]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blame - fs/xfs/xfs_buf.c
Merge tag 'sh-pfc-for-v5.1-tag2' of git://git.kernel.org/pub/scm/linux/kernel/git...
[mirror_ubuntu-focal-kernel.git] / fs / xfs / xfs_buf.c
CommitLineData
0b61f8a4 1// SPDX-License-Identifier: GPL-2.0
1da177e4 2/*
f07c2250 3 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
7b718769 4 * All Rights Reserved.
1da177e4 5 */
93c189c1 6#include "xfs.h"
1da177e4
LT
7#include <linux/stddef.h>
8#include <linux/errno.h>
5a0e3ad6 9#include <linux/gfp.h>
1da177e4
LT
10#include <linux/pagemap.h>
11#include <linux/init.h>
12#include <linux/vmalloc.h>
13#include <linux/bio.h>
14#include <linux/sysctl.h>
15#include <linux/proc_fs.h>
16#include <linux/workqueue.h>
17#include <linux/percpu.h>
18#include <linux/blkdev.h>
19#include <linux/hash.h>
4df08c52 20#include <linux/kthread.h>
b20a3503 21#include <linux/migrate.h>
3fcfab16 22#include <linux/backing-dev.h>
7dfb7103 23#include <linux/freezer.h>
1da177e4 24
4fb6e8ad 25#include "xfs_format.h"
239880ef 26#include "xfs_log_format.h"
7fd36c44 27#include "xfs_trans_resv.h"
239880ef 28#include "xfs_sb.h"
b7963133 29#include "xfs_mount.h"
0b1b213f 30#include "xfs_trace.h"
239880ef 31#include "xfs_log.h"
e9e899a2 32#include "xfs_errortag.h"
7561d27e 33#include "xfs_error.h"
b7963133 34
7989cb8e 35static kmem_zone_t *xfs_buf_zone;
23ea4032 36
ce8e922c 37#define xb_to_gfp(flags) \
aa5c158e 38 ((((flags) & XBF_READ_AHEAD) ? __GFP_NORETRY : GFP_NOFS) | __GFP_NOWARN)
1da177e4 39
37fd1678
DC
40/*
41 * Locking orders
42 *
43 * xfs_buf_ioacct_inc:
44 * xfs_buf_ioacct_dec:
45 * b_sema (caller holds)
46 * b_lock
47 *
48 * xfs_buf_stale:
49 * b_sema (caller holds)
50 * b_lock
51 * lru_lock
52 *
53 * xfs_buf_rele:
54 * b_lock
55 * pag_buf_lock
56 * lru_lock
57 *
58 * xfs_buftarg_wait_rele
59 * lru_lock
60 * b_lock (trylock due to inversion)
61 *
62 * xfs_buftarg_isolate
63 * lru_lock
64 * b_lock (trylock due to inversion)
65 */
1da177e4 66
73c77e2c
JB
67static inline int
68xfs_buf_is_vmapped(
69 struct xfs_buf *bp)
70{
71 /*
72 * Return true if the buffer is vmapped.
73 *
611c9946
DC
74 * b_addr is null if the buffer is not mapped, but the code is clever
75 * enough to know it doesn't have to map a single page, so the check has
76 * to be both for b_addr and bp->b_page_count > 1.
73c77e2c 77 */
611c9946 78 return bp->b_addr && bp->b_page_count > 1;
73c77e2c
JB
79}
80
81static inline int
82xfs_buf_vmap_len(
83 struct xfs_buf *bp)
84{
85 return (bp->b_page_count * PAGE_SIZE) - bp->b_offset;
86}
87
9c7504aa
BF
88/*
89 * Bump the I/O in flight count on the buftarg if we haven't yet done so for
90 * this buffer. The count is incremented once per buffer (per hold cycle)
91 * because the corresponding decrement is deferred to buffer release. Buffers
92 * can undergo I/O multiple times in a hold-release cycle and per buffer I/O
93 * tracking adds unnecessary overhead. This is used for sychronization purposes
94 * with unmount (see xfs_wait_buftarg()), so all we really need is a count of
95 * in-flight buffers.
96 *
97 * Buffers that are never released (e.g., superblock, iclog buffers) must set
98 * the XBF_NO_IOACCT flag before I/O submission. Otherwise, the buftarg count
99 * never reaches zero and unmount hangs indefinitely.
100 */
101static inline void
102xfs_buf_ioacct_inc(
103 struct xfs_buf *bp)
104{
63db7c81 105 if (bp->b_flags & XBF_NO_IOACCT)
9c7504aa
BF
106 return;
107
108 ASSERT(bp->b_flags & XBF_ASYNC);
63db7c81
BF
109 spin_lock(&bp->b_lock);
110 if (!(bp->b_state & XFS_BSTATE_IN_FLIGHT)) {
111 bp->b_state |= XFS_BSTATE_IN_FLIGHT;
112 percpu_counter_inc(&bp->b_target->bt_io_count);
113 }
114 spin_unlock(&bp->b_lock);
9c7504aa
BF
115}
116
117/*
118 * Clear the in-flight state on a buffer about to be released to the LRU or
119 * freed and unaccount from the buftarg.
