]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - fs/xfs/xfs_buf.c
xfs: convert internal buffer functions to pass maps
[mirror_ubuntu-zesty-kernel.git] / fs / xfs / xfs_buf.c
CommitLineData
1da177e4 1/*
f07c2250 2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
7b718769 3 * All Rights Reserved.
1da177e4 4 *
7b718769
NS
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
1da177e4
LT
7 * published by the Free Software Foundation.
8 *
7b718769
NS
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
1da177e4 13 *
7b718769
NS
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
1da177e4 17 */
93c189c1 18#include "xfs.h"
1da177e4
LT
19#include <linux/stddef.h>
20#include <linux/errno.h>
5a0e3ad6 21#include <linux/gfp.h>
1da177e4
LT
22#include <linux/pagemap.h>
23#include <linux/init.h>
24#include <linux/vmalloc.h>
25#include <linux/bio.h>
26#include <linux/sysctl.h>
27#include <linux/proc_fs.h>
28#include <linux/workqueue.h>
29#include <linux/percpu.h>
30#include <linux/blkdev.h>
31#include <linux/hash.h>
4df08c52 32#include <linux/kthread.h>
b20a3503 33#include <linux/migrate.h>
3fcfab16 34#include <linux/backing-dev.h>
7dfb7103 35#include <linux/freezer.h>
1da177e4 36
b7963133 37#include "xfs_sb.h"
ed3b4d6c 38#include "xfs_log.h"
b7963133 39#include "xfs_ag.h"
b7963133 40#include "xfs_mount.h"
0b1b213f 41#include "xfs_trace.h"
b7963133 42
7989cb8e 43static kmem_zone_t *xfs_buf_zone;
23ea4032 44
7989cb8e 45static struct workqueue_struct *xfslogd_workqueue;
1da177e4 46
ce8e922c
NS
47#ifdef XFS_BUF_LOCK_TRACKING
48# define XB_SET_OWNER(bp) ((bp)->b_last_holder = current->pid)
49# define XB_CLEAR_OWNER(bp) ((bp)->b_last_holder = -1)
50# define XB_GET_OWNER(bp) ((bp)->b_last_holder)
1da177e4 51#else
ce8e922c
NS
52# define XB_SET_OWNER(bp) do { } while (0)
53# define XB_CLEAR_OWNER(bp) do { } while (0)
54# define XB_GET_OWNER(bp) do { } while (0)
1da177e4
LT
55#endif
56
ce8e922c 57#define xb_to_gfp(flags) \
aa5c158e 58 ((((flags) & XBF_READ_AHEAD) ? __GFP_NORETRY : GFP_NOFS) | __GFP_NOWARN)
1da177e4 59
1da177e4 60
73c77e2c
JB
61static inline int
62xfs_buf_is_vmapped(
63 struct xfs_buf *bp)
64{
65 /*
66 * Return true if the buffer is vmapped.
67 *
611c9946
DC
68 * b_addr is null if the buffer is not mapped, but the code is clever
69 * enough to know it doesn't have to map a single page, so the check has
70 * to be both for b_addr and bp->b_page_count > 1.
73c77e2c 71 */
611c9946 72 return bp->b_addr && bp->b_page_count > 1;
73c77e2c
JB
73}
74
75static inline int
76xfs_buf_vmap_len(
77 struct xfs_buf *bp)
78{
79 return (bp->b_page_count * PAGE_SIZE) - bp->b_offset;
80}
81
1da177e4 82/*
430cbeb8
DC
83 * xfs_buf_lru_add - add a buffer to the LRU.
84 *
85 * The LRU takes a new reference to the buffer so that it will only be freed
86 * once the shrinker takes the buffer off the LRU.
87 */
88STATIC void
89xfs_buf_lru_add(
90 struct xfs_buf *bp)
91{
92 struct xfs_buftarg *btp = bp->b_target;
93
94 spin_lock(&btp->bt_lru_lock);
95 if (list_empty(&bp->b_lru)) {
96 atomic_inc(&bp->b_hold);
97 list_add_tail(&bp->b_lru, &btp->bt_lru);
98 btp->bt_lru_nr++;
99 }
100 spin_unlock(&btp->bt_lru_lock);
101}
102
103/*
104 * xfs_buf_lru_del - remove a buffer from the LRU
105 *
106 * The unlocked check is safe here because it only occurs when there are not
107 * b_lru_ref counts left on the inode under the pag->pag_buf_lock. it is there
108 * to optimise the shrinker removing the buffer from the LRU and calling
25985edc 109 * xfs_buf_free(). i.e. it removes an unnecessary round trip on the
430cbeb8 110 * bt_lru_lock.
1da177e4 111 */
430cbeb8
DC
112STATIC void
113xfs_buf_lru_del(
114 struct xfs_buf *bp)
115{
116 struct xfs_buftarg *btp = bp->b_target;
117
118 if (list_empty(&bp->b_lru))
119 return;
120
121 spin_lock(&btp->bt_lru_lock);
122 if (!list_empty(&bp->b_lru)) {
123 list_del_init(&bp->b_lru);
124 btp->bt_lru_nr--;
125 }
126 spin_unlock(&btp->bt_lru_lock);
127}
128
129/*
130 * When we mark a buffer stale, we remove the buffer from the LRU and clear the
131 * b_lru_ref count so that the buffer is freed immediately when the buffer
132 * reference count falls to zero. If the buffer is already on the LRU, we need
133 * to remove the reference that LRU holds on the buffer.
134 *
135 * This prevents build-up of stale buffers on the LRU.
136 */
137void
138xfs_buf_stale(
139 struct xfs_buf *bp)
140{
43ff2122
CH
141 ASSERT(xfs_buf_islocked(bp));
142
430cbeb8 143 bp->b_flags |= XBF_STALE;
43ff2122
CH
144
145 /*
146 * Clear the delwri status so that a delwri queue walker will not
147 * flush this buffer to disk now that it is stale. The delwri queue has
148 * a reference to the buffer, so this is safe to do.
149 */
150 bp->b_flags &= ~_XBF_DELWRI_Q;
151
430cbeb8
DC
152 atomic_set(&(bp)->b_lru_ref, 0);
153 if (!list_empty(&bp->b_lru)) {
154 struct xfs_buftarg *btp = bp->b_target;
155
156 spin_lock(&btp->bt_lru_lock);
157 if (!list_empty(&bp->b_lru)) {
158 list_del_init(&bp->b_lru);
159 btp->bt_lru_nr--;
160 atomic_dec(&bp->b_hold);
161 }
162 spin_unlock(&btp->bt_lru_lock);
163 }
164 ASSERT(atomic_read(&bp->b_hold) >= 1);
165}
1da177e4 166
3e85c868
DC
167static int
168xfs_buf_get_maps(
169 struct xfs_buf *bp,
170 int map_count)
171{
172 ASSERT(bp->b_maps == NULL);
173 bp->b_map_count = map_count;
174
175 if (map_count == 1) {
176 bp->b_maps = &bp->b_map;
177 return 0;
178 }
179
180 bp->b_maps = kmem_zalloc(map_count * sizeof(struct xfs_buf_map),
181 KM_NOFS);
182 if (!bp->b_maps)
183 return ENOMEM;
184 return 0;
185}
186
187/*
188 * Frees b_pages if it was allocated.
189 */
190static void
191xfs_buf_free_maps(
192 struct xfs_buf *bp)
193{
194 if (bp->b_maps != &bp->b_map) {
195 kmem_free(bp->b_maps);
196 bp->b_maps = NULL;
197 }
198}
199
4347b9d7 200struct xfs_buf *
3e85c868 201_xfs_buf_alloc(
4347b9d7 202 struct xfs_buftarg *target,
3e85c868
DC
203 struct xfs_buf_map *map,
204 int nmaps,
ce8e922c 205 xfs_buf_flags_t flags)
1da177e4 206{
4347b9d7 207 struct xfs_buf *bp;
3e85c868
DC
208 int error;
209 int i;
4347b9d7 210
aa5c158e 211 bp = kmem_zone_zalloc(xfs_buf_zone, KM_NOFS);
4347b9d7
CH
212 if (unlikely(!bp))
213 return NULL;
214
1da177e4 215 /*
12bcb3f7
DC
216 * We don't want certain flags to appear in b_flags unless they are
217 * specifically set by later operations on the buffer.
1da177e4 218 */
611c9946 219 flags &= ~(XBF_UNMAPPED | XBF_TRYLOCK | XBF_ASYNC | XBF_READ_AHEAD);
ce8e922c 220
ce8e922c 221 atomic_set(&bp->b_hold, 1);
430cbeb8 222 atomic_set(&bp->b_lru_ref, 1);
b4dd330b 223 init_completion(&bp->b_iowait);
430cbeb8 224 INIT_LIST_HEAD(&bp->b_lru);
ce8e922c 225 INIT_LIST_HEAD(&bp->b_list);
74f75a0c 226 RB_CLEAR_NODE(&bp->b_rbnode);
a731cd11 227 sema_init(&bp->b_sema, 0); /* held, no waiters */
ce8e922c
NS
228 XB_SET_OWNER(bp);
229 bp->b_target = target;
3e85c868 230 bp->b_flags = flags;
de1cbee4 231
1da177e4 232 /*
aa0e8833
DC
233 * Set length and io_length to the same value initially.
234 * I/O routines should use io_length, which will be the same in
1da177e4
LT
235 * most cases but may be reset (e.g. XFS recovery).
