;
1496
c163f9a1
DC
1497 /*
1498 * Make sure we capture only current IO errors rather than stale errors
1499 * left over from previous use of the buffer (e.g. failed readahead).
1500 */
1501 bp->b_error = 0;
1502
3e85c868 1503 if (bp->b_flags & XBF_WRITE) {
50bfcd0c 1504 op = REQ_OP_WRITE;
1813dd64
DC
1505
1506 /*
1507 * Run the write verifier callback function if it exists. If
1508 * this function fails it will mark the buffer with an error and
1509 * the IO should not be dispatched.
1510 */
1511 if (bp->b_ops) {
1512 bp->b_ops->verify_write(bp);
1513 if (bp->b_error) {
dbd329f1 1514 xfs_force_shutdown(bp->b_mount,
1813dd64
DC
1515 SHUTDOWN_CORRUPT_INCORE);
1516 return;
1517 }
4c7f65ae 1518 } else if (bp->b_rhash_key != XFS_BUF_DADDR_NULL) {
dbd329f1 1519 struct xfs_mount *mp = bp->b_mount;
400b9d88
DC
1520
1521 /*
1522 * non-crc filesystems don't attach verifiers during
1523 * log recovery, so don't warn for such filesystems.
1524 */
38c26bfd 1525 if (xfs_has_crc(mp)) {
400b9d88 1526 xfs_warn(mp,
c219b015 1527 "%s: no buf ops on daddr 0x%llx len %d",
4c7f65ae
DC
1528 __func__, xfs_buf_daddr(bp),
1529 bp->b_length);
9c712a13
DW
1530 xfs_hex_dump(bp->b_addr,
1531 XFS_CORRUPTION_DUMP_LEN);
400b9d88
DC
1532 dump_stack();
1533 }
1813dd64 1534 }
3e85c868 1535 } else {
50bfcd0c 1536 op = REQ_OP_READ;
2123ef85
CH
1537 if (bp->b_flags & XBF_READ_AHEAD)
1538 op |= REQ_RAHEAD;
3e85c868
DC
1539 }
1540
1541 /* we only use the buffer cache for meta-data */
2123ef85 1542 op |= REQ_META;
3e85c868
DC
1543
1544 /*
1545 * Walk all the vectors issuing IO on them. Set up the initial offset
1546 * into the buffer and the desired IO size before we start -
1547 * _xfs_buf_ioapply_vec() will modify them appropriately for each
1548 * subsequent call.
1549 */
1550 offset = bp->b_offset;
8124b9b6 1551 size = BBTOB(bp->b_length);
3e85c868
DC
1552 blk_start_plug(&plug);
1553 for (i = 0; i < bp->b_map_count; i++) {
2123ef85 1554 xfs_buf_ioapply_map(bp, i, &offset, &size, op);
3e85c868
DC
1555 if (bp->b_error)
1556 break;
1557 if (size <= 0)
1558 break; /* all done */
1559 }
1560 blk_finish_plug(&plug);
1da177e4
LT
1561}
1562
595bff75 1563/*
bb00b6f1 1564 * Wait for I/O completion of a sync buffer and return the I/O error code.
595bff75 1565 */
eaebb515 1566static int
bb00b6f1 1567xfs_buf_iowait(
595bff75 1568 struct xfs_buf *bp)
1da177e4 1569{
bb00b6f1
BF
1570 ASSERT(!(bp->b_flags & XBF_ASYNC));
1571
1572 trace_xfs_buf_iowait(bp, _RET_IP_);
1573 wait_for_completion(&bp->b_iowait);
1574 trace_xfs_buf_iowait_done(bp, _RET_IP_);
1575
1576 return bp->b_error;
1577}
1578
1579/*
1580 * Buffer I/O submission path, read or write. Asynchronous submission transfers
1581 * the buffer lock ownership and the current reference to the IO. It is not
1582 * safe to reference the buffer after a call to this function unless the caller
1583 * holds an additional reference itself.
1584 */
26e32875 1585static int
bb00b6f1
BF
1586__xfs_buf_submit(
1587 struct xfs_buf *bp,
1588 bool wait)
1589{
1590 int error = 0;
1591
595bff75 1592 trace_xfs_buf_submit(bp, _RET_IP_);
1da177e4 1593
43ff2122 1594 ASSERT(!(bp->b_flags & _XBF_DELWRI_Q));
595bff75
DC
1595
1596 /* on shutdown we stale and complete the buffer immediately */
75c8c50f 1597 if (xfs_is_shutdown(bp->b_mount)) {
54b3b1f6 1598 xfs_buf_ioend_fail(bp);
eaebb515 1599 return -EIO;
595bff75 1600 }
1da177e4 1601
bb00b6f1
BF
1602 /*
1603 * Grab a reference so the buffer does not go away underneath us. For
1604 * async buffers, I/O completion drops the callers reference, which
1605 * could occur before submission returns.
