]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - fs/xfs/xfs_buf.c
xfs: use xfs_buf_alloc_pages for uncached buffers
[mirror_ubuntu-jammy-kernel.git] / fs / xfs / xfs_buf.c
CommitLineData
0b61f8a4 1// SPDX-License-Identifier: GPL-2.0
1da177e4 2/*
f07c2250 3 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
7b718769 4 * All Rights Reserved.
1da177e4 5 */
93c189c1 6#include "xfs.h"
3fcfab16 7#include <linux/backing-dev.h>
1da177e4 8
5467b34b 9#include "xfs_shared.h"
4fb6e8ad 10#include "xfs_format.h"
239880ef 11#include "xfs_log_format.h"
7fd36c44 12#include "xfs_trans_resv.h"
239880ef 13#include "xfs_sb.h"
b7963133 14#include "xfs_mount.h"
0b1b213f 15#include "xfs_trace.h"
239880ef 16#include "xfs_log.h"
9fe5c77c 17#include "xfs_log_recover.h"
f593bf14
DC
18#include "xfs_trans.h"
19#include "xfs_buf_item.h"
e9e899a2 20#include "xfs_errortag.h"
7561d27e 21#include "xfs_error.h"
b7963133 22
7989cb8e 23static kmem_zone_t *xfs_buf_zone;
23ea4032 24
ce8e922c 25#define xb_to_gfp(flags) \
aa5c158e 26 ((((flags) & XBF_READ_AHEAD) ? __GFP_NORETRY : GFP_NOFS) | __GFP_NOWARN)
1da177e4 27
37fd1678
DC
28/*
29 * Locking orders
30 *
31 * xfs_buf_ioacct_inc:
32 * xfs_buf_ioacct_dec:
33 * b_sema (caller holds)
34 * b_lock
35 *
36 * xfs_buf_stale:
37 * b_sema (caller holds)
38 * b_lock
39 * lru_lock
40 *
41 * xfs_buf_rele:
42 * b_lock
43 * pag_buf_lock
44 * lru_lock
45 *
10fb9ac1 46 * xfs_buftarg_drain_rele
37fd1678
DC
47 * lru_lock
48 * b_lock (trylock due to inversion)
49 *
50 * xfs_buftarg_isolate
51 * lru_lock
52 * b_lock (trylock due to inversion)
53 */
1da177e4 54
26e32875
CH
55static int __xfs_buf_submit(struct xfs_buf *bp, bool wait);
56
57static inline int
58xfs_buf_submit(
59 struct xfs_buf *bp)
60{
61 return __xfs_buf_submit(bp, !(bp->b_flags & XBF_ASYNC));
62}
63
73c77e2c
JB
64static inline int
65xfs_buf_is_vmapped(
66 struct xfs_buf *bp)
67{
68 /*
69 * Return true if the buffer is vmapped.
70 *
611c9946
DC
71 * b_addr is null if the buffer is not mapped, but the code is clever
72 * enough to know it doesn't have to map a single page, so the check has
73 * to be both for b_addr and bp->b_page_count > 1.
73c77e2c 74 */
611c9946 75 return bp->b_addr && bp->b_page_count > 1;
73c77e2c
JB
76}
77
78static inline int
79xfs_buf_vmap_len(
80 struct xfs_buf *bp)
81{
82 return (bp->b_page_count * PAGE_SIZE) - bp->b_offset;
83}
84
9c7504aa
BF
85/*
86 * Bump the I/O in flight count on the buftarg if we haven't yet done so for
87 * this buffer. The count is incremented once per buffer (per hold cycle)
88 * because the corresponding decrement is deferred to buffer release. Buffers
89 * can undergo I/O multiple times in a hold-release cycle and per buffer I/O
90 * tracking adds unnecessary overhead. This is used for sychronization purposes
10fb9ac1 91 * with unmount (see xfs_buftarg_drain()), so all we really need is a count of
9c7504aa
BF
92 * in-flight buffers.
93 *
94 * Buffers that are never released (e.g., superblock, iclog buffers) must set
95 * the XBF_NO_IOACCT flag before I/O submission. Otherwise, the buftarg count
96 * never reaches zero and unmount hangs indefinitely.
97 */
98static inline void
99xfs_buf_ioacct_inc(
100 struct xfs_buf *bp)
101{
63db7c81 102 if (bp->b_flags & XBF_NO_IOACCT)
9c7504aa
BF
103 return;
104
105 ASSERT(bp->b_flags & XBF_ASYNC);
63db7c81
BF
106 spin_lock(&bp->b_lock);
107 if (!(bp->b_state & XFS_BSTATE_IN_FLIGHT)) {
108 bp->b_state |= XFS_BSTATE_IN_FLIGHT;
109 percpu_counter_inc(&bp->b_target->bt_io_count);
110 }
111 spin_unlock(&bp->b_lock);
9c7504aa
BF
112}
113
114/*
115 * Clear the in-flight state on a buffer about to be released to the LRU or
116 * freed and unaccount from the buftarg.
117 */
118static inline void
63db7c81 119__xfs_buf_ioacct_dec(
9c7504aa
BF
120 struct xfs_buf *bp)
121{
95989c46 122 lockdep_assert_held(&bp->b_lock);
9c7504aa 123
63db7c81
BF
124 if (bp->b_state & XFS_BSTATE_IN_FLIGHT) {
125 bp->b_state &= ~XFS_BSTATE_IN_FLIGHT;
126 percpu_counter_dec(&bp->b_target->bt_io_count);
127 }
128}
129
130static inline void
131xfs_buf_ioacct_dec(
132 struct xfs_buf *bp)
133{
134 spin_lock(&bp->b_lock);
135 __xfs_buf_ioacct_dec(bp);
136 spin_unlock(&bp->b_lock);
9c7504aa
BF
137}
138
430cbeb8
DC
139/*
140 * When we mark a buffer stale, we remove the buffer from the LRU and clear the
141 * b_lru_ref count so that the buffer is freed immediately when the buffer
142 * reference count falls to zero. If the buffer is already on the LRU, we need
143 * to remove the reference that LRU holds on the buffer.
144 *
145 * This prevents build-up of stale buffers on the LRU.
146 */
147void
148xfs_buf_stale(
149 struct xfs_buf *bp)
150{
43ff2122
CH
151 ASSERT(xfs_buf_islocked(bp));
152
430cbeb8 153 bp->b_flags |= XBF_STALE;
43ff2122
CH
154
155 /*
156 * Clear the delwri status so that a delwri queue walker will not
157 * flush this buffer to disk now that it is stale. The delwri queue has
158 * a reference to the buffer, so this is safe to do.
159 */
160 bp->b_flags &= ~_XBF_DELWRI_Q;
161
9c7504aa
BF
162 /*
163 * Once the buffer is marked stale and unlocked, a subsequent lookup
164 * could reset b_flags. There is no guarantee that the buffer is
165 * unaccounted (released to LRU) before that occurs. Drop in-flight
166 * status now to preserve accounting consistency.
167 */
a4082357 168 spin_lock(&bp->b_lock);
63db7c81
BF
169 __xfs_buf_ioacct_dec(bp);
170
a4082357
DC
171 atomic_set(&bp->b_lru_ref, 0);
172 if (!(bp->b_state & XFS_BSTATE_DISPOSE) &&
e80dfa19
DC
173 (list_lru_del(&bp->b_target->bt_lru, &bp->b_lru)))
174 atomic_dec(&bp->b_hold);
175
430cbeb8 176 ASSERT(atomic_read(&bp->b_hold) >= 1);
a4082357 177 spin_unlock(&bp->b_lock);
430cbeb8 178}
1da177e4 179
3e85c868
DC
180static int
181xfs_buf_get_maps(
182 struct xfs_buf *bp,
183 int map_count)
184{
185 ASSERT(bp->b_maps == NULL);
186 bp->b_map_count = map_count;
187
188 if (map_count == 1) {
f4b42421 189 bp->b_maps = &bp->__b_map;
3e85c868
DC
190 return 0;
191 }
192
193 bp->b_maps = kmem_zalloc(map_count * sizeof(struct xfs_buf_map),
194 KM_NOFS);
195 if (!bp->b_maps)
2451337d 196 return -ENOMEM;
3e85c868
DC
197 return 0;
198}
199
200/*
201 * Frees b_pages if it was allocated.
202 */
203static void
204xfs_buf_free_maps(
205 struct xfs_buf *bp)
206{
f4b42421 207 if (bp->b_maps != &bp->__b_map) {
3e85c868
DC
208 kmem_free(bp->b_maps);
209 bp->b_maps = NULL;
210 }
211}
212
32dff5e5 213static int
3e85c868 214_xfs_buf_alloc(
4347b9d7 215 struct xfs_buftarg *target,
3e85c868
DC
216 struct xfs_buf_map *map,
217 int nmaps,
32dff5e5
DW
218 xfs_buf_flags_t flags,
219 struct xfs_buf **bpp)
1da177e4 220{
4347b9d7 221 struct xfs_buf *bp;
3e85c868
DC
222 int error;
223 int i;
4347b9d7 224
32dff5e5 225 *bpp = NULL;
32a2b11f 226 bp = kmem_cache_zalloc(xfs_buf_zone, GFP_NOFS | __GFP_NOFAIL);
4347b9d7 227
1da177e4 228 /*
12bcb3f7
DC
229 * We don't want certain flags to appear in b_flags unless they are
230 * specifically set by later operations on the buffer.
1da177e4 231 */
611c9946 232 flags &= ~(XBF_UNMAPPED | XBF_TRYLOCK | XBF_ASYNC | XBF_READ_AHEAD);
ce8e922c 233
ce8e922c 234 atomic_set(&bp->b_hold, 1);
430cbeb8 235 atomic_set(&bp->b_lru_ref, 1);
b4dd330b 236 init_completion(&bp->b_iowait);
430cbeb8 237 INIT_LIST_HEAD(&bp->b_lru);
ce8e922c 238 INIT_LIST_HEAD(&bp->b_list);
643c8c05 239 INIT_LIST_HEAD(&bp->b_li_list);
a731cd11 240 sema_init(&bp->b_sema, 0); /* held, no waiters */
a4082357 241 spin_lock_init(&bp->b_lock);
ce8e922c 242 bp->b_target = target;
dbd329f1 243 bp->b_mount = target->bt_mount;
3e85c868 244 bp->b_flags = flags;
de1cbee4 245
1da177e4 246 /*
aa0e8833
DC
247 * Set length and io_length to the same value initially.
248 * I/O routines should use io_length, which will be the same in
1da177e4
LT
249 * most cases but may be reset (e.g. XFS recovery).
250 */
3e85c868
DC
251 error = xfs_buf_get_maps(bp, nmaps);
252 if (error) {
377bcd5f 253 kmem_cache_free(xfs_buf_zone, bp);
32dff5e5 254 return error;
3e85c868
DC
255 }
256
257 bp->b_bn = map[0].bm_bn;
258 bp->b_length = 0;
259 for (i = 0; i < nmaps; i++) {
260 bp->b_maps[i].bm_bn = map[i].bm_bn;
261 bp->b_maps[i].bm_len = map[i].bm_len;
262 bp->b_length += map[i].bm_len;
263 }
3e85c868 264
ce8e922c
NS
265 atomic_set(&bp->b_pin_count, 0);
266 init_waitqueue_head(&bp->b_waiters);
267
dbd329f1 268 XFS_STATS_INC(bp->b_mount, xb_create);
0b1b213f 269 trace_xfs_buf_init(bp, _RET_IP_);
4347b9d7 270
32dff5e5
DW
271 *bpp = bp;
272 return 0;
1da177e4
LT
273}
274
275/*
ce8e922c
NS
276 * Allocate a page array capable of holding a specified number
277 * of pages, and point the page buf at it.
1da177e4
LT
278 */
279STATIC int
ce8e922c 280_xfs_buf_get_pages(
e8222613 281 struct xfs_buf *bp,
87937bf8 282 int page_count)
1da177e4
LT
283{
284 /* Make sure that we have a page list */
ce8e922c 285 if (bp->b_pages == NULL) {
ce8e922c
NS
286 bp->b_page_count = page_count;
287 if (page_count <= XB_PAGES) {
288 bp->b_pages = bp->b_page_array;
1da177e4 289 } else {
ce8e922c 290 bp->b_pages = kmem_alloc(sizeof(struct page *) *
aa5c158e 291 page_count, KM_NOFS);
ce8e922c 292 if (bp->b_pages == NULL)
1da177e4
LT
293 return -ENOMEM;
294 }
ce8e922c 295 memset(bp->b_pages, 0, sizeof(struct page *) * page_count);
1da177e4
LT
296 }
297 return 0;
298}
299
300/*
ce8e922c 301 * Frees b_pages if it was allocated.
1da177e4
LT
302 */
303STATIC void
ce8e922c 304_xfs_buf_free_pages(
e8222613 305 struct xfs_buf *bp)
1da177e4 306{
ce8e922c 307 if (bp->b_pages != bp->b_page_array) {
f0e2d93c 308 kmem_free(bp->b_pages);
3fc98b1a 309 bp->b_pages = NULL;
1da177e4
LT
310 }
311}
312
313/*
314 * Releases the specified buffer.
