]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - fs/xfs/xfs_buf.c
UBUNTU: Ubuntu-4.10.0-37.41
[mirror_ubuntu-zesty-kernel.git] / fs / xfs / xfs_buf.c
CommitLineData
1da177e4 1/*
f07c2250 2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
7b718769 3 * All Rights Reserved.
1da177e4 4 *
7b718769
NS
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
1da177e4
LT
7 * published by the Free Software Foundation.
8 *
7b718769
NS
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
1da177e4 13 *
7b718769
NS
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
1da177e4 17 */
93c189c1 18#include "xfs.h"
1da177e4
LT
19#include <linux/stddef.h>
20#include <linux/errno.h>
5a0e3ad6 21#include <linux/gfp.h>
1da177e4
LT
22#include <linux/pagemap.h>
23#include <linux/init.h>
24#include <linux/vmalloc.h>
25#include <linux/bio.h>
26#include <linux/sysctl.h>
27#include <linux/proc_fs.h>
28#include <linux/workqueue.h>
29#include <linux/percpu.h>
30#include <linux/blkdev.h>
31#include <linux/hash.h>
4df08c52 32#include <linux/kthread.h>
b20a3503 33#include <linux/migrate.h>
3fcfab16 34#include <linux/backing-dev.h>
7dfb7103 35#include <linux/freezer.h>
1da177e4 36
4fb6e8ad 37#include "xfs_format.h"
239880ef 38#include "xfs_log_format.h"
7fd36c44 39#include "xfs_trans_resv.h"
239880ef 40#include "xfs_sb.h"
b7963133 41#include "xfs_mount.h"
0b1b213f 42#include "xfs_trace.h"
239880ef 43#include "xfs_log.h"
b7963133 44
7989cb8e 45static kmem_zone_t *xfs_buf_zone;
23ea4032 46
ce8e922c
NS
47#ifdef XFS_BUF_LOCK_TRACKING
48# define XB_SET_OWNER(bp) ((bp)->b_last_holder = current->pid)
49# define XB_CLEAR_OWNER(bp) ((bp)->b_last_holder = -1)
50# define XB_GET_OWNER(bp) ((bp)->b_last_holder)
1da177e4 51#else
ce8e922c
NS
52# define XB_SET_OWNER(bp) do { } while (0)
53# define XB_CLEAR_OWNER(bp) do { } while (0)
54# define XB_GET_OWNER(bp) do { } while (0)
1da177e4
LT
55#endif
56
ce8e922c 57#define xb_to_gfp(flags) \
aa5c158e 58 ((((flags) & XBF_READ_AHEAD) ? __GFP_NORETRY : GFP_NOFS) | __GFP_NOWARN)
1da177e4 59
1da177e4 60
73c77e2c
JB
61static inline int
62xfs_buf_is_vmapped(
63 struct xfs_buf *bp)
64{
65 /*
66 * Return true if the buffer is vmapped.
67 *
611c9946
DC
68 * b_addr is null if the buffer is not mapped, but the code is clever
69 * enough to know it doesn't have to map a single page, so the check has
70 * to be both for b_addr and bp->b_page_count > 1.
73c77e2c 71 */
611c9946 72 return bp->b_addr && bp->b_page_count > 1;
73c77e2c
JB
73}
74
75static inline int
76xfs_buf_vmap_len(
77 struct xfs_buf *bp)
78{
79 return (bp->b_page_count * PAGE_SIZE) - bp->b_offset;
80}
81
9c7504aa
BF
82/*
83 * Bump the I/O in flight count on the buftarg if we haven't yet done so for
84 * this buffer. The count is incremented once per buffer (per hold cycle)
85 * because the corresponding decrement is deferred to buffer release. Buffers
86 * can undergo I/O multiple times in a hold-release cycle and per buffer I/O
87 * tracking adds unnecessary overhead. This is used for sychronization purposes
88 * with unmount (see xfs_wait_buftarg()), so all we really need is a count of
89 * in-flight buffers.
90 *
91 * Buffers that are never released (e.g., superblock, iclog buffers) must set
92 * the XBF_NO_IOACCT flag before I/O submission. Otherwise, the buftarg count
93 * never reaches zero and unmount hangs indefinitely.
94 */
95static inline void
96xfs_buf_ioacct_inc(
97 struct xfs_buf *bp)
98{
99 if (bp->b_flags & (XBF_NO_IOACCT|_XBF_IN_FLIGHT))
100 return;
101
102 ASSERT(bp->b_flags & XBF_ASYNC);
103 bp->b_flags |= _XBF_IN_FLIGHT;
104 percpu_counter_inc(&bp->b_target->bt_io_count);
105}
106
107/*
108 * Clear the in-flight state on a buffer about to be released to the LRU or
109 * freed and unaccount from the buftarg.
110 */
111static inline void
112xfs_buf_ioacct_dec(
113 struct xfs_buf *bp)
114{
115 if (!(bp->b_flags & _XBF_IN_FLIGHT))
116 return;
117
9c7504aa
BF
118 bp->b_flags &= ~_XBF_IN_FLIGHT;
119 percpu_counter_dec(&bp->b_target->bt_io_count);
120}
121
430cbeb8
DC
122/*
123 * When we mark a buffer stale, we remove the buffer from the LRU and clear the
124 * b_lru_ref count so that the buffer is freed immediately when the buffer
125 * reference count falls to zero. If the buffer is already on the LRU, we need
126 * to remove the reference that LRU holds on the buffer.
127 *
128 * This prevents build-up of stale buffers on the LRU.
129 */
130void
131xfs_buf_stale(
132 struct xfs_buf *bp)
133{
43ff2122
CH
134 ASSERT(xfs_buf_islocked(bp));
135
430cbeb8 136 bp->b_flags |= XBF_STALE;
43ff2122
CH
137
138 /*
139 * Clear the delwri status so that a delwri queue walker will not
140 * flush this buffer to disk now that it is stale. The delwri queue has
141 * a reference to the buffer, so this is safe to do.
142 */
143 bp->b_flags &= ~_XBF_DELWRI_Q;
144
9c7504aa
BF
145 /*
146 * Once the buffer is marked stale and unlocked, a subsequent lookup
147 * could reset b_flags. There is no guarantee that the buffer is
148 * unaccounted (released to LRU) before that occurs. Drop in-flight
149 * status now to preserve accounting consistency.
150 */
151 xfs_buf_ioacct_dec(bp);
152
a4082357
DC
153 spin_lock(&bp->b_lock);
154 atomic_set(&bp->b_lru_ref, 0);
155 if (!(bp->b_state & XFS_BSTATE_DISPOSE) &&
e80dfa19
DC
156 (list_lru_del(&bp->b_target->bt_lru, &bp->b_lru)))
157 atomic_dec(&bp->b_hold);
158
430cbeb8 159 ASSERT(atomic_read(&bp->b_hold) >= 1);
a4082357 160 spin_unlock(&bp->b_lock);
430cbeb8 161}
1da177e4 162
3e85c868
DC
163static int
164xfs_buf_get_maps(
165 struct xfs_buf *bp,
166 int map_count)
167{
168 ASSERT(bp->b_maps == NULL);
169 bp->b_map_count = map_count;
170
171 if (map_count == 1) {
f4b42421 172 bp->b_maps = &bp->__b_map;
3e85c868
DC
173 return 0;
174 }
175
176 bp->b_maps = kmem_zalloc(map_count * sizeof(struct xfs_buf_map),
177 KM_NOFS);
178 if (!bp->b_maps)
2451337d 179 return -ENOMEM;
3e85c868
DC
180 return 0;
181}
182
183/*
184 * Frees b_pages if it was allocated.
185 */
186static void
187xfs_buf_free_maps(
188 struct xfs_buf *bp)
189{
f4b42421 190 if (bp->b_maps != &bp->__b_map) {
3e85c868
DC
191 kmem_free(bp->b_maps);
192 bp->b_maps = NULL;
193 }
194}
195
4347b9d7 196struct xfs_buf *
3e85c868 197_xfs_buf_alloc(
4347b9d7 198 struct xfs_buftarg *target,
3e85c868
DC
199 struct xfs_buf_map *map,
200 int nmaps,
ce8e922c 201 xfs_buf_flags_t flags)
1da177e4 202{
4347b9d7 203 struct xfs_buf *bp;
3e85c868
DC
204 int error;
205 int i;
4347b9d7 206
aa5c158e 207 bp = kmem_zone_zalloc(xfs_buf_zone, KM_NOFS);
4347b9d7
CH
208 if (unlikely(!bp))
209 return NULL;
210
1da177e4 211 /*
12bcb3f7
DC
212 * We don't want certain flags to appear in b_flags unless they are
213 * specifically set by later operations on the buffer.
1da177e4 214 */
611c9946 215 flags &= ~(XBF_UNMAPPED | XBF_TRYLOCK | XBF_ASYNC | XBF_READ_AHEAD);
ce8e922c 216
ce8e922c 217 atomic_set(&bp->b_hold, 1);
430cbeb8 218 atomic_set(&bp->b_lru_ref, 1);
b4dd330b 219 init_completion(&bp->b_iowait);
430cbeb8 220 INIT_LIST_HEAD(&bp->b_lru);
ce8e922c 221 INIT_LIST_HEAD(&bp->b_list);
a731cd11 222 sema_init(&bp->b_sema, 0); /* held, no waiters */
a4082357 223 spin_lock_init(&bp->b_lock);
ce8e922c
NS
224 XB_SET_OWNER(bp);
225 bp->b_target = target;
3e85c868 226 bp->b_flags = flags;
de1cbee4 227
1da177e4 228 /*
aa0e8833
DC
229 * Set length and io_length to the same value initially.
230 * I/O routines should use io_length, which will be the same in
1da177e4
LT
231 * most cases but may be reset (e.g. XFS recovery).
232 */
3e85c868
DC
233 error = xfs_buf_get_maps(bp, nmaps);
234 if (error) {
235 kmem_zone_free(xfs_buf_zone, bp);
236 return NULL;
237 }
238
239 bp->b_bn = map[0].bm_bn;
240 bp->b_length = 0;
241 for (i = 0; i < nmaps; i++) {
242 bp->b_maps[i].bm_bn = map[i].bm_bn;
243 bp->b_maps[i].bm_len = map[i].bm_len;
244 bp->b_length += map[i].bm_len;
245 }
246 bp->b_io_length = bp->b_length;
247
ce8e922c
NS
248 atomic_set(&bp->b_pin_count, 0);
249 init_waitqueue_head(&bp->b_waiters);
250
ff6d6af2 251 XFS_STATS_INC(target->bt_mount, xb_create);
0b1b213f 252 trace_xfs_buf_init(bp, _RET_IP_);
4347b9d7
CH
253
254 return bp;
1da177e4
LT
255}
256
257/*
ce8e922c
NS
258 * Allocate a page array capable of holding a specified number
259 * of pages, and point the page buf at it.