236 */
3e85c868
DC
237 error = xfs_buf_get_maps(bp, nmaps);
238 if (error) {
239 kmem_zone_free(xfs_buf_zone, bp);
240 return NULL;
241 }
242
243 bp->b_bn = map[0].bm_bn;
244 bp->b_length = 0;
245 for (i = 0; i < nmaps; i++) {
246 bp->b_maps[i].bm_bn = map[i].bm_bn;
247 bp->b_maps[i].bm_len = map[i].bm_len;
248 bp->b_length += map[i].bm_len;
249 }
250 bp->b_io_length = bp->b_length;
251
ce8e922c
NS
252 atomic_set(&bp->b_pin_count, 0);
253 init_waitqueue_head(&bp->b_waiters);
254
255 XFS_STATS_INC(xb_create);
0b1b213f 256 trace_xfs_buf_init(bp, _RET_IP_);
4347b9d7
CH
257
258 return bp;
1da177e4
LT
259}
260
261/*
ce8e922c
NS
262 * Allocate a page array capable of holding a specified number
263 * of pages, and point the page buf at it.
1da177e4
LT
264 */
265STATIC int
ce8e922c
NS
266_xfs_buf_get_pages(
267 xfs_buf_t *bp,
1da177e4 268 int page_count,
ce8e922c 269 xfs_buf_flags_t flags)
1da177e4
LT
270{
271 /* Make sure that we have a page list */
ce8e922c 272 if (bp->b_pages == NULL) {
ce8e922c
NS
273 bp->b_page_count = page_count;
274 if (page_count <= XB_PAGES) {
275 bp->b_pages = bp->b_page_array;
1da177e4 276 } else {
ce8e922c 277 bp->b_pages = kmem_alloc(sizeof(struct page *) *
aa5c158e 278 page_count, KM_NOFS);
ce8e922c 279 if (bp->b_pages == NULL)
1da177e4
LT
280 return -ENOMEM;
281 }
ce8e922c 282 memset(bp->b_pages, 0, sizeof(struct page *) * page_count);
1da177e4
LT
283 }
284 return 0;
285}
286
287/*
ce8e922c 288 * Frees b_pages if it was allocated.
1da177e4
LT
289 */
290STATIC void
ce8e922c 291_xfs_buf_free_pages(
1da177e4
LT
292 xfs_buf_t *bp)
293{
ce8e922c 294 if (bp->b_pages != bp->b_page_array) {
f0e2d93c 295 kmem_free(bp->b_pages);
3fc98b1a 296 bp->b_pages = NULL;
1da177e4
LT
297 }
298}
299
300/*
301 * Releases the specified buffer.
302 *
303 * The modification state of any associated pages is left unchanged.
ce8e922c 304 * The buffer most not be on any hash - use xfs_buf_rele instead for
1da177e4
LT
305 * hashed and refcounted buffers
306 */
307void
ce8e922c 308xfs_buf_free(
1da177e4
LT
309 xfs_buf_t *bp)
310{
0b1b213f 311 trace_xfs_buf_free(bp, _RET_IP_);
1da177e4 312
430cbeb8
DC
313 ASSERT(list_empty(&bp->b_lru));
314
0e6e847f 315 if (bp->b_flags & _XBF_PAGES) {
1da177e4
LT
316 uint i;
317
73c77e2c 318 if (xfs_buf_is_vmapped(bp))
8a262e57
AE
319 vm_unmap_ram(bp->b_addr - bp->b_offset,
320 bp->b_page_count);
1da177e4 321
948ecdb4
NS
322 for (i = 0; i < bp->b_page_count; i++) {
323 struct page *page = bp->b_pages[i];
324
0e6e847f 325 __free_page(page);
948ecdb4 326 }
0e6e847f
DC
327 } else if (bp->b_flags & _XBF_KMEM)
328 kmem_free(bp->b_addr);
3fc98b1a 329 _xfs_buf_free_pages(bp);
3e85c868 330 xfs_buf_free_maps(bp);
4347b9d7 331 kmem_zone_free(xfs_buf_zone, bp);
1da177e4
LT
332}
333
334/*
0e6e847f 335 * Allocates all the pages for buffer in question and builds it's page list.
1da177e4
LT
336 */
337STATIC int
0e6e847f 338xfs_buf_allocate_memory(
1da177e4
LT
339 xfs_buf_t *bp,
340 uint flags)
341{
aa0e8833 342 size_t size;
1da177e4 343 size_t nbytes, offset;
ce8e922c 344 gfp_t gfp_mask = xb_to_gfp(flags);
1da177e4 345 unsigned short page_count, i;
795cac72 346 xfs_off_t start, end;
1da177e4
LT
347 int error;
348
0e6e847f
DC
349 /*
350 * for buffers that are contained within a single page, just allocate
351 * the memory from the heap - there's no need for the complexity of
352 * page arrays to keep allocation down to order 0.
353 */
795cac72
DC
354 size = BBTOB(bp->b_length);
355 if (size < PAGE_SIZE) {
aa5c158e 356 bp->b_addr = kmem_alloc(size, KM_NOFS);
0e6e847f
DC
357 if (!bp->b_addr) {
358 /* low memory - use alloc_page loop instead */
359 goto use_alloc_page;
360 }
361
795cac72 362 if (((unsigned long)(bp->b_addr + size - 1) & PAGE_MASK) !=
0e6e847f
DC
363 ((unsigned long)bp->b_addr & PAGE_MASK)) {
364 /* b_addr spans two pages - use alloc_page instead */
365 kmem_free(bp->b_addr);
366 bp->b_addr = NULL;
367 goto use_alloc_page;
368 }
369 bp->b_offset = offset_in_page(bp->b_addr);
370 bp->b_pages = bp->b_page_array;
371 bp->b_pages[0] = virt_to_page(bp->b_addr);
372 bp->b_page_count = 1;
611c9946 373 bp->b_flags |= _XBF_KMEM;
0e6e847f
DC
374 return 0;
375 }
376
377use_alloc_page:
cbb7baab
DC
378 start = BBTOB(bp->b_map.bm_bn) >> PAGE_SHIFT;
379 end = (BBTOB(bp->b_map.bm_bn + bp->b_length) + PAGE_SIZE - 1)
380 >> PAGE_SHIFT;
795cac72 381 page_count = end - start;
ce8e922c 382 error = _xfs_buf_get_pages(bp, page_count, flags);
1da177e4
LT
383 if (unlikely(error))
384 return error;
1da177e4 385
ce8e922c 386 offset = bp->b_offset;
0e6e847f 387 bp->b_flags |= _XBF_PAGES;
1da177e4 388
ce8e922c 389 for (i = 0; i < bp->b_page_count; i++) {
1da177e4
LT
390 struct page *page;
391 uint retries = 0;
0e6e847f
DC
392retry:
393 page = alloc_page(gfp_mask);
1da177e4 394 if (unlikely(page == NULL)) {
ce8e922c
NS
395 if (flags & XBF_READ_AHEAD) {
396 bp->b_page_count = i;
0e6e847f
DC
397 error = ENOMEM;
398 goto out_free_pages;
1da177e4
LT
399 }
400
401 /*
402 * This could deadlock.
403 *
404 * But until all the XFS lowlevel code is revamped to
405 * handle buffer allocation failures we can't do much.
406 */
407 if (!(++retries % 100))
4f10700a
DC
408 xfs_err(NULL,
409 "possible memory allocation deadlock in %s (mode:0x%x)",
34a622b2 410 __func__, gfp_mask);
1da177e4 411
ce8e922c 412 XFS_STATS_INC(xb_page_retries);
8aa7e847 413 congestion_wait(BLK_RW_ASYNC, HZ/50);
1da177e4
LT
414 goto retry;
415 }
416
ce8e922c 417 XFS_STATS_INC(xb_page_found);
1da177e4 418
0e6e847f 419 nbytes = min_t(size_t, size, PAGE_SIZE - offset);
1da177e4 420 size -= nbytes;
ce8e922c 421 bp->b_pages[i] = page;
1da177e4
LT
422 offset = 0;
423 }
0e6e847f 424 return 0;
1da177e4 425
0e6e847f
DC
426out_free_pages:
427 for (i = 0; i < bp->b_page_count; i++)
428 __free_page(bp->b_pages[i]);
1da177e4
LT
429 return error;
430}
431
432/*
25985edc 433 * Map buffer into kernel address-space if necessary.
1da177e4
LT
434 */
435STATIC int
ce8e922c 436_xfs_buf_map_pages(
1da177e4
LT
437 xfs_buf_t *bp,
438 uint flags)
439{
0e6e847f 440 ASSERT(bp->b_flags & _XBF_PAGES);
ce8e922c 441 if (bp->b_page_count == 1) {
0e6e847f 442 /* A single page buffer is always mappable */
ce8e922c 443 bp->b_addr = page_address(bp->b_pages[0]) + bp->b_offset;
611c9946
DC
444 } else if (flags & XBF_UNMAPPED) {
445 bp->b_addr = NULL;
446 } else {
a19fb380
DC
447 int retried = 0;
448
449 do {
450 bp->b_addr = vm_map_ram(bp->b_pages, bp->b_page_count,
451 -1, PAGE_KERNEL);
452 if (bp->b_addr)
453 break;
454 vm_unmap_aliases();
455 } while (retried++ <= 1);
456
457 if (!bp->b_addr)
1da177e4 458 return -ENOMEM;
ce8e922c 459 bp->b_addr += bp->b_offset;
1da177e4
LT
460 }
461
462 return 0;
463}
464
465/*
466 * Finding and Reading Buffers
467 */
468
469/*
ce8e922c 470 * Look up, and creates if absent, a lockable buffer for
1da177e4 471 * a given range of an inode. The buffer is returned
eabbaf11 472 * locked. No I/O is implied by this call.