120 */
121static inline void
63db7c81 122__xfs_buf_ioacct_dec(
9c7504aa
BF
123 struct xfs_buf *bp)
124{
95989c46 125 lockdep_assert_held(&bp->b_lock);
9c7504aa 126
63db7c81
BF
127 if (bp->b_state & XFS_BSTATE_IN_FLIGHT) {
128 bp->b_state &= ~XFS_BSTATE_IN_FLIGHT;
129 percpu_counter_dec(&bp->b_target->bt_io_count);
130 }
131}
132
133static inline void
134xfs_buf_ioacct_dec(
135 struct xfs_buf *bp)
136{
137 spin_lock(&bp->b_lock);
138 __xfs_buf_ioacct_dec(bp);
139 spin_unlock(&bp->b_lock);
9c7504aa
BF
140}
141
430cbeb8
DC
142/*
143 * When we mark a buffer stale, we remove the buffer from the LRU and clear the
144 * b_lru_ref count so that the buffer is freed immediately when the buffer
145 * reference count falls to zero. If the buffer is already on the LRU, we need
146 * to remove the reference that LRU holds on the buffer.
147 *
148 * This prevents build-up of stale buffers on the LRU.
149 */
150void
151xfs_buf_stale(
152 struct xfs_buf *bp)
153{
43ff2122
CH
154 ASSERT(xfs_buf_islocked(bp));
155
430cbeb8 156 bp->b_flags |= XBF_STALE;
43ff2122
CH
157
158 /*
159 * Clear the delwri status so that a delwri queue walker will not
160 * flush this buffer to disk now that it is stale. The delwri queue has
161 * a reference to the buffer, so this is safe to do.
162 */
163 bp->b_flags &= ~_XBF_DELWRI_Q;
164
9c7504aa
BF
165 /*
166 * Once the buffer is marked stale and unlocked, a subsequent lookup
167 * could reset b_flags. There is no guarantee that the buffer is
168 * unaccounted (released to LRU) before that occurs. Drop in-flight
169 * status now to preserve accounting consistency.
170 */
a4082357 171 spin_lock(&bp->b_lock);
63db7c81
BF
172 __xfs_buf_ioacct_dec(bp);
173
a4082357
DC
174 atomic_set(&bp->b_lru_ref, 0);
175 if (!(bp->b_state & XFS_BSTATE_DISPOSE) &&
e80dfa19
DC
176 (list_lru_del(&bp->b_target->bt_lru, &bp->b_lru)))
177 atomic_dec(&bp->b_hold);
178
430cbeb8 179 ASSERT(atomic_read(&bp->b_hold) >= 1);
a4082357 180 spin_unlock(&bp->b_lock);
430cbeb8 181}
1da177e4 182
3e85c868
DC
183static int
184xfs_buf_get_maps(
185 struct xfs_buf *bp,
186 int map_count)
187{
188 ASSERT(bp->b_maps == NULL);
189 bp->b_map_count = map_count;
190
191 if (map_count == 1) {
f4b42421 192 bp->b_maps = &bp->__b_map;
3e85c868
DC
193 return 0;
194 }
195
196 bp->b_maps = kmem_zalloc(map_count * sizeof(struct xfs_buf_map),
197 KM_NOFS);
198 if (!bp->b_maps)
2451337d 199 return -ENOMEM;
3e85c868
DC
200 return 0;
201}
202
203/*
204 * Frees b_pages if it was allocated.
205 */
206static void
207xfs_buf_free_maps(
208 struct xfs_buf *bp)
209{
f4b42421 210 if (bp->b_maps != &bp->__b_map) {
3e85c868
DC
211 kmem_free(bp->b_maps);
212 bp->b_maps = NULL;
213 }
214}
215
4347b9d7 216struct xfs_buf *
3e85c868 217_xfs_buf_alloc(
4347b9d7 218 struct xfs_buftarg *target,
3e85c868
DC
219 struct xfs_buf_map *map,
220 int nmaps,
ce8e922c 221 xfs_buf_flags_t flags)
1da177e4 222{
4347b9d7 223 struct xfs_buf *bp;
3e85c868
DC
224 int error;
225 int i;
4347b9d7 226
aa5c158e 227 bp = kmem_zone_zalloc(xfs_buf_zone, KM_NOFS);
4347b9d7
CH
228 if (unlikely(!bp))
229 return NULL;
230
1da177e4 231 /*
12bcb3f7
DC
232 * We don't want certain flags to appear in b_flags unless they are
233 * specifically set by later operations on the buffer.