1da177e4
LT
260 */
261STATIC int
ce8e922c
NS
262_xfs_buf_get_pages(
263 xfs_buf_t *bp,
87937bf8 264 int page_count)
1da177e4
LT
265{
266 /* Make sure that we have a page list */
ce8e922c 267 if (bp->b_pages == NULL) {
ce8e922c
NS
268 bp->b_page_count = page_count;
269 if (page_count <= XB_PAGES) {
270 bp->b_pages = bp->b_page_array;
1da177e4 271 } else {
ce8e922c 272 bp->b_pages = kmem_alloc(sizeof(struct page *) *
aa5c158e 273 page_count, KM_NOFS);
ce8e922c 274 if (bp->b_pages == NULL)
1da177e4
LT
275 return -ENOMEM;
276 }
ce8e922c 277 memset(bp->b_pages, 0, sizeof(struct page *) * page_count);
1da177e4
LT
278 }
279 return 0;
280}
281
282/*
ce8e922c 283 * Frees b_pages if it was allocated.
1da177e4
LT
284 */
285STATIC void
ce8e922c 286_xfs_buf_free_pages(
1da177e4
LT
287 xfs_buf_t *bp)
288{
ce8e922c 289 if (bp->b_pages != bp->b_page_array) {
f0e2d93c 290 kmem_free(bp->b_pages);
3fc98b1a 291 bp->b_pages = NULL;
1da177e4
LT
292 }
293}
294
295/*
296 * Releases the specified buffer.
297 *
298 * The modification state of any associated pages is left unchanged.
b46fe825 299 * The buffer must not be on any hash - use xfs_buf_rele instead for
1da177e4
LT
300 * hashed and refcounted buffers
301 */
302void
ce8e922c 303xfs_buf_free(
1da177e4
LT
304 xfs_buf_t *bp)
305{
0b1b213f 306 trace_xfs_buf_free(bp, _RET_IP_);
1da177e4 307
430cbeb8
DC
308 ASSERT(list_empty(&bp->b_lru));
309
0e6e847f 310 if (bp->b_flags & _XBF_PAGES) {
1da177e4
LT
311 uint i;
312
73c77e2c 313 if (xfs_buf_is_vmapped(bp))
8a262e57
AE
314 vm_unmap_ram(bp->b_addr - bp->b_offset,
315 bp->b_page_count);
1da177e4 316
948ecdb4
NS
317 for (i = 0; i < bp->b_page_count; i++) {
318 struct page *page = bp->b_pages[i];
319
0e6e847f 320 __free_page(page);
948ecdb4 321 }
0e6e847f
DC
322 } else if (bp->b_flags & _XBF_KMEM)
323 kmem_free(bp->b_addr);
3fc98b1a 324 _xfs_buf_free_pages(bp);
3e85c868 325 xfs_buf_free_maps(bp);
4347b9d7 326 kmem_zone_free(xfs_buf_zone, bp);
1da177e4
LT
327}
328
329/*
0e6e847f 330 * Allocates all the pages for buffer in question and builds it's page list.
1da177e4
LT
331 */
332STATIC int
0e6e847f 333xfs_buf_allocate_memory(
1da177e4
LT
334 xfs_buf_t *bp,
335 uint flags)
336{
aa0e8833 337 size_t size;
1da177e4 338 size_t nbytes, offset;
ce8e922c 339 gfp_t gfp_mask = xb_to_gfp(flags);
1da177e4 340 unsigned short page_count, i;
795cac72 341 xfs_off_t start, end;
1da177e4
LT
342 int error;
343
0e6e847f
DC
344 /*
345 * for buffers that are contained within a single page, just allocate
346 * the memory from the heap - there's no need for the complexity of
347 * page arrays to keep allocation down to order 0.
348 */
795cac72
DC
349 size = BBTOB(bp->b_length);
350 if (size < PAGE_SIZE) {
aa5c158e 351 bp->b_addr = kmem_alloc(size, KM_NOFS);
0e6e847f
DC
352 if (!bp->b_addr) {
353 /* low memory - use alloc_page loop instead */
354 goto use_alloc_page;
355 }
356
795cac72 357 if (((unsigned long)(bp->b_addr + size - 1) & PAGE_MASK) !=
0e6e847f
DC
358 ((unsigned long)bp->b_addr & PAGE_MASK)) {
359 /* b_addr spans two pages - use alloc_page instead */
360 kmem_free(bp->b_addr);
361 bp->b_addr = NULL;
362 goto use_alloc_page;
363 }
364 bp->b_offset = offset_in_page(bp->b_addr);
365 bp->b_pages = bp->b_page_array;
366 bp->b_pages[0] = virt_to_page(bp->b_addr);
367 bp->b_page_count = 1;
611c9946 368 bp->b_flags |= _XBF_KMEM;
0e6e847f
DC
369 return 0;
370 }
371
372use_alloc_page:
f4b42421
MT
373 start = BBTOB(bp->b_maps[0].bm_bn) >> PAGE_SHIFT;
374 end = (BBTOB(bp->b_maps[0].bm_bn + bp->b_length) + PAGE_SIZE - 1)
cbb7baab 375 >> PAGE_SHIFT;
795cac72 376 page_count = end - start;
87937bf8 377 error = _xfs_buf_get_pages(bp, page_count);
1da177e4
LT
378 if (unlikely(error))
379 return error;
1da177e4 380
ce8e922c 381 offset = bp->b_offset;
0e6e847f 382 bp->b_flags |= _XBF_PAGES;
1da177e4 383
ce8e922c 384 for (i = 0; i < bp->b_page_count; i++) {
1da177e4
LT
385 struct page *page;
386 uint retries = 0;
0e6e847f
DC
387retry:
388 page = alloc_page(gfp_mask);
1da177e4 389 if (unlikely(page == NULL)) {
ce8e922c
NS
390 if (flags & XBF_READ_AHEAD) {
391 bp->b_page_count = i;
2451337d 392 error = -ENOMEM;
0e6e847f 393 goto out_free_pages;
1da177e4
LT
394 }
395
396 /*
397 * This could deadlock.
398 *
399 * But until all the XFS lowlevel code is revamped to
400 * handle buffer allocation failures we can't do much.
401 */
402 if (!(++retries % 100))
4f10700a 403 xfs_err(NULL,
5bf97b1c
TH
404 "%s(%u) possible memory allocation deadlock in %s (mode:0x%x)",
405 current->comm, current->pid,
34a622b2 406 __func__, gfp_mask);
1da177e4 407
ff6d6af2 408 XFS_STATS_INC(bp->b_target->bt_mount, xb_page_retries);
8aa7e847 409 congestion_wait(BLK_RW_ASYNC, HZ/50);
1da177e4
LT
410 goto retry;
411 }
412
ff6d6af2 413 XFS_STATS_INC(bp->b_target->bt_mount, xb_page_found);
1da177e4 414
0e6e847f 415 nbytes = min_t(size_t, size, PAGE_SIZE - offset);
1da177e4 416 size -= nbytes;
ce8e922c 417 bp->b_pages[i] = page;
1da177e4
LT
418 offset = 0;
419 }
0e6e847f 420 return 0;
1da177e4 421
0e6e847f
DC
422out_free_pages:
423 for (i = 0; i < bp->b_page_count; i++)
424 __free_page(bp->b_pages[i]);
2aa6ba7b 425 bp->b_flags &= ~_XBF_PAGES;
1da177e4
LT
426 return error;
427}
428
429/*
25985edc 430 * Map buffer into kernel address-space if necessary.
1da177e4
LT
431 */
432STATIC int
ce8e922c 433_xfs_buf_map_pages(
1da177e4
LT
434 xfs_buf_t *bp,
435 uint flags)
436{
0e6e847f 437 ASSERT(bp->b_flags & _XBF_PAGES);
ce8e922c 438 if (bp->b_page_count == 1) {
0e6e847f 439 /* A single page buffer is always mappable */
ce8e922c 440 bp->b_addr = page_address(bp->b_pages[0]) + bp->b_offset;
611c9946
DC
441 } else if (flags & XBF_UNMAPPED) {
442 bp->b_addr = NULL;
443 } else {
a19fb380 444 int retried = 0;
ae687e58
DC
445 unsigned noio_flag;
446
447 /*
448 * vm_map_ram() will allocate auxillary structures (e.g.
449 * pagetables) with GFP_KERNEL, yet we are likely to be under
450 * GFP_NOFS context here. Hence we need to tell memory reclaim
451 * that we are in such a context via PF_MEMALLOC_NOIO to prevent
452 * memory reclaim re-entering the filesystem here and
453 * potentially deadlocking.
454 */
455 noio_flag = memalloc_noio_save();
a19fb380
DC
456 do {
457 bp->b_addr = vm_map_ram(bp->b_pages, bp->b_page_count,
458 -1, PAGE_KERNEL);
459 if (bp->b_addr)
460 break;
461 vm_unmap_aliases();
462 } while (retried++ <= 1);
ae687e58 463 memalloc_noio_restore(noio_flag);
a19fb380
DC
464
465 if (!bp->b_addr)
1da177e4 466 return -ENOMEM;
ce8e922c 467 bp->b_addr += bp->b_offset;
1da177e4
LT
468 }
469
470 return 0;
471}
472
473/*
474 * Finding and Reading Buffers
475 */
6031e73a
LS
476static int
477_xfs_buf_obj_cmp(
478 struct rhashtable_compare_arg *arg,
479 const void *obj)
480{
481 const struct xfs_buf_map *map = arg->key;
482 const struct xfs_buf *bp = obj;
483
484 /*
485 * The key hashing in the lookup path depends on the key being the
486 * first element of the compare_arg, make sure to assert this.
487 */
488 BUILD_BUG_ON(offsetof(struct xfs_buf_map, bm_bn) != 0);
489
490 if (bp->b_bn != map->bm_bn)
491 return 1;
492
493 if (unlikely(bp->b_length != map->bm_len)) {
494 /*
495 * found a block number match. If the range doesn't
496 * match, the only way this is allowed is if the buffer
497 * in the cache is stale and the transaction that made
498 * it stale has not yet committed. i.e. we are
499 * reallocating a busy extent. Skip this buffer and
500 * continue searching for an exact match.
501 */
502 ASSERT(bp->b_flags & XBF_STALE);
503 return 1;
504 }
505 return 0;
506}
507
508static const struct rhashtable_params xfs_buf_hash_params = {
509 .min_size = 32, /* empty AGs have minimal footprint */
510 .nelem_hint = 16,
511 .key_len = sizeof(xfs_daddr_t),
512 .key_offset = offsetof(struct xfs_buf, b_bn),
513 .head_offset = offsetof(struct xfs_buf, b_rhash_head),
514 .automatic_shrinking = true,
515 .obj_cmpfn = _xfs_buf_obj_cmp,
516};
517
518int
519xfs_buf_hash_init(
520 struct xfs_perag *pag)
521{
522 spin_lock_init(&pag->pag_buf_lock);
523 return rhashtable_init(&pag->pag_buf_hash, &xfs_buf_hash_params);
524}
525
526void
527xfs_buf_hash_destroy(
528 struct xfs_perag *pag)
529{
530 rhashtable_destroy(&pag->pag_buf_hash);
531}
1da177e4
LT
532
533/*
ce8e922c 534 * Look up, and creates if absent, a lockable buffer for
1da177e4 535 * a given range of an inode. The buffer is returned
eabbaf11 536 * locked. No I/O is implied by this call.