1606 */
1607 xfs_buf_hold(bp);
1608
375ec69d 1609 if (bp->b_flags & XBF_WRITE)
ce8e922c 1610 xfs_buf_wait_unpin(bp);
e11bb805 1611
61be9c52
DC
1612 /* clear the internal error state to avoid spurious errors */
1613 bp->b_io_error = 0;
1614
8d6c1210 1615 /*
e11bb805
DC
1616 * Set the count to 1 initially, this will stop an I/O completion
1617 * callout which happens before we have started all the I/O from calling
1618 * xfs_buf_ioend too early.
1da177e4 1619 */
ce8e922c 1620 atomic_set(&bp->b_io_remaining, 1);
eaebb515
BF
1621 if (bp->b_flags & XBF_ASYNC)
1622 xfs_buf_ioacct_inc(bp);
ce8e922c 1623 _xfs_buf_ioapply(bp);
e11bb805 1624
8d6c1210 1625 /*
595bff75
DC
1626 * If _xfs_buf_ioapply failed, we can get back here with only the IO
1627 * reference we took above. If we drop it to zero, run completion so
1628 * that we don't return to the caller with completion still pending.
8d6c1210 1629 */
e8aaba9a 1630 if (atomic_dec_and_test(&bp->b_io_remaining) == 1) {
eaebb515 1631 if (bp->b_error || !(bp->b_flags & XBF_ASYNC))
e8aaba9a
DC
1632 xfs_buf_ioend(bp);
1633 else
1634 xfs_buf_ioend_async(bp);
1635 }
1da177e4 1636
6af88cda
BF
1637 if (wait)
1638 error = xfs_buf_iowait(bp);
bb00b6f1 1639
595bff75 1640 /*
6af88cda
BF
1641 * Release the hold that keeps the buffer referenced for the entire
1642 * I/O. Note that if the buffer is async, it is not safe to reference
1643 * after this release.
595bff75
DC
1644 */
1645 xfs_buf_rele(bp);
1646 return error;
1da177e4
LT
1647}
1648
88ee2df7 1649void *
ce8e922c 1650xfs_buf_offset(
88ee2df7 1651 struct xfs_buf *bp,
1da177e4
LT
1652 size_t offset)
1653{
1654 struct page *page;
1655
611c9946 1656 if (bp->b_addr)
62926044 1657 return bp->b_addr + offset;
1da177e4 1658
0e6e847f 1659 page = bp->b_pages[offset >> PAGE_SHIFT];
88ee2df7 1660 return page_address(page) + (offset & (PAGE_SIZE-1));
1da177e4
LT
1661}
1662
1da177e4 1663void
f9a196ee
CH
1664xfs_buf_zero(
1665 struct xfs_buf *bp,
1666 size_t boff,
1667 size_t bsize)
1da177e4 1668{
795cac72 1669 size_t bend;
1da177e4
LT
1670
1671 bend = boff + bsize;
1672 while (boff < bend) {
795cac72
DC
1673 struct page *page;
1674 int page_index, page_offset, csize;
1675
1676 page_index = (boff + bp->b_offset) >> PAGE_SHIFT;
1677 page_offset = (boff + bp->b_offset) & ~PAGE_MASK;
1678 page = bp->b_pages[page_index];
1679 csize = min_t(size_t, PAGE_SIZE - page_offset,
8124b9b6 1680 BBTOB(bp->b_length) - boff);
1da177e4 1681
795cac72 1682 ASSERT((csize + page_offset) <= PAGE_SIZE);
1da177e4 1683
f9a196ee 1684 memset(page_address(page) + page_offset, 0, csize);
1da177e4
LT
1685
1686 boff += csize;
1da177e4
LT
1687 }
1688}
1689
8d57c216
DW
1690/*
1691 * Log a message about and stale a buffer that a caller has decided is corrupt.
1692 *
1693 * This function should be called for the kinds of metadata corruption that
1694 * cannot be detect from a verifier, such as incorrect inter-block relationship
1695 * data. Do /not/ call this function from a verifier function.
1696 *
1697 * The buffer must be XBF_DONE prior to the call. Afterwards, the buffer will
1698 * be marked stale, but b_error will not be set. The caller is responsible for
1699 * releasing the buffer or fixing it.
1700 */
1701void
1702__xfs_buf_mark_corrupt(
1703 struct xfs_buf *bp,
1704 xfs_failaddr_t fa)
1705{
1706 ASSERT(bp->b_flags & XBF_DONE);
1707
e83cf875 1708 xfs_buf_corruption_error(bp, fa);
8d57c216
DW
1709 xfs_buf_stale(bp);
1710}
1711
1da177e4 1712/*
ce8e922c 1713 * Handling of buffer targets (buftargs).