1da177e4 234 */
611c9946 235 flags &= ~(XBF_UNMAPPED | XBF_TRYLOCK | XBF_ASYNC | XBF_READ_AHEAD);
ce8e922c 236
ce8e922c 237 atomic_set(&bp->b_hold, 1);
430cbeb8 238 atomic_set(&bp->b_lru_ref, 1);
b4dd330b 239 init_completion(&bp->b_iowait);
430cbeb8 240 INIT_LIST_HEAD(&bp->b_lru);
ce8e922c 241 INIT_LIST_HEAD(&bp->b_list);
643c8c05 242 INIT_LIST_HEAD(&bp->b_li_list);
a731cd11 243 sema_init(&bp->b_sema, 0); /* held, no waiters */
a4082357 244 spin_lock_init(&bp->b_lock);
ce8e922c 245 bp->b_target = target;
3e85c868 246 bp->b_flags = flags;
de1cbee4 247
1da177e4 248 /*
aa0e8833
DC
249 * Set length and io_length to the same value initially.
250 * I/O routines should use io_length, which will be the same in
1da177e4
LT
251 * most cases but may be reset (e.g. XFS recovery).
252 */
3e85c868
DC
253 error = xfs_buf_get_maps(bp, nmaps);
254 if (error) {
255 kmem_zone_free(xfs_buf_zone, bp);
256 return NULL;
257 }
258
259 bp->b_bn = map[0].bm_bn;
260 bp->b_length = 0;
261 for (i = 0; i < nmaps; i++) {
262 bp->b_maps[i].bm_bn = map[i].bm_bn;
263 bp->b_maps[i].bm_len = map[i].bm_len;
264 bp->b_length += map[i].bm_len;
265 }
266 bp->b_io_length = bp->b_length;
267
ce8e922c
NS
268 atomic_set(&bp->b_pin_count, 0);
269 init_waitqueue_head(&bp->b_waiters);
270
ff6d6af2 271 XFS_STATS_INC(target->bt_mount, xb_create);
0b1b213f 272 trace_xfs_buf_init(bp, _RET_IP_);
4347b9d7
CH
273
274 return bp;
1da177e4
LT
275}
276
277/*
ce8e922c
NS
278 * Allocate a page array capable of holding a specified number
279 * of pages, and point the page buf at it.
1da177e4
LT
280 */
281STATIC int
ce8e922c
NS
282_xfs_buf_get_pages(
283 xfs_buf_t *bp,
87937bf8 284 int page_count)
1da177e4
LT
285{
286 /* Make sure that we have a page list */
ce8e922c 287 if (bp->b_pages == NULL) {
ce8e922c
NS
288 bp->b_page_count = page_count;
289 if (page_count <= XB_PAGES) {
290 bp->b_pages = bp->b_page_array;
1da177e4 291 } else {
ce8e922c 292 bp->b_pages = kmem_alloc(sizeof(struct page *) *
aa5c158e 293 page_count, KM_NOFS);
ce8e922c 294 if (bp->b_pages == NULL)
1da177e4
LT
295 return -ENOMEM;
296 }
ce8e922c 297 memset(bp->b_pages, 0, sizeof(struct page *) * page_count);
1da177e4
LT
298 }
299 return 0;
300}
301
302/*
ce8e922c 303 * Frees b_pages if it was allocated.
1da177e4
LT
304 */
305STATIC void
ce8e922c 306_xfs_buf_free_pages(
1da177e4
LT
307 xfs_buf_t *bp)
308{
ce8e922c 309 if (bp->b_pages != bp->b_page_array) {
f0e2d93c 310 kmem_free(bp->b_pages);
3fc98b1a 311 bp->b_pages = NULL;
1da177e4
LT
312 }
313}
314
315/*
316 * Releases the specified buffer.
317 *
318 * The modification state of any associated pages is left unchanged.