1da177e4
LT
473 */
474xfs_buf_t *
ce8e922c 475_xfs_buf_find(
e70b73f8 476 struct xfs_buftarg *btp,
3e85c868
DC
477 struct xfs_buf_map *map,
478 int nmaps,
ce8e922c
NS
479 xfs_buf_flags_t flags,
480 xfs_buf_t *new_bp)
1da177e4 481{
e70b73f8 482 size_t numbytes;
74f75a0c
DC
483 struct xfs_perag *pag;
484 struct rb_node **rbp;
485 struct rb_node *parent;
486 xfs_buf_t *bp;
3e85c868
DC
487 xfs_daddr_t blkno = map[0].bm_bn;
488 int numblks = 0;
489 int i;
1da177e4 490
3e85c868
DC
491 for (i = 0; i < nmaps; i++)
492 numblks += map[i].bm_len;
e70b73f8 493 numbytes = BBTOB(numblks);
1da177e4
LT
494
495 /* Check for IOs smaller than the sector size / not sector aligned */
e70b73f8 496 ASSERT(!(numbytes < (1 << btp->bt_sshift)));
de1cbee4 497 ASSERT(!(BBTOB(blkno) & (xfs_off_t)btp->bt_smask));
1da177e4 498
74f75a0c
DC
499 /* get tree root */
500 pag = xfs_perag_get(btp->bt_mount,
e70b73f8 501 xfs_daddr_to_agno(btp->bt_mount, blkno));
74f75a0c
DC
502
503 /* walk tree */
504 spin_lock(&pag->pag_buf_lock);
505 rbp = &pag->pag_buf_tree.rb_node;
506 parent = NULL;
507 bp = NULL;
508 while (*rbp) {
509 parent = *rbp;
510 bp = rb_entry(parent, struct xfs_buf, b_rbnode);
511
de1cbee4 512 if (blkno < bp->b_bn)
74f75a0c 513 rbp = &(*rbp)->rb_left;
de1cbee4 514 else if (blkno > bp->b_bn)
74f75a0c
DC
515 rbp = &(*rbp)->rb_right;
516 else {
517 /*
de1cbee4 518 * found a block number match. If the range doesn't
74f75a0c
DC
519 * match, the only way this is allowed is if the buffer
520 * in the cache is stale and the transaction that made
521 * it stale has not yet committed. i.e. we are
522 * reallocating a busy extent. Skip this buffer and
523 * continue searching to the right for an exact match.
524 */
4e94b71b 525 if (bp->b_length != numblks) {
74f75a0c
DC
526 ASSERT(bp->b_flags & XBF_STALE);
527 rbp = &(*rbp)->rb_right;
528 continue;
529 }
ce8e922c 530 atomic_inc(&bp->b_hold);
1da177e4
LT
531 goto found;
532 }
533 }
534
535 /* No match found */
ce8e922c 536 if (new_bp) {
74f75a0c
DC
537 rb_link_node(&new_bp->b_rbnode, parent, rbp);
538 rb_insert_color(&new_bp->b_rbnode, &pag->pag_buf_tree);
539 /* the buffer keeps the perag reference until it is freed */
540 new_bp->b_pag = pag;
541 spin_unlock(&pag->pag_buf_lock);
1da177e4 542 } else {
ce8e922c 543 XFS_STATS_INC(xb_miss_locked);
74f75a0c
DC
544 spin_unlock(&pag->pag_buf_lock);
545 xfs_perag_put(pag);
1da177e4 546 }
ce8e922c 547 return new_bp;
1da177e4
LT
548
549found:
74f75a0c
DC
550 spin_unlock(&pag->pag_buf_lock);
551 xfs_perag_put(pag);
1da177e4 552
0c842ad4
CH
553 if (!xfs_buf_trylock(bp)) {
554 if (flags & XBF_TRYLOCK) {
ce8e922c
NS
555 xfs_buf_rele(bp);
556 XFS_STATS_INC(xb_busy_locked);
557 return NULL;
1da177e4 558 }
0c842ad4
CH
559 xfs_buf_lock(bp);
560 XFS_STATS_INC(xb_get_locked_waited);
1da177e4
LT
561 }
562
0e6e847f
DC
563 /*
564 * if the buffer is stale, clear all the external state associated with
565 * it. We need to keep flags such as how we allocated the buffer memory
566 * intact here.
567 */
ce8e922c
NS
568 if (bp->b_flags & XBF_STALE) {
569 ASSERT((bp->b_flags & _XBF_DELWRI_Q) == 0);
611c9946 570 bp->b_flags &= _XBF_KMEM | _XBF_PAGES;
2f926587 571 }
0b1b213f
CH
572
573 trace_xfs_buf_find(bp, flags, _RET_IP_);
ce8e922c
NS
574 XFS_STATS_INC(xb_get_locked);
575 return bp;
1da177e4
LT
576}
577
578/*
3815832a
DC
579 * Assembles a buffer covering the specified range. The code is optimised for
580 * cache hits, as metadata intensive workloads will see 3 orders of magnitude
581 * more hits than misses.
1da177e4 582 */
3815832a 583struct xfs_buf *
6ad112bf 584xfs_buf_get(
e70b73f8
DC
585 xfs_buftarg_t *target,
586 xfs_daddr_t blkno,
587 size_t numblks,
ce8e922c 588 xfs_buf_flags_t flags)
1da177e4 589{
3815832a
DC
590 struct xfs_buf *bp;
591 struct xfs_buf *new_bp;
0e6e847f 592 int error = 0;
3e85c868 593 DEFINE_SINGLE_BUF_MAP(map, blkno, numblks);
1da177e4 594
3e85c868 595 bp = _xfs_buf_find(target, &map, 1, flags, NULL);
3815832a
DC
596 if (likely(bp))
597 goto found;
598
3e85c868 599 new_bp = _xfs_buf_alloc(target, &map, 1, flags);
ce8e922c 600 if (unlikely(!new_bp))
1da177e4
LT
601 return NULL;
602
fe2429b0
DC
603 error = xfs_buf_allocate_memory(new_bp, flags);
604 if (error) {
3e85c868 605 xfs_buf_free(new_bp);
fe2429b0
DC
606 return NULL;
607 }
608
3e85c868 609 bp = _xfs_buf_find(target, &map, 1, flags, new_bp);
3815832a 610 if (!bp) {
fe2429b0 611 xfs_buf_free(new_bp);
3815832a
DC
612 return NULL;
613 }
614
fe2429b0
DC
615 if (bp != new_bp)
616 xfs_buf_free(new_bp);
1da177e4 617
3815832a 618found:
611c9946 619 if (!bp->b_addr) {
ce8e922c 620 error = _xfs_buf_map_pages(bp, flags);
1da177e4 621 if (unlikely(error)) {
4f10700a
DC
622 xfs_warn(target->bt_mount,
623 "%s: failed to map pages\n", __func__);
a8acad70
DC
624 xfs_buf_relse(bp);
625 return NULL;
1da177e4
LT
626 }
627 }
628
ce8e922c 629 XFS_STATS_INC(xb_get);
0b1b213f 630 trace_xfs_buf_get(bp, flags, _RET_IP_);
ce8e922c 631 return bp;
1da177e4
LT
632}
633
5d765b97
CH
634STATIC int
635_xfs_buf_read(
636 xfs_buf_t *bp,
637 xfs_buf_flags_t flags)
638{
43ff2122 639 ASSERT(!(flags & XBF_WRITE));
cbb7baab 640 ASSERT(bp->b_map.bm_bn != XFS_BUF_DADDR_NULL);
5d765b97 641
43ff2122 642 bp->b_flags &= ~(XBF_WRITE | XBF_ASYNC | XBF_READ_AHEAD);
1d5ae5df 643 bp->b_flags |= flags & (XBF_READ | XBF_ASYNC | XBF_READ_AHEAD);
5d765b97 644
0e95f19a
DC
645 xfs_buf_iorequest(bp);
646 if (flags & XBF_ASYNC)
647 return 0;
ec53d1db 648 return xfs_buf_iowait(bp);
5d765b97
CH
649}
650
1da177e4 651xfs_buf_t *
6ad112bf 652xfs_buf_read(
1da177e4 653 xfs_buftarg_t *target,
e70b73f8
DC
654 xfs_daddr_t blkno,
655 size_t numblks,
ce8e922c 656 xfs_buf_flags_t flags)
1da177e4 657{
ce8e922c
NS
658 xfs_buf_t *bp;
659
660 flags |= XBF_READ;
661
e70b73f8 662 bp = xfs_buf_get(target, blkno, numblks, flags);
ce8e922c 663 if (bp) {
0b1b213f
CH
664 trace_xfs_buf_read(bp, flags, _RET_IP_);
665
ce8e922c 666 if (!XFS_BUF_ISDONE(bp)) {
ce8e922c 667 XFS_STATS_INC(xb_get_read);
5d765b97 668 _xfs_buf_read(bp, flags);
ce8e922c 669 } else if (flags & XBF_ASYNC) {
1da177e4
LT
670 /*
671 * Read ahead call which is already satisfied,
672 * drop the buffer
673 */
a8acad70
DC
674 xfs_buf_relse(bp);
675 return NULL;
1da177e4 676 } else {
1da177e4 677 /* We do not want read in the flags */
ce8e922c 678 bp->b_flags &= ~XBF_READ;
1da177e4
LT
679 }
680 }
681
ce8e922c 682 return bp;
1da177e4
LT
683}
684
1da177e4 685/*
ce8e922c
NS
686 * If we are not low on memory then do the readahead in a deadlock
687 * safe manner.