1da177e4
LT
1714 */
1715
1716/*
430cbeb8
DC
1717 * Wait for any bufs with callbacks that have been submitted but have not yet
1718 * returned. These buffers will have an elevated hold count, so wait on those
1719 * while freeing all the buffers only held by the LRU.
1da177e4 1720 */
e80dfa19 1721static enum lru_status
10fb9ac1 1722xfs_buftarg_drain_rele(
e80dfa19 1723 struct list_head *item,
3f97b163 1724 struct list_lru_one *lru,
e80dfa19
DC
1725 spinlock_t *lru_lock,
1726 void *arg)
1727
1da177e4 1728{
e80dfa19 1729 struct xfs_buf *bp = container_of(item, struct xfs_buf, b_lru);
a4082357 1730 struct list_head *dispose = arg;
430cbeb8 1731
e80dfa19 1732 if (atomic_read(&bp->b_hold) > 1) {
a4082357 1733 /* need to wait, so skip it this pass */
10fb9ac1 1734 trace_xfs_buf_drain_buftarg(bp, _RET_IP_);
a4082357 1735 return LRU_SKIP;
1da177e4 1736 }
a4082357
DC
1737 if (!spin_trylock(&bp->b_lock))
1738 return LRU_SKIP;
e80dfa19 1739
a4082357
DC
1740 /*
1741 * clear the LRU reference count so the buffer doesn't get
1742 * ignored in xfs_buf_rele().
1743 */
1744 atomic_set(&bp->b_lru_ref, 0);
1745 bp->b_state |= XFS_BSTATE_DISPOSE;
3f97b163 1746 list_lru_isolate_move(lru, item, dispose);
a4082357
DC
1747 spin_unlock(&bp->b_lock);
1748 return LRU_REMOVED;
1da177e4
LT
1749}
1750
8321ddb2
BF
1751/*
1752 * Wait for outstanding I/O on the buftarg to complete.
1753 */
e80dfa19 1754void
8321ddb2 1755xfs_buftarg_wait(
e80dfa19
DC
1756 struct xfs_buftarg *btp)
1757{
85bec546 1758 /*
9c7504aa
BF
1759 * First wait on the buftarg I/O count for all in-flight buffers to be
1760 * released. This is critical as new buffers do not make the LRU until
1761 * they are released.
1762 *
1763 * Next, flush the buffer workqueue to ensure all completion processing
1764 * has finished. Just waiting on buffer locks is not sufficient for
1765 * async IO as the reference count held over IO is not released until
1766 * after the buffer lock is dropped. Hence we need to ensure here that
1767 * all reference counts have been dropped before we start walking the
1768 * LRU list.
85bec546 1769 */
9c7504aa
BF
1770 while (percpu_counter_sum(&btp->bt_io_count))
1771 delay(100);
800b2694 1772 flush_workqueue(btp->bt_mount->m_buf_workqueue);
8321ddb2
BF
1773}
1774
1775void
1776xfs_buftarg_drain(
1777 struct xfs_buftarg *btp)
1778{
1779 LIST_HEAD(dispose);
1780 int loop = 0;
1781 bool write_fail = false;
1782
1783 xfs_buftarg_wait(btp);
85bec546 1784
a4082357
DC
1785 /* loop until there is nothing left on the lru list. */
1786 while (list_lru_count(&btp->bt_lru)) {
10fb9ac1 1787 list_lru_walk(&btp->bt_lru, xfs_buftarg_drain_rele,
a4082357
DC
1788 &dispose, LONG_MAX);
1789
1790 while (!list_empty(&dispose)) {
1791 struct xfs_buf *bp;
1792 bp = list_first_entry(&dispose, struct xfs_buf, b_lru);
1793 list_del_init(&bp->b_lru);
ac8809f9 1794 if (bp->b_flags & XBF_WRITE_FAIL) {
61948b6f
BF
1795 write_fail = true;
1796 xfs_buf_alert_ratelimited(bp,
1797 "XFS: Corruption Alert",
c219b015 1798"Corruption Alert: Buffer at daddr 0x%llx had permanent write failures!",
4c7f65ae 1799 (long long)xfs_buf_daddr(bp));
ac8809f9 1800 }
a4082357
DC
1801 xfs_buf_rele(bp);
1802 }
1803 if (loop++ != 0)
1804 delay(100);
1805 }
61948b6f
BF
1806
1807 /*
1808 * If one or more failed buffers were freed, that means dirty metadata
1809 * was thrown away. This should only ever happen after I/O completion
1810 * handling has elevated I/O error(s) to permanent failures and shuts
1811 * down the fs.