315 *
316 * The modification state of any associated pages is left unchanged.
b46fe825 317 * The buffer must not be on any hash - use xfs_buf_rele instead for
1da177e4
LT
318 * hashed and refcounted buffers
319 */
25a40957 320static void
ce8e922c 321xfs_buf_free(
e8222613 322 struct xfs_buf *bp)
1da177e4 323{
0b1b213f 324 trace_xfs_buf_free(bp, _RET_IP_);
1da177e4 325
430cbeb8
DC
326 ASSERT(list_empty(&bp->b_lru));
327
0e6e847f 328 if (bp->b_flags & _XBF_PAGES) {
1da177e4
LT
329 uint i;
330
73c77e2c 331 if (xfs_buf_is_vmapped(bp))
8a262e57
AE
332 vm_unmap_ram(bp->b_addr - bp->b_offset,
333 bp->b_page_count);
1da177e4 334
948ecdb4
NS
335 for (i = 0; i < bp->b_page_count; i++) {
336 struct page *page = bp->b_pages[i];
337
0e6e847f 338 __free_page(page);
948ecdb4 339 }
12eba65b
DC
340 if (current->reclaim_state)
341 current->reclaim_state->reclaimed_slab +=
342 bp->b_page_count;
0e6e847f
DC
343 } else if (bp->b_flags & _XBF_KMEM)
344 kmem_free(bp->b_addr);
3fc98b1a 345 _xfs_buf_free_pages(bp);
3e85c868 346 xfs_buf_free_maps(bp);
377bcd5f 347 kmem_cache_free(xfs_buf_zone, bp);
1da177e4
LT
348}
349
0a683794
DC
350static int
351xfs_buf_alloc_kmem(
352 struct xfs_buf *bp,
353 size_t size,
354 xfs_buf_flags_t flags)
1da177e4 355{
0a683794
DC
356 int align_mask = xfs_buftarg_dma_alignment(bp->b_target);
357 xfs_km_flags_t kmflag_mask = KM_NOFS;
3219e8cf 358
0a683794
DC
359 /* Assure zeroed buffer for non-read cases. */
360 if (!(flags & XBF_READ))
3219e8cf 361 kmflag_mask |= KM_ZERO;
1da177e4 362
0a683794
DC
363 bp->b_addr = kmem_alloc_io(size, align_mask, kmflag_mask);
364 if (!bp->b_addr)
365 return -ENOMEM;
0e6e847f 366
0a683794
DC
367 if (((unsigned long)(bp->b_addr + size - 1) & PAGE_MASK) !=
368 ((unsigned long)bp->b_addr & PAGE_MASK)) {
369 /* b_addr spans two pages - use alloc_page instead */
370 kmem_free(bp->b_addr);
371 bp->b_addr = NULL;
372 return -ENOMEM;
0e6e847f 373 }
0a683794
DC
374 bp->b_offset = offset_in_page(bp->b_addr);
375 bp->b_pages = bp->b_page_array;
376 bp->b_pages[0] = kmem_to_page(bp->b_addr);
377 bp->b_page_count = 1;
378 bp->b_flags |= _XBF_KMEM;
379 return 0;
380}
381
382static int
383xfs_buf_alloc_pages(
384 struct xfs_buf *bp,
385 uint page_count,
386 xfs_buf_flags_t flags)
387{
388 gfp_t gfp_mask = xb_to_gfp(flags);
389 size_t size;
390 size_t offset;
391 size_t nbytes;
392 int i;
393 int error;
394
395 /* Assure zeroed buffer for non-read cases. */
396 if (!(flags & XBF_READ))
397 gfp_mask |= __GFP_ZERO;
0e6e847f 398
87937bf8 399 error = _xfs_buf_get_pages(bp, page_count);
1da177e4
LT
400 if (unlikely(error))
401 return error;
1da177e4 402
ce8e922c 403 offset = bp->b_offset;
0e6e847f 404 bp->b_flags |= _XBF_PAGES;
1da177e4 405
ce8e922c 406 for (i = 0; i < bp->b_page_count; i++) {
1da177e4
LT
407 struct page *page;
408 uint retries = 0;
0e6e847f
DC
409retry:
410 page = alloc_page(gfp_mask);
1da177e4 411 if (unlikely(page == NULL)) {
ce8e922c
NS
412 if (flags & XBF_READ_AHEAD) {
413 bp->b_page_count = i;
2451337d 414 error = -ENOMEM;
0e6e847f 415 goto out_free_pages;
1da177e4
LT
416 }
417
418 /*
419 * This could deadlock.
420 *
421 * But until all the XFS lowlevel code is revamped to
422 * handle buffer allocation failures we can't do much.
423 */
424 if (!(++retries % 100))
4f10700a 425 xfs_err(NULL,
5bf97b1c
TH
426 "%s(%u) possible memory allocation deadlock in %s (mode:0x%x)",
427 current->comm, current->pid,
34a622b2 428 __func__, gfp_mask);
1da177e4 429
dbd329f1 430 XFS_STATS_INC(bp->b_mount, xb_page_retries);
8aa7e847 431 congestion_wait(BLK_RW_ASYNC, HZ/50);
1da177e4
LT
432 goto retry;
433 }
434
dbd329f1 435 XFS_STATS_INC(bp->b_mount, xb_page_found);
1da177e4 436
0e6e847f 437 nbytes = min_t(size_t, size, PAGE_SIZE - offset);
1da177e4 438 size -= nbytes;
ce8e922c 439 bp->b_pages[i] = page;
1da177e4
LT
440 offset = 0;
441 }
0e6e847f 442 return 0;
1da177e4 443
0e6e847f
DC
444out_free_pages:
445 for (i = 0; i < bp->b_page_count; i++)
446 __free_page(bp->b_pages[i]);
2aa6ba7b 447 bp->b_flags &= ~_XBF_PAGES;
1da177e4
LT
448 return error;
449}
450
0a683794
DC
451
452/*
453 * Allocates all the pages for buffer in question and builds it's page list.
454 */
455static int
456xfs_buf_allocate_memory(
457 struct xfs_buf *bp,
458 uint flags)
459{
460 size_t size;
461 xfs_off_t start, end;
462 int error;
463
464 /*
465 * For buffers that fit entirely within a single page, first attempt to
466 * allocate the memory from the heap to minimise memory usage. If we
467 * can't get heap memory for these small buffers, we fall back to using
468 * the page allocator.
469 */
470 size = BBTOB(bp->b_length);
471 if (size < PAGE_SIZE) {
472 error = xfs_buf_alloc_kmem(bp, size, flags);
473 if (!error)
474 return 0;
475 }
476
477 start = BBTOB(bp->b_maps[0].bm_bn) >> PAGE_SHIFT;
478 end = (BBTOB(bp->b_maps[0].bm_bn + bp->b_length) + PAGE_SIZE - 1)
479 >> PAGE_SHIFT;
480 return xfs_buf_alloc_pages(bp, end - start, flags);
481}
482
1da177e4 483/*
25985edc 484 * Map buffer into kernel address-space if necessary.
1da177e4
LT
485 */
486STATIC int
ce8e922c 487_xfs_buf_map_pages(
e8222613 488 struct xfs_buf *bp,
1da177e4
LT
489 uint flags)
490{
0e6e847f 491 ASSERT(bp->b_flags & _XBF_PAGES);
ce8e922c 492 if (bp->b_page_count == 1) {
0e6e847f 493 /* A single page buffer is always mappable */
ce8e922c 494 bp->b_addr = page_address(bp->b_pages[0]) + bp->b_offset;
611c9946
DC
495 } else if (flags & XBF_UNMAPPED) {
496 bp->b_addr = NULL;
497 } else {
a19fb380 498 int retried = 0;
9ba1fb2c 499 unsigned nofs_flag;
ae687e58
DC
500
501 /*
cf085a1b 502 * vm_map_ram() will allocate auxiliary structures (e.g.
ae687e58
DC
503 * pagetables) with GFP_KERNEL, yet we are likely to be under
504 * GFP_NOFS context here. Hence we need to tell memory reclaim
9ba1fb2c 505 * that we are in such a context via PF_MEMALLOC_NOFS to prevent
ae687e58
DC
506 * memory reclaim re-entering the filesystem here and
507 * potentially deadlocking.
508 */
9ba1fb2c 509 nofs_flag = memalloc_nofs_save();
a19fb380
DC
510 do {
511 bp->b_addr = vm_map_ram(bp->b_pages, bp->b_page_count,
d4efd79a 512 -1);
a19fb380
DC
513 if (bp->b_addr)
514 break;
515 vm_unmap_aliases();
516 } while (retried++ <= 1);
9ba1fb2c 517 memalloc_nofs_restore(nofs_flag);
a19fb380
DC
518
519 if (!bp->b_addr)
1da177e4 520 return -ENOMEM;
ce8e922c 521 bp->b_addr += bp->b_offset;
1da177e4
LT
522 }
523
524 return 0;
525}
526
527/*
528 * Finding and Reading Buffers
529 */
6031e73a
LS
530static int
531_xfs_buf_obj_cmp(
532 struct rhashtable_compare_arg *arg,
533 const void *obj)
534{
535 const struct xfs_buf_map *map = arg->key;
536 const struct xfs_buf *bp = obj;
537
538 /*
539 * The key hashing in the lookup path depends on the key being the
540 * first element of the compare_arg, make sure to assert this.
541 */
542 BUILD_BUG_ON(offsetof(struct xfs_buf_map, bm_bn) != 0);
543
544 if (bp->b_bn != map->bm_bn)
545 return 1;
546
547 if (unlikely(bp->b_length != map->bm_len)) {
548 /*
549 * found a block number match. If the range doesn't
550 * match, the only way this is allowed is if the buffer
551 * in the cache is stale and the transaction that made
552 * it stale has not yet committed. i.e. we are
553 * reallocating a busy extent. Skip this buffer and
554 * continue searching for an exact match.
555 */
556 ASSERT(bp->b_flags & XBF_STALE);
557 return 1;
558 }
559 return 0;
560}
561
562static const struct rhashtable_params xfs_buf_hash_params = {
563 .min_size = 32, /* empty AGs have minimal footprint */
564 .nelem_hint = 16,
565 .key_len = sizeof(xfs_daddr_t),
566 .key_offset = offsetof(struct xfs_buf, b_bn),
567 .head_offset = offsetof(struct xfs_buf, b_rhash_head),
568 .automatic_shrinking = true,
569 .obj_cmpfn = _xfs_buf_obj_cmp,
570};
571
572int
573xfs_buf_hash_init(
574 struct xfs_perag *pag)
575{
576 spin_lock_init(&pag->pag_buf_lock);
577 return rhashtable_init(&pag->pag_buf_hash, &xfs_buf_hash_params);
578}
579
580void
581xfs_buf_hash_destroy(
582 struct xfs_perag *pag)
583{
584 rhashtable_destroy(&pag->pag_buf_hash);
585}
1da177e4
LT
586
587/*
b027d4c9
DC
588 * Look up a buffer in the buffer cache and return it referenced and locked
589 * in @found_bp.
590 *
591 * If @new_bp is supplied and we have a lookup miss, insert @new_bp into the
592 * cache.
593 *
594 * If XBF_TRYLOCK is set in @flags, only try to lock the buffer and return
595 * -EAGAIN if we fail to lock it.
596 *
597 * Return values are:
598 * -EFSCORRUPTED if have been supplied with an invalid address
599 * -EAGAIN on trylock failure
600 * -ENOENT if we fail to find a match and @new_bp was NULL
601 * 0, with @found_bp:
602 * - @new_bp if we inserted it into the cache
603 * - the buffer we found and locked.
1da177e4 604 */
b027d4c9
DC
605static int
606xfs_buf_find(
e70b73f8 607 struct xfs_buftarg *btp,
3e85c868
DC
608 struct xfs_buf_map *map,
609 int nmaps,
ce8e922c 610 xfs_buf_flags_t flags,
b027d4c9
DC
611 struct xfs_buf *new_bp,
612 struct xfs_buf **found_bp)
1da177e4 613{
74f75a0c 614 struct xfs_perag *pag;
e8222613 615 struct xfs_buf *bp;
6031e73a 616 struct xfs_buf_map cmap = { .bm_bn = map[0].bm_bn };
10616b80 617 xfs_daddr_t eofs;
3e85c868 618 int i;
1da177e4 619
b027d4c9
DC
620 *found_bp = NULL;
621
3e85c868 622 for (i = 0; i < nmaps; i++)
6031e73a 623 cmap.bm_len += map[i].bm_len;
1da177e4
LT
624
625 /* Check for IOs smaller than the sector size / not sector aligned */
6031e73a
LS
626 ASSERT(!(BBTOB(cmap.bm_len) < btp->bt_meta_sectorsize));
627 ASSERT(!(BBTOB(cmap.bm_bn) & (xfs_off_t)btp->bt_meta_sectormask));
1da177e4 628
10616b80
DC
629 /*
630 * Corrupted block numbers can get through to here, unfortunately, so we
631 * have to check that the buffer falls within the filesystem bounds.