1da177e4
LT
537 */
538xfs_buf_t *
ce8e922c 539_xfs_buf_find(
e70b73f8 540 struct xfs_buftarg *btp,
3e85c868
DC
541 struct xfs_buf_map *map,
542 int nmaps,
ce8e922c
NS
543 xfs_buf_flags_t flags,
544 xfs_buf_t *new_bp)
1da177e4 545{
74f75a0c 546 struct xfs_perag *pag;
74f75a0c 547 xfs_buf_t *bp;
6031e73a 548 struct xfs_buf_map cmap = { .bm_bn = map[0].bm_bn };
10616b80 549 xfs_daddr_t eofs;
3e85c868 550 int i;
1da177e4 551
3e85c868 552 for (i = 0; i < nmaps; i++)
6031e73a 553 cmap.bm_len += map[i].bm_len;
1da177e4
LT
554
555 /* Check for IOs smaller than the sector size / not sector aligned */
6031e73a
LS
556 ASSERT(!(BBTOB(cmap.bm_len) < btp->bt_meta_sectorsize));
557 ASSERT(!(BBTOB(cmap.bm_bn) & (xfs_off_t)btp->bt_meta_sectormask));
1da177e4 558
10616b80
DC
559 /*
560 * Corrupted block numbers can get through to here, unfortunately, so we
561 * have to check that the buffer falls within the filesystem bounds.
562 */
563 eofs = XFS_FSB_TO_BB(btp->bt_mount, btp->bt_mount->m_sb.sb_dblocks);
6031e73a 564 if (cmap.bm_bn < 0 || cmap.bm_bn >= eofs) {
10616b80 565 /*
2451337d 566 * XXX (dgc): we should really be returning -EFSCORRUPTED here,
10616b80
DC
567 * but none of the higher level infrastructure supports
568 * returning a specific error on buffer lookup failures.
569 */
570 xfs_alert(btp->bt_mount,
571 "%s: Block out of range: block 0x%llx, EOFS 0x%llx ",
6031e73a 572 __func__, cmap.bm_bn, eofs);
7bc0dc27 573 WARN_ON(1);
10616b80
DC
574 return NULL;
575 }
576
74f75a0c 577 pag = xfs_perag_get(btp->bt_mount,
6031e73a 578 xfs_daddr_to_agno(btp->bt_mount, cmap.bm_bn));
74f75a0c 579
74f75a0c 580 spin_lock(&pag->pag_buf_lock);
6031e73a
LS
581 bp = rhashtable_lookup_fast(&pag->pag_buf_hash, &cmap,
582 xfs_buf_hash_params);
583 if (bp) {
584 atomic_inc(&bp->b_hold);
585 goto found;
1da177e4
LT
586 }
587
588 /* No match found */
ce8e922c 589 if (new_bp) {
74f75a0c
DC
590 /* the buffer keeps the perag reference until it is freed */
591 new_bp->b_pag = pag;
6031e73a
LS
592 rhashtable_insert_fast(&pag->pag_buf_hash,
593 &new_bp->b_rhash_head,
594 xfs_buf_hash_params);
74f75a0c 595 spin_unlock(&pag->pag_buf_lock);
1da177e4 596 } else {
ff6d6af2 597 XFS_STATS_INC(btp->bt_mount, xb_miss_locked);
74f75a0c
DC
598 spin_unlock(&pag->pag_buf_lock);
599 xfs_perag_put(pag);
1da177e4 600 }
ce8e922c 601 return new_bp;
1da177e4
LT
602
603found:
74f75a0c
DC
604 spin_unlock(&pag->pag_buf_lock);
605 xfs_perag_put(pag);
1da177e4 606
0c842ad4
CH
607 if (!xfs_buf_trylock(bp)) {
608 if (flags & XBF_TRYLOCK) {
ce8e922c 609 xfs_buf_rele(bp);
ff6d6af2 610 XFS_STATS_INC(btp->bt_mount, xb_busy_locked);
ce8e922c 611 return NULL;
1da177e4 612 }
0c842ad4 613 xfs_buf_lock(bp);
ff6d6af2 614 XFS_STATS_INC(btp->bt_mount, xb_get_locked_waited);
1da177e4
LT
615 }
616
0e6e847f
DC
617 /*
618 * if the buffer is stale, clear all the external state associated with
619 * it. We need to keep flags such as how we allocated the buffer memory
620 * intact here.
621 */
ce8e922c
NS
622 if (bp->b_flags & XBF_STALE) {
623 ASSERT((bp->b_flags & _XBF_DELWRI_Q) == 0);
cfb02852 624 ASSERT(bp->b_iodone == NULL);
611c9946 625 bp->b_flags &= _XBF_KMEM | _XBF_PAGES;
1813dd64 626 bp->b_ops = NULL;
2f926587 627 }
0b1b213f
CH
628
629 trace_xfs_buf_find(bp, flags, _RET_IP_);
ff6d6af2 630 XFS_STATS_INC(btp->bt_mount, xb_get_locked);
ce8e922c 631 return bp;
1da177e4
LT
632}
633
634/*
3815832a
DC
635 * Assembles a buffer covering the specified range. The code is optimised for
636 * cache hits, as metadata intensive workloads will see 3 orders of magnitude
637 * more hits than misses.
1da177e4 638 */
3815832a 639struct xfs_buf *
6dde2707
DC
640xfs_buf_get_map(
641 struct xfs_buftarg *target,
642 struct xfs_buf_map *map,
643 int nmaps,
ce8e922c 644 xfs_buf_flags_t flags)
1da177e4 645{
3815832a
DC
646 struct xfs_buf *bp;
647 struct xfs_buf *new_bp;
0e6e847f 648 int error = 0;
1da177e4 649
6dde2707 650 bp = _xfs_buf_find(target, map, nmaps, flags, NULL);
3815832a
DC
651 if (likely(bp))
652 goto found;
653
6dde2707 654 new_bp = _xfs_buf_alloc(target, map, nmaps, flags);
ce8e922c 655 if (unlikely(!new_bp))
1da177e4
LT
656 return NULL;
657
fe2429b0
DC
658 error = xfs_buf_allocate_memory(new_bp, flags);
659 if (error) {
3e85c868 660 xfs_buf_free(new_bp);
fe2429b0
DC
661 return NULL;
662 }
663
6dde2707 664 bp = _xfs_buf_find(target, map, nmaps, flags, new_bp);
3815832a 665 if (!bp) {
fe2429b0 666 xfs_buf_free(new_bp);
3815832a
DC
667 return NULL;
668 }
669
fe2429b0
DC
670 if (bp != new_bp)
671 xfs_buf_free(new_bp);
1da177e4 672
3815832a 673found:
611c9946 674 if (!bp->b_addr) {
ce8e922c 675 error = _xfs_buf_map_pages(bp, flags);
1da177e4 676 if (unlikely(error)) {
4f10700a 677 xfs_warn(target->bt_mount,
08e96e1a 678 "%s: failed to map pagesn", __func__);
a8acad70
DC
679 xfs_buf_relse(bp);
680 return NULL;
1da177e4
LT
681 }
682 }
683
b79f4a1c
DC
684 /*
685 * Clear b_error if this is a lookup from a caller that doesn't expect
686 * valid data to be found in the buffer.
687 */
688 if (!(flags & XBF_READ))
689 xfs_buf_ioerror(bp, 0);
690
ff6d6af2 691 XFS_STATS_INC(target->bt_mount, xb_get);
0b1b213f 692 trace_xfs_buf_get(bp, flags, _RET_IP_);
ce8e922c 693 return bp;
1da177e4
LT
694}
695
5d765b97
CH
696STATIC int
697_xfs_buf_read(
698 xfs_buf_t *bp,
699 xfs_buf_flags_t flags)
700{
43ff2122 701 ASSERT(!(flags & XBF_WRITE));
f4b42421 702 ASSERT(bp->b_maps[0].bm_bn != XFS_BUF_DADDR_NULL);
5d765b97 703
43ff2122 704 bp->b_flags &= ~(XBF_WRITE | XBF_ASYNC | XBF_READ_AHEAD);
1d5ae5df 705 bp->b_flags |= flags & (XBF_READ | XBF_ASYNC | XBF_READ_AHEAD);
5d765b97 706
595bff75
DC
707 if (flags & XBF_ASYNC) {
708 xfs_buf_submit(bp);
0e95f19a 709 return 0;
595bff75
DC
710 }
711 return xfs_buf_submit_wait(bp);
5d765b97
CH
712}
713
1da177e4 714xfs_buf_t *
6dde2707
DC
715xfs_buf_read_map(
716 struct xfs_buftarg *target,
717 struct xfs_buf_map *map,
718 int nmaps,
c3f8fc73 719 xfs_buf_flags_t flags,
1813dd64 720 const struct xfs_buf_ops *ops)
1da177e4 721{
6dde2707 722 struct xfs_buf *bp;
ce8e922c
NS
723
724 flags |= XBF_READ;
725
6dde2707 726 bp = xfs_buf_get_map(target, map, nmaps, flags);
ce8e922c 727 if (bp) {
0b1b213f
CH
728 trace_xfs_buf_read(bp, flags, _RET_IP_);
729
b0388bf1 730 if (!(bp->b_flags & XBF_DONE)) {
ff6d6af2 731 XFS_STATS_INC(target->bt_mount, xb_get_read);
1813dd64 732 bp->b_ops = ops;
5d765b97 733 _xfs_buf_read(bp, flags);
ce8e922c 734 } else if (flags & XBF_ASYNC) {
1da177e4
LT
735 /*
736 * Read ahead call which is already satisfied,
737 * drop the buffer
738 */
a8acad70
DC
739 xfs_buf_relse(bp);
740 return NULL;
1da177e4 741 } else {
1da177e4 742 /* We do not want read in the flags */
ce8e922c 743 bp->b_flags &= ~XBF_READ;
1da177e4
LT
744 }
745 }
746
ce8e922c 747 return bp;
1da177e4
LT
748}
749
1da177e4 750/*
ce8e922c
NS
751 * If we are not low on memory then do the readahead in a deadlock
752 * safe manner.
1da177e4
LT
753 */
754void
6dde2707
DC
755xfs_buf_readahead_map(
756 struct xfs_buftarg *target,
757 struct xfs_buf_map *map,
c3f8fc73 758 int nmaps,
1813dd64 759 const struct xfs_buf_ops *ops)
1da177e4 760{
0e6e847f 761 if (bdi_read_congested(target->bt_bdi))
1da177e4
LT
762 return;
763
6dde2707 764 xfs_buf_read_map(target, map, nmaps,
1813dd64 765 XBF_TRYLOCK|XBF_ASYNC|XBF_READ_AHEAD, ops);
1da177e4
LT
766}
767
5adc94c2
DC
768/*
769 * Read an uncached buffer from disk. Allocates and returns a locked
770 * buffer containing the disk contents or nothing.