1812 */
1813 if (write_fail) {
75c8c50f 1814 ASSERT(xfs_is_shutdown(btp->bt_mount));
61948b6f
BF
1815 xfs_alert(btp->bt_mount,
1816 "Please run xfs_repair to determine the extent of the problem.");
1817 }
e80dfa19
DC
1818}
1819
1820static enum lru_status
1821xfs_buftarg_isolate(
1822 struct list_head *item,
3f97b163 1823 struct list_lru_one *lru,
e80dfa19
DC
1824 spinlock_t *lru_lock,
1825 void *arg)
1826{
1827 struct xfs_buf *bp = container_of(item, struct xfs_buf, b_lru);
1828 struct list_head *dispose = arg;
1829
a4082357
DC
1830 /*
1831 * we are inverting the lru lock/bp->b_lock here, so use a trylock.
1832 * If we fail to get the lock, just skip it.
1833 */
1834 if (!spin_trylock(&bp->b_lock))
1835 return LRU_SKIP;
e80dfa19
DC
1836 /*
1837 * Decrement the b_lru_ref count unless the value is already
1838 * zero. If the value is already zero, we need to reclaim the
1839 * buffer, otherwise it gets another trip through the LRU.
1840 */
19957a18 1841 if (atomic_add_unless(&bp->b_lru_ref, -1, 0)) {
a4082357 1842 spin_unlock(&bp->b_lock);
e80dfa19 1843 return LRU_ROTATE;
a4082357 1844 }
e80dfa19 1845
a4082357 1846 bp->b_state |= XFS_BSTATE_DISPOSE;
3f97b163 1847 list_lru_isolate_move(lru, item, dispose);
a4082357 1848 spin_unlock(&bp->b_lock);
e80dfa19
DC
1849 return LRU_REMOVED;
1850}
1851
addbda40 1852static unsigned long
e80dfa19 1853xfs_buftarg_shrink_scan(
ff57ab21 1854 struct shrinker *shrink,
1495f230 1855 struct shrink_control *sc)
a6867a68 1856{
ff57ab21
DC
1857 struct xfs_buftarg *btp = container_of(shrink,
1858 struct xfs_buftarg, bt_shrinker);
430cbeb8 1859 LIST_HEAD(dispose);
addbda40 1860 unsigned long freed;
430cbeb8 1861
503c358c
VD
1862 freed = list_lru_shrink_walk(&btp->bt_lru, sc,
1863 xfs_buftarg_isolate, &dispose);
430cbeb8
DC
1864
1865 while (!list_empty(&dispose)) {
e80dfa19 1866 struct xfs_buf *bp;
430cbeb8
DC
1867 bp = list_first_entry(&dispose, struct xfs_buf, b_lru);
1868 list_del_init(&bp->b_lru);
1869 xfs_buf_rele(bp);
1870 }
1871
e80dfa19
DC
1872 return freed;
1873}
1874
addbda40 1875static unsigned long
e80dfa19
DC
1876xfs_buftarg_shrink_count(
1877 struct shrinker *shrink,
1878 struct shrink_control *sc)
1879{
1880 struct xfs_buftarg *btp = container_of(shrink,
1881 struct xfs_buftarg, bt_shrinker);
503c358c 1882 return list_lru_shrink_count(&btp->bt_lru, sc);
a6867a68
DC
1883}
1884
1da177e4
LT
1885void
1886xfs_free_buftarg(
b7963133 1887 struct xfs_buftarg *btp)
1da177e4 1888{
ff57ab21 1889 unregister_shrinker(&btp->bt_shrinker);
9c7504aa
BF
1890 ASSERT(percpu_counter_sum(&btp->bt_io_count) == 0);
1891 percpu_counter_destroy(&btp->bt_io_count);
f5e1dd34 1892 list_lru_destroy(&btp->bt_lru);
ff57ab21 1893
b5071ada 1894 blkdev_issue_flush(btp->bt_bdev);
a6867a68 1895
f0e2d93c 1896 kmem_free(btp);
1da177e4
LT
1897}
1898
3fefdeee
ES
1899int
1900xfs_setsize_buftarg(
1da177e4 1901 xfs_buftarg_t *btp,
3fefdeee 1902 unsigned int sectorsize)
1da177e4 1903{
7c71ee78 1904 /* Set up metadata sector size info */
6da54179
ES
1905 btp->bt_meta_sectorsize = sectorsize;
1906 btp->bt_meta_sectormask = sectorsize - 1;
1da177e4 1907
ce8e922c 1908 if (set_blocksize(btp->bt_bdev, sectorsize)) {
4f10700a 1909 xfs_warn(btp->bt_mount,
a1c6f057
DM
1910 "Cannot set_blocksize to %u on device %pg",
1911 sectorsize, btp->bt_bdev);
2451337d 1912 return -EINVAL;
1da177e4
LT
1913 }
1914
7c71ee78
ES
1915 /* Set up device logical sector size mask */
1916 btp->bt_logical_sectorsize = bdev_logical_block_size(btp->bt_bdev);
1917 btp->bt_logical_sectormask = bdev_logical_block_size(btp->bt_bdev) - 1;
1918
1da177e4
LT
1919 return 0;
1920}
1921
1922/*
3fefdeee
ES
1923 * When allocating the initial buffer target we have not yet
1924 * read in the superblock, so don't know what sized sectors
1925 * are being used at this early stage. Play safe.