632 */
633 eofs = XFS_FSB_TO_BB(btp->bt_mount, btp->bt_mount->m_sb.sb_dblocks);
6031e73a 634 if (cmap.bm_bn < 0 || cmap.bm_bn >= eofs) {
10616b80 635 xfs_alert(btp->bt_mount,
c219b015 636 "%s: daddr 0x%llx out of range, EOFS 0x%llx",
6031e73a 637 __func__, cmap.bm_bn, eofs);
7bc0dc27 638 WARN_ON(1);
b027d4c9 639 return -EFSCORRUPTED;
10616b80
DC
640 }
641
74f75a0c 642 pag = xfs_perag_get(btp->bt_mount,
6031e73a 643 xfs_daddr_to_agno(btp->bt_mount, cmap.bm_bn));
74f75a0c 644
74f75a0c 645 spin_lock(&pag->pag_buf_lock);
6031e73a
LS
646 bp = rhashtable_lookup_fast(&pag->pag_buf_hash, &cmap,
647 xfs_buf_hash_params);
648 if (bp) {
649 atomic_inc(&bp->b_hold);
650 goto found;
1da177e4
LT
651 }
652
653 /* No match found */
b027d4c9 654 if (!new_bp) {
ff6d6af2 655 XFS_STATS_INC(btp->bt_mount, xb_miss_locked);
74f75a0c
DC
656 spin_unlock(&pag->pag_buf_lock);
657 xfs_perag_put(pag);
b027d4c9 658 return -ENOENT;
1da177e4 659 }
b027d4c9
DC
660
661 /* the buffer keeps the perag reference until it is freed */
662 new_bp->b_pag = pag;
663 rhashtable_insert_fast(&pag->pag_buf_hash, &new_bp->b_rhash_head,
664 xfs_buf_hash_params);
665 spin_unlock(&pag->pag_buf_lock);
666 *found_bp = new_bp;
667 return 0;
1da177e4
LT
668
669found:
74f75a0c
DC
670 spin_unlock(&pag->pag_buf_lock);
671 xfs_perag_put(pag);
1da177e4 672
0c842ad4
CH
673 if (!xfs_buf_trylock(bp)) {
674 if (flags & XBF_TRYLOCK) {
ce8e922c 675 xfs_buf_rele(bp);
ff6d6af2 676 XFS_STATS_INC(btp->bt_mount, xb_busy_locked);
b027d4c9 677 return -EAGAIN;
1da177e4 678 }
0c842ad4 679 xfs_buf_lock(bp);
ff6d6af2 680 XFS_STATS_INC(btp->bt_mount, xb_get_locked_waited);
1da177e4
LT
681 }
682
0e6e847f
DC
683 /*
684 * if the buffer is stale, clear all the external state associated with
685 * it. We need to keep flags such as how we allocated the buffer memory
686 * intact here.
687 */
ce8e922c
NS
688 if (bp->b_flags & XBF_STALE) {
689 ASSERT((bp->b_flags & _XBF_DELWRI_Q) == 0);
611c9946 690 bp->b_flags &= _XBF_KMEM | _XBF_PAGES;
1813dd64 691 bp->b_ops = NULL;
2f926587 692 }
0b1b213f
CH
693
694 trace_xfs_buf_find(bp, flags, _RET_IP_);
ff6d6af2 695 XFS_STATS_INC(btp->bt_mount, xb_get_locked);
b027d4c9
DC
696 *found_bp = bp;
697 return 0;
1da177e4
LT
698}
699
8925a3dc
DC
700struct xfs_buf *
701xfs_buf_incore(
702 struct xfs_buftarg *target,
703 xfs_daddr_t blkno,
704 size_t numblks,
705 xfs_buf_flags_t flags)
706{
b027d4c9
DC
707 struct xfs_buf *bp;
708 int error;
8925a3dc 709 DEFINE_SINGLE_BUF_MAP(map, blkno, numblks);
b027d4c9
DC
710
711 error = xfs_buf_find(target, &map, 1, flags, NULL, &bp);
712 if (error)
713 return NULL;
714 return bp;
8925a3dc
DC
715}
716
1da177e4 717/*
3815832a
DC
718 * Assembles a buffer covering the specified range. The code is optimised for
719 * cache hits, as metadata intensive workloads will see 3 orders of magnitude
720 * more hits than misses.
1da177e4 721 */
3848b5f6 722int
6dde2707
DC
723xfs_buf_get_map(
724 struct xfs_buftarg *target,
725 struct xfs_buf_map *map,
726 int nmaps,
3848b5f6
DW
727 xfs_buf_flags_t flags,
728 struct xfs_buf **bpp)
1da177e4 729{
3815832a
DC
730 struct xfs_buf *bp;
731 struct xfs_buf *new_bp;
0e6e847f 732 int error = 0;
1da177e4 733
3848b5f6 734 *bpp = NULL;
b027d4c9 735 error = xfs_buf_find(target, map, nmaps, flags, NULL, &bp);
3848b5f6 736 if (!error)
3815832a 737 goto found;
3848b5f6
DW
738 if (error != -ENOENT)
739 return error;
3815832a 740
32dff5e5
DW
741 error = _xfs_buf_alloc(target, map, nmaps, flags, &new_bp);
742 if (error)
3848b5f6 743 return error;
1da177e4 744
fe2429b0
DC
745 error = xfs_buf_allocate_memory(new_bp, flags);
746 if (error) {
3e85c868 747 xfs_buf_free(new_bp);
3848b5f6 748 return error;
fe2429b0
DC
749 }
750
b027d4c9
DC
751 error = xfs_buf_find(target, map, nmaps, flags, new_bp, &bp);
752 if (error) {
fe2429b0 753 xfs_buf_free(new_bp);
3848b5f6 754 return error;
3815832a
DC
755 }
756
fe2429b0
DC
757 if (bp != new_bp)
758 xfs_buf_free(new_bp);
1da177e4 759
3815832a 760found:
611c9946 761 if (!bp->b_addr) {
ce8e922c 762 error = _xfs_buf_map_pages(bp, flags);
1da177e4 763 if (unlikely(error)) {
93baa55a
DW
764 xfs_warn_ratelimited(target->bt_mount,
765 "%s: failed to map %u pages", __func__,
766 bp->b_page_count);
a8acad70 767 xfs_buf_relse(bp);
3848b5f6 768 return error;
1da177e4
LT
769 }
770 }
771
b79f4a1c
DC
772 /*
773 * Clear b_error if this is a lookup from a caller that doesn't expect
774 * valid data to be found in the buffer.
775 */
776 if (!(flags & XBF_READ))
777 xfs_buf_ioerror(bp, 0);
778
ff6d6af2 779 XFS_STATS_INC(target->bt_mount, xb_get);
0b1b213f 780 trace_xfs_buf_get(bp, flags, _RET_IP_);
3848b5f6
DW
781 *bpp = bp;
782 return 0;
1da177e4
LT
783}
784
26e32875 785int
5d765b97 786_xfs_buf_read(
e8222613 787 struct xfs_buf *bp,
5d765b97
CH
788 xfs_buf_flags_t flags)
789{
43ff2122 790 ASSERT(!(flags & XBF_WRITE));
f4b42421 791 ASSERT(bp->b_maps[0].bm_bn != XFS_BUF_DADDR_NULL);
5d765b97 792
26e32875 793 bp->b_flags &= ~(XBF_WRITE | XBF_ASYNC | XBF_READ_AHEAD | XBF_DONE);
1d5ae5df 794 bp->b_flags |= flags & (XBF_READ | XBF_ASYNC | XBF_READ_AHEAD);
5d765b97 795
6af88cda 796 return xfs_buf_submit(bp);
5d765b97
CH
797}
798
1aff5696 799/*
75d02303 800 * Reverify a buffer found in cache without an attached ->b_ops.
add46b3b 801 *
75d02303
BF
802 * If the caller passed an ops structure and the buffer doesn't have ops
803 * assigned, set the ops and use it to verify the contents. If verification
804 * fails, clear XBF_DONE. We assume the buffer has no recorded errors and is
805 * already in XBF_DONE state on entry.
add46b3b 806 *
75d02303
BF
807 * Under normal operations, every in-core buffer is verified on read I/O
808 * completion. There are two scenarios that can lead to in-core buffers without
809 * an assigned ->b_ops. The first is during log recovery of buffers on a V4
810 * filesystem, though these buffers are purged at the end of recovery. The
811 * other is online repair, which intentionally reads with a NULL buffer ops to
812 * run several verifiers across an in-core buffer in order to establish buffer
813 * type. If repair can't establish that, the buffer will be left in memory
814 * with NULL buffer ops.
1aff5696
DW
815 */
816int
75d02303 817xfs_buf_reverify(
1aff5696
DW
818 struct xfs_buf *bp,
819 const struct xfs_buf_ops *ops)
820{
821 ASSERT(bp->b_flags & XBF_DONE);
822 ASSERT(bp->b_error == 0);
823
824 if (!ops || bp->b_ops)
825 return 0;
826
827 bp->b_ops = ops;
828 bp->b_ops->verify_read(bp);
829 if (bp->b_error)
830 bp->b_flags &= ~XBF_DONE;
831 return bp->b_error;
832}
833
4ed8e27b 834int
6dde2707
DC
835xfs_buf_read_map(
836 struct xfs_buftarg *target,
837 struct xfs_buf_map *map,
838 int nmaps,
c3f8fc73 839 xfs_buf_flags_t flags,
4ed8e27b 840 struct xfs_buf **bpp,
cdbcf82b
DW
841 const struct xfs_buf_ops *ops,
842 xfs_failaddr_t fa)
1da177e4 843{
6dde2707 844 struct xfs_buf *bp;
3848b5f6 845 int error;
ce8e922c
NS
846
847 flags |= XBF_READ;
4ed8e27b 848 *bpp = NULL;
ce8e922c 849
3848b5f6
DW
850 error = xfs_buf_get_map(target, map, nmaps, flags, &bp);
851 if (error)
4ed8e27b 852 return error;
0b1b213f 853
1aff5696
DW
854 trace_xfs_buf_read(bp, flags, _RET_IP_);
855
856 if (!(bp->b_flags & XBF_DONE)) {
4ed8e27b 857 /* Initiate the buffer read and wait. */
1aff5696
DW
858 XFS_STATS_INC(target->bt_mount, xb_get_read);
859 bp->b_ops = ops;
4ed8e27b
DW
860 error = _xfs_buf_read(bp, flags);
861
862 /* Readahead iodone already dropped the buffer, so exit. */
863 if (flags & XBF_ASYNC)
864 return 0;
865 } else {
866 /* Buffer already read; all we need to do is check it. */
867 error = xfs_buf_reverify(bp, ops);
868
869 /* Readahead already finished; drop the buffer and exit. */
870 if (flags & XBF_ASYNC) {
871 xfs_buf_relse(bp);
872 return 0;
873 }
874
875 /* We do not want read in the flags */
876 bp->b_flags &= ~XBF_READ;
877 ASSERT(bp->b_ops != NULL || ops == NULL);
1aff5696
DW
878 }
879
4ed8e27b
DW
880 /*
881 * If we've had a read error, then the contents of the buffer are
882 * invalid and should not be used. To ensure that a followup read tries
883 * to pull the buffer from disk again, we clear the XBF_DONE flag and
884 * mark the buffer stale. This ensures that anyone who has a current
885 * reference to the buffer will interpret it's contents correctly and
886 * future cache lookups will also treat it as an empty, uninitialised
887 * buffer.
888 */
889 if (error) {
890 if (!XFS_FORCED_SHUTDOWN(target->bt_mount))
cdbcf82b 891 xfs_buf_ioerror_alert(bp, fa);
1aff5696 892
4ed8e27b
DW
893 bp->b_flags &= ~XBF_DONE;
894 xfs_buf_stale(bp);
1aff5696 895 xfs_buf_relse(bp);
4ed8e27b
DW
896
897 /* bad CRC means corrupted metadata */
898 if (error == -EFSBADCRC)
899 error = -EFSCORRUPTED;
900 return error;
1da177e4
LT
901 }
902
4ed8e27b
DW
903 *bpp = bp;
904 return 0;
1da177e4
LT
905}
906
1da177e4 907/*
ce8e922c
NS
908 * If we are not low on memory then do the readahead in a deadlock
909 * safe manner.
1da177e4
LT
910 */
911void
6dde2707
DC
912xfs_buf_readahead_map(
913 struct xfs_buftarg *target,
914 struct xfs_buf_map *map,
c3f8fc73 915 int nmaps,
1813dd64 916 const struct xfs_buf_ops *ops)
1da177e4 917{
4ed8e27b
DW
918 struct xfs_buf *bp;
919
efa7c9f9 920 if (bdi_read_congested(target->bt_bdev->bd_bdi))
1da177e4
LT
921 return;
922
6dde2707 923 xfs_buf_read_map(target, map, nmaps,
cdbcf82b
DW
924 XBF_TRYLOCK | XBF_ASYNC | XBF_READ_AHEAD, &bp, ops,
925 __this_address);
1da177e4
LT
926}
927
5adc94c2
DC
928/*
929 * Read an uncached buffer from disk. Allocates and returns a locked
930 * buffer containing the disk contents or nothing.