1da177e4
LT
688 */
689void
ce8e922c 690xfs_buf_readahead(
1da177e4 691 xfs_buftarg_t *target,
e70b73f8
DC
692 xfs_daddr_t blkno,
693 size_t numblks)
1da177e4 694{
0e6e847f 695 if (bdi_read_congested(target->bt_bdi))
1da177e4
LT
696 return;
697
e70b73f8 698 xfs_buf_read(target, blkno, numblks,
aa5c158e 699 XBF_TRYLOCK|XBF_ASYNC|XBF_READ_AHEAD);
1da177e4
LT
700}
701
5adc94c2
DC
702/*
703 * Read an uncached buffer from disk. Allocates and returns a locked
704 * buffer containing the disk contents or nothing.
705 */
706struct xfs_buf *
707xfs_buf_read_uncached(
5adc94c2
DC
708 struct xfs_buftarg *target,
709 xfs_daddr_t daddr,
e70b73f8 710 size_t numblks,
5adc94c2
DC
711 int flags)
712{
713 xfs_buf_t *bp;
714 int error;
715
e70b73f8 716 bp = xfs_buf_get_uncached(target, numblks, flags);
5adc94c2
DC
717 if (!bp)
718 return NULL;
719
720 /* set up the buffer for a read IO */
3e85c868
DC
721 ASSERT(bp->b_map_count == 1);
722 bp->b_bn = daddr;
723 bp->b_maps[0].bm_bn = daddr;
cbb7baab 724 bp->b_flags |= XBF_READ;
5adc94c2 725
e70b73f8 726 xfsbdstrat(target->bt_mount, bp);
1a1a3e97 727 error = xfs_buf_iowait(bp);
0e95f19a 728 if (error) {
5adc94c2
DC
729 xfs_buf_relse(bp);
730 return NULL;
731 }
732 return bp;
1da177e4
LT
733}
734
44396476
DC
735/*
736 * Return a buffer allocated as an empty buffer and associated to external
737 * memory via xfs_buf_associate_memory() back to it's empty state.
738 */
739void
740xfs_buf_set_empty(
741 struct xfs_buf *bp,
e70b73f8 742 size_t numblks)
44396476
DC
743{
744 if (bp->b_pages)
745 _xfs_buf_free_pages(bp);
746
747 bp->b_pages = NULL;
748 bp->b_page_count = 0;
749 bp->b_addr = NULL;
4e94b71b 750 bp->b_length = numblks;
aa0e8833 751 bp->b_io_length = numblks;
3e85c868
DC
752
753 ASSERT(bp->b_map_count == 1);
44396476 754 bp->b_bn = XFS_BUF_DADDR_NULL;
3e85c868
DC
755 bp->b_maps[0].bm_bn = XFS_BUF_DADDR_NULL;
756 bp->b_maps[0].bm_len = bp->b_length;
44396476
DC
757}
758
1da177e4
LT
759static inline struct page *
760mem_to_page(
761 void *addr)
762{
9e2779fa 763 if ((!is_vmalloc_addr(addr))) {
1da177e4
LT
764 return virt_to_page(addr);
765 } else {
766 return vmalloc_to_page(addr);
767 }
768}
769
770int
ce8e922c
NS
771xfs_buf_associate_memory(
772 xfs_buf_t *bp,
1da177e4
LT
773 void *mem,
774 size_t len)
775{
776 int rval;
777 int i = 0;
d1afb678
LM
778 unsigned long pageaddr;
779 unsigned long offset;
780 size_t buflen;
1da177e4
LT
781 int page_count;
782
0e6e847f 783 pageaddr = (unsigned long)mem & PAGE_MASK;
d1afb678 784 offset = (unsigned long)mem - pageaddr;
0e6e847f
DC
785 buflen = PAGE_ALIGN(len + offset);
786 page_count = buflen >> PAGE_SHIFT;
1da177e4
LT
787
788 /* Free any previous set of page pointers */
ce8e922c
NS
789 if (bp->b_pages)
790 _xfs_buf_free_pages(bp);
1da177e4 791
ce8e922c
NS
792 bp->b_pages = NULL;
793 bp->b_addr = mem;
1da177e4 794
aa5c158e 795 rval = _xfs_buf_get_pages(bp, page_count, 0);
1da177e4
LT
796 if (rval)
797 return rval;
798
ce8e922c 799 bp->b_offset = offset;
d1afb678
LM
800
801 for (i = 0; i < bp->b_page_count; i++) {
802 bp->b_pages[i] = mem_to_page((void *)pageaddr);
0e6e847f 803 pageaddr += PAGE_SIZE;
1da177e4 804 }
1da177e4 805
aa0e8833 806 bp->b_io_length = BTOBB(len);
4e94b71b 807 bp->b_length = BTOBB(buflen);
1da177e4
LT
808
809 return 0;
810}
811
812xfs_buf_t *
686865f7
DC
813xfs_buf_get_uncached(
814 struct xfs_buftarg *target,
e70b73f8 815 size_t numblks,
686865f7 816 int flags)
1da177e4 817{
e70b73f8 818 unsigned long page_count;
1fa40b01 819 int error, i;
3e85c868
DC
820 struct xfs_buf *bp;
821 DEFINE_SINGLE_BUF_MAP(map, XFS_BUF_DADDR_NULL, numblks);
1da177e4 822
3e85c868 823 bp = _xfs_buf_alloc(target, &map, 1, 0);
1da177e4
LT
824 if (unlikely(bp == NULL))
825 goto fail;
1da177e4 826
e70b73f8 827 page_count = PAGE_ALIGN(numblks << BBSHIFT) >> PAGE_SHIFT;
1fa40b01
CH
828 error = _xfs_buf_get_pages(bp, page_count, 0);
829 if (error)
1da177e4
LT
830 goto fail_free_buf;
831
1fa40b01 832 for (i = 0; i < page_count; i++) {
686865f7 833 bp->b_pages[i] = alloc_page(xb_to_gfp(flags));
1fa40b01
CH
834 if (!bp->b_pages[i])
835 goto fail_free_mem;
1da177e4 836 }
1fa40b01 837 bp->b_flags |= _XBF_PAGES;
1da177e4 838
611c9946 839 error = _xfs_buf_map_pages(bp, 0);
1fa40b01 840 if (unlikely(error)) {
4f10700a
DC
841 xfs_warn(target->bt_mount,
842 "%s: failed to map pages\n", __func__);
1da177e4 843 goto fail_free_mem;
1fa40b01 844 }
1da177e4 845
686865f7 846 trace_xfs_buf_get_uncached(bp, _RET_IP_);
1da177e4 847 return bp;
1fa40b01 848
1da177e4 849 fail_free_mem:
1fa40b01
CH
850 while (--i >= 0)
851 __free_page(bp->b_pages[i]);
ca165b88 852 _xfs_buf_free_pages(bp);
1da177e4 853 fail_free_buf:
3e85c868 854 xfs_buf_free_maps(bp);
4347b9d7 855 kmem_zone_free(xfs_buf_zone, bp);
1da177e4
LT
856 fail:
857 return NULL;
858}
859
860/*
1da177e4
LT
861 * Increment reference count on buffer, to hold the buffer concurrently
862 * with another thread which may release (free) the buffer asynchronously.
1da177e4
LT
863 * Must hold the buffer already to call this function.
864 */
865void
ce8e922c
NS
866xfs_buf_hold(
867 xfs_buf_t *bp)
1da177e4 868{
0b1b213f 869 trace_xfs_buf_hold(bp, _RET_IP_);
ce8e922c 870 atomic_inc(&bp->b_hold);
1da177e4
LT
871}
872
873/*
ce8e922c
NS
874 * Releases a hold on the specified buffer. If the
875 * the hold count is 1, calls xfs_buf_free.
1da177e4
LT
876 */
877void
ce8e922c
NS
878xfs_buf_rele(
879 xfs_buf_t *bp)
1da177e4 880{
74f75a0c 881 struct xfs_perag *pag = bp->b_pag;
1da177e4 882
0b1b213f 883 trace_xfs_buf_rele(bp, _RET_IP_);
1da177e4 884
74f75a0c 885 if (!pag) {
430cbeb8 886 ASSERT(list_empty(&bp->b_lru));
74f75a0c 887 ASSERT(RB_EMPTY_NODE(&bp->b_rbnode));
fad3aa1e
NS
888 if (atomic_dec_and_test(&bp->b_hold))
889 xfs_buf_free(bp);
890 return;
891 }
892
74f75a0c 893 ASSERT(!RB_EMPTY_NODE(&bp->b_rbnode));
430cbeb8 894
3790689f 895 ASSERT(atomic_read(&bp->b_hold) > 0);
74f75a0c 896 if (atomic_dec_and_lock(&bp->b_hold, &pag->pag_buf_lock)) {
bfc60177 897 if (!(bp->b_flags & XBF_STALE) &&
430cbeb8
DC
898 atomic_read(&bp->b_lru_ref)) {
899 xfs_buf_lru_add(bp);
900 spin_unlock(&pag->pag_buf_lock);
1da177e4 901 } else {
430cbeb8 902 xfs_buf_lru_del(bp);
43ff2122 903 ASSERT(!(bp->b_flags & _XBF_DELWRI_Q));
74f75a0c
DC
904 rb_erase(&bp->b_rbnode, &pag->pag_buf_tree);
905 spin_unlock(&pag->pag_buf_lock);
906 xfs_perag_put(pag);
ce8e922c 907 xfs_buf_free(bp);
1da177e4
LT
908 }
909 }
910}
911
912
913/*
0e6e847f 914 * Lock a buffer object, if it is not already locked.