b46fe825 319 * The buffer must not be on any hash - use xfs_buf_rele instead for
1da177e4
LT
320 * hashed and refcounted buffers
321 */
322void
ce8e922c 323xfs_buf_free(
1da177e4
LT
324 xfs_buf_t *bp)
325{
0b1b213f 326 trace_xfs_buf_free(bp, _RET_IP_);
1da177e4 327
430cbeb8
DC
328 ASSERT(list_empty(&bp->b_lru));
329
0e6e847f 330 if (bp->b_flags & _XBF_PAGES) {
1da177e4
LT
331 uint i;
332
73c77e2c 333 if (xfs_buf_is_vmapped(bp))
8a262e57
AE
334 vm_unmap_ram(bp->b_addr - bp->b_offset,
335 bp->b_page_count);
1da177e4 336
948ecdb4
NS
337 for (i = 0; i < bp->b_page_count; i++) {
338 struct page *page = bp->b_pages[i];
339
0e6e847f 340 __free_page(page);
948ecdb4 341 }
0e6e847f
DC
342 } else if (bp->b_flags & _XBF_KMEM)
343 kmem_free(bp->b_addr);
3fc98b1a 344 _xfs_buf_free_pages(bp);
3e85c868 345 xfs_buf_free_maps(bp);
4347b9d7 346 kmem_zone_free(xfs_buf_zone, bp);
1da177e4
LT
347}
348
349/*
0e6e847f 350 * Allocates all the pages for buffer in question and builds it's page list.
1da177e4
LT
351 */
352STATIC int
0e6e847f 353xfs_buf_allocate_memory(
1da177e4
LT
354 xfs_buf_t *bp,
355 uint flags)
356{
aa0e8833 357 size_t size;
1da177e4 358 size_t nbytes, offset;
ce8e922c 359 gfp_t gfp_mask = xb_to_gfp(flags);
1da177e4 360 unsigned short page_count, i;
795cac72 361 xfs_off_t start, end;
1da177e4
LT
362 int error;
363
0e6e847f
DC
364 /*
365 * for buffers that are contained within a single page, just allocate
366 * the memory from the heap - there's no need for the complexity of
367 * page arrays to keep allocation down to order 0.
368 */
795cac72
DC
369 size = BBTOB(bp->b_length);
370 if (size < PAGE_SIZE) {
aa5c158e 371 bp->b_addr = kmem_alloc(size, KM_NOFS);
0e6e847f
DC
372 if (!bp->b_addr) {
373 /* low memory - use alloc_page loop instead */
374 goto use_alloc_page;
375 }
376
795cac72 377 if (((unsigned long)(bp->b_addr + size - 1) & PAGE_MASK) !=
0e6e847f
DC
378 ((unsigned long)bp->b_addr & PAGE_MASK)) {
379 /* b_addr spans two pages - use alloc_page instead */
380 kmem_free(bp->b_addr);
381 bp->b_addr = NULL;
382 goto use_alloc_page;
383 }
384 bp->b_offset = offset_in_page(bp->b_addr);
385 bp->b_pages = bp->b_page_array;
386 bp->b_pages[0] = virt_to_page(bp->b_addr);
387 bp->b_page_count = 1;
611c9946 388 bp->b_flags |= _XBF_KMEM;
0e6e847f
DC
389 return 0;
390 }
391
392use_alloc_page:
f4b42421
MT
393 start = BBTOB(bp->b_maps[0].bm_bn) >> PAGE_SHIFT;
394 end = (BBTOB(bp->b_maps[0].bm_bn + bp->b_length) + PAGE_SIZE - 1)
cbb7baab 395 >> PAGE_SHIFT;
795cac72 396 page_count = end - start;
87937bf8 397 error = _xfs_buf_get_pages(bp, page_count);
1da177e4
LT
398 if (unlikely(error))
399 return error;
1da177e4 400
ce8e922c 401 offset = bp->b_offset;
0e6e847f 402 bp->b_flags |= _XBF_PAGES;
1da177e4 403
ce8e922c 404 for (i = 0; i < bp->b_page_count; i++) {
1da177e4
LT
405 struct page *page;
406 uint retries = 0;
0e6e847f
DC
407retry:
408 page = alloc_page(gfp_mask);
1da177e4 409 if (unlikely(page == NULL)) {
ce8e922c
NS
410 if (flags & XBF_READ_AHEAD) {
411 bp->b_page_count = i;
2451337d 412 error = -ENOMEM;
0e6e847f 413 goto out_free_pages;
1da177e4
LT
414 }
415
416 /*
417 * This could deadlock.
418 *
419 * But until all the XFS lowlevel code is revamped to
420 * handle buffer allocation failures we can't do much.
421 */
422 if (!(++retries % 100))
4f10700a 423 xfs_err(NULL,
5bf97b1c
TH
424 "%s(%u) possible memory allocation deadlock in %s (mode:0x%x)",
425 current->comm, current->pid,
34a622b2 426 __func__, gfp_mask);
1da177e4 427
ff6d6af2 428 XFS_STATS_INC(bp->b_target->bt_mount, xb_page_retries);
8aa7e847 429 congestion_wait(BLK_RW_ASYNC, HZ/50);
1da177e4
LT
430 goto retry;
431 }
432
ff6d6af2 433 XFS_STATS_INC(bp->b_target->bt_mount, xb_page_found);
1da177e4 434
0e6e847f 435 nbytes = min_t(size_t, size, PAGE_SIZE - offset);
1da177e4 436 size -= nbytes;
ce8e922c 437 bp->b_pages[i] = page;
1da177e4
LT
438 offset = 0;
439 }
0e6e847f 440 return 0;
1da177e4 441
0e6e847f
DC
442out_free_pages:
443 for (i = 0; i < bp->b_page_count; i++)
444 __free_page(bp->b_pages[i]);
2aa6ba7b 445 bp->b_flags &= ~_XBF_PAGES;
1da177e4
LT
446 return error;
447}
448
449/*
25985edc 450 * Map buffer into kernel address-space if necessary.