931 */
ba372674 932int
5adc94c2 933xfs_buf_read_uncached(
5adc94c2
DC
934 struct xfs_buftarg *target,
935 xfs_daddr_t daddr,
e70b73f8 936 size_t numblks,
c3f8fc73 937 int flags,
ba372674 938 struct xfs_buf **bpp,
1813dd64 939 const struct xfs_buf_ops *ops)
5adc94c2 940{
eab4e633 941 struct xfs_buf *bp;
2842b6db 942 int error;
5adc94c2 943
ba372674
DC
944 *bpp = NULL;
945
2842b6db
DW
946 error = xfs_buf_get_uncached(target, numblks, flags, &bp);
947 if (error)
948 return error;
5adc94c2
DC
949
950 /* set up the buffer for a read IO */
3e85c868 951 ASSERT(bp->b_map_count == 1);
ba372674 952 bp->b_bn = XFS_BUF_DADDR_NULL; /* always null for uncached buffers */
3e85c868 953 bp->b_maps[0].bm_bn = daddr;
cbb7baab 954 bp->b_flags |= XBF_READ;
1813dd64 955 bp->b_ops = ops;
5adc94c2 956
6af88cda 957 xfs_buf_submit(bp);
ba372674 958 if (bp->b_error) {
2842b6db 959 error = bp->b_error;
83a0adc3 960 xfs_buf_relse(bp);
ba372674 961 return error;
83a0adc3 962 }
ba372674
DC
963
964 *bpp = bp;
965 return 0;
1da177e4
LT
966}
967
2842b6db 968int
686865f7
DC
969xfs_buf_get_uncached(
970 struct xfs_buftarg *target,
e70b73f8 971 size_t numblks,
2842b6db
DW
972 int flags,
973 struct xfs_buf **bpp)
1da177e4 974{
e70b73f8 975 unsigned long page_count;
07b5c5ad 976 int error;
3e85c868
DC
977 struct xfs_buf *bp;
978 DEFINE_SINGLE_BUF_MAP(map, XFS_BUF_DADDR_NULL, numblks);
1da177e4 979
2842b6db
DW
980 *bpp = NULL;
981
c891c30a 982 /* flags might contain irrelevant bits, pass only what we care about */
32dff5e5
DW
983 error = _xfs_buf_alloc(target, &map, 1, flags & XBF_NO_IOACCT, &bp);
984 if (error)
07b5c5ad 985 return error;
1da177e4 986
e70b73f8 987 page_count = PAGE_ALIGN(numblks << BBSHIFT) >> PAGE_SHIFT;
07b5c5ad 988 error = xfs_buf_alloc_pages(bp, page_count, flags);
1fa40b01 989 if (error)
1da177e4
LT
990 goto fail_free_buf;
991
611c9946 992 error = _xfs_buf_map_pages(bp, 0);
1fa40b01 993 if (unlikely(error)) {
4f10700a 994 xfs_warn(target->bt_mount,
08e96e1a 995 "%s: failed to map pages", __func__);
07b5c5ad 996 goto fail_free_buf;
1fa40b01 997 }
1da177e4 998
686865f7 999 trace_xfs_buf_get_uncached(bp, _RET_IP_);
2842b6db
DW
1000 *bpp = bp;
1001 return 0;
1fa40b01 1002
07b5c5ad
DC
1003fail_free_buf:
1004 xfs_buf_free(bp);
2842b6db 1005 return error;
1da177e4
LT
1006}
1007
1008/*
1da177e4
LT
1009 * Increment reference count on buffer, to hold the buffer concurrently
1010 * with another thread which may release (free) the buffer asynchronously.
1da177e4
LT
1011 * Must hold the buffer already to call this function.
1012 */
1013void
ce8e922c 1014xfs_buf_hold(
e8222613 1015 struct xfs_buf *bp)
1da177e4 1016{
0b1b213f 1017 trace_xfs_buf_hold(bp, _RET_IP_);
ce8e922c 1018 atomic_inc(&bp->b_hold);
1da177e4
LT
1019}
1020
1021/*
9c7504aa
BF
1022 * Release a hold on the specified buffer. If the hold count is 1, the buffer is
1023 * placed on LRU or freed (depending on b_lru_ref).
1da177e4
LT
1024 */
1025void
ce8e922c 1026xfs_buf_rele(
e8222613 1027 struct xfs_buf *bp)
1da177e4 1028{
74f75a0c 1029 struct xfs_perag *pag = bp->b_pag;
9c7504aa
BF
1030 bool release;
1031 bool freebuf = false;
1da177e4 1032
0b1b213f 1033 trace_xfs_buf_rele(bp, _RET_IP_);
1da177e4 1034
74f75a0c 1035 if (!pag) {
430cbeb8 1036 ASSERT(list_empty(&bp->b_lru));
9c7504aa
BF
1037 if (atomic_dec_and_test(&bp->b_hold)) {
1038 xfs_buf_ioacct_dec(bp);
fad3aa1e 1039 xfs_buf_free(bp);
9c7504aa 1040 }
fad3aa1e
NS
1041 return;
1042 }
1043
3790689f 1044 ASSERT(atomic_read(&bp->b_hold) > 0);
a4082357 1045
37fd1678
DC
1046 /*
1047 * We grab the b_lock here first to serialise racing xfs_buf_rele()
1048 * calls. The pag_buf_lock being taken on the last reference only
1049 * serialises against racing lookups in xfs_buf_find(). IOWs, the second
1050 * to last reference we drop here is not serialised against the last
1051 * reference until we take bp->b_lock. Hence if we don't grab b_lock
1052 * first, the last "release" reference can win the race to the lock and
1053 * free the buffer before the second-to-last reference is processed,
1054 * leading to a use-after-free scenario.
1055 */
9c7504aa 1056 spin_lock(&bp->b_lock);
37fd1678 1057 release = atomic_dec_and_lock(&bp->b_hold, &pag->pag_buf_lock);
9c7504aa
BF
1058 if (!release) {
1059 /*
1060 * Drop the in-flight state if the buffer is already on the LRU
1061 * and it holds the only reference. This is racy because we
1062 * haven't acquired the pag lock, but the use of _XBF_IN_FLIGHT
1063 * ensures the decrement occurs only once per-buf.
1064 */
1065 if ((atomic_read(&bp->b_hold) == 1) && !list_empty(&bp->b_lru))
63db7c81 1066 __xfs_buf_ioacct_dec(bp);
9c7504aa
BF
1067 goto out_unlock;
1068 }
1069
1070 /* the last reference has been dropped ... */
63db7c81 1071 __xfs_buf_ioacct_dec(bp);
9c7504aa
BF
1072 if (!(bp->b_flags & XBF_STALE) && atomic_read(&bp->b_lru_ref)) {
1073 /*
1074 * If the buffer is added to the LRU take a new reference to the
1075 * buffer for the LRU and clear the (now stale) dispose list
1076 * state flag
1077 */
1078 if (list_lru_add(&bp->b_target->bt_lru, &bp->b_lru)) {
1079 bp->b_state &= ~XFS_BSTATE_DISPOSE;
1080 atomic_inc(&bp->b_hold);
1da177e4 1081 }
9c7504aa
BF
1082 spin_unlock(&pag->pag_buf_lock);
1083 } else {
1084 /*
1085 * most of the time buffers will already be removed from the
1086 * LRU, so optimise that case by checking for the
1087 * XFS_BSTATE_DISPOSE flag indicating the last list the buffer
1088 * was on was the disposal list
1089 */
1090 if (!(bp->b_state & XFS_BSTATE_DISPOSE)) {
1091 list_lru_del(&bp->b_target->bt_lru, &bp->b_lru);
1092 } else {
1093 ASSERT(list_empty(&bp->b_lru));
1da177e4 1094 }
9c7504aa
BF
1095
1096 ASSERT(!(bp->b_flags & _XBF_DELWRI_Q));
6031e73a
LS
1097 rhashtable_remove_fast(&pag->pag_buf_hash, &bp->b_rhash_head,
1098 xfs_buf_hash_params);
9c7504aa
BF
1099 spin_unlock(&pag->pag_buf_lock);
1100 xfs_perag_put(pag);
1101 freebuf = true;
1da177e4 1102 }
9c7504aa
BF
1103
1104out_unlock:
1105 spin_unlock(&bp->b_lock);
1106
1107 if (freebuf)
1108 xfs_buf_free(bp);
1da177e4
LT
1109}
1110
1111
1112/*
0e6e847f 1113 * Lock a buffer object, if it is not already locked.
90810b9e
DC
1114 *
1115 * If we come across a stale, pinned, locked buffer, we know that we are
1116 * being asked to lock a buffer that has been reallocated. Because it is
1117 * pinned, we know that the log has not been pushed to disk and hence it
1118 * will still be locked. Rather than continuing to have trylock attempts
1119 * fail until someone else pushes the log, push it ourselves before
1120 * returning. This means that the xfsaild will not get stuck trying
1121 * to push on stale inode buffers.
1da177e4
LT
1122 */
1123int
0c842ad4
CH
1124xfs_buf_trylock(
1125 struct xfs_buf *bp)
1da177e4
LT
1126{
1127 int locked;
1128
ce8e922c 1129 locked = down_trylock(&bp->b_sema) == 0;
fa6c668d 1130 if (locked)
479c6412 1131 trace_xfs_buf_trylock(bp, _RET_IP_);
fa6c668d 1132 else
479c6412 1133 trace_xfs_buf_trylock_fail(bp, _RET_IP_);
0c842ad4 1134 return locked;
1da177e4 1135}
1da177e4
LT
1136
1137/*
0e6e847f 1138 * Lock a buffer object.
ed3b4d6c
DC
1139 *
1140 * If we come across a stale, pinned, locked buffer, we know that we
1141 * are being asked to lock a buffer that has been reallocated. Because
1142 * it is pinned, we know that the log has not been pushed to disk and
1143 * hence it will still be locked. Rather than sleeping until someone
1144 * else pushes the log, push it ourselves before trying to get the lock.
1da177e4 1145 */
ce8e922c
NS
1146void
1147xfs_buf_lock(
0c842ad4 1148 struct xfs_buf *bp)
1da177e4 1149{
0b1b213f
CH
1150 trace_xfs_buf_lock(bp, _RET_IP_);
1151
ed3b4d6c 1152 if (atomic_read(&bp->b_pin_count) && (bp->b_flags & XBF_STALE))
dbd329f1 1153 xfs_log_force(bp->b_mount, 0);
ce8e922c 1154 down(&bp->b_sema);
0b1b213f
CH
1155
1156 trace_xfs_buf_lock_done(bp, _RET_IP_);
1da177e4
LT
1157}
1158
1da177e4 1159void
ce8e922c 1160xfs_buf_unlock(
0c842ad4 1161 struct xfs_buf *bp)
1da177e4 1162{
20e8a063
BF
1163 ASSERT(xfs_buf_islocked(bp));
1164
ce8e922c 1165 up(&bp->b_sema);
0b1b213f 1166 trace_xfs_buf_unlock(bp, _RET_IP_);
1da177e4
LT
1167}
1168
ce8e922c
NS
1169STATIC void
1170xfs_buf_wait_unpin(
e8222613 1171 struct xfs_buf *bp)
1da177e4
LT
1172{
1173 DECLARE_WAITQUEUE (wait, current);
1174
ce8e922c 1175 if (atomic_read(&bp->b_pin_count) == 0)
1da177e4
LT
1176 return;
1177
ce8e922c 1178 add_wait_queue(&bp->b_waiters, &wait);
1da177e4
LT
1179 for (;;) {
1180 set_current_state(TASK_UNINTERRUPTIBLE);
ce8e922c 1181 if (atomic_read(&bp->b_pin_count) == 0)
1da177e4 1182 break;
7eaceacc 1183 io_schedule();
1da177e4 1184 }
ce8e922c 1185 remove_wait_queue(&bp->b_waiters, &wait);
1da177e4
LT
1186 set_current_state(TASK_RUNNING);
1187}
1188
f58d0ea9
CH
1189static void
1190xfs_buf_ioerror_alert_ratelimited(
664ffb8a
CH
1191 struct xfs_buf *bp)
1192{
664ffb8a
CH
1193 static unsigned long lasttime;
1194 static struct xfs_buftarg *lasttarg;
1195
664ffb8a
CH
1196 if (bp->b_target != lasttarg ||
1197 time_after(jiffies, (lasttime + 5*HZ))) {
1198 lasttime = jiffies;
1199 xfs_buf_ioerror_alert(bp, __this_address);
1200 }
1201 lasttarg = bp->b_target;
664ffb8a
CH
1202}
1203
664ffb8a
CH
1204/*
1205 * Account for this latest trip around the retry handler, and decide if
1206 * we've failed enough times to constitute a permanent failure.