90810b9e
DC
915 *
916 * If we come across a stale, pinned, locked buffer, we know that we are
917 * being asked to lock a buffer that has been reallocated. Because it is
918 * pinned, we know that the log has not been pushed to disk and hence it
919 * will still be locked. Rather than continuing to have trylock attempts
920 * fail until someone else pushes the log, push it ourselves before
921 * returning. This means that the xfsaild will not get stuck trying
922 * to push on stale inode buffers.
1da177e4
LT
923 */
924int
0c842ad4
CH
925xfs_buf_trylock(
926 struct xfs_buf *bp)
1da177e4
LT
927{
928 int locked;
929
ce8e922c 930 locked = down_trylock(&bp->b_sema) == 0;
0b1b213f 931 if (locked)
ce8e922c 932 XB_SET_OWNER(bp);
90810b9e
DC
933 else if (atomic_read(&bp->b_pin_count) && (bp->b_flags & XBF_STALE))
934 xfs_log_force(bp->b_target->bt_mount, 0);
0b1b213f 935
0c842ad4
CH
936 trace_xfs_buf_trylock(bp, _RET_IP_);
937 return locked;
1da177e4 938}
1da177e4
LT
939
940/*
0e6e847f 941 * Lock a buffer object.
ed3b4d6c
DC
942 *
943 * If we come across a stale, pinned, locked buffer, we know that we
944 * are being asked to lock a buffer that has been reallocated. Because
945 * it is pinned, we know that the log has not been pushed to disk and
946 * hence it will still be locked. Rather than sleeping until someone
947 * else pushes the log, push it ourselves before trying to get the lock.
1da177e4 948 */
ce8e922c
NS
949void
950xfs_buf_lock(
0c842ad4 951 struct xfs_buf *bp)
1da177e4 952{
0b1b213f
CH
953 trace_xfs_buf_lock(bp, _RET_IP_);
954
ed3b4d6c 955 if (atomic_read(&bp->b_pin_count) && (bp->b_flags & XBF_STALE))
ebad861b 956 xfs_log_force(bp->b_target->bt_mount, 0);
ce8e922c
NS
957 down(&bp->b_sema);
958 XB_SET_OWNER(bp);
0b1b213f
CH
959
960 trace_xfs_buf_lock_done(bp, _RET_IP_);
1da177e4
LT
961}
962
1da177e4 963void
ce8e922c 964xfs_buf_unlock(
0c842ad4 965 struct xfs_buf *bp)
1da177e4 966{
ce8e922c
NS
967 XB_CLEAR_OWNER(bp);
968 up(&bp->b_sema);
0b1b213f
CH
969
970 trace_xfs_buf_unlock(bp, _RET_IP_);
1da177e4
LT
971}
972
ce8e922c
NS
973STATIC void
974xfs_buf_wait_unpin(
975 xfs_buf_t *bp)
1da177e4
LT
976{
977 DECLARE_WAITQUEUE (wait, current);
978
ce8e922c 979 if (atomic_read(&bp->b_pin_count) == 0)
1da177e4
LT
980 return;
981
ce8e922c 982 add_wait_queue(&bp->b_waiters, &wait);
1da177e4
LT
983 for (;;) {
984 set_current_state(TASK_UNINTERRUPTIBLE);
ce8e922c 985 if (atomic_read(&bp->b_pin_count) == 0)
1da177e4 986 break;
7eaceacc 987 io_schedule();
1da177e4 988 }
ce8e922c 989 remove_wait_queue(&bp->b_waiters, &wait);
1da177e4
LT
990 set_current_state(TASK_RUNNING);
991}
992
993/*
994 * Buffer Utility Routines
995 */
996
1da177e4 997STATIC void
ce8e922c 998xfs_buf_iodone_work(
c4028958 999 struct work_struct *work)
1da177e4 1000{
c4028958
DH
1001 xfs_buf_t *bp =
1002 container_of(work, xfs_buf_t, b_iodone_work);
1da177e4 1003
80f6c29d 1004 if (bp->b_iodone)
ce8e922c
NS
1005 (*(bp->b_iodone))(bp);
1006 else if (bp->b_flags & XBF_ASYNC)
1da177e4
LT
1007 xfs_buf_relse(bp);
1008}
1009
1010void
ce8e922c
NS
1011xfs_buf_ioend(
1012 xfs_buf_t *bp,
1da177e4
LT
1013 int schedule)
1014{
0b1b213f
CH
1015 trace_xfs_buf_iodone(bp, _RET_IP_);
1016
77be55a5 1017 bp->b_flags &= ~(XBF_READ | XBF_WRITE | XBF_READ_AHEAD);
ce8e922c
NS
1018 if (bp->b_error == 0)
1019 bp->b_flags |= XBF_DONE;
1da177e4 1020
ce8e922c 1021 if ((bp->b_iodone) || (bp->b_flags & XBF_ASYNC)) {
1da177e4 1022 if (schedule) {
c4028958 1023 INIT_WORK(&bp->b_iodone_work, xfs_buf_iodone_work);
ce8e922c 1024 queue_work(xfslogd_workqueue, &bp->b_iodone_work);
1da177e4 1025 } else {
c4028958 1026 xfs_buf_iodone_work(&bp->b_iodone_work);
1da177e4
LT
1027 }
1028 } else {
b4dd330b 1029 complete(&bp->b_iowait);
1da177e4
LT
1030 }
1031}
1032
1da177e4 1033void
ce8e922c
NS
1034xfs_buf_ioerror(
1035 xfs_buf_t *bp,
1036 int error)
1da177e4
LT
1037{
1038 ASSERT(error >= 0 && error <= 0xffff);
ce8e922c 1039 bp->b_error = (unsigned short)error;
0b1b213f 1040 trace_xfs_buf_ioerror(bp, error, _RET_IP_);
1da177e4
LT
1041}
1042
901796af
CH
1043void
1044xfs_buf_ioerror_alert(
1045 struct xfs_buf *bp,
1046 const char *func)
1047{
1048 xfs_alert(bp->b_target->bt_mount,
aa0e8833
DC
1049"metadata I/O error: block 0x%llx (\"%s\") error %d numblks %d",
1050 (__uint64_t)XFS_BUF_ADDR(bp), func, bp->b_error, bp->b_length);
901796af
CH
1051}
1052
1da177e4 1053int
64e0bc7d 1054xfs_bwrite(
5d765b97 1055 struct xfs_buf *bp)
1da177e4 1056{
8c38366f 1057 int error;
1da177e4 1058
43ff2122
CH
1059 ASSERT(xfs_buf_islocked(bp));
1060
64e0bc7d 1061 bp->b_flags |= XBF_WRITE;
43ff2122 1062 bp->b_flags &= ~(XBF_ASYNC | XBF_READ | _XBF_DELWRI_Q);
1da177e4 1063
939d723b 1064 xfs_bdstrat_cb(bp);
1da177e4 1065
8c38366f 1066 error = xfs_buf_iowait(bp);
c2b006c1
CH
1067 if (error) {
1068 xfs_force_shutdown(bp->b_target->bt_mount,
1069 SHUTDOWN_META_IO_ERROR);
1070 }
64e0bc7d 1071 return error;
5d765b97 1072}
1da177e4 1073
4e23471a
CH
1074/*
1075 * Called when we want to stop a buffer from getting written or read.
1a1a3e97 1076 * We attach the EIO error, muck with its flags, and call xfs_buf_ioend
4e23471a
CH
1077 * so that the proper iodone callbacks get called.
1078 */
1079STATIC int
1080xfs_bioerror(
1081 xfs_buf_t *bp)
1082{
1083#ifdef XFSERRORDEBUG
1084 ASSERT(XFS_BUF_ISREAD(bp) || bp->b_iodone);
1085#endif
1086
1087 /*
1088 * No need to wait until the buffer is unpinned, we aren't flushing it.
1089 */
5a52c2a5 1090 xfs_buf_ioerror(bp, EIO);
4e23471a
CH
1091
1092 /*
1a1a3e97 1093 * We're calling xfs_buf_ioend, so delete XBF_DONE flag.
4e23471a
CH
1094 */
1095 XFS_BUF_UNREAD(bp);
4e23471a 1096 XFS_BUF_UNDONE(bp);
c867cb61 1097 xfs_buf_stale(bp);
4e23471a 1098
1a1a3e97 1099 xfs_buf_ioend(bp, 0);
4e23471a
CH
1100
1101 return EIO;
1102}
1103
1104/*
1105 * Same as xfs_bioerror, except that we are releasing the buffer
1a1a3e97 1106 * here ourselves, and avoiding the xfs_buf_ioend call.
4e23471a
CH
1107 * This is meant for userdata errors; metadata bufs come with
1108 * iodone functions attached, so that we can track down errors.
1109 */
1110STATIC int
1111xfs_bioerror_relse(
1112 struct xfs_buf *bp)
1113{
ed43233b 1114 int64_t fl = bp->b_flags;
4e23471a
CH
1115 /*
1116 * No need to wait until the buffer is unpinned.
1117 * We aren't flushing it.
1118 *
1119 * chunkhold expects B_DONE to be set, whether
1120 * we actually finish the I/O or not. We don't want to
1121 * change that interface.
1122 */
1123 XFS_BUF_UNREAD(bp);
4e23471a 1124 XFS_BUF_DONE(bp);
c867cb61 1125 xfs_buf_stale(bp);
cb669ca5 1126 bp->b_iodone = NULL;
0cadda1c 1127 if (!(fl & XBF_ASYNC)) {
4e23471a
CH
1128 /*
1129 * Mark b_error and B_ERROR _both_.