ce8e922c 1926 */
1da177e4
LT
1927STATIC int
1928xfs_setsize_buftarg_early(
1929 xfs_buftarg_t *btp,
1930 struct block_device *bdev)
1931{
a96c4151 1932 return xfs_setsize_buftarg(btp, bdev_logical_block_size(bdev));
1da177e4
LT
1933}
1934
1da177e4
LT
1935xfs_buftarg_t *
1936xfs_alloc_buftarg(
ebad861b 1937 struct xfs_mount *mp,
486aff5e
DW
1938 struct block_device *bdev,
1939 struct dax_device *dax_dev)
1da177e4
LT
1940{
1941 xfs_buftarg_t *btp;
1942
707e0dda 1943 btp = kmem_zalloc(sizeof(*btp), KM_NOFS);
1da177e4 1944
ebad861b 1945 btp->bt_mount = mp;
ce8e922c
NS
1946 btp->bt_dev = bdev->bd_dev;
1947 btp->bt_bdev = bdev;
486aff5e 1948 btp->bt_daxdev = dax_dev;
0e6e847f 1949
f9bccfcc
BF
1950 /*
1951 * Buffer IO error rate limiting. Limit it to no more than 10 messages
1952 * per 30 seconds so as to not spam logs too much on repeated errors.
1953 */
1954 ratelimit_state_init(&btp->bt_ioerror_rl, 30 * HZ,
1955 DEFAULT_RATELIMIT_BURST);
1956
1da177e4 1957 if (xfs_setsize_buftarg_early(btp, bdev))
d210a987 1958 goto error_free;
5ca302c8
GC
1959
1960 if (list_lru_init(&btp->bt_lru))
d210a987 1961 goto error_free;
5ca302c8 1962
9c7504aa 1963 if (percpu_counter_init(&btp->bt_io_count, 0, GFP_KERNEL))
d210a987 1964 goto error_lru;
9c7504aa 1965
e80dfa19
DC
1966 btp->bt_shrinker.count_objects = xfs_buftarg_shrink_count;
1967 btp->bt_shrinker.scan_objects = xfs_buftarg_shrink_scan;
ff57ab21 1968 btp->bt_shrinker.seeks = DEFAULT_SEEKS;
e80dfa19 1969 btp->bt_shrinker.flags = SHRINKER_NUMA_AWARE;
d210a987
MH
1970 if (register_shrinker(&btp->bt_shrinker))
1971 goto error_pcpu;
1da177e4
LT
1972 return btp;
1973
d210a987
MH
1974error_pcpu:
1975 percpu_counter_destroy(&btp->bt_io_count);
1976error_lru:
1977 list_lru_destroy(&btp->bt_lru);
1978error_free:
f0e2d93c 1979 kmem_free(btp);
1da177e4
LT
1980 return NULL;
1981}
1982
20e8a063
BF
1983/*
1984 * Cancel a delayed write list.
1985 *
1986 * Remove each buffer from the list, clear the delwri queue flag and drop the
1987 * associated buffer reference.
1988 */
1989void
1990xfs_buf_delwri_cancel(
1991 struct list_head *list)
1992{
1993 struct xfs_buf *bp;
1994
1995 while (!list_empty(list)) {
1996 bp = list_first_entry(list, struct xfs_buf, b_list);
1997
1998 xfs_buf_lock(bp);
1999 bp->b_flags &= ~_XBF_DELWRI_Q;
2000 list_del_init(&bp->b_list);
2001 xfs_buf_relse(bp);
2002 }
2003}
2004
1da177e4 2005/*
43ff2122
CH
2006 * Add a buffer to the delayed write list.
2007 *
2008 * This queues a buffer for writeout if it hasn't already been. Note that
2009 * neither this routine nor the buffer list submission functions perform
2010 * any internal synchronization. It is expected that the lists are thread-local
2011 * to the callers.