1207 */
1208static bool
1209xfs_buf_ioerror_permanent(
1210 struct xfs_buf *bp,
1211 struct xfs_error_cfg *cfg)
1212{
1213 struct xfs_mount *mp = bp->b_mount;
1214
1215 if (cfg->max_retries != XFS_ERR_RETRY_FOREVER &&
1216 ++bp->b_retries > cfg->max_retries)
1217 return true;
1218 if (cfg->retry_timeout != XFS_ERR_RETRY_FOREVER &&
1219 time_after(jiffies, cfg->retry_timeout + bp->b_first_retry_time))
1220 return true;
1221
1222 /* At unmount we may treat errors differently */
1223 if ((mp->m_flags & XFS_MOUNT_UNMOUNTING) && mp->m_fail_unmount)
1224 return true;
1225
1226 return false;
1227}
1228
1229/*
1230 * On a sync write or shutdown we just want to stale the buffer and let the
1231 * caller handle the error in bp->b_error appropriately.
1232 *
1233 * If the write was asynchronous then no one will be looking for the error. If
1234 * this is the first failure of this type, clear the error state and write the
1235 * buffer out again. This means we always retry an async write failure at least
1236 * once, but we also need to set the buffer up to behave correctly now for
1237 * repeated failures.
1238 *
1239 * If we get repeated async write failures, then we take action according to the
1240 * error configuration we have been set up to use.
1241 *
70796c6b
CH
1242 * Returns true if this function took care of error handling and the caller must
1243 * not touch the buffer again. Return false if the caller should proceed with
1244 * normal I/O completion handling.
664ffb8a 1245 */
70796c6b
CH
1246static bool
1247xfs_buf_ioend_handle_error(
664ffb8a
CH
1248 struct xfs_buf *bp)
1249{
1250 struct xfs_mount *mp = bp->b_mount;
1251 struct xfs_error_cfg *cfg;
1252
f58d0ea9
CH
1253 /*
1254 * If we've already decided to shutdown the filesystem because of I/O
1255 * errors, there's no point in giving this a retry.
1256 */
1257 if (XFS_FORCED_SHUTDOWN(mp))
1258 goto out_stale;
1259
1260 xfs_buf_ioerror_alert_ratelimited(bp);
1261
22c10589
CH
1262 /*
1263 * We're not going to bother about retrying this during recovery.
1264 * One strike!
1265 */
1266 if (bp->b_flags & _XBF_LOGRECOVERY) {
1267 xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
1268 return false;
1269 }
1270
f58d0ea9
CH
1271 /*
1272 * Synchronous writes will have callers process the error.
1273 */
1274 if (!(bp->b_flags & XBF_ASYNC))
664ffb8a
CH
1275 goto out_stale;
1276
1277 trace_xfs_buf_iodone_async(bp, _RET_IP_);
1278
1279 cfg = xfs_error_get_cfg(mp, XFS_ERR_METADATA, bp->b_error);
3cc49884
CH
1280 if (bp->b_last_error != bp->b_error ||
1281 !(bp->b_flags & (XBF_STALE | XBF_WRITE_FAIL))) {
1282 bp->b_last_error = bp->b_error;
1283 if (cfg->retry_timeout != XFS_ERR_RETRY_FOREVER &&
1284 !bp->b_first_retry_time)
1285 bp->b_first_retry_time = jiffies;
1286 goto resubmit;
664ffb8a
CH
1287 }
1288
1289 /*
1290 * Permanent error - we need to trigger a shutdown if we haven't already
1291 * to indicate that inconsistency will result from this action.
1292 */
1293 if (xfs_buf_ioerror_permanent(bp, cfg)) {
1294 xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
1295 goto out_stale;
1296 }
1297
1298 /* Still considered a transient error. Caller will schedule retries. */
844c9358
CH
1299 if (bp->b_flags & _XBF_INODES)
1300 xfs_buf_inode_io_fail(bp);
1301 else if (bp->b_flags & _XBF_DQUOTS)
1302 xfs_buf_dquot_io_fail(bp);
1303 else
1304 ASSERT(list_empty(&bp->b_li_list));
1305 xfs_buf_ioerror(bp, 0);
1306 xfs_buf_relse(bp);
70796c6b 1307 return true;
664ffb8a 1308
3cc49884
CH
1309resubmit:
1310 xfs_buf_ioerror(bp, 0);
55b7d711 1311 bp->b_flags |= (XBF_DONE | XBF_WRITE_FAIL);
3cc49884 1312 xfs_buf_submit(bp);
70796c6b 1313 return true;
664ffb8a
CH
1314out_stale:
1315 xfs_buf_stale(bp);
1316 bp->b_flags |= XBF_DONE;
55b7d711 1317 bp->b_flags &= ~XBF_WRITE;
664ffb8a 1318 trace_xfs_buf_error_relse(bp, _RET_IP_);
70796c6b 1319 return false;
664ffb8a 1320}
1da177e4 1321
76b2d323 1322static void
e8aaba9a
DC
1323xfs_buf_ioend(
1324 struct xfs_buf *bp)
1da177e4 1325{
e8aaba9a 1326 trace_xfs_buf_iodone(bp, _RET_IP_);
1813dd64 1327
61be9c52
DC
1328 /*
1329 * Pull in IO completion errors now. We are guaranteed to be running
1330 * single threaded, so we don't need the lock to read b_io_error.
1331 */
1332 if (!bp->b_error && bp->b_io_error)
1333 xfs_buf_ioerror(bp, bp->b_io_error);
1334
55b7d711 1335 if (bp->b_flags & XBF_READ) {
b01d1461
DC
1336 if (!bp->b_error && bp->b_ops)
1337 bp->b_ops->verify_read(bp);
1338 if (!bp->b_error)
1339 bp->b_flags |= XBF_DONE;
23fb5a93
CH
1340 } else {
1341 if (!bp->b_error) {
1342 bp->b_flags &= ~XBF_WRITE_FAIL;
1343 bp->b_flags |= XBF_DONE;
1344 }
f593bf14 1345
70796c6b 1346 if (unlikely(bp->b_error) && xfs_buf_ioend_handle_error(bp))
664ffb8a 1347 return;
664ffb8a
CH
1348
1349 /* clear the retry state */
1350 bp->b_last_error = 0;
1351 bp->b_retries = 0;
1352 bp->b_first_retry_time = 0;
1353
1354 /*
1355 * Note that for things like remote attribute buffers, there may
1356 * not be a buffer log item here, so processing the buffer log
1357 * item must remain optional.
1358 */
1359 if (bp->b_log_item)
1360 xfs_buf_item_done(bp);
1361
23fb5a93
CH
1362 if (bp->b_flags & _XBF_INODES)
1363 xfs_buf_inode_iodone(bp);
1364 else if (bp->b_flags & _XBF_DQUOTS)
1365 xfs_buf_dquot_iodone(bp);
22c10589 1366
0c7e5afb 1367 }
6a7584b1 1368
22c10589
CH
1369 bp->b_flags &= ~(XBF_READ | XBF_WRITE | XBF_READ_AHEAD |
1370 _XBF_LOGRECOVERY);
55b7d711 1371
6a7584b1
CH
1372 if (bp->b_flags & XBF_ASYNC)
1373 xfs_buf_relse(bp);
1374 else
1375 complete(&bp->b_iowait);
1da177e4
LT
1376}
1377
e8aaba9a
DC
1378static void
1379xfs_buf_ioend_work(
1380 struct work_struct *work)
1da177e4 1381{
e8aaba9a 1382 struct xfs_buf *bp =
e8222613 1383 container_of(work, struct xfs_buf, b_ioend_work);
0b1b213f 1384
e8aaba9a
DC
1385 xfs_buf_ioend(bp);
1386}
1da177e4 1387
211fe1a4 1388static void
e8aaba9a
DC
1389xfs_buf_ioend_async(
1390 struct xfs_buf *bp)
1391{
b29c70f5 1392 INIT_WORK(&bp->b_ioend_work, xfs_buf_ioend_work);
dbd329f1 1393 queue_work(bp->b_mount->m_buf_workqueue, &bp->b_ioend_work);
1da177e4
LT
1394}
1395
1da177e4 1396void
31ca03c9 1397__xfs_buf_ioerror(
e8222613 1398 struct xfs_buf *bp,
31ca03c9
DW
1399 int error,
1400 xfs_failaddr_t failaddr)
1da177e4 1401{
2451337d
DC
1402 ASSERT(error <= 0 && error >= -1000);
1403 bp->b_error = error;
31ca03c9 1404 trace_xfs_buf_ioerror(bp, error, failaddr);
1da177e4
LT
1405}
1406
901796af
CH
1407void
1408xfs_buf_ioerror_alert(
1409 struct xfs_buf *bp,
cdbcf82b 1410 xfs_failaddr_t func)
901796af 1411{
f9bccfcc
BF
1412 xfs_buf_alert_ratelimited(bp, "XFS: metadata IO error",
1413 "metadata I/O error in \"%pS\" at daddr 0x%llx len %d error %d",
1414 func, (uint64_t)XFS_BUF_ADDR(bp),
1415 bp->b_length, -bp->b_error);
901796af
CH
1416}
1417
54b3b1f6
BF
1418/*
1419 * To simulate an I/O failure, the buffer must be locked and held with at least
1420 * three references. The LRU reference is dropped by the stale call. The buf
1421 * item reference is dropped via ioend processing. The third reference is owned
1422 * by the caller and is dropped on I/O completion if the buffer is XBF_ASYNC.
1423 */
1424void
1425xfs_buf_ioend_fail(
1426 struct xfs_buf *bp)
1427{
1428 bp->b_flags &= ~XBF_DONE;
1429 xfs_buf_stale(bp);
1430 xfs_buf_ioerror(bp, -EIO);
1431 xfs_buf_ioend(bp);
901796af
CH
1432}
1433
a2dcf5df
CH
1434int
1435xfs_bwrite(
1436 struct xfs_buf *bp)
1437{
1438 int error;
1439
1440 ASSERT(xfs_buf_islocked(bp));
1441
1442 bp->b_flags |= XBF_WRITE;
27187754 1443 bp->b_flags &= ~(XBF_ASYNC | XBF_READ | _XBF_DELWRI_Q |
b6983e80 1444 XBF_DONE);
a2dcf5df 1445
6af88cda 1446 error = xfs_buf_submit(bp);
dbd329f1
CH
1447 if (error)
1448 xfs_force_shutdown(bp->b_mount, SHUTDOWN_META_IO_ERROR);
a2dcf5df
CH
1449 return error;
1450}
1451
9bdd9bd6 1452static void
ce8e922c 1453xfs_buf_bio_end_io(
4246a0b6 1454 struct bio *bio)
1da177e4 1455{
9bdd9bd6 1456 struct xfs_buf *bp = (struct xfs_buf *)bio->bi_private;
1da177e4 1457
7376d745
BF
1458 if (!bio->bi_status &&
1459 (bp->b_flags & XBF_WRITE) && (bp->b_flags & XBF_ASYNC) &&
43dc0aa8 1460 XFS_TEST_ERROR(false, bp->b_mount, XFS_ERRTAG_BUF_IOERROR))
7376d745 1461 bio->bi_status = BLK_STS_IOERR;
1da177e4 1462
37eb17e6
DC
1463 /*
1464 * don't overwrite existing errors - otherwise we can lose errors on
1465 * buffers that require multiple bios to complete.
1466 */
4e4cbee9
CH
1467 if (bio->bi_status) {
1468 int error = blk_status_to_errno(bio->bi_status);
1469
1470 cmpxchg(&bp->b_io_error, 0, error);
1471 }
1da177e4 1472
37eb17e6 1473 if (!bp->b_error && xfs_buf_is_vmapped(bp) && (bp->b_flags & XBF_READ))
73c77e2c
JB
1474 invalidate_kernel_vmap_range(bp->b_addr, xfs_buf_vmap_len(bp));
1475
e8aaba9a
DC
1476 if (atomic_dec_and_test(&bp->b_io_remaining) == 1)
1477 xfs_buf_ioend_async(bp);
1da177e4 1478 bio_put(bio);
1da177e4
LT
1479}
1480
3e85c868
DC
1481static void
1482xfs_buf_ioapply_map(
1483 struct xfs_buf *bp,
1484 int map,
1485 int *buf_offset,
1486 int *count,
2123ef85 1487 int op)
1da177e4 1488{
3e85c868 1489 int page_index;
5f7136db 1490 unsigned int total_nr_pages = bp->b_page_count;
3e85c868
DC
1491 int nr_pages;
1492 struct bio *bio;
1493 sector_t sector = bp->b_maps[map].bm_bn;
1494 int size;
1495 int offset;
1da177e4 1496
3e85c868
DC
1497 /* skip the pages in the buffer before the start offset */
1498 page_index = 0;
1499 offset = *buf_offset;
1500 while (offset >= PAGE_SIZE) {
1501 page_index++;
1502 offset -= PAGE_SIZE;
f538d4da
CH
1503 }
1504
3e85c868
DC
1505 /*
1506 * Limit the IO size to the length of the current vector, and update the
1507 * remaining IO count for the next time around.