1130 * Lot's of chunkcache code assumes that.
1131 * There's no reason to mark error for
1132 * ASYNC buffers.
1133 */
5a52c2a5 1134 xfs_buf_ioerror(bp, EIO);
5fde0326 1135 complete(&bp->b_iowait);
4e23471a
CH
1136 } else {
1137 xfs_buf_relse(bp);
1138 }
1139
1140 return EIO;
1141}
1142
1143
1144/*
1145 * All xfs metadata buffers except log state machine buffers
1146 * get this attached as their b_bdstrat callback function.
1147 * This is so that we can catch a buffer
1148 * after prematurely unpinning it to forcibly shutdown the filesystem.
1149 */
1150int
1151xfs_bdstrat_cb(
1152 struct xfs_buf *bp)
1153{
ebad861b 1154 if (XFS_FORCED_SHUTDOWN(bp->b_target->bt_mount)) {
4e23471a
CH
1155 trace_xfs_bdstrat_shut(bp, _RET_IP_);
1156 /*
1157 * Metadata write that didn't get logged but
1158 * written delayed anyway. These aren't associated
1159 * with a transaction, and can be ignored.
1160 */
1161 if (!bp->b_iodone && !XFS_BUF_ISREAD(bp))
1162 return xfs_bioerror_relse(bp);
1163 else
1164 return xfs_bioerror(bp);
1165 }
1166
1167 xfs_buf_iorequest(bp);
1168 return 0;
1169}
1170
1171/*
1172 * Wrapper around bdstrat so that we can stop data from going to disk in case
1173 * we are shutting down the filesystem. Typically user data goes thru this
1174 * path; one of the exceptions is the superblock.
1175 */
1176void
1177xfsbdstrat(
1178 struct xfs_mount *mp,
1179 struct xfs_buf *bp)
1180{
1181 if (XFS_FORCED_SHUTDOWN(mp)) {
1182 trace_xfs_bdstrat_shut(bp, _RET_IP_);
1183 xfs_bioerror_relse(bp);
1184 return;
1185 }
1186
1187 xfs_buf_iorequest(bp);
1188}
1189
b8f82a4a 1190STATIC void
ce8e922c
NS
1191_xfs_buf_ioend(
1192 xfs_buf_t *bp,
1da177e4
LT
1193 int schedule)
1194{
0e6e847f 1195 if (atomic_dec_and_test(&bp->b_io_remaining) == 1)
ce8e922c 1196 xfs_buf_ioend(bp, schedule);
1da177e4
LT
1197}
1198
782e3b3b 1199STATIC void
ce8e922c 1200xfs_buf_bio_end_io(
1da177e4 1201 struct bio *bio,
1da177e4
LT
1202 int error)
1203{
ce8e922c 1204 xfs_buf_t *bp = (xfs_buf_t *)bio->bi_private;
1da177e4 1205
cfbe5267 1206 xfs_buf_ioerror(bp, -error);
1da177e4 1207
73c77e2c
JB
1208 if (!error && xfs_buf_is_vmapped(bp) && (bp->b_flags & XBF_READ))
1209 invalidate_kernel_vmap_range(bp->b_addr, xfs_buf_vmap_len(bp));
1210
ce8e922c 1211 _xfs_buf_ioend(bp, 1);
1da177e4 1212 bio_put(bio);
1da177e4
LT
1213}
1214
3e85c868
DC
1215static void
1216xfs_buf_ioapply_map(
1217 struct xfs_buf *bp,
1218 int map,
1219 int *buf_offset,
1220 int *count,
1221 int rw)
1da177e4 1222{
3e85c868
DC
1223 int page_index;
1224 int total_nr_pages = bp->b_page_count;
1225 int nr_pages;
1226 struct bio *bio;
1227 sector_t sector = bp->b_maps[map].bm_bn;
1228 int size;
1229 int offset;
1da177e4 1230
ce8e922c 1231 total_nr_pages = bp->b_page_count;
1da177e4 1232
3e85c868
DC
1233 /* skip the pages in the buffer before the start offset */
1234 page_index = 0;
1235 offset = *buf_offset;
1236 while (offset >= PAGE_SIZE) {
1237 page_index++;
1238 offset -= PAGE_SIZE;
f538d4da
CH
1239 }
1240
3e85c868
DC
1241 /*
1242 * Limit the IO size to the length of the current vector, and update the
1243 * remaining IO count for the next time around.
1244 */
1245 size = min_t(int, BBTOB(bp->b_maps[map].bm_len), *count);
1246 *count -= size;
1247 *buf_offset += size;
34951f5c 1248
1da177e4 1249next_chunk:
ce8e922c 1250 atomic_inc(&bp->b_io_remaining);
1da177e4
LT
1251 nr_pages = BIO_MAX_SECTORS >> (PAGE_SHIFT - BBSHIFT);
1252 if (nr_pages > total_nr_pages)
1253 nr_pages = total_nr_pages;
1254
1255 bio = bio_alloc(GFP_NOIO, nr_pages);
ce8e922c 1256 bio->bi_bdev = bp->b_target->bt_bdev;
1da177e4 1257 bio->bi_sector = sector;
ce8e922c
NS
1258 bio->bi_end_io = xfs_buf_bio_end_io;
1259 bio->bi_private = bp;
1da177e4 1260
0e6e847f 1261
3e85c868 1262 for (; size && nr_pages; nr_pages--, page_index++) {
0e6e847f 1263 int rbytes, nbytes = PAGE_SIZE - offset;
1da177e4
LT
1264
1265 if (nbytes > size)
1266 nbytes = size;
1267
3e85c868
DC
1268 rbytes = bio_add_page(bio, bp->b_pages[page_index], nbytes,
1269 offset);
ce8e922c 1270 if (rbytes < nbytes)
1da177e4
LT
1271 break;
1272
1273 offset = 0;
aa0e8833 1274 sector += BTOBB(nbytes);
1da177e4
LT
1275 size -= nbytes;
1276 total_nr_pages--;
1277 }
1278
1da177e4 1279 if (likely(bio->bi_size)) {
73c77e2c
JB
1280 if (xfs_buf_is_vmapped(bp)) {
1281 flush_kernel_vmap_range(bp->b_addr,
1282 xfs_buf_vmap_len(bp));
1283 }
1da177e4
LT
1284 submit_bio(rw, bio);
1285 if (size)
1286 goto next_chunk;
1287 } else {
ce8e922c 1288 xfs_buf_ioerror(bp, EIO);
ec53d1db 1289 bio_put(bio);
1da177e4 1290 }
3e85c868
DC
1291
1292}
1293
1294STATIC void
1295_xfs_buf_ioapply(
1296 struct xfs_buf *bp)
1297{
1298 struct blk_plug plug;
1299 int rw;
1300 int offset;
1301 int size;
1302 int i;
1303
1304 if (bp->b_flags & XBF_WRITE) {
1305 if (bp->b_flags & XBF_SYNCIO)
1306 rw = WRITE_SYNC;
1307 else
1308 rw = WRITE;
1309 if (bp->b_flags & XBF_FUA)
1310 rw |= REQ_FUA;
1311 if (bp->b_flags & XBF_FLUSH)
1312 rw |= REQ_FLUSH;
1313 } else if (bp->b_flags & XBF_READ_AHEAD) {
1314 rw = READA;
1315 } else {
1316 rw = READ;
1317 }
1318
1319 /* we only use the buffer cache for meta-data */
1320 rw |= REQ_META;
1321
1322 /*
1323 * Walk all the vectors issuing IO on them. Set up the initial offset
1324 * into the buffer and the desired IO size before we start -
1325 * _xfs_buf_ioapply_vec() will modify them appropriately for each
1326 * subsequent call.
1327 */
1328 offset = bp->b_offset;
1329 size = BBTOB(bp->b_io_length);
1330 blk_start_plug(&plug);
1331 for (i = 0; i < bp->b_map_count; i++) {
1332 xfs_buf_ioapply_map(bp, i, &offset, &size, rw);
1333 if (bp->b_error)
1334 break;
1335 if (size <= 0)
1336 break; /* all done */
1337 }
1338 blk_finish_plug(&plug);
1da177e4
LT
1339}
1340
0e95f19a 1341void
ce8e922c
NS
1342xfs_buf_iorequest(
1343 xfs_buf_t *bp)
1da177e4 1344{
0b1b213f 1345 trace_xfs_buf_iorequest(bp, _RET_IP_);
1da177e4 1346
43ff2122 1347 ASSERT(!(bp->b_flags & _XBF_DELWRI_Q));
1da177e4 1348
375ec69d 1349 if (bp->b_flags & XBF_WRITE)
ce8e922c 1350 xfs_buf_wait_unpin(bp);
ce8e922c 1351 xfs_buf_hold(bp);
1da177e4
LT
1352
1353 /* Set the count to 1 initially, this will stop an I/O
1354 * completion callout which happens before we have started
ce8e922c 1355 * all the I/O from calling xfs_buf_ioend too early.
1da177e4 1356 */
ce8e922c
NS
1357 atomic_set(&bp->b_io_remaining, 1);
1358 _xfs_buf_ioapply(bp);
1359 _xfs_buf_ioend(bp, 0);
1da177e4 1360
ce8e922c 1361 xfs_buf_rele(bp);
1da177e4
LT
1362}
1363
1364/*
0e95f19a
DC
1365 * Waits for I/O to complete on the buffer supplied. It returns immediately if
1366 * no I/O is pending or there is already a pending error on the buffer. It
1367 * returns the I/O error code, if any, or 0 if there was no error.