771 */
ba372674 772int
5adc94c2 773xfs_buf_read_uncached(
5adc94c2
DC
774 struct xfs_buftarg *target,
775 xfs_daddr_t daddr,
e70b73f8 776 size_t numblks,
c3f8fc73 777 int flags,
ba372674 778 struct xfs_buf **bpp,
1813dd64 779 const struct xfs_buf_ops *ops)
5adc94c2 780{
eab4e633 781 struct xfs_buf *bp;
5adc94c2 782
ba372674
DC
783 *bpp = NULL;
784
e70b73f8 785 bp = xfs_buf_get_uncached(target, numblks, flags);
5adc94c2 786 if (!bp)
ba372674 787 return -ENOMEM;
5adc94c2
DC
788
789 /* set up the buffer for a read IO */
3e85c868 790 ASSERT(bp->b_map_count == 1);
ba372674 791 bp->b_bn = XFS_BUF_DADDR_NULL; /* always null for uncached buffers */
3e85c868 792 bp->b_maps[0].bm_bn = daddr;
cbb7baab 793 bp->b_flags |= XBF_READ;
1813dd64 794 bp->b_ops = ops;
5adc94c2 795
595bff75 796 xfs_buf_submit_wait(bp);
ba372674
DC
797 if (bp->b_error) {
798 int error = bp->b_error;
83a0adc3 799 xfs_buf_relse(bp);
ba372674 800 return error;
83a0adc3 801 }
ba372674
DC
802
803 *bpp = bp;
804 return 0;
1da177e4
LT
805}
806
44396476
DC
807/*
808 * Return a buffer allocated as an empty buffer and associated to external
809 * memory via xfs_buf_associate_memory() back to it's empty state.
810 */
811void
812xfs_buf_set_empty(
813 struct xfs_buf *bp,
e70b73f8 814 size_t numblks)
44396476
DC
815{
816 if (bp->b_pages)
817 _xfs_buf_free_pages(bp);
818
819 bp->b_pages = NULL;
820 bp->b_page_count = 0;
821 bp->b_addr = NULL;
4e94b71b 822 bp->b_length = numblks;
aa0e8833 823 bp->b_io_length = numblks;
3e85c868
DC
824
825 ASSERT(bp->b_map_count == 1);
44396476 826 bp->b_bn = XFS_BUF_DADDR_NULL;
3e85c868
DC
827 bp->b_maps[0].bm_bn = XFS_BUF_DADDR_NULL;
828 bp->b_maps[0].bm_len = bp->b_length;
44396476
DC
829}
830
1da177e4
LT
831static inline struct page *
832mem_to_page(
833 void *addr)
834{
9e2779fa 835 if ((!is_vmalloc_addr(addr))) {
1da177e4
LT
836 return virt_to_page(addr);
837 } else {
838 return vmalloc_to_page(addr);
839 }
840}
841
842int
ce8e922c
NS
843xfs_buf_associate_memory(
844 xfs_buf_t *bp,
1da177e4
LT
845 void *mem,
846 size_t len)
847{
848 int rval;
849 int i = 0;
d1afb678
LM
850 unsigned long pageaddr;
851 unsigned long offset;
852 size_t buflen;
1da177e4
LT
853 int page_count;
854
0e6e847f 855 pageaddr = (unsigned long)mem & PAGE_MASK;
d1afb678 856 offset = (unsigned long)mem - pageaddr;
0e6e847f
DC
857 buflen = PAGE_ALIGN(len + offset);
858 page_count = buflen >> PAGE_SHIFT;
1da177e4
LT
859
860 /* Free any previous set of page pointers */
ce8e922c
NS
861 if (bp->b_pages)
862 _xfs_buf_free_pages(bp);
1da177e4 863
ce8e922c
NS
864 bp->b_pages = NULL;
865 bp->b_addr = mem;
1da177e4 866
87937bf8 867 rval = _xfs_buf_get_pages(bp, page_count);
1da177e4
LT
868 if (rval)
869 return rval;
870
ce8e922c 871 bp->b_offset = offset;
d1afb678
LM
872
873 for (i = 0; i < bp->b_page_count; i++) {
874 bp->b_pages[i] = mem_to_page((void *)pageaddr);
0e6e847f 875 pageaddr += PAGE_SIZE;
1da177e4 876 }
1da177e4 877
aa0e8833 878 bp->b_io_length = BTOBB(len);
4e94b71b 879 bp->b_length = BTOBB(buflen);
1da177e4
LT
880
881 return 0;
882}
883
884xfs_buf_t *
686865f7
DC
885xfs_buf_get_uncached(
886 struct xfs_buftarg *target,
e70b73f8 887 size_t numblks,
686865f7 888 int flags)
1da177e4 889{
e70b73f8 890 unsigned long page_count;
1fa40b01 891 int error, i;
3e85c868
DC
892 struct xfs_buf *bp;
893 DEFINE_SINGLE_BUF_MAP(map, XFS_BUF_DADDR_NULL, numblks);
1da177e4 894
c891c30a
BF
895 /* flags might contain irrelevant bits, pass only what we care about */
896 bp = _xfs_buf_alloc(target, &map, 1, flags & XBF_NO_IOACCT);
1da177e4
LT
897 if (unlikely(bp == NULL))
898 goto fail;
1da177e4 899
e70b73f8 900 page_count = PAGE_ALIGN(numblks << BBSHIFT) >> PAGE_SHIFT;
87937bf8 901 error = _xfs_buf_get_pages(bp, page_count);
1fa40b01 902 if (error)
1da177e4
LT
903 goto fail_free_buf;
904
1fa40b01 905 for (i = 0; i < page_count; i++) {
686865f7 906 bp->b_pages[i] = alloc_page(xb_to_gfp(flags));
1fa40b01
CH
907 if (!bp->b_pages[i])
908 goto fail_free_mem;
1da177e4 909 }
1fa40b01 910 bp->b_flags |= _XBF_PAGES;
1da177e4 911
611c9946 912 error = _xfs_buf_map_pages(bp, 0);
1fa40b01 913 if (unlikely(error)) {
4f10700a 914 xfs_warn(target->bt_mount,
08e96e1a 915 "%s: failed to map pages", __func__);
1da177e4 916 goto fail_free_mem;
1fa40b01 917 }
1da177e4 918
686865f7 919 trace_xfs_buf_get_uncached(bp, _RET_IP_);
1da177e4 920 return bp;
1fa40b01 921
1da177e4 922 fail_free_mem:
1fa40b01
CH
923 while (--i >= 0)
924 __free_page(bp->b_pages[i]);
ca165b88 925 _xfs_buf_free_pages(bp);
1da177e4 926 fail_free_buf:
3e85c868 927 xfs_buf_free_maps(bp);
4347b9d7 928 kmem_zone_free(xfs_buf_zone, bp);
1da177e4
LT
929 fail:
930 return NULL;
931}
932
933/*
1da177e4
LT
934 * Increment reference count on buffer, to hold the buffer concurrently
935 * with another thread which may release (free) the buffer asynchronously.
1da177e4
LT
936 * Must hold the buffer already to call this function.
937 */
938void
ce8e922c
NS
939xfs_buf_hold(
940 xfs_buf_t *bp)
1da177e4 941{
0b1b213f 942 trace_xfs_buf_hold(bp, _RET_IP_);
ce8e922c 943 atomic_inc(&bp->b_hold);
1da177e4
LT
944}
945
946/*
9c7504aa
BF
947 * Release a hold on the specified buffer. If the hold count is 1, the buffer is
948 * placed on LRU or freed (depending on b_lru_ref).
1da177e4
LT
949 */
950void
ce8e922c
NS
951xfs_buf_rele(
952 xfs_buf_t *bp)
1da177e4 953{
74f75a0c 954 struct xfs_perag *pag = bp->b_pag;
9c7504aa
BF
955 bool release;
956 bool freebuf = false;
1da177e4 957
0b1b213f 958 trace_xfs_buf_rele(bp, _RET_IP_);
1da177e4 959
74f75a0c 960 if (!pag) {
430cbeb8 961 ASSERT(list_empty(&bp->b_lru));
9c7504aa
BF
962 if (atomic_dec_and_test(&bp->b_hold)) {
963 xfs_buf_ioacct_dec(bp);
fad3aa1e 964 xfs_buf_free(bp);
9c7504aa 965 }
fad3aa1e
NS
966 return;
967 }
968
3790689f 969 ASSERT(atomic_read(&bp->b_hold) > 0);
a4082357 970
9c7504aa
BF
971 release = atomic_dec_and_lock(&bp->b_hold, &pag->pag_buf_lock);
972 spin_lock(&bp->b_lock);
973 if (!release) {
974 /*
975 * Drop the in-flight state if the buffer is already on the LRU
976 * and it holds the only reference. This is racy because we
977 * haven't acquired the pag lock, but the use of _XBF_IN_FLIGHT
978 * ensures the decrement occurs only once per-buf.
979 */
980 if ((atomic_read(&bp->b_hold) == 1) && !list_empty(&bp->b_lru))
981 xfs_buf_ioacct_dec(bp);
982 goto out_unlock;
983 }
984
985 /* the last reference has been dropped ... */
986 xfs_buf_ioacct_dec(bp);
987 if (!(bp->b_flags & XBF_STALE) && atomic_read(&bp->b_lru_ref)) {
988 /*
989 * If the buffer is added to the LRU take a new reference to the
990 * buffer for the LRU and clear the (now stale) dispose list
991 * state flag
992 */
993 if (list_lru_add(&bp->b_target->bt_lru, &bp->b_lru)) {
994 bp->b_state &= ~XFS_BSTATE_DISPOSE;
995 atomic_inc(&bp->b_hold);
1da177e4 996 }
9c7504aa
BF
997 spin_unlock(&pag->pag_buf_lock);
998 } else {
999 /*
1000 * most of the time buffers will already be removed from the
1001 * LRU, so optimise that case by checking for the
1002 * XFS_BSTATE_DISPOSE flag indicating the last list the buffer
1003 * was on was the disposal list
1004 */
1005 if (!(bp->b_state & XFS_BSTATE_DISPOSE)) {
1006 list_lru_del(&bp->b_target->bt_lru, &bp->b_lru);
1007 } else {
1008 ASSERT(list_empty(&bp->b_lru));
1da177e4 1009 }
9c7504aa
BF
1010
1011 ASSERT(!(bp->b_flags & _XBF_DELWRI_Q));
6031e73a
LS
1012 rhashtable_remove_fast(&pag->pag_buf_hash, &bp->b_rhash_head,
1013 xfs_buf_hash_params);
9c7504aa
BF
1014 spin_unlock(&pag->pag_buf_lock);
1015 xfs_perag_put(pag);
1016 freebuf = true;
1da177e4 1017 }
9c7504aa
BF
1018
1019out_unlock:
1020 spin_unlock(&bp->b_lock);
1021
1022 if (freebuf)
1023 xfs_buf_free(bp);
1da177e4
LT
1024}
1025
1026
1027/*
0e6e847f 1028 * Lock a buffer object, if it is not already locked.