2012 *
2013 * Returns true if we queued up the buffer, or false if it already had
2014 * been on the buffer list.
1da177e4 2015 */
43ff2122 2016bool
ce8e922c 2017xfs_buf_delwri_queue(
43ff2122
CH
2018 struct xfs_buf *bp,
2019 struct list_head *list)
1da177e4 2020{
43ff2122 2021 ASSERT(xfs_buf_islocked(bp));
5a8ee6ba 2022 ASSERT(!(bp->b_flags & XBF_READ));
1da177e4 2023
43ff2122
CH
2024 /*
2025 * If the buffer is already marked delwri it already is queued up
2026 * by someone else for imediate writeout. Just ignore it in that
2027 * case.
2028 */
2029 if (bp->b_flags & _XBF_DELWRI_Q) {
2030 trace_xfs_buf_delwri_queued(bp, _RET_IP_);
2031 return false;
1da177e4 2032 }
1da177e4 2033
43ff2122 2034 trace_xfs_buf_delwri_queue(bp, _RET_IP_);
d808f617
DC
2035
2036 /*
43ff2122
CH
2037 * If a buffer gets written out synchronously or marked stale while it
2038 * is on a delwri list we lazily remove it. To do this, the other party
2039 * clears the _XBF_DELWRI_Q flag but otherwise leaves the buffer alone.
2040 * It remains referenced and on the list. In a rare corner case it
2041 * might get readded to a delwri list after the synchronous writeout, in
2042 * which case we need just need to re-add the flag here.
d808f617 2043 */
43ff2122
CH
2044 bp->b_flags |= _XBF_DELWRI_Q;
2045 if (list_empty(&bp->b_list)) {
2046 atomic_inc(&bp->b_hold);
2047 list_add_tail(&bp->b_list, list);
585e6d88 2048 }
585e6d88 2049
43ff2122 2050 return true;
585e6d88
DC
2051}
2052
089716aa
DC
2053/*
2054 * Compare function is more complex than it needs to be because
2055 * the return value is only 32 bits and we are doing comparisons
2056 * on 64 bit values
2057 */
2058static int
2059xfs_buf_cmp(
4f0f586b
ST
2060 void *priv,
2061 const struct list_head *a,
2062 const struct list_head *b)
089716aa
DC
2063{
2064 struct xfs_buf *ap = container_of(a, struct xfs_buf, b_list);
2065 struct xfs_buf *bp = container_of(b, struct xfs_buf, b_list);
2066 xfs_daddr_t diff;
2067
f4b42421 2068 diff = ap->b_maps[0].bm_bn - bp->b_maps[0].bm_bn;
089716aa
DC
2069 if (diff < 0)
2070 return -1;
2071 if (diff > 0)
2072 return 1;
2073 return 0;
2074}
2075
26f1fe85 2076/*
e339dd8d
BF
2077 * Submit buffers for write. If wait_list is specified, the buffers are
2078 * submitted using sync I/O and placed on the wait list such that the caller can
2079 * iowait each buffer. Otherwise async I/O is used and the buffers are released
2080 * at I/O completion time. In either case, buffers remain locked until I/O
2081 * completes and the buffer is released from the queue.
26f1fe85 2082 */
43ff2122 2083static int
26f1fe85 2084xfs_buf_delwri_submit_buffers(
43ff2122 2085 struct list_head *buffer_list,
26f1fe85 2086 struct list_head *wait_list)
1da177e4 2087{
43ff2122
CH
2088 struct xfs_buf *bp, *n;
2089 int pinned = 0;
26f1fe85 2090 struct blk_plug plug;
43ff2122 2091
26f1fe85 2092 list_sort(NULL, buffer_list, xfs_buf_cmp);
43ff2122 2093
26f1fe85 2094 blk_start_plug(&plug);
43ff2122 2095 list_for_each_entry_safe(bp, n, buffer_list, b_list) {
26f1fe85 2096 if (!wait_list) {
43ff2122
CH
2097 if (xfs_buf_ispinned(bp)) {
2098 pinned++;
2099 continue;
2100 }
2101 if (!xfs_buf_trylock(bp))
2102 continue;
2103 } else {
2104 xfs_buf_lock(bp);
2105 }
978c7b2f 2106
43ff2122
CH
2107 /*
2108 * Someone else might have written the buffer synchronously or
2109 * marked it stale in the meantime. In that case only the
2110 * _XBF_DELWRI_Q flag got cleared, and we have to drop the
2111 * reference and remove it from the list here.