1da177e4
LT
1368 */
1369int
ce8e922c
NS
1370xfs_buf_iowait(
1371 xfs_buf_t *bp)
1da177e4 1372{
0b1b213f
CH
1373 trace_xfs_buf_iowait(bp, _RET_IP_);
1374
0e95f19a
DC
1375 if (!bp->b_error)
1376 wait_for_completion(&bp->b_iowait);
0b1b213f
CH
1377
1378 trace_xfs_buf_iowait_done(bp, _RET_IP_);
ce8e922c 1379 return bp->b_error;
1da177e4
LT
1380}
1381
ce8e922c
NS
1382xfs_caddr_t
1383xfs_buf_offset(
1384 xfs_buf_t *bp,
1da177e4
LT
1385 size_t offset)
1386{
1387 struct page *page;
1388
611c9946 1389 if (bp->b_addr)
62926044 1390 return bp->b_addr + offset;
1da177e4 1391
ce8e922c 1392 offset += bp->b_offset;
0e6e847f
DC
1393 page = bp->b_pages[offset >> PAGE_SHIFT];
1394 return (xfs_caddr_t)page_address(page) + (offset & (PAGE_SIZE-1));
1da177e4
LT
1395}
1396
1397/*
1da177e4
LT
1398 * Move data into or out of a buffer.
1399 */
1400void
ce8e922c
NS
1401xfs_buf_iomove(
1402 xfs_buf_t *bp, /* buffer to process */
1da177e4
LT
1403 size_t boff, /* starting buffer offset */
1404 size_t bsize, /* length to copy */
b9c48649 1405 void *data, /* data address */
ce8e922c 1406 xfs_buf_rw_t mode) /* read/write/zero flag */
1da177e4 1407{
795cac72 1408 size_t bend;
1da177e4
LT
1409
1410 bend = boff + bsize;
1411 while (boff < bend) {
795cac72
DC
1412 struct page *page;
1413 int page_index, page_offset, csize;
1414
1415 page_index = (boff + bp->b_offset) >> PAGE_SHIFT;
1416 page_offset = (boff + bp->b_offset) & ~PAGE_MASK;
1417 page = bp->b_pages[page_index];
1418 csize = min_t(size_t, PAGE_SIZE - page_offset,
1419 BBTOB(bp->b_io_length) - boff);
1da177e4 1420
795cac72 1421 ASSERT((csize + page_offset) <= PAGE_SIZE);
1da177e4
LT
1422
1423 switch (mode) {
ce8e922c 1424 case XBRW_ZERO:
795cac72 1425 memset(page_address(page) + page_offset, 0, csize);
1da177e4 1426 break;
ce8e922c 1427 case XBRW_READ:
795cac72 1428 memcpy(data, page_address(page) + page_offset, csize);
1da177e4 1429 break;
ce8e922c 1430 case XBRW_WRITE:
795cac72 1431 memcpy(page_address(page) + page_offset, data, csize);
1da177e4
LT
1432 }
1433
1434 boff += csize;
1435 data += csize;
1436 }
1437}
1438
1439/*
ce8e922c 1440 * Handling of buffer targets (buftargs).
1da177e4
LT
1441 */
1442
1443/*
430cbeb8
DC
1444 * Wait for any bufs with callbacks that have been submitted but have not yet
1445 * returned. These buffers will have an elevated hold count, so wait on those
1446 * while freeing all the buffers only held by the LRU.
1da177e4
LT
1447 */
1448void
1449xfs_wait_buftarg(
74f75a0c 1450 struct xfs_buftarg *btp)
1da177e4 1451{
430cbeb8
DC
1452 struct xfs_buf *bp;
1453
1454restart:
1455 spin_lock(&btp->bt_lru_lock);
1456 while (!list_empty(&btp->bt_lru)) {
1457 bp = list_first_entry(&btp->bt_lru, struct xfs_buf, b_lru);
1458 if (atomic_read(&bp->b_hold) > 1) {
1459 spin_unlock(&btp->bt_lru_lock);
26af6552 1460 delay(100);
430cbeb8 1461 goto restart;
1da177e4 1462 }
430cbeb8 1463 /*
90802ed9 1464 * clear the LRU reference count so the buffer doesn't get
430cbeb8
DC
1465 * ignored in xfs_buf_rele().
1466 */
1467 atomic_set(&bp->b_lru_ref, 0);
1468 spin_unlock(&btp->bt_lru_lock);
1469 xfs_buf_rele(bp);
1470 spin_lock(&btp->bt_lru_lock);
1da177e4 1471 }
430cbeb8 1472 spin_unlock(&btp->bt_lru_lock);
1da177e4
LT
1473}
1474
ff57ab21
DC
1475int
1476xfs_buftarg_shrink(
1477 struct shrinker *shrink,
1495f230 1478 struct shrink_control *sc)
a6867a68 1479{
ff57ab21
DC
1480 struct xfs_buftarg *btp = container_of(shrink,
1481 struct xfs_buftarg, bt_shrinker);
430cbeb8 1482 struct xfs_buf *bp;
1495f230 1483 int nr_to_scan = sc->nr_to_scan;
430cbeb8
DC
1484 LIST_HEAD(dispose);
1485
1486 if (!nr_to_scan)
1487 return btp->bt_lru_nr;
1488
1489 spin_lock(&btp->bt_lru_lock);
1490 while (!list_empty(&btp->bt_lru)) {
1491 if (nr_to_scan-- <= 0)
1492 break;
1493
1494 bp = list_first_entry(&btp->bt_lru, struct xfs_buf, b_lru);
1495
1496 /*
1497 * Decrement the b_lru_ref count unless the value is already
1498 * zero. If the value is already zero, we need to reclaim the
1499 * buffer, otherwise it gets another trip through the LRU.
1500 */
1501 if (!atomic_add_unless(&bp->b_lru_ref, -1, 0)) {
1502 list_move_tail(&bp->b_lru, &btp->bt_lru);
1503 continue;
1504 }
1505
1506 /*
1507 * remove the buffer from the LRU now to avoid needing another
1508 * lock round trip inside xfs_buf_rele().
1509 */
1510 list_move(&bp->b_lru, &dispose);
1511 btp->bt_lru_nr--;
ff57ab21 1512 }
430cbeb8
DC
1513 spin_unlock(&btp->bt_lru_lock);
1514
1515 while (!list_empty(&dispose)) {
1516 bp = list_first_entry(&dispose, struct xfs_buf, b_lru);
1517 list_del_init(&bp->b_lru);
1518 xfs_buf_rele(bp);
1519 }
1520
1521 return btp->bt_lru_nr;
a6867a68
DC
1522}
1523
1da177e4
LT
1524void
1525xfs_free_buftarg(
b7963133
CH
1526 struct xfs_mount *mp,
1527 struct xfs_buftarg *btp)
1da177e4 1528{
ff57ab21
DC
1529 unregister_shrinker(&btp->bt_shrinker);
1530
b7963133
CH
1531 if (mp->m_flags & XFS_MOUNT_BARRIER)
1532 xfs_blkdev_issue_flush(btp);
a6867a68 1533
f0e2d93c 1534 kmem_free(btp);
1da177e4
LT
1535}
1536
1da177e4
LT
1537STATIC int
1538xfs_setsize_buftarg_flags(
1539 xfs_buftarg_t *btp,
1540 unsigned int blocksize,
1541 unsigned int sectorsize,
1542 int verbose)
1543{
ce8e922c
NS
1544 btp->bt_bsize = blocksize;
1545 btp->bt_sshift = ffs(sectorsize) - 1;
1546 btp->bt_smask = sectorsize - 1;
1da177e4 1547
ce8e922c 1548 if (set_blocksize(btp->bt_bdev, sectorsize)) {
02b102df
CH
1549 char name[BDEVNAME_SIZE];
1550
1551 bdevname(btp->bt_bdev, name);
1552
4f10700a
DC
1553 xfs_warn(btp->bt_mount,
1554 "Cannot set_blocksize to %u on device %s\n",
02b102df 1555 sectorsize, name);
1da177e4
LT
1556 return EINVAL;
1557 }
1558
1da177e4
LT
1559 return 0;
1560}
1561
1562/*
ce8e922c
NS
1563 * When allocating the initial buffer target we have not yet
1564 * read in the superblock, so don't know what sized sectors
1565 * are being used is at this early stage. Play safe.
1566 */
1da177e4
LT
1567STATIC int
1568xfs_setsize_buftarg_early(
1569 xfs_buftarg_t *btp,
1570 struct block_device *bdev)
1571{
1572 return xfs_setsize_buftarg_flags(btp,
0e6e847f 1573 PAGE_SIZE, bdev_logical_block_size(bdev), 0);
1da177e4
LT
1574}
1575
1576int
1577xfs_setsize_buftarg(
1578 xfs_buftarg_t *btp,
1579 unsigned int blocksize,
1580 unsigned int sectorsize)
1581{
1582 return xfs_setsize_buftarg_flags(btp, blocksize, sectorsize, 1);
1583}
1584
1da177e4
LT
1585xfs_buftarg_t *
1586xfs_alloc_buftarg(
ebad861b 1587 struct xfs_mount *mp,
1da177e4 1588 struct block_device *bdev,
e2a07812
JE
1589 int external,
1590 const char *fsname)
1da177e4
LT
1591{
1592 xfs_buftarg_t *btp;
1593
1594 btp = kmem_zalloc(sizeof(*btp), KM_SLEEP);
1595
ebad861b 1596 btp->bt_mount = mp;
ce8e922c
NS
1597 btp->bt_dev = bdev->bd_dev;
1598 btp->bt_bdev = bdev;
0e6e847f
DC
1599 btp->bt_bdi = blk_get_backing_dev_info(bdev);
1600 if (!btp->bt_bdi)
1601 goto error;
1602
430cbeb8
DC
1603 INIT_LIST_HEAD(&btp->bt_lru);
1604 spin_lock_init(&btp->bt_lru_lock);
1da177e4
LT
1605 if (xfs_setsize_buftarg_early(btp, bdev))
1606 goto error;
ff57ab21
DC
1607 btp->bt_shrinker.shrink = xfs_buftarg_shrink;
1608 btp->bt_shrinker.seeks = DEFAULT_SEEKS;
1609 register_shrinker(&btp->bt_shrinker);
1da177e4
LT
1610 return btp;
1611
1612error:
f0e2d93c 1613 kmem_free(btp);
1da177e4
LT
1614 return NULL;
1615}
1616
1da177e4 1617/*
43ff2122
CH
1618 * Add a buffer to the delayed write list.