90810b9e
DC
1029 *
1030 * If we come across a stale, pinned, locked buffer, we know that we are
1031 * being asked to lock a buffer that has been reallocated. Because it is
1032 * pinned, we know that the log has not been pushed to disk and hence it
1033 * will still be locked. Rather than continuing to have trylock attempts
1034 * fail until someone else pushes the log, push it ourselves before
1035 * returning. This means that the xfsaild will not get stuck trying
1036 * to push on stale inode buffers.
1da177e4
LT
1037 */
1038int
0c842ad4
CH
1039xfs_buf_trylock(
1040 struct xfs_buf *bp)
1da177e4
LT
1041{
1042 int locked;
1043
ce8e922c 1044 locked = down_trylock(&bp->b_sema) == 0;
479c6412 1045 if (locked) {
ce8e922c 1046 XB_SET_OWNER(bp);
479c6412
DW
1047 trace_xfs_buf_trylock(bp, _RET_IP_);
1048 } else {
1049 trace_xfs_buf_trylock_fail(bp, _RET_IP_);
1050 }
0c842ad4 1051 return locked;
1da177e4 1052}
1da177e4
LT
1053
1054/*
0e6e847f 1055 * Lock a buffer object.
ed3b4d6c
DC
1056 *
1057 * If we come across a stale, pinned, locked buffer, we know that we
1058 * are being asked to lock a buffer that has been reallocated. Because
1059 * it is pinned, we know that the log has not been pushed to disk and
1060 * hence it will still be locked. Rather than sleeping until someone
1061 * else pushes the log, push it ourselves before trying to get the lock.
1da177e4 1062 */
ce8e922c
NS
1063void
1064xfs_buf_lock(
0c842ad4 1065 struct xfs_buf *bp)
1da177e4 1066{
0b1b213f
CH
1067 trace_xfs_buf_lock(bp, _RET_IP_);
1068
ed3b4d6c 1069 if (atomic_read(&bp->b_pin_count) && (bp->b_flags & XBF_STALE))
ebad861b 1070 xfs_log_force(bp->b_target->bt_mount, 0);
ce8e922c
NS
1071 down(&bp->b_sema);
1072 XB_SET_OWNER(bp);
0b1b213f
CH
1073
1074 trace_xfs_buf_lock_done(bp, _RET_IP_);
1da177e4
LT
1075}
1076
1da177e4 1077void
ce8e922c 1078xfs_buf_unlock(
0c842ad4 1079 struct xfs_buf *bp)
1da177e4 1080{
ce8e922c
NS
1081 XB_CLEAR_OWNER(bp);
1082 up(&bp->b_sema);
0b1b213f
CH
1083
1084 trace_xfs_buf_unlock(bp, _RET_IP_);
1da177e4
LT
1085}
1086
ce8e922c
NS
1087STATIC void
1088xfs_buf_wait_unpin(
1089 xfs_buf_t *bp)
1da177e4
LT
1090{
1091 DECLARE_WAITQUEUE (wait, current);
1092
ce8e922c 1093 if (atomic_read(&bp->b_pin_count) == 0)
1da177e4
LT
1094 return;
1095
ce8e922c 1096 add_wait_queue(&bp->b_waiters, &wait);
1da177e4
LT
1097 for (;;) {
1098 set_current_state(TASK_UNINTERRUPTIBLE);
ce8e922c 1099 if (atomic_read(&bp->b_pin_count) == 0)
1da177e4 1100 break;
7eaceacc 1101 io_schedule();
1da177e4 1102 }
ce8e922c 1103 remove_wait_queue(&bp->b_waiters, &wait);
1da177e4
LT
1104 set_current_state(TASK_RUNNING);
1105}
1106
1107/*
1108 * Buffer Utility Routines
1109 */
1110
e8aaba9a
DC
1111void
1112xfs_buf_ioend(
1113 struct xfs_buf *bp)
1da177e4 1114{
e8aaba9a
DC
1115 bool read = bp->b_flags & XBF_READ;
1116
1117 trace_xfs_buf_iodone(bp, _RET_IP_);
1813dd64
DC
1118
1119 bp->b_flags &= ~(XBF_READ | XBF_WRITE | XBF_READ_AHEAD);
d5929de8 1120
61be9c52
DC
1121 /*
1122 * Pull in IO completion errors now. We are guaranteed to be running
1123 * single threaded, so we don't need the lock to read b_io_error.
1124 */
1125 if (!bp->b_error && bp->b_io_error)
1126 xfs_buf_ioerror(bp, bp->b_io_error);
1127
e8aaba9a
DC
1128 /* Only validate buffers that were read without errors */
1129 if (read && !bp->b_error && bp->b_ops) {
1130 ASSERT(!bp->b_iodone);
1813dd64 1131 bp->b_ops->verify_read(bp);
e8aaba9a
DC
1132 }
1133
1134 if (!bp->b_error)
1135 bp->b_flags |= XBF_DONE;
1da177e4 1136
80f6c29d 1137 if (bp->b_iodone)
ce8e922c
NS
1138 (*(bp->b_iodone))(bp);
1139 else if (bp->b_flags & XBF_ASYNC)
1da177e4 1140 xfs_buf_relse(bp);
595bff75 1141 else
1813dd64 1142 complete(&bp->b_iowait);
1da177e4
LT
1143}
1144
e8aaba9a
DC
1145static void
1146xfs_buf_ioend_work(
1147 struct work_struct *work)
1da177e4 1148{
e8aaba9a 1149 struct xfs_buf *bp =
b29c70f5 1150 container_of(work, xfs_buf_t, b_ioend_work);
0b1b213f 1151
e8aaba9a
DC
1152 xfs_buf_ioend(bp);
1153}
1da177e4 1154
211fe1a4 1155static void
e8aaba9a
DC
1156xfs_buf_ioend_async(
1157 struct xfs_buf *bp)
1158{
b29c70f5
BF
1159 INIT_WORK(&bp->b_ioend_work, xfs_buf_ioend_work);
1160 queue_work(bp->b_ioend_wq, &bp->b_ioend_work);
1da177e4
LT
1161}
1162
1da177e4 1163void
ce8e922c
NS
1164xfs_buf_ioerror(
1165 xfs_buf_t *bp,
1166 int error)
1da177e4 1167{
2451337d
DC
1168 ASSERT(error <= 0 && error >= -1000);
1169 bp->b_error = error;
0b1b213f 1170 trace_xfs_buf_ioerror(bp, error, _RET_IP_);
1da177e4
LT
1171}
1172
901796af
CH
1173void
1174xfs_buf_ioerror_alert(
1175 struct xfs_buf *bp,
1176 const char *func)
1177{
1178 xfs_alert(bp->b_target->bt_mount,
aa0e8833 1179"metadata I/O error: block 0x%llx (\"%s\") error %d numblks %d",
2451337d 1180 (__uint64_t)XFS_BUF_ADDR(bp), func, -bp->b_error, bp->b_length);
901796af
CH
1181}
1182
a2dcf5df
CH
1183int
1184xfs_bwrite(
1185 struct xfs_buf *bp)
1186{
1187 int error;
1188
1189 ASSERT(xfs_buf_islocked(bp));
1190
1191 bp->b_flags |= XBF_WRITE;
27187754
DC
1192 bp->b_flags &= ~(XBF_ASYNC | XBF_READ | _XBF_DELWRI_Q |
1193 XBF_WRITE_FAIL | XBF_DONE);
a2dcf5df 1194
595bff75 1195 error = xfs_buf_submit_wait(bp);
a2dcf5df
CH
1196 if (error) {
1197 xfs_force_shutdown(bp->b_target->bt_mount,
1198 SHUTDOWN_META_IO_ERROR);
1199 }
1200 return error;
1201}
1202
9bdd9bd6 1203static void
ce8e922c 1204xfs_buf_bio_end_io(
4246a0b6 1205 struct bio *bio)
1da177e4 1206{
9bdd9bd6 1207 struct xfs_buf *bp = (struct xfs_buf *)bio->bi_private;
1da177e4 1208
37eb17e6
DC
1209 /*
1210 * don't overwrite existing errors - otherwise we can lose errors on
1211 * buffers that require multiple bios to complete.
1212 */
9bdd9bd6
BF
1213 if (bio->bi_error)
1214 cmpxchg(&bp->b_io_error, 0, bio->bi_error);
1da177e4 1215
37eb17e6 1216 if (!bp->b_error && xfs_buf_is_vmapped(bp) && (bp->b_flags & XBF_READ))
73c77e2c
JB
1217 invalidate_kernel_vmap_range(bp->b_addr, xfs_buf_vmap_len(bp));
1218
e8aaba9a
DC
1219 if (atomic_dec_and_test(&bp->b_io_remaining) == 1)
1220 xfs_buf_ioend_async(bp);
1da177e4 1221 bio_put(bio);
1da177e4
LT
1222}
1223
3e85c868
DC
1224static void
1225xfs_buf_ioapply_map(
1226 struct xfs_buf *bp,
1227 int map,
1228 int *buf_offset,
1229 int *count,
50bfcd0c
MC
1230 int op,
1231 int op_flags)
1da177e4 1232{
3e85c868
DC
1233 int page_index;
1234 int total_nr_pages = bp->b_page_count;
1235 int nr_pages;
1236 struct bio *bio;
1237 sector_t sector = bp->b_maps[map].bm_bn;
1238 int size;
1239 int offset;
1da177e4 1240
ce8e922c 1241 total_nr_pages = bp->b_page_count;
1da177e4 1242
3e85c868
DC
1243 /* skip the pages in the buffer before the start offset */
1244 page_index = 0;
1245 offset = *buf_offset;
1246 while (offset >= PAGE_SIZE) {
1247 page_index++;
1248 offset -= PAGE_SIZE;
f538d4da
CH
1249 }
1250
3e85c868
DC
1251 /*
1252 * Limit the IO size to the length of the current vector, and update the
1253 * remaining IO count for the next time around.
1254 */
1255 size = min_t(int, BBTOB(bp->b_maps[map].bm_len), *count);
1256 *count -= size;
1257 *buf_offset += size;
34951f5c 1258
1da177e4 1259next_chunk:
ce8e922c 1260 atomic_inc(&bp->b_io_remaining);
c908e380 1261 nr_pages = min(total_nr_pages, BIO_MAX_PAGES);
1da177e4
LT
1262
1263 bio = bio_alloc(GFP_NOIO, nr_pages);
ce8e922c 1264 bio->bi_bdev = bp->b_target->bt_bdev;
4f024f37 1265 bio->bi_iter.bi_sector = sector;
ce8e922c
NS
1266 bio->bi_end_io = xfs_buf_bio_end_io;
1267 bio->bi_private = bp;
50bfcd0c 1268 bio_set_op_attrs(bio, op, op_flags);
0e6e847f 1269
3e85c868 1270 for (; size && nr_pages; nr_pages--, page_index++) {
0e6e847f 1271 int rbytes, nbytes = PAGE_SIZE - offset;
1da177e4
LT
1272
1273 if (nbytes > size)
1274 nbytes = size;
1275
3e85c868
DC
1276 rbytes = bio_add_page(bio, bp->b_pages[page_index], nbytes,
1277 offset);
ce8e922c 1278 if (rbytes < nbytes)
1da177e4
LT
1279 break;
1280
1281 offset = 0;
aa0e8833 1282 sector += BTOBB(nbytes);
1da177e4
LT
1283 size -= nbytes;
1284 total_nr_pages--;
1285 }
1286
4f024f37 1287 if (likely(bio->bi_iter.bi_size)) {
73c77e2c
JB
1288 if (xfs_buf_is_vmapped(bp)) {
1289 flush_kernel_vmap_range(bp->b_addr,
1290 xfs_buf_vmap_len(bp));
1291 }
4e49ea4a 1292 submit_bio(bio);
1da177e4
LT
1293 if (size)
1294 goto next_chunk;
1295 } else {
37eb17e6
DC
1296 /*
1297 * This is guaranteed not to be the last io reference count
595bff75 1298 * because the caller (xfs_buf_submit) holds a count itself.