2112 */
2113 if (!(bp->b_flags & _XBF_DELWRI_Q)) {
2114 list_del_init(&bp->b_list);
2115 xfs_buf_relse(bp);
2116 continue;
2117 }
c9c12971 2118
43ff2122 2119 trace_xfs_buf_delwri_split(bp, _RET_IP_);
a1b7ea5d 2120
cf53e99d 2121 /*
e339dd8d
BF
2122 * If we have a wait list, each buffer (and associated delwri
2123 * queue reference) transfers to it and is submitted
2124 * synchronously. Otherwise, drop the buffer from the delwri
2125 * queue and submit async.
cf53e99d 2126 */
b6983e80 2127 bp->b_flags &= ~_XBF_DELWRI_Q;
e339dd8d 2128 bp->b_flags |= XBF_WRITE;
26f1fe85 2129 if (wait_list) {
e339dd8d 2130 bp->b_flags &= ~XBF_ASYNC;
26f1fe85 2131 list_move_tail(&bp->b_list, wait_list);
e339dd8d
BF
2132 } else {
2133 bp->b_flags |= XBF_ASYNC;
ce8e922c 2134 list_del_init(&bp->b_list);
e339dd8d 2135 }
6af88cda 2136 __xfs_buf_submit(bp, false);
43ff2122
CH
2137 }
2138 blk_finish_plug(&plug);
1da177e4 2139
43ff2122 2140 return pinned;
1da177e4
LT
2141}
2142
2143/*
43ff2122
CH
2144 * Write out a buffer list asynchronously.
2145 *
2146 * This will take the @buffer_list, write all non-locked and non-pinned buffers
2147 * out and not wait for I/O completion on any of the buffers. This interface
2148 * is only safely useable for callers that can track I/O completion by higher
2149 * level means, e.g. AIL pushing as the @buffer_list is consumed in this
2150 * function.
efc3289c
BF
2151 *
2152 * Note: this function will skip buffers it would block on, and in doing so
2153 * leaves them on @buffer_list so they can be retried on a later pass. As such,
2154 * it is up to the caller to ensure that the buffer list is fully submitted or
2155 * cancelled appropriately when they are finished with the list. Failure to
2156 * cancel or resubmit the list until it is empty will result in leaked buffers
2157 * at unmount time.
1da177e4
LT
2158 */
2159int
43ff2122
CH
2160xfs_buf_delwri_submit_nowait(
2161 struct list_head *buffer_list)
1da177e4 2162{
26f1fe85 2163 return xfs_buf_delwri_submit_buffers(buffer_list, NULL);
43ff2122 2164}
1da177e4 2165
43ff2122
CH
2166/*
2167 * Write out a buffer list synchronously.
2168 *
2169 * This will take the @buffer_list, write all buffers out and wait for I/O
2170 * completion on all of the buffers. @buffer_list is consumed by the function,
2171 * so callers must have some other way of tracking buffers if they require such
2172 * functionality.
2173 */
2174int
2175xfs_buf_delwri_submit(
2176 struct list_head *buffer_list)
2177{
26f1fe85 2178 LIST_HEAD (wait_list);
43ff2122
CH
2179 int error = 0, error2;
2180 struct xfs_buf *bp;
1da177e4 2181
26f1fe85 2182 xfs_buf_delwri_submit_buffers(buffer_list, &wait_list);
1da177e4 2183
43ff2122 2184 /* Wait for IO to complete. */
26f1fe85
DC
2185 while (!list_empty(&wait_list)) {
2186 bp = list_first_entry(&wait_list, struct xfs_buf, b_list);
a1b7ea5d 2187
089716aa 2188 list_del_init(&bp->b_list);
cf53e99d 2189
e339dd8d
BF
2190 /*
2191 * Wait on the locked buffer, check for errors and unlock and
2192 * release the delwri queue reference.
2193 */
2194 error2 = xfs_buf_iowait(bp);
43ff2122
CH
2195 xfs_buf_relse(bp);
2196 if (!error)
2197 error = error2;
1da177e4
LT
2198 }
2199
43ff2122 2200 return error;
1da177e4
LT
2201}
2202
7912e7fe
BF
2203/*
2204 * Push a single buffer on a delwri queue.
2205 *
2206 * The purpose of this function is to submit a single buffer of a delwri queue
2207 * and return with the buffer still on the original queue. The waiting delwri
2208 * buffer submission infrastructure guarantees transfer of the delwri queue
2209 * buffer reference to a temporary wait list. We reuse this infrastructure to
2210 * transfer the buffer back to the original queue.
2211 *
2212 * Note the buffer transitions from the queued state, to the submitted and wait
2213 * listed state and back to the queued state during this call. The buffer
2214 * locking and queue management logic between _delwri_pushbuf() and
2215 * _delwri_queue() guarantee that the buffer cannot be queued to another list
2216 * before returning.