1da177e4
LT
451 */
452STATIC int
ce8e922c 453_xfs_buf_map_pages(
1da177e4
LT
454 xfs_buf_t *bp,
455 uint flags)
456{
0e6e847f 457 ASSERT(bp->b_flags & _XBF_PAGES);
ce8e922c 458 if (bp->b_page_count == 1) {
0e6e847f 459 /* A single page buffer is always mappable */
ce8e922c 460 bp->b_addr = page_address(bp->b_pages[0]) + bp->b_offset;
611c9946
DC
461 } else if (flags & XBF_UNMAPPED) {
462 bp->b_addr = NULL;
463 } else {
a19fb380 464 int retried = 0;
9ba1fb2c 465 unsigned nofs_flag;
ae687e58
DC
466
467 /*
468 * vm_map_ram() will allocate auxillary structures (e.g.
469 * pagetables) with GFP_KERNEL, yet we are likely to be under
470 * GFP_NOFS context here. Hence we need to tell memory reclaim
9ba1fb2c 471 * that we are in such a context via PF_MEMALLOC_NOFS to prevent
ae687e58
DC
472 * memory reclaim re-entering the filesystem here and
473 * potentially deadlocking.
474 */
9ba1fb2c 475 nofs_flag = memalloc_nofs_save();
a19fb380
DC
476 do {
477 bp->b_addr = vm_map_ram(bp->b_pages, bp->b_page_count,
478 -1, PAGE_KERNEL);
479 if (bp->b_addr)
480 break;
481 vm_unmap_aliases();
482 } while (retried++ <= 1);
9ba1fb2c 483 memalloc_nofs_restore(nofs_flag);
a19fb380
DC
484
485 if (!bp->b_addr)
1da177e4 486 return -ENOMEM;
ce8e922c 487 bp->b_addr += bp->b_offset;
1da177e4
LT
488 }
489
490 return 0;
491}
492
493/*
494 * Finding and Reading Buffers
495 */
6031e73a
LS
496static int
497_xfs_buf_obj_cmp(
498 struct rhashtable_compare_arg *arg,
499 const void *obj)
500{
501 const struct xfs_buf_map *map = arg->key;
502 const struct xfs_buf *bp = obj;
503
504 /*
505 * The key hashing in the lookup path depends on the key being the
506 * first element of the compare_arg, make sure to assert this.
507 */
508 BUILD_BUG_ON(offsetof(struct xfs_buf_map, bm_bn) != 0);
509
510 if (bp->b_bn != map->bm_bn)
511 return 1;
512
513 if (unlikely(bp->b_length != map->bm_len)) {
514 /*
515 * found a block number match. If the range doesn't
516 * match, the only way this is allowed is if the buffer
517 * in the cache is stale and the transaction that made
518 * it stale has not yet committed. i.e. we are
519 * reallocating a busy extent. Skip this buffer and
520 * continue searching for an exact match.
521 */
522 ASSERT(bp->b_flags & XBF_STALE);
523 return 1;
524 }
525 return 0;
526}
527
528static const struct rhashtable_params xfs_buf_hash_params = {
529 .min_size = 32, /* empty AGs have minimal footprint */
530 .nelem_hint = 16,
531 .key_len = sizeof(xfs_daddr_t),
532 .key_offset = offsetof(struct xfs_buf, b_bn),
533 .head_offset = offsetof(struct xfs_buf, b_rhash_head),
534 .automatic_shrinking = true,
535 .obj_cmpfn = _xfs_buf_obj_cmp,
536};
537
538int
539xfs_buf_hash_init(
540 struct xfs_perag *pag)
541{
542 spin_lock_init(&pag->pag_buf_lock);
543 return rhashtable_init(&pag->pag_buf_hash, &xfs_buf_hash_params);
544}
545
546void
547xfs_buf_hash_destroy(
548 struct xfs_perag *pag)
549{
550 rhashtable_destroy(&pag->pag_buf_hash);
551}
1da177e4
LT
552
553/*
b027d4c9
DC
554 * Look up a buffer in the buffer cache and return it referenced and locked
555 * in @found_bp.
556 *
557 * If @new_bp is supplied and we have a lookup miss, insert @new_bp into the
558 * cache.