37eb17e6
DC
1299 */
1300 atomic_dec(&bp->b_io_remaining);
2451337d 1301 xfs_buf_ioerror(bp, -EIO);
ec53d1db 1302 bio_put(bio);
1da177e4 1303 }
3e85c868
DC
1304
1305}
1306
1307STATIC void
1308_xfs_buf_ioapply(
1309 struct xfs_buf *bp)
1310{
1311 struct blk_plug plug;
50bfcd0c
MC
1312 int op;
1313 int op_flags = 0;
3e85c868
DC
1314 int offset;
1315 int size;
1316 int i;
1317
c163f9a1
DC
1318 /*
1319 * Make sure we capture only current IO errors rather than stale errors
1320 * left over from previous use of the buffer (e.g. failed readahead).
1321 */
1322 bp->b_error = 0;
1323
b29c70f5
BF
1324 /*
1325 * Initialize the I/O completion workqueue if we haven't yet or the
1326 * submitter has not opted to specify a custom one.
1327 */
1328 if (!bp->b_ioend_wq)
1329 bp->b_ioend_wq = bp->b_target->bt_mount->m_buf_workqueue;
1330
3e85c868 1331 if (bp->b_flags & XBF_WRITE) {
50bfcd0c 1332 op = REQ_OP_WRITE;
3e85c868 1333 if (bp->b_flags & XBF_SYNCIO)
70fd7614 1334 op_flags = REQ_SYNC;
3e85c868 1335 if (bp->b_flags & XBF_FUA)
50bfcd0c 1336 op_flags |= REQ_FUA;
3e85c868 1337 if (bp->b_flags & XBF_FLUSH)
28a8f0d3 1338 op_flags |= REQ_PREFLUSH;
1813dd64
DC
1339
1340 /*
1341 * Run the write verifier callback function if it exists. If
1342 * this function fails it will mark the buffer with an error and
1343 * the IO should not be dispatched.
1344 */
1345 if (bp->b_ops) {
1346 bp->b_ops->verify_write(bp);
1347 if (bp->b_error) {
1348 xfs_force_shutdown(bp->b_target->bt_mount,
1349 SHUTDOWN_CORRUPT_INCORE);
1350 return;
1351 }
400b9d88
DC
1352 } else if (bp->b_bn != XFS_BUF_DADDR_NULL) {
1353 struct xfs_mount *mp = bp->b_target->bt_mount;
1354
1355 /*
1356 * non-crc filesystems don't attach verifiers during
1357 * log recovery, so don't warn for such filesystems.
1358 */
1359 if (xfs_sb_version_hascrc(&mp->m_sb)) {
1360 xfs_warn(mp,
1361 "%s: no ops on block 0x%llx/0x%x",
1362 __func__, bp->b_bn, bp->b_length);
1363 xfs_hex_dump(bp->b_addr, 64);
1364 dump_stack();
1365 }
1813dd64 1366 }
3e85c868 1367 } else if (bp->b_flags & XBF_READ_AHEAD) {
50bfcd0c
MC
1368 op = REQ_OP_READ;
1369 op_flags = REQ_RAHEAD;
3e85c868 1370 } else {
50bfcd0c 1371 op = REQ_OP_READ;
3e85c868
DC
1372 }
1373
1374 /* we only use the buffer cache for meta-data */
50bfcd0c 1375 op_flags |= REQ_META;
3e85c868
DC
1376
1377 /*
1378 * Walk all the vectors issuing IO on them. Set up the initial offset
1379 * into the buffer and the desired IO size before we start -
1380 * _xfs_buf_ioapply_vec() will modify them appropriately for each
1381 * subsequent call.
1382 */
1383 offset = bp->b_offset;
1384 size = BBTOB(bp->b_io_length);
1385 blk_start_plug(&plug);
1386 for (i = 0; i < bp->b_map_count; i++) {
50bfcd0c 1387 xfs_buf_ioapply_map(bp, i, &offset, &size, op, op_flags);
3e85c868
DC
1388 if (bp->b_error)
1389 break;
1390 if (size <= 0)
1391 break; /* all done */
1392 }
1393 blk_finish_plug(&plug);
1da177e4
LT
1394}
1395
595bff75
DC
1396/*
1397 * Asynchronous IO submission path. This transfers the buffer lock ownership and
1398 * the current reference to the IO. It is not safe to reference the buffer after
1399 * a call to this function unless the caller holds an additional reference
1400 * itself.
1401 */
0e95f19a 1402void
595bff75
DC
1403xfs_buf_submit(
1404 struct xfs_buf *bp)
1da177e4 1405{
595bff75 1406 trace_xfs_buf_submit(bp, _RET_IP_);
1da177e4 1407
43ff2122 1408 ASSERT(!(bp->b_flags & _XBF_DELWRI_Q));
595bff75
DC
1409 ASSERT(bp->b_flags & XBF_ASYNC);
1410
1411 /* on shutdown we stale and complete the buffer immediately */
1412 if (XFS_FORCED_SHUTDOWN(bp->b_target->bt_mount)) {
1413 xfs_buf_ioerror(bp, -EIO);
1414 bp->b_flags &= ~XBF_DONE;
1415 xfs_buf_stale(bp);
1416 xfs_buf_ioend(bp);
1417 return;
1418 }
1da177e4 1419
375ec69d 1420 if (bp->b_flags & XBF_WRITE)
ce8e922c 1421 xfs_buf_wait_unpin(bp);
e11bb805 1422
61be9c52
DC
1423 /* clear the internal error state to avoid spurious errors */
1424 bp->b_io_error = 0;
1425
e11bb805 1426 /*
595bff75
DC
1427 * The caller's reference is released during I/O completion.
1428 * This occurs some time after the last b_io_remaining reference is
1429 * released, so after we drop our Io reference we have to have some
1430 * other reference to ensure the buffer doesn't go away from underneath
1431 * us. Take a direct reference to ensure we have safe access to the
1432 * buffer until we are finished with it.
e11bb805 1433 */
ce8e922c 1434 xfs_buf_hold(bp);
1da177e4 1435
8d6c1210 1436 /*
e11bb805
DC
1437 * Set the count to 1 initially, this will stop an I/O completion
1438 * callout which happens before we have started all the I/O from calling
1439 * xfs_buf_ioend too early.
1da177e4 1440 */
ce8e922c 1441 atomic_set(&bp->b_io_remaining, 1);
9c7504aa 1442 xfs_buf_ioacct_inc(bp);
ce8e922c 1443 _xfs_buf_ioapply(bp);
e11bb805 1444
8d6c1210 1445 /*
595bff75
DC
1446 * If _xfs_buf_ioapply failed, we can get back here with only the IO
1447 * reference we took above. If we drop it to zero, run completion so
1448 * that we don't return to the caller with completion still pending.
8d6c1210 1449 */
e8aaba9a 1450 if (atomic_dec_and_test(&bp->b_io_remaining) == 1) {
595bff75 1451 if (bp->b_error)
e8aaba9a
DC
1452 xfs_buf_ioend(bp);
1453 else
1454 xfs_buf_ioend_async(bp);
1455 }
1da177e4 1456
ce8e922c 1457 xfs_buf_rele(bp);
595bff75 1458 /* Note: it is not safe to reference bp now we've dropped our ref */
1da177e4
LT
1459}
1460
1461/*
595bff75 1462 * Synchronous buffer IO submission path, read or write.
1da177e4
LT
1463 */
1464int
595bff75
DC
1465xfs_buf_submit_wait(
1466 struct xfs_buf *bp)
1da177e4 1467{
595bff75 1468 int error;
0b1b213f 1469
595bff75
DC
1470 trace_xfs_buf_submit_wait(bp, _RET_IP_);
1471
1472 ASSERT(!(bp->b_flags & (_XBF_DELWRI_Q | XBF_ASYNC)));
0b1b213f 1473
595bff75
DC
1474 if (XFS_FORCED_SHUTDOWN(bp->b_target->bt_mount)) {
1475 xfs_buf_ioerror(bp, -EIO);
1476 xfs_buf_stale(bp);
1477 bp->b_flags &= ~XBF_DONE;
1478 return -EIO;
1479 }
1480
1481 if (bp->b_flags & XBF_WRITE)
1482 xfs_buf_wait_unpin(bp);
1483
1484 /* clear the internal error state to avoid spurious errors */
1485 bp->b_io_error = 0;
1486
1487 /*
1488 * For synchronous IO, the IO does not inherit the submitters reference
1489 * count, nor the buffer lock. Hence we cannot release the reference we
1490 * are about to take until we've waited for all IO completion to occur,
1491 * including any xfs_buf_ioend_async() work that may be pending.
1492 */
1493 xfs_buf_hold(bp);
1494
1495 /*
1496 * Set the count to 1 initially, this will stop an I/O completion
1497 * callout which happens before we have started all the I/O from calling
1498 * xfs_buf_ioend too early.
1499 */
1500 atomic_set(&bp->b_io_remaining, 1);
1501 _xfs_buf_ioapply(bp);
1502
1503 /*
1504 * make sure we run completion synchronously if it raced with us and is
1505 * already complete.
1506 */
1507 if (atomic_dec_and_test(&bp->b_io_remaining) == 1)
1508 xfs_buf_ioend(bp);
0b1b213f 1509
595bff75
DC
1510 /* wait for completion before gathering the error from the buffer */
1511 trace_xfs_buf_iowait(bp, _RET_IP_);
1512 wait_for_completion(&bp->b_iowait);
0b1b213f 1513 trace_xfs_buf_iowait_done(bp, _RET_IP_);
595bff75
DC
1514 error = bp->b_error;
1515
1516 /*
1517 * all done now, we can release the hold that keeps the buffer
1518 * referenced for the entire IO.
1519 */
1520 xfs_buf_rele(bp);
1521 return error;
1da177e4
LT
1522}
1523
88ee2df7 1524void *
ce8e922c 1525xfs_buf_offset(
88ee2df7 1526 struct xfs_buf *bp,
1da177e4
LT
1527 size_t offset)
1528{
1529 struct page *page;
1530
611c9946 1531 if (bp->b_addr)
62926044 1532 return bp->b_addr + offset;
1da177e4 1533
ce8e922c 1534 offset += bp->b_offset;
0e6e847f 1535 page = bp->b_pages[offset >> PAGE_SHIFT];
88ee2df7 1536 return page_address(page) + (offset & (PAGE_SIZE-1));
1da177e4
LT
1537}
1538
1539/*
1da177e4
LT
1540 * Move data into or out of a buffer.