2217 */
2218int
2219xfs_buf_delwri_pushbuf(
2220 struct xfs_buf *bp,
2221 struct list_head *buffer_list)
2222{
2223 LIST_HEAD (submit_list);
2224 int error;
2225
2226 ASSERT(bp->b_flags & _XBF_DELWRI_Q);
2227
2228 trace_xfs_buf_delwri_pushbuf(bp, _RET_IP_);
2229
2230 /*
2231 * Isolate the buffer to a new local list so we can submit it for I/O
2232 * independently from the rest of the original list.
2233 */
2234 xfs_buf_lock(bp);
2235 list_move(&bp->b_list, &submit_list);
2236 xfs_buf_unlock(bp);
2237
2238 /*
2239 * Delwri submission clears the DELWRI_Q buffer flag and returns with
e339dd8d 2240 * the buffer on the wait list with the original reference. Rather than
7912e7fe
BF
2241 * bounce the buffer from a local wait list back to the original list
2242 * after I/O completion, reuse the original list as the wait list.
2243 */
2244 xfs_buf_delwri_submit_buffers(&submit_list, buffer_list);
2245
2246 /*
e339dd8d
BF
2247 * The buffer is now locked, under I/O and wait listed on the original
2248 * delwri queue. Wait for I/O completion, restore the DELWRI_Q flag and
2249 * return with the buffer unlocked and on the original queue.
7912e7fe 2250 */
e339dd8d 2251 error = xfs_buf_iowait(bp);
7912e7fe
BF
2252 bp->b_flags |= _XBF_DELWRI_Q;
2253 xfs_buf_unlock(bp);
2254
2255 return error;
2256}
2257
04d8b284 2258int __init
ce8e922c 2259xfs_buf_init(void)
1da177e4 2260{
12eba65b
DC
2261 xfs_buf_zone = kmem_cache_create("xfs_buf", sizeof(struct xfs_buf), 0,
2262 SLAB_HWCACHE_ALIGN |
2263 SLAB_RECLAIM_ACCOUNT |
2264 SLAB_MEM_SPREAD,
2265 NULL);
ce8e922c 2266 if (!xfs_buf_zone)
0b1b213f 2267 goto out;
04d8b284 2268
23ea4032 2269 return 0;
1da177e4 2270
0b1b213f 2271 out:
8758280f 2272 return -ENOMEM;
1da177e4
LT
2273}
2274
1da177e4 2275void
ce8e922c 2276xfs_buf_terminate(void)
1da177e4 2277{
aaf54eb8 2278 kmem_cache_destroy(xfs_buf_zone);
1da177e4 2279}
7561d27e
BF
2280
2281void xfs_buf_set_ref(struct xfs_buf *bp, int lru_ref)
2282{
7561d27e
BF
2283 /*
2284 * Set the lru reference count to 0 based on the error injection tag.
2285 * This allows userspace to disrupt buffer caching for debug/testing
2286 * purposes.
2287 */
dbd329f1 2288 if (XFS_TEST_ERROR(false, bp->b_mount, XFS_ERRTAG_BUF_LRU_REF))
7561d27e
BF
2289 lru_ref = 0;
2290
2291 atomic_set(&bp->b_lru_ref, lru_ref);
2292}
8473fee3
BF
2293
2294/*
2295 * Verify an on-disk magic value against the magic value specified in the
2296 * verifier structure. The verifier magic is in disk byte order so the caller is
2297 * expected to pass the value directly from disk.
2298 */
2299bool
2300xfs_verify_magic(
2301 struct xfs_buf *bp,
15baadf7 2302 __be32 dmagic)
8473fee3 2303{
dbd329f1 2304 struct xfs_mount *mp = bp->b_mount;
8473fee3
BF
2305 int idx;
2306
38c26bfd 2307 idx = xfs_has_crc(mp);
14ed8688 2308 if (WARN_ON(!bp->b_ops || !bp->b_ops->magic[idx]))
8473fee3
BF
2309 return false;
2310 return dmagic == bp->b_ops->magic[idx];
2311}
15baadf7
DW
2312/*
2313 * Verify an on-disk magic value against the magic value specified in the
2314 * verifier structure. The verifier magic is in disk byte order so the caller is
2315 * expected to pass the value directly from disk.
2316 */
2317bool
2318xfs_verify_magic16(
2319 struct xfs_buf *bp,
2320 __be16 dmagic)
2321{
dbd329f1 2322 struct xfs_mount *mp = bp->b_mount;
15baadf7
DW
2323 int idx;
2324
38c26bfd 2325 idx = xfs_has_crc(mp);
14ed8688 2326 if (WARN_ON(!bp->b_ops || !bp->b_ops->magic16[idx]))
15baadf7
DW
2327 return false;
2328 return dmagic == bp->b_ops->magic16[idx];
2329}