1508 */
1509 size = min_t(int, BBTOB(bp->b_maps[map].bm_len), *count);
1510 *count -= size;
1511 *buf_offset += size;
34951f5c 1512
1da177e4 1513next_chunk:
ce8e922c 1514 atomic_inc(&bp->b_io_remaining);
5f7136db 1515 nr_pages = bio_max_segs(total_nr_pages);
1da177e4
LT
1516
1517 bio = bio_alloc(GFP_NOIO, nr_pages);
74d46992 1518 bio_set_dev(bio, bp->b_target->bt_bdev);
4f024f37 1519 bio->bi_iter.bi_sector = sector;
ce8e922c
NS
1520 bio->bi_end_io = xfs_buf_bio_end_io;
1521 bio->bi_private = bp;
2123ef85 1522 bio->bi_opf = op;
0e6e847f 1523
3e85c868 1524 for (; size && nr_pages; nr_pages--, page_index++) {
0e6e847f 1525 int rbytes, nbytes = PAGE_SIZE - offset;
1da177e4
LT
1526
1527 if (nbytes > size)
1528 nbytes = size;
1529
3e85c868
DC
1530 rbytes = bio_add_page(bio, bp->b_pages[page_index], nbytes,
1531 offset);
ce8e922c 1532 if (rbytes < nbytes)
1da177e4
LT
1533 break;
1534
1535 offset = 0;
aa0e8833 1536 sector += BTOBB(nbytes);
1da177e4
LT
1537 size -= nbytes;
1538 total_nr_pages--;
1539 }
1540
4f024f37 1541 if (likely(bio->bi_iter.bi_size)) {
73c77e2c
JB
1542 if (xfs_buf_is_vmapped(bp)) {
1543 flush_kernel_vmap_range(bp->b_addr,
1544 xfs_buf_vmap_len(bp));
1545 }
4e49ea4a 1546 submit_bio(bio);
1da177e4
LT
1547 if (size)
1548 goto next_chunk;
1549 } else {
37eb17e6
DC
1550 /*
1551 * This is guaranteed not to be the last io reference count
595bff75 1552 * because the caller (xfs_buf_submit) holds a count itself.
37eb17e6
DC
1553 */
1554 atomic_dec(&bp->b_io_remaining);
2451337d 1555 xfs_buf_ioerror(bp, -EIO);
ec53d1db 1556 bio_put(bio);
1da177e4 1557 }
3e85c868
DC
1558
1559}
1560
1561STATIC void
1562_xfs_buf_ioapply(
1563 struct xfs_buf *bp)
1564{
1565 struct blk_plug plug;
50bfcd0c 1566 int op;
3e85c868
DC
1567 int offset;
1568 int size;
1569 int i;
1570
c163f9a1
DC
1571 /*
1572 * Make sure we capture only current IO errors rather than stale errors
1573 * left over from previous use of the buffer (e.g. failed readahead).
1574 */
1575 bp->b_error = 0;
1576
3e85c868 1577 if (bp->b_flags & XBF_WRITE) {
50bfcd0c 1578 op = REQ_OP_WRITE;
1813dd64
DC
1579
1580 /*
1581 * Run the write verifier callback function if it exists. If
1582 * this function fails it will mark the buffer with an error and
1583 * the IO should not be dispatched.
1584 */
1585 if (bp->b_ops) {
1586 bp->b_ops->verify_write(bp);
1587 if (bp->b_error) {
dbd329f1 1588 xfs_force_shutdown(bp->b_mount,
1813dd64
DC
1589 SHUTDOWN_CORRUPT_INCORE);
1590 return;
1591 }
400b9d88 1592 } else if (bp->b_bn != XFS_BUF_DADDR_NULL) {
dbd329f1 1593 struct xfs_mount *mp = bp->b_mount;
400b9d88
DC
1594
1595 /*
1596 * non-crc filesystems don't attach verifiers during
1597 * log recovery, so don't warn for such filesystems.
1598 */
1599 if (xfs_sb_version_hascrc(&mp->m_sb)) {
1600 xfs_warn(mp,
c219b015 1601 "%s: no buf ops on daddr 0x%llx len %d",
400b9d88 1602 __func__, bp->b_bn, bp->b_length);
9c712a13
DW
1603 xfs_hex_dump(bp->b_addr,
1604 XFS_CORRUPTION_DUMP_LEN);
400b9d88
DC
1605 dump_stack();
1606 }
1813dd64 1607 }
3e85c868 1608 } else {
50bfcd0c 1609 op = REQ_OP_READ;
2123ef85
CH
1610 if (bp->b_flags & XBF_READ_AHEAD)
1611 op |= REQ_RAHEAD;
3e85c868
DC
1612 }
1613
1614 /* we only use the buffer cache for meta-data */
2123ef85 1615 op |= REQ_META;
3e85c868
DC
1616
1617 /*
1618 * Walk all the vectors issuing IO on them. Set up the initial offset
1619 * into the buffer and the desired IO size before we start -
1620 * _xfs_buf_ioapply_vec() will modify them appropriately for each
1621 * subsequent call.
1622 */
1623 offset = bp->b_offset;
8124b9b6 1624 size = BBTOB(bp->b_length);
3e85c868
DC
1625 blk_start_plug(&plug);
1626 for (i = 0; i < bp->b_map_count; i++) {
2123ef85 1627 xfs_buf_ioapply_map(bp, i, &offset, &size, op);
3e85c868
DC
1628 if (bp->b_error)
1629 break;
1630 if (size <= 0)
1631 break; /* all done */
1632 }
1633 blk_finish_plug(&plug);
1da177e4
LT
1634}
1635
595bff75 1636/*
bb00b6f1 1637 * Wait for I/O completion of a sync buffer and return the I/O error code.
595bff75 1638 */
eaebb515 1639static int
bb00b6f1 1640xfs_buf_iowait(
595bff75 1641 struct xfs_buf *bp)
1da177e4 1642{
bb00b6f1
BF
1643 ASSERT(!(bp->b_flags & XBF_ASYNC));
1644
1645 trace_xfs_buf_iowait(bp, _RET_IP_);
1646 wait_for_completion(&bp->b_iowait);
1647 trace_xfs_buf_iowait_done(bp, _RET_IP_);
1648
1649 return bp->b_error;
1650}
1651
1652/*
1653 * Buffer I/O submission path, read or write. Asynchronous submission transfers
1654 * the buffer lock ownership and the current reference to the IO. It is not
1655 * safe to reference the buffer after a call to this function unless the caller
1656 * holds an additional reference itself.
1657 */
26e32875 1658static int
bb00b6f1
BF
1659__xfs_buf_submit(
1660 struct xfs_buf *bp,
1661 bool wait)
1662{
1663 int error = 0;
1664
595bff75 1665 trace_xfs_buf_submit(bp, _RET_IP_);
1da177e4 1666
43ff2122 1667 ASSERT(!(bp->b_flags & _XBF_DELWRI_Q));
595bff75
DC
1668
1669 /* on shutdown we stale and complete the buffer immediately */
dbd329f1 1670 if (XFS_FORCED_SHUTDOWN(bp->b_mount)) {
54b3b1f6 1671 xfs_buf_ioend_fail(bp);
eaebb515 1672 return -EIO;
595bff75 1673 }
1da177e4 1674
bb00b6f1
BF
1675 /*
1676 * Grab a reference so the buffer does not go away underneath us. For
1677 * async buffers, I/O completion drops the callers reference, which
1678 * could occur before submission returns.
1679 */
1680 xfs_buf_hold(bp);
1681
375ec69d 1682 if (bp->b_flags & XBF_WRITE)
ce8e922c 1683 xfs_buf_wait_unpin(bp);
e11bb805 1684
61be9c52
DC
1685 /* clear the internal error state to avoid spurious errors */
1686 bp->b_io_error = 0;
1687
8d6c1210 1688 /*
e11bb805
DC
1689 * Set the count to 1 initially, this will stop an I/O completion
1690 * callout which happens before we have started all the I/O from calling
1691 * xfs_buf_ioend too early.
1da177e4 1692 */
ce8e922c 1693 atomic_set(&bp->b_io_remaining, 1);
eaebb515
BF
1694 if (bp->b_flags & XBF_ASYNC)
1695 xfs_buf_ioacct_inc(bp);
ce8e922c 1696 _xfs_buf_ioapply(bp);
e11bb805 1697
8d6c1210 1698 /*
595bff75
DC
1699 * If _xfs_buf_ioapply failed, we can get back here with only the IO
1700 * reference we took above. If we drop it to zero, run completion so
1701 * that we don't return to the caller with completion still pending.
8d6c1210 1702 */
e8aaba9a 1703 if (atomic_dec_and_test(&bp->b_io_remaining) == 1) {
eaebb515 1704 if (bp->b_error || !(bp->b_flags & XBF_ASYNC))
e8aaba9a
DC
1705 xfs_buf_ioend(bp);
1706 else
1707 xfs_buf_ioend_async(bp);
1708 }
1da177e4 1709
6af88cda
BF
1710 if (wait)
1711 error = xfs_buf_iowait(bp);
bb00b6f1 1712
595bff75 1713 /*
6af88cda
BF
1714 * Release the hold that keeps the buffer referenced for the entire
1715 * I/O. Note that if the buffer is async, it is not safe to reference
1716 * after this release.
595bff75
DC
1717 */
1718 xfs_buf_rele(bp);
1719 return error;
1da177e4
LT
1720}
1721
88ee2df7 1722void *
ce8e922c 1723xfs_buf_offset(
88ee2df7 1724 struct xfs_buf *bp,
1da177e4
LT
1725 size_t offset)
1726{
1727 struct page *page;
1728
611c9946 1729 if (bp->b_addr)
62926044 1730 return bp->b_addr + offset;
1da177e4 1731
ce8e922c 1732 offset += bp->b_offset;
0e6e847f 1733 page = bp->b_pages[offset >> PAGE_SHIFT];
88ee2df7 1734 return page_address(page) + (offset & (PAGE_SIZE-1));
1da177e4
LT
1735}
1736
1da177e4 1737void
f9a196ee
CH
1738xfs_buf_zero(
1739 struct xfs_buf *bp,
1740 size_t boff,
1741 size_t bsize)
1da177e4 1742{
795cac72 1743 size_t bend;
1da177e4
LT
1744
1745 bend = boff + bsize;
1746 while (boff < bend) {
795cac72
DC
1747 struct page *page;
1748 int page_index, page_offset, csize;
1749
1750 page_index = (boff + bp->b_offset) >> PAGE_SHIFT;
1751 page_offset = (boff + bp->b_offset) & ~PAGE_MASK;
1752 page = bp->b_pages[page_index];
1753 csize = min_t(size_t, PAGE_SIZE - page_offset,
8124b9b6 1754 BBTOB(bp->b_length) - boff);
1da177e4 1755
795cac72 1756 ASSERT((csize + page_offset) <= PAGE_SIZE);
1da177e4 1757
f9a196ee 1758 memset(page_address(page) + page_offset, 0, csize);
1da177e4
LT
1759
1760 boff += csize;
1da177e4
LT
1761 }
1762}
1763
8d57c216
DW
1764/*
1765 * Log a message about and stale a buffer that a caller has decided is corrupt.
1766 *
1767 * This function should be called for the kinds of metadata corruption that
1768 * cannot be detect from a verifier, such as incorrect inter-block relationship
1769 * data. Do /not/ call this function from a verifier function.
1770 *
1771 * The buffer must be XBF_DONE prior to the call. Afterwards, the buffer will
1772 * be marked stale, but b_error will not be set. The caller is responsible for
1773 * releasing the buffer or fixing it.
1774 */
1775void
1776__xfs_buf_mark_corrupt(
1777 struct xfs_buf *bp,
1778 xfs_failaddr_t fa)
1779{
1780 ASSERT(bp->b_flags & XBF_DONE);
1781
e83cf875 1782 xfs_buf_corruption_error(bp, fa);
8d57c216
DW
1783 xfs_buf_stale(bp);
1784}
1785
1da177e4 1786/*
ce8e922c 1787 * Handling of buffer targets (buftargs).
1da177e4
LT
1788 */
1789
1790/*
430cbeb8
DC
1791 * Wait for any bufs with callbacks that have been submitted but have not yet
1792 * returned. These buffers will have an elevated hold count, so wait on those
1793 * while freeing all the buffers only held by the LRU.
1da177e4 1794 */
e80dfa19 1795static enum lru_status
10fb9ac1 1796xfs_buftarg_drain_rele(
e80dfa19 1797 struct list_head *item,
3f97b163 1798 struct list_lru_one *lru,
e80dfa19
DC
1799 spinlock_t *lru_lock,
1800 void *arg)
1801
1da177e4 1802{
e80dfa19 1803 struct xfs_buf *bp = container_of(item, struct xfs_buf, b_lru);
a4082357 1804 struct list_head *dispose = arg;
430cbeb8 1805
e80dfa19 1806 if (atomic_read(&bp->b_hold) > 1) {
a4082357 1807 /* need to wait, so skip it this pass */
10fb9ac1 1808 trace_xfs_buf_drain_buftarg(bp, _RET_IP_);
a4082357 1809 return LRU_SKIP;
1da177e4 1810 }
a4082357
DC
1811 if (!spin_trylock(&bp->b_lock))
1812 return LRU_SKIP;
e80dfa19 1813
a4082357
DC
1814 /*
1815 * clear the LRU reference count so the buffer doesn't get
1816 * ignored in xfs_buf_rele().