1541 */
1542void
ce8e922c
NS
1543xfs_buf_iomove(
1544 xfs_buf_t *bp, /* buffer to process */
1da177e4
LT
1545 size_t boff, /* starting buffer offset */
1546 size_t bsize, /* length to copy */
b9c48649 1547 void *data, /* data address */
ce8e922c 1548 xfs_buf_rw_t mode) /* read/write/zero flag */
1da177e4 1549{
795cac72 1550 size_t bend;
1da177e4
LT
1551
1552 bend = boff + bsize;
1553 while (boff < bend) {
795cac72
DC
1554 struct page *page;
1555 int page_index, page_offset, csize;
1556
1557 page_index = (boff + bp->b_offset) >> PAGE_SHIFT;
1558 page_offset = (boff + bp->b_offset) & ~PAGE_MASK;
1559 page = bp->b_pages[page_index];
1560 csize = min_t(size_t, PAGE_SIZE - page_offset,
1561 BBTOB(bp->b_io_length) - boff);
1da177e4 1562
795cac72 1563 ASSERT((csize + page_offset) <= PAGE_SIZE);
1da177e4
LT
1564
1565 switch (mode) {
ce8e922c 1566 case XBRW_ZERO:
795cac72 1567 memset(page_address(page) + page_offset, 0, csize);
1da177e4 1568 break;
ce8e922c 1569 case XBRW_READ:
795cac72 1570 memcpy(data, page_address(page) + page_offset, csize);
1da177e4 1571 break;
ce8e922c 1572 case XBRW_WRITE:
795cac72 1573 memcpy(page_address(page) + page_offset, data, csize);
1da177e4
LT
1574 }
1575
1576 boff += csize;
1577 data += csize;
1578 }
1579}
1580
1581/*
ce8e922c 1582 * Handling of buffer targets (buftargs).
1da177e4
LT
1583 */
1584
1585/*
430cbeb8
DC
1586 * Wait for any bufs with callbacks that have been submitted but have not yet
1587 * returned. These buffers will have an elevated hold count, so wait on those
1588 * while freeing all the buffers only held by the LRU.
1da177e4 1589 */
e80dfa19
DC
1590static enum lru_status
1591xfs_buftarg_wait_rele(
1592 struct list_head *item,
3f97b163 1593 struct list_lru_one *lru,
e80dfa19
DC
1594 spinlock_t *lru_lock,
1595 void *arg)
1596
1da177e4 1597{
e80dfa19 1598 struct xfs_buf *bp = container_of(item, struct xfs_buf, b_lru);
a4082357 1599 struct list_head *dispose = arg;
430cbeb8 1600
e80dfa19 1601 if (atomic_read(&bp->b_hold) > 1) {
a4082357 1602 /* need to wait, so skip it this pass */
e80dfa19 1603 trace_xfs_buf_wait_buftarg(bp, _RET_IP_);
a4082357 1604 return LRU_SKIP;
1da177e4 1605 }
a4082357
DC
1606 if (!spin_trylock(&bp->b_lock))
1607 return LRU_SKIP;
e80dfa19 1608
a4082357
DC
1609 /*
1610 * clear the LRU reference count so the buffer doesn't get
1611 * ignored in xfs_buf_rele().
1612 */
1613 atomic_set(&bp->b_lru_ref, 0);
1614 bp->b_state |= XFS_BSTATE_DISPOSE;
3f97b163 1615 list_lru_isolate_move(lru, item, dispose);
a4082357
DC
1616 spin_unlock(&bp->b_lock);
1617 return LRU_REMOVED;
1da177e4
LT
1618}
1619
e80dfa19
DC
1620void
1621xfs_wait_buftarg(
1622 struct xfs_buftarg *btp)
1623{
a4082357
DC
1624 LIST_HEAD(dispose);
1625 int loop = 0;
1626
85bec546 1627 /*
9c7504aa
BF
1628 * First wait on the buftarg I/O count for all in-flight buffers to be
1629 * released. This is critical as new buffers do not make the LRU until
1630 * they are released.
1631 *
1632 * Next, flush the buffer workqueue to ensure all completion processing
1633 * has finished. Just waiting on buffer locks is not sufficient for
1634 * async IO as the reference count held over IO is not released until
1635 * after the buffer lock is dropped. Hence we need to ensure here that
1636 * all reference counts have been dropped before we start walking the
1637 * LRU list.
85bec546 1638 */
9c7504aa
BF
1639 while (percpu_counter_sum(&btp->bt_io_count))
1640 delay(100);
800b2694 1641 flush_workqueue(btp->bt_mount->m_buf_workqueue);
85bec546 1642
a4082357
DC
1643 /* loop until there is nothing left on the lru list. */
1644 while (list_lru_count(&btp->bt_lru)) {
e80dfa19 1645 list_lru_walk(&btp->bt_lru, xfs_buftarg_wait_rele,
a4082357
DC
1646 &dispose, LONG_MAX);
1647
1648 while (!list_empty(&dispose)) {
1649 struct xfs_buf *bp;
1650 bp = list_first_entry(&dispose, struct xfs_buf, b_lru);
1651 list_del_init(&bp->b_lru);
ac8809f9
DC
1652 if (bp->b_flags & XBF_WRITE_FAIL) {
1653 xfs_alert(btp->bt_mount,
f41febd2 1654"Corruption Alert: Buffer at block 0x%llx had permanent write failures!",
ac8809f9 1655 (long long)bp->b_bn);
f41febd2
JP
1656 xfs_alert(btp->bt_mount,
1657"Please run xfs_repair to determine the extent of the problem.");
ac8809f9 1658 }
a4082357
DC
1659 xfs_buf_rele(bp);
1660 }
1661 if (loop++ != 0)
1662 delay(100);
1663 }
e80dfa19
DC
1664}
1665
1666static enum lru_status
1667xfs_buftarg_isolate(
1668 struct list_head *item,
3f97b163 1669 struct list_lru_one *lru,
e80dfa19
DC
1670 spinlock_t *lru_lock,
1671 void *arg)
1672{
1673 struct xfs_buf *bp = container_of(item, struct xfs_buf, b_lru);
1674 struct list_head *dispose = arg;
1675
a4082357
DC
1676 /*
1677 * we are inverting the lru lock/bp->b_lock here, so use a trylock.
1678 * If we fail to get the lock, just skip it.
1679 */
1680 if (!spin_trylock(&bp->b_lock))
1681 return LRU_SKIP;
e80dfa19
DC
1682 /*
1683 * Decrement the b_lru_ref count unless the value is already
1684 * zero. If the value is already zero, we need to reclaim the
1685 * buffer, otherwise it gets another trip through the LRU.
1686 */
a4082357
DC
1687 if (!atomic_add_unless(&bp->b_lru_ref, -1, 0)) {
1688 spin_unlock(&bp->b_lock);
e80dfa19 1689 return LRU_ROTATE;
a4082357 1690 }
e80dfa19 1691
a4082357 1692 bp->b_state |= XFS_BSTATE_DISPOSE;
3f97b163 1693 list_lru_isolate_move(lru, item, dispose);
a4082357 1694 spin_unlock(&bp->b_lock);
e80dfa19
DC
1695 return LRU_REMOVED;
1696}
1697
addbda40 1698static unsigned long
e80dfa19 1699xfs_buftarg_shrink_scan(
ff57ab21 1700 struct shrinker *shrink,
1495f230 1701 struct shrink_control *sc)
a6867a68 1702{
ff57ab21
DC
1703 struct xfs_buftarg *btp = container_of(shrink,
1704 struct xfs_buftarg, bt_shrinker);
430cbeb8 1705 LIST_HEAD(dispose);
addbda40 1706 unsigned long freed;
430cbeb8 1707
503c358c
VD
1708 freed = list_lru_shrink_walk(&btp->bt_lru, sc,
1709 xfs_buftarg_isolate, &dispose);
430cbeb8
DC
1710
1711 while (!list_empty(&dispose)) {
e80dfa19 1712 struct xfs_buf *bp;
430cbeb8
DC
1713 bp = list_first_entry(&dispose, struct xfs_buf, b_lru);
1714 list_del_init(&bp->b_lru);
1715 xfs_buf_rele(bp);
1716 }
1717
e80dfa19
DC
1718 return freed;
1719}
1720
addbda40 1721static unsigned long
e80dfa19
DC
1722xfs_buftarg_shrink_count(
1723 struct shrinker *shrink,
1724 struct shrink_control *sc)
1725{
1726 struct xfs_buftarg *btp = container_of(shrink,
1727 struct xfs_buftarg, bt_shrinker);
503c358c 1728 return list_lru_shrink_count(&btp->bt_lru, sc);
a6867a68
DC
1729}
1730
1da177e4
LT
1731void
1732xfs_free_buftarg(
b7963133
CH
1733 struct xfs_mount *mp,
1734 struct xfs_buftarg *btp)
1da177e4 1735{
ff57ab21 1736 unregister_shrinker(&btp->bt_shrinker);
9c7504aa
BF
1737 ASSERT(percpu_counter_sum(&btp->bt_io_count) == 0);
1738 percpu_counter_destroy(&btp->bt_io_count);
f5e1dd34 1739 list_lru_destroy(&btp->bt_lru);
ff57ab21 1740
2291dab2 1741 xfs_blkdev_issue_flush(btp);
a6867a68 1742
f0e2d93c 1743 kmem_free(btp);
1da177e4
LT
1744}
1745
3fefdeee
ES
1746int
1747xfs_setsize_buftarg(
1da177e4 1748 xfs_buftarg_t *btp,
3fefdeee 1749 unsigned int sectorsize)
1da177e4 1750{
7c71ee78 1751 /* Set up metadata sector size info */
6da54179
ES
1752 btp->bt_meta_sectorsize = sectorsize;
1753 btp->bt_meta_sectormask = sectorsize - 1;
1da177e4 1754
ce8e922c 1755 if (set_blocksize(btp->bt_bdev, sectorsize)) {
4f10700a 1756 xfs_warn(btp->bt_mount,
a1c6f057
DM
1757 "Cannot set_blocksize to %u on device %pg",
1758 sectorsize, btp->bt_bdev);
2451337d 1759 return -EINVAL;
1da177e4
LT
1760 }
1761
7c71ee78
ES
1762 /* Set up device logical sector size mask */
1763 btp->bt_logical_sectorsize = bdev_logical_block_size(btp->bt_bdev);
1764 btp->bt_logical_sectormask = bdev_logical_block_size(btp->bt_bdev) - 1;
1765
1da177e4
LT
1766 return 0;
1767}
1768
1769/*
3fefdeee
ES
1770 * When allocating the initial buffer target we have not yet
1771 * read in the superblock, so don't know what sized sectors
1772 * are being used at this early stage. Play safe.