559 *
560 * If XBF_TRYLOCK is set in @flags, only try to lock the buffer and return
561 * -EAGAIN if we fail to lock it.
562 *
563 * Return values are:
564 * -EFSCORRUPTED if have been supplied with an invalid address
565 * -EAGAIN on trylock failure
566 * -ENOENT if we fail to find a match and @new_bp was NULL
567 * 0, with @found_bp:
568 * - @new_bp if we inserted it into the cache
569 * - the buffer we found and locked.
1da177e4 570 */
b027d4c9
DC
571static int
572xfs_buf_find(
e70b73f8 573 struct xfs_buftarg *btp,
3e85c868
DC
574 struct xfs_buf_map *map,
575 int nmaps,
ce8e922c 576 xfs_buf_flags_t flags,
b027d4c9
DC
577 struct xfs_buf *new_bp,
578 struct xfs_buf **found_bp)
1da177e4 579{
74f75a0c 580 struct xfs_perag *pag;
74f75a0c 581 xfs_buf_t *bp;
6031e73a 582 struct xfs_buf_map cmap = { .bm_bn = map[0].bm_bn };
10616b80 583 xfs_daddr_t eofs;
3e85c868 584 int i;
1da177e4 585
b027d4c9
DC
586 *found_bp = NULL;
587
3e85c868 588 for (i = 0; i < nmaps; i++)
6031e73a 589 cmap.bm_len += map[i].bm_len;
1da177e4
LT
590
591 /* Check for IOs smaller than the sector size / not sector aligned */
6031e73a
LS
592 ASSERT(!(BBTOB(cmap.bm_len) < btp->bt_meta_sectorsize));
593 ASSERT(!(BBTOB(cmap.bm_bn) & (xfs_off_t)btp->bt_meta_sectormask));
1da177e4 594
10616b80
DC
595 /*
596 * Corrupted block numbers can get through to here, unfortunately, so we
597 * have to check that the buffer falls within the filesystem bounds.
598 */
599 eofs = XFS_FSB_TO_BB(btp->bt_mount, btp->bt_mount->m_sb.sb_dblocks);
6031e73a 600 if (cmap.bm_bn < 0 || cmap.bm_bn >= eofs) {
10616b80 601 xfs_alert(btp->bt_mount,
c219b015 602 "%s: daddr 0x%llx out of range, EOFS 0x%llx",
6031e73a 603 __func__, cmap.bm_bn, eofs);
7bc0dc27 604 WARN_ON(1);
b027d4c9 605 return -EFSCORRUPTED;
10616b80
DC
606 }
607
74f75a0c 608 pag = xfs_perag_get(btp->bt_mount,
6031e73a 609 xfs_daddr_to_agno(btp->bt_mount, cmap.bm_bn));
74f75a0c 610
74f75a0c 611 spin_lock(&pag->pag_buf_lock);
6031e73a
LS
612 bp = rhashtable_lookup_fast(&pag->pag_buf_hash, &cmap,
613 xfs_buf_hash_params);
614 if (bp) {
615 atomic_inc(&bp->b_hold);
616 goto found;
1da177e4
LT
617 }
618
619 /* No match found */
b027d4c9 620 if (!new_bp) {
ff6d6af2 621 XFS_STATS_INC(btp->bt_mount, xb_miss_locked);
74f75a0c
DC
622 spin_unlock(&pag->pag_buf_lock);
623 xfs_perag_put(pag);
b027d4c9 624 return -ENOENT;
1da177e4 625 }
b027d4c9
DC
626
627 /* the buffer keeps the perag reference until it is freed */
628 new_bp->b_pag = pag;
629 rhashtable_insert_fast(&pag->pag_buf_hash, &new_bp->b_rhash_head,
630 xfs_buf_hash_params);
631 spin_unlock(&pag->pag_buf_lock);
632 *found_bp = new_bp;
633 return 0;
1da177e4
LT
634
635found:
74f75a0c
DC
636 spin_unlock(&pag->pag_buf_lock);
637 xfs_perag_put(pag);
1da177e4 638
0c842ad4
CH
639 if (!xfs_buf_trylock(bp)) {
640 if (flags & XBF_TRYLOCK) {
ce8e922c 641 xfs_buf_rele(bp);
ff6d6af2 642 XFS_STATS_INC(btp->bt_mount, xb_busy_locked);
b027d4c9 643 return -EAGAIN;
1da177e4 644 }
0c842ad4 645 xfs_buf_lock(bp);
ff6d6af2 646 XFS_STATS_INC(btp->bt_mount, xb_get_locked_waited);
1da177e4
LT
647 }
648
0e6e847f
DC
649 /*
650 * if the buffer is stale, clear all the external state associated with
651 * it. We need to keep flags such as how we allocated the buffer memory
652 * intact here.