1817 */
1818 atomic_set(&bp->b_lru_ref, 0);
1819 bp->b_state |= XFS_BSTATE_DISPOSE;
3f97b163 1820 list_lru_isolate_move(lru, item, dispose);
a4082357
DC
1821 spin_unlock(&bp->b_lock);
1822 return LRU_REMOVED;
1da177e4
LT
1823}
1824
8321ddb2
BF
1825/*
1826 * Wait for outstanding I/O on the buftarg to complete.
1827 */
e80dfa19 1828void
8321ddb2 1829xfs_buftarg_wait(
e80dfa19
DC
1830 struct xfs_buftarg *btp)
1831{
85bec546 1832 /*
9c7504aa
BF
1833 * First wait on the buftarg I/O count for all in-flight buffers to be
1834 * released. This is critical as new buffers do not make the LRU until
1835 * they are released.
1836 *
1837 * Next, flush the buffer workqueue to ensure all completion processing
1838 * has finished. Just waiting on buffer locks is not sufficient for
1839 * async IO as the reference count held over IO is not released until
1840 * after the buffer lock is dropped. Hence we need to ensure here that
1841 * all reference counts have been dropped before we start walking the
1842 * LRU list.
85bec546 1843 */
9c7504aa
BF
1844 while (percpu_counter_sum(&btp->bt_io_count))
1845 delay(100);
800b2694 1846 flush_workqueue(btp->bt_mount->m_buf_workqueue);
8321ddb2
BF
1847}
1848
1849void
1850xfs_buftarg_drain(
1851 struct xfs_buftarg *btp)
1852{
1853 LIST_HEAD(dispose);
1854 int loop = 0;
1855 bool write_fail = false;
1856
1857 xfs_buftarg_wait(btp);
85bec546 1858
a4082357
DC
1859 /* loop until there is nothing left on the lru list. */
1860 while (list_lru_count(&btp->bt_lru)) {
10fb9ac1 1861 list_lru_walk(&btp->bt_lru, xfs_buftarg_drain_rele,
a4082357
DC
1862 &dispose, LONG_MAX);
1863
1864 while (!list_empty(&dispose)) {
1865 struct xfs_buf *bp;
1866 bp = list_first_entry(&dispose, struct xfs_buf, b_lru);
1867 list_del_init(&bp->b_lru);
ac8809f9 1868 if (bp->b_flags & XBF_WRITE_FAIL) {
61948b6f
BF
1869 write_fail = true;
1870 xfs_buf_alert_ratelimited(bp,
1871 "XFS: Corruption Alert",
c219b015 1872"Corruption Alert: Buffer at daddr 0x%llx had permanent write failures!",
ac8809f9
DC
1873 (long long)bp->b_bn);
1874 }
a4082357
DC
1875 xfs_buf_rele(bp);
1876 }
1877 if (loop++ != 0)
1878 delay(100);
1879 }
61948b6f
BF
1880
1881 /*
1882 * If one or more failed buffers were freed, that means dirty metadata
1883 * was thrown away. This should only ever happen after I/O completion
1884 * handling has elevated I/O error(s) to permanent failures and shuts
1885 * down the fs.
1886 */
1887 if (write_fail) {
1888 ASSERT(XFS_FORCED_SHUTDOWN(btp->bt_mount));
1889 xfs_alert(btp->bt_mount,
1890 "Please run xfs_repair to determine the extent of the problem.");
1891 }
e80dfa19
DC
1892}
1893
1894static enum lru_status
1895xfs_buftarg_isolate(
1896 struct list_head *item,
3f97b163 1897 struct list_lru_one *lru,
e80dfa19
DC
1898 spinlock_t *lru_lock,
1899 void *arg)
1900{
1901 struct xfs_buf *bp = container_of(item, struct xfs_buf, b_lru);
1902 struct list_head *dispose = arg;
1903
a4082357
DC
1904 /*
1905 * we are inverting the lru lock/bp->b_lock here, so use a trylock.
1906 * If we fail to get the lock, just skip it.
1907 */
1908 if (!spin_trylock(&bp->b_lock))
1909 return LRU_SKIP;
e80dfa19
DC
1910 /*
1911 * Decrement the b_lru_ref count unless the value is already
1912 * zero. If the value is already zero, we need to reclaim the
1913 * buffer, otherwise it gets another trip through the LRU.
1914 */
19957a18 1915 if (atomic_add_unless(&bp->b_lru_ref, -1, 0)) {
a4082357 1916 spin_unlock(&bp->b_lock);
e80dfa19 1917 return LRU_ROTATE;
a4082357 1918 }
e80dfa19 1919
a4082357 1920 bp->b_state |= XFS_BSTATE_DISPOSE;
3f97b163 1921 list_lru_isolate_move(lru, item, dispose);
a4082357 1922 spin_unlock(&bp->b_lock);
e80dfa19
DC
1923 return LRU_REMOVED;
1924}
1925
addbda40 1926static unsigned long
e80dfa19 1927xfs_buftarg_shrink_scan(
ff57ab21 1928 struct shrinker *shrink,
1495f230 1929 struct shrink_control *sc)
a6867a68 1930{
ff57ab21
DC
1931 struct xfs_buftarg *btp = container_of(shrink,
1932 struct xfs_buftarg, bt_shrinker);
430cbeb8 1933 LIST_HEAD(dispose);
addbda40 1934 unsigned long freed;
430cbeb8 1935
503c358c
VD
1936 freed = list_lru_shrink_walk(&btp->bt_lru, sc,
1937 xfs_buftarg_isolate, &dispose);
430cbeb8
DC
1938
1939 while (!list_empty(&dispose)) {
e80dfa19 1940 struct xfs_buf *bp;
430cbeb8
DC
1941 bp = list_first_entry(&dispose, struct xfs_buf, b_lru);
1942 list_del_init(&bp->b_lru);
1943 xfs_buf_rele(bp);
1944 }
1945
e80dfa19
DC
1946 return freed;
1947}
1948
addbda40 1949static unsigned long
e80dfa19
DC
1950xfs_buftarg_shrink_count(
1951 struct shrinker *shrink,
1952 struct shrink_control *sc)
1953{
1954 struct xfs_buftarg *btp = container_of(shrink,
1955 struct xfs_buftarg, bt_shrinker);
503c358c 1956 return list_lru_shrink_count(&btp->bt_lru, sc);
a6867a68
DC
1957}
1958
1da177e4
LT
1959void
1960xfs_free_buftarg(
b7963133 1961 struct xfs_buftarg *btp)
1da177e4 1962{
ff57ab21 1963 unregister_shrinker(&btp->bt_shrinker);
9c7504aa
BF
1964 ASSERT(percpu_counter_sum(&btp->bt_io_count) == 0);
1965 percpu_counter_destroy(&btp->bt_io_count);
f5e1dd34 1966 list_lru_destroy(&btp->bt_lru);
ff57ab21 1967
2291dab2 1968 xfs_blkdev_issue_flush(btp);
a6867a68 1969
f0e2d93c 1970 kmem_free(btp);
1da177e4
LT
1971}
1972
3fefdeee
ES
1973int
1974xfs_setsize_buftarg(
1da177e4 1975 xfs_buftarg_t *btp,
3fefdeee 1976 unsigned int sectorsize)
1da177e4 1977{
7c71ee78 1978 /* Set up metadata sector size info */
6da54179
ES
1979 btp->bt_meta_sectorsize = sectorsize;
1980 btp->bt_meta_sectormask = sectorsize - 1;
1da177e4 1981
ce8e922c 1982 if (set_blocksize(btp->bt_bdev, sectorsize)) {
4f10700a 1983 xfs_warn(btp->bt_mount,
a1c6f057
DM
1984 "Cannot set_blocksize to %u on device %pg",
1985 sectorsize, btp->bt_bdev);
2451337d 1986 return -EINVAL;
1da177e4
LT
1987 }
1988
7c71ee78
ES
1989 /* Set up device logical sector size mask */
1990 btp->bt_logical_sectorsize = bdev_logical_block_size(btp->bt_bdev);
1991 btp->bt_logical_sectormask = bdev_logical_block_size(btp->bt_bdev) - 1;
1992
1da177e4
LT
1993 return 0;
1994}
1995
1996/*
3fefdeee
ES
1997 * When allocating the initial buffer target we have not yet
1998 * read in the superblock, so don't know what sized sectors
1999 * are being used at this early stage. Play safe.
ce8e922c 2000 */
1da177e4
LT
2001STATIC int
2002xfs_setsize_buftarg_early(
2003 xfs_buftarg_t *btp,
2004 struct block_device *bdev)
2005{
a96c4151 2006 return xfs_setsize_buftarg(btp, bdev_logical_block_size(bdev));
1da177e4
LT
2007}
2008
1da177e4
LT
2009xfs_buftarg_t *
2010xfs_alloc_buftarg(
ebad861b 2011 struct xfs_mount *mp,
486aff5e
DW
2012 struct block_device *bdev,
2013 struct dax_device *dax_dev)
1da177e4
LT
2014{
2015 xfs_buftarg_t *btp;
2016
707e0dda 2017 btp = kmem_zalloc(sizeof(*btp), KM_NOFS);
1da177e4 2018
ebad861b 2019 btp->bt_mount = mp;
ce8e922c
NS
2020 btp->bt_dev = bdev->bd_dev;
2021 btp->bt_bdev = bdev;
486aff5e 2022 btp->bt_daxdev = dax_dev;
0e6e847f 2023
f9bccfcc
BF
2024 /*
2025 * Buffer IO error rate limiting. Limit it to no more than 10 messages
2026 * per 30 seconds so as to not spam logs too much on repeated errors.
2027 */
2028 ratelimit_state_init(&btp->bt_ioerror_rl, 30 * HZ,
2029 DEFAULT_RATELIMIT_BURST);
2030
1da177e4 2031 if (xfs_setsize_buftarg_early(btp, bdev))
d210a987 2032 goto error_free;
5ca302c8
GC
2033
2034 if (list_lru_init(&btp->bt_lru))
d210a987 2035 goto error_free;
5ca302c8 2036
9c7504aa 2037 if (percpu_counter_init(&btp->bt_io_count, 0, GFP_KERNEL))
d210a987 2038 goto error_lru;
9c7504aa 2039
e80dfa19
DC
2040 btp->bt_shrinker.count_objects = xfs_buftarg_shrink_count;
2041 btp->bt_shrinker.scan_objects = xfs_buftarg_shrink_scan;
ff57ab21 2042 btp->bt_shrinker.seeks = DEFAULT_SEEKS;
e80dfa19 2043 btp->bt_shrinker.flags = SHRINKER_NUMA_AWARE;
d210a987
MH
2044 if (register_shrinker(&btp->bt_shrinker))
2045 goto error_pcpu;
1da177e4
LT
2046 return btp;
2047
d210a987
MH
2048error_pcpu:
2049 percpu_counter_destroy(&btp->bt_io_count);
2050error_lru:
2051 list_lru_destroy(&btp->bt_lru);
2052error_free:
f0e2d93c 2053 kmem_free(btp);
1da177e4
LT
2054 return NULL;
2055}
2056
20e8a063
BF
2057/*
2058 * Cancel a delayed write list.
2059 *
2060 * Remove each buffer from the list, clear the delwri queue flag and drop the
2061 * associated buffer reference.
2062 */
2063void
2064xfs_buf_delwri_cancel(
2065 struct list_head *list)
2066{
2067 struct xfs_buf *bp;
2068
2069 while (!list_empty(list)) {
2070 bp = list_first_entry(list, struct xfs_buf, b_list);
2071
2072 xfs_buf_lock(bp);
2073 bp->b_flags &= ~_XBF_DELWRI_Q;
2074 list_del_init(&bp->b_list);
2075 xfs_buf_relse(bp);
2076 }
2077}
2078
1da177e4 2079/*
43ff2122
CH
2080 * Add a buffer to the delayed write list.
2081 *
2082 * This queues a buffer for writeout if it hasn't already been. Note that
2083 * neither this routine nor the buffer list submission functions perform
2084 * any internal synchronization. It is expected that the lists are thread-local
2085 * to the callers.
2086 *
2087 * Returns true if we queued up the buffer, or false if it already had
2088 * been on the buffer list.
1da177e4 2089 */
43ff2122 2090bool
ce8e922c 2091xfs_buf_delwri_queue(
43ff2122
CH
2092 struct xfs_buf *bp,
2093 struct list_head *list)
1da177e4 2094{
43ff2122 2095 ASSERT(xfs_buf_islocked(bp));
5a8ee6ba 2096 ASSERT(!(bp->b_flags & XBF_READ));
1da177e4 2097
43ff2122
CH
2098 /*
2099 * If the buffer is already marked delwri it already is queued up
2100 * by someone else for imediate writeout. Just ignore it in that
2101 * case.