ce8e922c 1773 */
1da177e4
LT
1774STATIC int
1775xfs_setsize_buftarg_early(
1776 xfs_buftarg_t *btp,
1777 struct block_device *bdev)
1778{
a96c4151 1779 return xfs_setsize_buftarg(btp, bdev_logical_block_size(bdev));
1da177e4
LT
1780}
1781
1da177e4
LT
1782xfs_buftarg_t *
1783xfs_alloc_buftarg(
ebad861b 1784 struct xfs_mount *mp,
34dcefd7 1785 struct block_device *bdev)
1da177e4
LT
1786{
1787 xfs_buftarg_t *btp;
1788
b17cb364 1789 btp = kmem_zalloc(sizeof(*btp), KM_SLEEP | KM_NOFS);
1da177e4 1790
ebad861b 1791 btp->bt_mount = mp;
ce8e922c
NS
1792 btp->bt_dev = bdev->bd_dev;
1793 btp->bt_bdev = bdev;
0e6e847f 1794 btp->bt_bdi = blk_get_backing_dev_info(bdev);
0e6e847f 1795
1da177e4
LT
1796 if (xfs_setsize_buftarg_early(btp, bdev))
1797 goto error;
5ca302c8
GC
1798
1799 if (list_lru_init(&btp->bt_lru))
1800 goto error;
1801
9c7504aa
BF
1802 if (percpu_counter_init(&btp->bt_io_count, 0, GFP_KERNEL))
1803 goto error;
1804
e80dfa19
DC
1805 btp->bt_shrinker.count_objects = xfs_buftarg_shrink_count;
1806 btp->bt_shrinker.scan_objects = xfs_buftarg_shrink_scan;
ff57ab21 1807 btp->bt_shrinker.seeks = DEFAULT_SEEKS;
e80dfa19 1808 btp->bt_shrinker.flags = SHRINKER_NUMA_AWARE;
ff57ab21 1809 register_shrinker(&btp->bt_shrinker);
1da177e4
LT
1810 return btp;
1811
1812error:
f0e2d93c 1813 kmem_free(btp);
1da177e4
LT
1814 return NULL;
1815}
1816
1da177e4 1817/*
43ff2122
CH
1818 * Add a buffer to the delayed write list.
1819 *
1820 * This queues a buffer for writeout if it hasn't already been. Note that
1821 * neither this routine nor the buffer list submission functions perform
1822 * any internal synchronization. It is expected that the lists are thread-local
1823 * to the callers.
1824 *
1825 * Returns true if we queued up the buffer, or false if it already had
1826 * been on the buffer list.
1da177e4 1827 */
43ff2122 1828bool
ce8e922c 1829xfs_buf_delwri_queue(
43ff2122
CH
1830 struct xfs_buf *bp,
1831 struct list_head *list)
1da177e4 1832{
43ff2122 1833 ASSERT(xfs_buf_islocked(bp));
5a8ee6ba 1834 ASSERT(!(bp->b_flags & XBF_READ));
1da177e4 1835
43ff2122
CH
1836 /*
1837 * If the buffer is already marked delwri it already is queued up
1838 * by someone else for imediate writeout. Just ignore it in that
1839 * case.
1840 */
1841 if (bp->b_flags & _XBF_DELWRI_Q) {
1842 trace_xfs_buf_delwri_queued(bp, _RET_IP_);
1843 return false;
1da177e4 1844 }
1da177e4 1845
43ff2122 1846 trace_xfs_buf_delwri_queue(bp, _RET_IP_);
d808f617
DC
1847
1848 /*
43ff2122
CH
1849 * If a buffer gets written out synchronously or marked stale while it
1850 * is on a delwri list we lazily remove it. To do this, the other party
1851 * clears the _XBF_DELWRI_Q flag but otherwise leaves the buffer alone.
1852 * It remains referenced and on the list. In a rare corner case it
1853 * might get readded to a delwri list after the synchronous writeout, in
1854 * which case we need just need to re-add the flag here.
d808f617 1855 */
43ff2122
CH
1856 bp->b_flags |= _XBF_DELWRI_Q;
1857 if (list_empty(&bp->b_list)) {
1858 atomic_inc(&bp->b_hold);
1859 list_add_tail(&bp->b_list, list);
585e6d88 1860 }
585e6d88 1861
43ff2122 1862 return true;
585e6d88
DC
1863}
1864
089716aa
DC
1865/*
1866 * Compare function is more complex than it needs to be because
1867 * the return value is only 32 bits and we are doing comparisons
1868 * on 64 bit values
1869 */
1870static int
1871xfs_buf_cmp(
1872 void *priv,
1873 struct list_head *a,
1874 struct list_head *b)
1875{
1876 struct xfs_buf *ap = container_of(a, struct xfs_buf, b_list);
1877 struct xfs_buf *bp = container_of(b, struct xfs_buf, b_list);
1878 xfs_daddr_t diff;
1879
f4b42421 1880 diff = ap->b_maps[0].bm_bn - bp->b_maps[0].bm_bn;
089716aa
DC
1881 if (diff < 0)
1882 return -1;
1883 if (diff > 0)
1884 return 1;
1885 return 0;
1886}
1887
26f1fe85
DC
1888/*
1889 * submit buffers for write.
1890 *
1891 * When we have a large buffer list, we do not want to hold all the buffers
1892 * locked while we block on the request queue waiting for IO dispatch. To avoid
1893 * this problem, we lock and submit buffers in groups of 50, thereby minimising
1894 * the lock hold times for lists which may contain thousands of objects.
1895 *
1896 * To do this, we sort the buffer list before we walk the list to lock and
1897 * submit buffers, and we plug and unplug around each group of buffers we
1898 * submit.
1899 */
43ff2122 1900static int
26f1fe85 1901xfs_buf_delwri_submit_buffers(
43ff2122 1902 struct list_head *buffer_list,
26f1fe85 1903 struct list_head *wait_list)
1da177e4 1904{
43ff2122 1905 struct xfs_buf *bp, *n;
26f1fe85 1906 LIST_HEAD (submit_list);
43ff2122 1907 int pinned = 0;
26f1fe85 1908 struct blk_plug plug;
43ff2122 1909
26f1fe85 1910 list_sort(NULL, buffer_list, xfs_buf_cmp);
43ff2122 1911
26f1fe85 1912 blk_start_plug(&plug);
43ff2122 1913 list_for_each_entry_safe(bp, n, buffer_list, b_list) {
26f1fe85 1914 if (!wait_list) {
43ff2122
CH
1915 if (xfs_buf_ispinned(bp)) {
1916 pinned++;
1917 continue;
1918 }
1919 if (!xfs_buf_trylock(bp))
1920 continue;
1921 } else {
1922 xfs_buf_lock(bp);
1923 }
978c7b2f 1924
43ff2122
CH
1925 /*
1926 * Someone else might have written the buffer synchronously or
1927 * marked it stale in the meantime. In that case only the
1928 * _XBF_DELWRI_Q flag got cleared, and we have to drop the
1929 * reference and remove it from the list here.
1930 */
1931 if (!(bp->b_flags & _XBF_DELWRI_Q)) {
1932 list_del_init(&bp->b_list);
1933 xfs_buf_relse(bp);
1934 continue;
1935 }
c9c12971 1936
43ff2122 1937 trace_xfs_buf_delwri_split(bp, _RET_IP_);
a1b7ea5d 1938
cf53e99d 1939 /*
26f1fe85
DC
1940 * We do all IO submission async. This means if we need
1941 * to wait for IO completion we need to take an extra
1942 * reference so the buffer is still valid on the other
1943 * side. We need to move the buffer onto the io_list
1944 * at this point so the caller can still access it.
cf53e99d 1945 */
bbfeb614 1946 bp->b_flags &= ~(_XBF_DELWRI_Q | XBF_WRITE_FAIL);
26f1fe85
DC
1947 bp->b_flags |= XBF_WRITE | XBF_ASYNC;
1948 if (wait_list) {
cf53e99d 1949 xfs_buf_hold(bp);
26f1fe85
DC
1950 list_move_tail(&bp->b_list, wait_list);
1951 } else
ce8e922c 1952 list_del_init(&bp->b_list);
8dac3921 1953
595bff75 1954 xfs_buf_submit(bp);
43ff2122
CH
1955 }
1956 blk_finish_plug(&plug);
1da177e4 1957
43ff2122 1958 return pinned;
1da177e4
LT
1959}
1960
1961/*
43ff2122
CH
1962 * Write out a buffer list asynchronously.
1963 *
1964 * This will take the @buffer_list, write all non-locked and non-pinned buffers
1965 * out and not wait for I/O completion on any of the buffers. This interface
1966 * is only safely useable for callers that can track I/O completion by higher
1967 * level means, e.g. AIL pushing as the @buffer_list is consumed in this
1968 * function.
1da177e4
LT
1969 */
1970int
43ff2122
CH
1971xfs_buf_delwri_submit_nowait(
1972 struct list_head *buffer_list)
1da177e4 1973{
26f1fe85 1974 return xfs_buf_delwri_submit_buffers(buffer_list, NULL);
43ff2122 1975}
1da177e4 1976
43ff2122
CH
1977/*
1978 * Write out a buffer list synchronously.
1979 *
1980 * This will take the @buffer_list, write all buffers out and wait for I/O
1981 * completion on all of the buffers. @buffer_list is consumed by the function,
1982 * so callers must have some other way of tracking buffers if they require such
1983 * functionality.
1984 */
1985int
1986xfs_buf_delwri_submit(
1987 struct list_head *buffer_list)
1988{
26f1fe85 1989 LIST_HEAD (wait_list);
43ff2122
CH
1990 int error = 0, error2;
1991 struct xfs_buf *bp;
1da177e4 1992
26f1fe85 1993 xfs_buf_delwri_submit_buffers(buffer_list, &wait_list);
1da177e4 1994
43ff2122 1995 /* Wait for IO to complete. */
26f1fe85
DC
1996 while (!list_empty(&wait_list)) {
1997 bp = list_first_entry(&wait_list, struct xfs_buf, b_list);
a1b7ea5d 1998
089716aa 1999 list_del_init(&bp->b_list);
cf53e99d
DC
2000
2001 /* locking the buffer will wait for async IO completion. */
2002 xfs_buf_lock(bp);
2003 error2 = bp->b_error;
43ff2122
CH
2004 xfs_buf_relse(bp);
2005 if (!error)
2006 error = error2;
1da177e4
LT
2007 }
2008
43ff2122 2009 return error;
1da177e4
LT
2010}
2011
04d8b284 2012int __init
ce8e922c 2013xfs_buf_init(void)
1da177e4 2014{
8758280f
NS
2015 xfs_buf_zone = kmem_zone_init_flags(sizeof(xfs_buf_t), "xfs_buf",
2016 KM_ZONE_HWALIGN, NULL);
ce8e922c 2017 if (!xfs_buf_zone)
0b1b213f 2018 goto out;
04d8b284 2019
23ea4032 2020 return 0;
1da177e4 2021
0b1b213f 2022 out:
8758280f 2023 return -ENOMEM;
1da177e4
LT
2024}
2025
1da177e4 2026void
ce8e922c 2027xfs_buf_terminate(void)
1da177e4 2028{
ce8e922c 2029 kmem_zone_destroy(xfs_buf_zone);
1da177e4 2030}