653 */
ce8e922c
NS
654 if (bp->b_flags & XBF_STALE) {
655 ASSERT((bp->b_flags & _XBF_DELWRI_Q) == 0);
cfb02852 656 ASSERT(bp->b_iodone == NULL);
611c9946 657 bp->b_flags &= _XBF_KMEM | _XBF_PAGES;
1813dd64 658 bp->b_ops = NULL;
2f926587 659 }
0b1b213f
CH
660
661 trace_xfs_buf_find(bp, flags, _RET_IP_);
ff6d6af2 662 XFS_STATS_INC(btp->bt_mount, xb_get_locked);
b027d4c9
DC
663 *found_bp = bp;
664 return 0;
1da177e4
LT
665}
666
8925a3dc
DC
667struct xfs_buf *
668xfs_buf_incore(
669 struct xfs_buftarg *target,
670 xfs_daddr_t blkno,
671 size_t numblks,
672 xfs_buf_flags_t flags)
673{
b027d4c9
DC
674 struct xfs_buf *bp;
675 int error;
8925a3dc 676 DEFINE_SINGLE_BUF_MAP(map, blkno, numblks);
b027d4c9
DC
677
678 error = xfs_buf_find(target, &map, 1, flags, NULL, &bp);
679 if (error)
680 return NULL;
681 return bp;
8925a3dc
DC
682}
683
1da177e4 684/*
3815832a
DC
685 * Assembles a buffer covering the specified range. The code is optimised for
686 * cache hits, as metadata intensive workloads will see 3 orders of magnitude
687 * more hits than misses.
1da177e4 688 */
3815832a 689struct xfs_buf *
6dde2707
DC
690xfs_buf_get_map(
691 struct xfs_buftarg *target,
692 struct xfs_buf_map *map,
693 int nmaps,
ce8e922c 694 xfs_buf_flags_t flags)
1da177e4 695{
3815832a
DC
696 struct xfs_buf *bp;
697 struct xfs_buf *new_bp;
0e6e847f 698 int error = 0;
1da177e4 699
b027d4c9
DC
700 error = xfs_buf_find(target, map, nmaps, flags, NULL, &bp);
701
702 switch (error) {
703 case 0:
704 /* cache hit */
3815832a 705 goto found;
b027d4c9
DC
706 case -EAGAIN:
707 /* cache hit, trylock failure, caller handles failure */
708 ASSERT(flags & XBF_TRYLOCK);
709 return NULL;
710 case -ENOENT:
711 /* cache miss, go for insert */
712 break;
713 case -EFSCORRUPTED:
714 default:
715 /*
716 * None of the higher layers understand failure types
717 * yet, so return NULL to signal a fatal lookup error.
718 */
719 return NULL;
720 }
3815832a 721
6dde2707 722 new_bp = _xfs_buf_alloc(target, map, nmaps, flags);
ce8e922c 723 if (unlikely(!new_bp))
1da177e4
LT
724 return NULL;
725
fe2429b0
DC
726 error = xfs_buf_allocate_memory(new_bp, flags);
727 if (error) {
3e85c868 728 xfs_buf_free(new_bp);
fe2429b0
DC
729 return NULL;
730 }
731
b027d4c9
DC
732 error = xfs_buf_find(target, map, nmaps, flags, new_bp, &bp);
733 if (error) {
fe2429b0 734 xfs_buf_free(new_bp);
3815832a
DC
735 return NULL;
736 }
737
fe2429b0
DC
738 if (bp != new_bp)
739 xfs_buf_free(new_bp);
1da177e4 740
3815832a 741found:
611c9946 742 if (!bp->b_addr) {
ce8e922c 743 error = _xfs_buf_map_pages(bp, flags);
1da177e4 744 if (unlikely(error)) {
4f10700a 745 xfs_warn(target->bt_mount,
08e96e1a 746 "%s: failed to map pagesn", __func__);
a8acad70
DC
747 xfs_buf_relse(bp);
748 return NULL;
1da177e4
LT
749 }
750 }
751
b79f4a1c
DC
752 /*
753 * Clear b_error if this is a lookup from a caller that doesn't expect
754 * valid data to be found in the buffer.