2102 */
2103 if (bp->b_flags & _XBF_DELWRI_Q) {
2104 trace_xfs_buf_delwri_queued(bp, _RET_IP_);
2105 return false;
1da177e4 2106 }
1da177e4 2107
43ff2122 2108 trace_xfs_buf_delwri_queue(bp, _RET_IP_);
d808f617
DC
2109
2110 /*
43ff2122
CH
2111 * If a buffer gets written out synchronously or marked stale while it
2112 * is on a delwri list we lazily remove it. To do this, the other party
2113 * clears the _XBF_DELWRI_Q flag but otherwise leaves the buffer alone.
2114 * It remains referenced and on the list. In a rare corner case it
2115 * might get readded to a delwri list after the synchronous writeout, in
2116 * which case we need just need to re-add the flag here.
d808f617 2117 */
43ff2122
CH
2118 bp->b_flags |= _XBF_DELWRI_Q;
2119 if (list_empty(&bp->b_list)) {
2120 atomic_inc(&bp->b_hold);
2121 list_add_tail(&bp->b_list, list);
585e6d88 2122 }
585e6d88 2123
43ff2122 2124 return true;
585e6d88
DC
2125}
2126
089716aa
DC
2127/*
2128 * Compare function is more complex than it needs to be because
2129 * the return value is only 32 bits and we are doing comparisons
2130 * on 64 bit values
2131 */
2132static int
2133xfs_buf_cmp(
4f0f586b
ST
2134 void *priv,
2135 const struct list_head *a,
2136 const struct list_head *b)
089716aa
DC
2137{
2138 struct xfs_buf *ap = container_of(a, struct xfs_buf, b_list);
2139 struct xfs_buf *bp = container_of(b, struct xfs_buf, b_list);
2140 xfs_daddr_t diff;
2141
f4b42421 2142 diff = ap->b_maps[0].bm_bn - bp->b_maps[0].bm_bn;
089716aa
DC
2143 if (diff < 0)
2144 return -1;
2145 if (diff > 0)
2146 return 1;
2147 return 0;
2148}
2149
26f1fe85 2150/*
e339dd8d
BF
2151 * Submit buffers for write. If wait_list is specified, the buffers are
2152 * submitted using sync I/O and placed on the wait list such that the caller can
2153 * iowait each buffer. Otherwise async I/O is used and the buffers are released
2154 * at I/O completion time. In either case, buffers remain locked until I/O
2155 * completes and the buffer is released from the queue.
26f1fe85 2156 */
43ff2122 2157static int
26f1fe85 2158xfs_buf_delwri_submit_buffers(
43ff2122 2159 struct list_head *buffer_list,
26f1fe85 2160 struct list_head *wait_list)
1da177e4 2161{
43ff2122
CH
2162 struct xfs_buf *bp, *n;
2163 int pinned = 0;
26f1fe85 2164 struct blk_plug plug;
43ff2122 2165
26f1fe85 2166 list_sort(NULL, buffer_list, xfs_buf_cmp);
43ff2122 2167
26f1fe85 2168 blk_start_plug(&plug);
43ff2122 2169 list_for_each_entry_safe(bp, n, buffer_list, b_list) {
26f1fe85 2170 if (!wait_list) {
43ff2122
CH
2171 if (xfs_buf_ispinned(bp)) {
2172 pinned++;
2173 continue;
2174 }
2175 if (!xfs_buf_trylock(bp))
2176 continue;
2177 } else {
2178 xfs_buf_lock(bp);
2179 }
978c7b2f 2180
43ff2122
CH
2181 /*
2182 * Someone else might have written the buffer synchronously or
2183 * marked it stale in the meantime. In that case only the
2184 * _XBF_DELWRI_Q flag got cleared, and we have to drop the
2185 * reference and remove it from the list here.
2186 */
2187 if (!(bp->b_flags & _XBF_DELWRI_Q)) {
2188 list_del_init(&bp->b_list);
2189 xfs_buf_relse(bp);
2190 continue;
2191 }
c9c12971 2192
43ff2122 2193 trace_xfs_buf_delwri_split(bp, _RET_IP_);
a1b7ea5d 2194
cf53e99d 2195 /*
e339dd8d
BF
2196 * If we have a wait list, each buffer (and associated delwri
2197 * queue reference) transfers to it and is submitted
2198 * synchronously. Otherwise, drop the buffer from the delwri
2199 * queue and submit async.
cf53e99d 2200 */
b6983e80 2201 bp->b_flags &= ~_XBF_DELWRI_Q;
e339dd8d 2202 bp->b_flags |= XBF_WRITE;
26f1fe85 2203 if (wait_list) {
e339dd8d 2204 bp->b_flags &= ~XBF_ASYNC;
26f1fe85 2205 list_move_tail(&bp->b_list, wait_list);
e339dd8d
BF
2206 } else {
2207 bp->b_flags |= XBF_ASYNC;
ce8e922c 2208 list_del_init(&bp->b_list);
e339dd8d 2209 }
6af88cda 2210 __xfs_buf_submit(bp, false);
43ff2122
CH
2211 }
2212 blk_finish_plug(&plug);
1da177e4 2213
43ff2122 2214 return pinned;
1da177e4
LT
2215}
2216
2217/*
43ff2122
CH
2218 * Write out a buffer list asynchronously.
2219 *
2220 * This will take the @buffer_list, write all non-locked and non-pinned buffers
2221 * out and not wait for I/O completion on any of the buffers. This interface
2222 * is only safely useable for callers that can track I/O completion by higher
2223 * level means, e.g. AIL pushing as the @buffer_list is consumed in this
2224 * function.
efc3289c
BF
2225 *
2226 * Note: this function will skip buffers it would block on, and in doing so
2227 * leaves them on @buffer_list so they can be retried on a later pass. As such,
2228 * it is up to the caller to ensure that the buffer list is fully submitted or
2229 * cancelled appropriately when they are finished with the list. Failure to
2230 * cancel or resubmit the list until it is empty will result in leaked buffers
2231 * at unmount time.
1da177e4
LT
2232 */
2233int
43ff2122
CH
2234xfs_buf_delwri_submit_nowait(
2235 struct list_head *buffer_list)
1da177e4 2236{
26f1fe85 2237 return xfs_buf_delwri_submit_buffers(buffer_list, NULL);
43ff2122 2238}
1da177e4 2239
43ff2122
CH
2240/*
2241 * Write out a buffer list synchronously.
2242 *
2243 * This will take the @buffer_list, write all buffers out and wait for I/O
2244 * completion on all of the buffers. @buffer_list is consumed by the function,
2245 * so callers must have some other way of tracking buffers if they require such
2246 * functionality.
2247 */
2248int
2249xfs_buf_delwri_submit(
2250 struct list_head *buffer_list)
2251{
26f1fe85 2252 LIST_HEAD (wait_list);
43ff2122
CH
2253 int error = 0, error2;
2254 struct xfs_buf *bp;
1da177e4 2255
26f1fe85 2256 xfs_buf_delwri_submit_buffers(buffer_list, &wait_list);
1da177e4 2257
43ff2122 2258 /* Wait for IO to complete. */
26f1fe85
DC
2259 while (!list_empty(&wait_list)) {
2260 bp = list_first_entry(&wait_list, struct xfs_buf, b_list);
a1b7ea5d 2261
089716aa 2262 list_del_init(&bp->b_list);
cf53e99d 2263
e339dd8d
BF
2264 /*
2265 * Wait on the locked buffer, check for errors and unlock and
2266 * release the delwri queue reference.
2267 */
2268 error2 = xfs_buf_iowait(bp);
43ff2122
CH
2269 xfs_buf_relse(bp);
2270 if (!error)
2271 error = error2;
1da177e4
LT
2272 }
2273
43ff2122 2274 return error;
1da177e4
LT
2275}
2276
7912e7fe
BF
2277/*
2278 * Push a single buffer on a delwri queue.
2279 *
2280 * The purpose of this function is to submit a single buffer of a delwri queue
2281 * and return with the buffer still on the original queue. The waiting delwri
2282 * buffer submission infrastructure guarantees transfer of the delwri queue
2283 * buffer reference to a temporary wait list. We reuse this infrastructure to
2284 * transfer the buffer back to the original queue.
2285 *
2286 * Note the buffer transitions from the queued state, to the submitted and wait
2287 * listed state and back to the queued state during this call. The buffer
2288 * locking and queue management logic between _delwri_pushbuf() and
2289 * _delwri_queue() guarantee that the buffer cannot be queued to another list
2290 * before returning.
2291 */
2292int
2293xfs_buf_delwri_pushbuf(
2294 struct xfs_buf *bp,
2295 struct list_head *buffer_list)
2296{
2297 LIST_HEAD (submit_list);
2298 int error;
2299
2300 ASSERT(bp->b_flags & _XBF_DELWRI_Q);
2301
2302 trace_xfs_buf_delwri_pushbuf(bp, _RET_IP_);
2303
2304 /*
2305 * Isolate the buffer to a new local list so we can submit it for I/O
2306 * independently from the rest of the original list.
2307 */
2308 xfs_buf_lock(bp);
2309 list_move(&bp->b_list, &submit_list);
2310 xfs_buf_unlock(bp);
2311
2312 /*
2313 * Delwri submission clears the DELWRI_Q buffer flag and returns with
e339dd8d 2314 * the buffer on the wait list with the original reference. Rather than
7912e7fe
BF
2315 * bounce the buffer from a local wait list back to the original list
2316 * after I/O completion, reuse the original list as the wait list.
2317 */
2318 xfs_buf_delwri_submit_buffers(&submit_list, buffer_list);
2319
2320 /*
e339dd8d
BF
2321 * The buffer is now locked, under I/O and wait listed on the original
2322 * delwri queue. Wait for I/O completion, restore the DELWRI_Q flag and
2323 * return with the buffer unlocked and on the original queue.
7912e7fe 2324 */
e339dd8d 2325 error = xfs_buf_iowait(bp);
7912e7fe
BF
2326 bp->b_flags |= _XBF_DELWRI_Q;
2327 xfs_buf_unlock(bp);
2328
2329 return error;
2330}
2331
04d8b284 2332int __init
ce8e922c 2333xfs_buf_init(void)
1da177e4 2334{
12eba65b
DC
2335 xfs_buf_zone = kmem_cache_create("xfs_buf", sizeof(struct xfs_buf), 0,
2336 SLAB_HWCACHE_ALIGN |
2337 SLAB_RECLAIM_ACCOUNT |
2338 SLAB_MEM_SPREAD,
2339 NULL);
ce8e922c 2340 if (!xfs_buf_zone)
0b1b213f 2341 goto out;
04d8b284 2342
23ea4032 2343 return 0;
1da177e4 2344
0b1b213f 2345 out:
8758280f 2346 return -ENOMEM;
1da177e4
LT
2347}
2348
1da177e4 2349void
ce8e922c 2350xfs_buf_terminate(void)
1da177e4 2351{
aaf54eb8 2352 kmem_cache_destroy(xfs_buf_zone);
1da177e4 2353}
7561d27e
BF
2354
2355void xfs_buf_set_ref(struct xfs_buf *bp, int lru_ref)
2356{
7561d27e
BF
2357 /*
2358 * Set the lru reference count to 0 based on the error injection tag.
2359 * This allows userspace to disrupt buffer caching for debug/testing
2360 * purposes.
2361 */
dbd329f1 2362 if (XFS_TEST_ERROR(false, bp->b_mount, XFS_ERRTAG_BUF_LRU_REF))
7561d27e
BF
2363 lru_ref = 0;
2364
2365 atomic_set(&bp->b_lru_ref, lru_ref);
2366}
8473fee3
BF
2367
2368/*
2369 * Verify an on-disk magic value against the magic value specified in the
2370 * verifier structure. The verifier magic is in disk byte order so the caller is
2371 * expected to pass the value directly from disk.
2372 */
2373bool
2374xfs_verify_magic(
2375 struct xfs_buf *bp,
15baadf7 2376 __be32 dmagic)
8473fee3 2377{
dbd329f1 2378 struct xfs_mount *mp = bp->b_mount;
8473fee3
BF
2379 int idx;
2380
2381 idx = xfs_sb_version_hascrc(&mp->m_sb);
14ed8688 2382 if (WARN_ON(!bp->b_ops || !bp->b_ops->magic[idx]))
8473fee3
BF
2383 return false;
2384 return dmagic == bp->b_ops->magic[idx];
2385}
15baadf7
DW
2386/*
2387 * Verify an on-disk magic value against the magic value specified in the
2388 * verifier structure. The verifier magic is in disk byte order so the caller is
2389 * expected to pass the value directly from disk.
2390 */
2391bool
2392xfs_verify_magic16(
2393 struct xfs_buf *bp,
2394 __be16 dmagic)
2395{
dbd329f1 2396 struct xfs_mount *mp = bp->b_mount;
15baadf7
DW
2397 int idx;
2398
2399 idx = xfs_sb_version_hascrc(&mp->m_sb);
14ed8688 2400 if (WARN_ON(!bp->b_ops || !bp->b_ops->magic16[idx]))
15baadf7
DW
2401 return false;
2402 return dmagic == bp->b_ops->magic16[idx];
2403}