1619 *
1620 * This queues a buffer for writeout if it hasn't already been. Note that
1621 * neither this routine nor the buffer list submission functions perform
1622 * any internal synchronization. It is expected that the lists are thread-local
1623 * to the callers.
1624 *
1625 * Returns true if we queued up the buffer, or false if it already had
1626 * been on the buffer list.
1da177e4 1627 */
43ff2122 1628bool
ce8e922c 1629xfs_buf_delwri_queue(
43ff2122
CH
1630 struct xfs_buf *bp,
1631 struct list_head *list)
1da177e4 1632{
43ff2122 1633 ASSERT(xfs_buf_islocked(bp));
5a8ee6ba 1634 ASSERT(!(bp->b_flags & XBF_READ));
1da177e4 1635
43ff2122
CH
1636 /*
1637 * If the buffer is already marked delwri it already is queued up
1638 * by someone else for imediate writeout. Just ignore it in that
1639 * case.
1640 */
1641 if (bp->b_flags & _XBF_DELWRI_Q) {
1642 trace_xfs_buf_delwri_queued(bp, _RET_IP_);
1643 return false;
1da177e4 1644 }
1da177e4 1645
43ff2122 1646 trace_xfs_buf_delwri_queue(bp, _RET_IP_);
d808f617
DC
1647
1648 /*
43ff2122
CH
1649 * If a buffer gets written out synchronously or marked stale while it
1650 * is on a delwri list we lazily remove it. To do this, the other party
1651 * clears the _XBF_DELWRI_Q flag but otherwise leaves the buffer alone.
1652 * It remains referenced and on the list. In a rare corner case it
1653 * might get readded to a delwri list after the synchronous writeout, in
1654 * which case we need just need to re-add the flag here.
d808f617 1655 */
43ff2122
CH
1656 bp->b_flags |= _XBF_DELWRI_Q;
1657 if (list_empty(&bp->b_list)) {
1658 atomic_inc(&bp->b_hold);
1659 list_add_tail(&bp->b_list, list);
585e6d88 1660 }
585e6d88 1661
43ff2122 1662 return true;
585e6d88
DC
1663}
1664
089716aa
DC
1665/*
1666 * Compare function is more complex than it needs to be because
1667 * the return value is only 32 bits and we are doing comparisons
1668 * on 64 bit values
1669 */
1670static int
1671xfs_buf_cmp(
1672 void *priv,
1673 struct list_head *a,
1674 struct list_head *b)
1675{
1676 struct xfs_buf *ap = container_of(a, struct xfs_buf, b_list);
1677 struct xfs_buf *bp = container_of(b, struct xfs_buf, b_list);
1678 xfs_daddr_t diff;
1679
cbb7baab 1680 diff = ap->b_map.bm_bn - bp->b_map.bm_bn;
089716aa
DC
1681 if (diff < 0)
1682 return -1;
1683 if (diff > 0)
1684 return 1;
1685 return 0;
1686}
1687
43ff2122
CH
1688static int
1689__xfs_buf_delwri_submit(
1690 struct list_head *buffer_list,
1691 struct list_head *io_list,
1692 bool wait)
1da177e4 1693{
43ff2122
CH
1694 struct blk_plug plug;
1695 struct xfs_buf *bp, *n;
1696 int pinned = 0;
1697
1698 list_for_each_entry_safe(bp, n, buffer_list, b_list) {
1699 if (!wait) {
1700 if (xfs_buf_ispinned(bp)) {
1701 pinned++;
1702 continue;
1703 }
1704 if (!xfs_buf_trylock(bp))
1705 continue;
1706 } else {
1707 xfs_buf_lock(bp);
1708 }
978c7b2f 1709
43ff2122
CH
1710 /*
1711 * Someone else might have written the buffer synchronously or
1712 * marked it stale in the meantime. In that case only the
1713 * _XBF_DELWRI_Q flag got cleared, and we have to drop the
1714 * reference and remove it from the list here.
1715 */
1716 if (!(bp->b_flags & _XBF_DELWRI_Q)) {
1717 list_del_init(&bp->b_list);
1718 xfs_buf_relse(bp);
1719 continue;
1720 }
c9c12971 1721
43ff2122
CH
1722 list_move_tail(&bp->b_list, io_list);
1723 trace_xfs_buf_delwri_split(bp, _RET_IP_);
1724 }
1da177e4 1725
43ff2122 1726 list_sort(NULL, io_list, xfs_buf_cmp);
1da177e4 1727
43ff2122
CH
1728 blk_start_plug(&plug);
1729 list_for_each_entry_safe(bp, n, io_list, b_list) {
1730 bp->b_flags &= ~(_XBF_DELWRI_Q | XBF_ASYNC);
1731 bp->b_flags |= XBF_WRITE;
a1b7ea5d 1732
43ff2122
CH
1733 if (!wait) {
1734 bp->b_flags |= XBF_ASYNC;
ce8e922c 1735 list_del_init(&bp->b_list);
1da177e4 1736 }
43ff2122
CH
1737 xfs_bdstrat_cb(bp);
1738 }
1739 blk_finish_plug(&plug);
1da177e4 1740
43ff2122 1741 return pinned;
1da177e4
LT
1742}
1743
1744/*
43ff2122
CH
1745 * Write out a buffer list asynchronously.
1746 *
1747 * This will take the @buffer_list, write all non-locked and non-pinned buffers
1748 * out and not wait for I/O completion on any of the buffers. This interface
1749 * is only safely useable for callers that can track I/O completion by higher
1750 * level means, e.g. AIL pushing as the @buffer_list is consumed in this
1751 * function.
1da177e4
LT
1752 */
1753int
43ff2122
CH
1754xfs_buf_delwri_submit_nowait(
1755 struct list_head *buffer_list)
1da177e4 1756{
43ff2122
CH
1757 LIST_HEAD (io_list);
1758 return __xfs_buf_delwri_submit(buffer_list, &io_list, false);
1759}
1da177e4 1760
43ff2122
CH
1761/*
1762 * Write out a buffer list synchronously.
1763 *
1764 * This will take the @buffer_list, write all buffers out and wait for I/O
1765 * completion on all of the buffers. @buffer_list is consumed by the function,
1766 * so callers must have some other way of tracking buffers if they require such
1767 * functionality.
1768 */
1769int
1770xfs_buf_delwri_submit(
1771 struct list_head *buffer_list)
1772{
1773 LIST_HEAD (io_list);
1774 int error = 0, error2;
1775 struct xfs_buf *bp;
1da177e4 1776
43ff2122 1777 __xfs_buf_delwri_submit(buffer_list, &io_list, true);
1da177e4 1778
43ff2122
CH
1779 /* Wait for IO to complete. */
1780 while (!list_empty(&io_list)) {
1781 bp = list_first_entry(&io_list, struct xfs_buf, b_list);
a1b7ea5d 1782
089716aa 1783 list_del_init(&bp->b_list);
43ff2122
CH
1784 error2 = xfs_buf_iowait(bp);
1785 xfs_buf_relse(bp);
1786 if (!error)
1787 error = error2;
1da177e4
LT
1788 }
1789
43ff2122 1790 return error;
1da177e4
LT
1791}
1792
04d8b284 1793int __init
ce8e922c 1794xfs_buf_init(void)
1da177e4 1795{
8758280f
NS
1796 xfs_buf_zone = kmem_zone_init_flags(sizeof(xfs_buf_t), "xfs_buf",
1797 KM_ZONE_HWALIGN, NULL);
ce8e922c 1798 if (!xfs_buf_zone)
0b1b213f 1799 goto out;
04d8b284 1800
51749e47 1801 xfslogd_workqueue = alloc_workqueue("xfslogd",
6370a6ad 1802 WQ_MEM_RECLAIM | WQ_HIGHPRI, 1);
23ea4032 1803 if (!xfslogd_workqueue)
04d8b284 1804 goto out_free_buf_zone;
1da177e4 1805
23ea4032 1806 return 0;
1da177e4 1807
23ea4032 1808 out_free_buf_zone:
ce8e922c 1809 kmem_zone_destroy(xfs_buf_zone);
0b1b213f 1810 out:
8758280f 1811 return -ENOMEM;
1da177e4
LT
1812}
1813
1da177e4 1814void
ce8e922c 1815xfs_buf_terminate(void)
1da177e4 1816{
04d8b284 1817 destroy_workqueue(xfslogd_workqueue);
ce8e922c 1818 kmem_zone_destroy(xfs_buf_zone);
1da177e4 1819}