755 */
756 if (!(flags & XBF_READ))
757 xfs_buf_ioerror(bp, 0);
758
ff6d6af2 759 XFS_STATS_INC(target->bt_mount, xb_get);
0b1b213f 760 trace_xfs_buf_get(bp, flags, _RET_IP_);
ce8e922c 761 return bp;
1da177e4
LT
762}
763
5d765b97
CH
764STATIC int
765_xfs_buf_read(
766 xfs_buf_t *bp,
767 xfs_buf_flags_t flags)
768{
43ff2122 769 ASSERT(!(flags & XBF_WRITE));
f4b42421 770 ASSERT(bp->b_maps[0].bm_bn != XFS_BUF_DADDR_NULL);
5d765b97 771
43ff2122 772 bp->b_flags &= ~(XBF_WRITE | XBF_ASYNC | XBF_READ_AHEAD);
1d5ae5df 773 bp->b_flags |= flags & (XBF_READ | XBF_ASYNC | XBF_READ_AHEAD);
5d765b97 774
6af88cda 775 return xfs_buf_submit(bp);
5d765b97
CH
776}
777
1aff5696 778/*
add46b3b
DW
779 * Set buffer ops on an unchecked buffer and validate it, if possible.
780 *
1aff5696
DW
781 * If the caller passed in an ops structure and the buffer doesn't have ops
782 * assigned, set the ops and use them to verify the contents. If the contents
783 * cannot be verified, we'll clear XBF_DONE. We assume the buffer has no
784 * recorded errors and is already in XBF_DONE state.
add46b3b
DW
785 *
786 * Under normal operations, every in-core buffer must have buffer ops assigned
787 * to them when the buffer is read in from disk so that we can validate the
788 * metadata.
789 *
790 * However, there are two scenarios where one can encounter in-core buffers
791 * that don't have buffer ops. The first is during log recovery of buffers on
792 * a V4 filesystem, though these buffers are purged at the end of recovery.
793 *
794 * The other is online repair, which tries to match arbitrary metadata blocks
795 * with btree types in order to find the root. If online repair doesn't match
796 * the buffer with /any/ btree type, the buffer remains in memory in DONE state
797 * with no ops, and a subsequent read_buf call from elsewhere will not set the
798 * ops. This function helps us fix this situation.
1aff5696
DW
799 */
800int
801xfs_buf_ensure_ops(
802 struct xfs_buf *bp,
803 const struct xfs_buf_ops *ops)
804{
805 ASSERT(bp->b_flags & XBF_DONE);
806 ASSERT(bp->b_error == 0);
807
808 if (!ops || bp->b_ops)
809 return 0;
810
811 bp->b_ops = ops;
812 bp->b_ops->verify_read(bp);
813 if (bp->b_error)
814 bp->b_flags &= ~XBF_DONE;
815 return bp->b_error;
816}
817
1da177e4 818xfs_buf_t *
6dde2707
DC
819xfs_buf_read_map(
820 struct xfs_buftarg *target,
821 struct xfs_buf_map *map,
822 int nmaps,
c3f8fc73 823 xfs_buf_flags_t flags,
1813dd64 824 const struct xfs_buf_ops *ops)
1da177e4 825{
6dde2707 826 struct xfs_buf *bp;
ce8e922c
NS
827
828 flags |= XBF_READ;
829
6dde2707 830 bp = xfs_buf_get_map(target, map, nmaps, flags);
1aff5696
DW
831 if (!bp)
832 return NULL;
0b1b213f 833
1aff5696
DW
834 trace_xfs_buf_read(bp, flags, _RET_IP_);
835
836 if (!(bp->b_flags & XBF_DONE)) {
837 XFS_STATS_INC(target->bt_mount, xb_get_read);
838 bp->b_ops = ops;
839 _xfs_buf_read(bp, flags);
840 return bp;
841 }
842
843 xfs_buf_ensure_ops(bp, ops);
844
845 if (flags & XBF_ASYNC) {
846 /*
847 * Read ahead call which is already satisfied,
848 * drop the buffer
849 */
850 xfs_buf_relse(bp);
851 return NULL;
1da177e4
LT
852 }
853
1aff5696
DW
854 /* We do not want read in the flags */
855 bp->b_flags &= ~XBF_READ;
856 ASSERT(bp->b_ops != NULL || ops == NULL);
ce8e922c 857 return bp;
1da177e4
LT
858}
859
1da177e4 860/*
ce8e922c
NS
861 * If we are not low on memory then do the readahead in a deadlock
862 * safe manner.
1da177e4
LT
863 */
864void
6dde2707
DC
865xfs_buf_readahead_map(
866 struct xfs_buftarg *target,
867 struct xfs_buf_map *map,
c3f8fc73 868 int nmaps,
1813dd64 869 const struct xfs_buf_ops *ops)
1da177e4 870{
efa7c9f9 871 if (bdi_read_congested(target->bt_bdev->bd_bdi))
1da177e4
LT
872 return;
873
6dde2707 874 xfs_buf_read_map(target, map, nmaps,
1813dd64 875 XBF_TRYLOCK|XBF_ASYNC|XBF_READ_AHEAD, ops);
1da177e4
LT
876}
877
5adc94c2
DC
878/*
879 * Read an uncached buffer from disk. Allocates and returns a locked
880 * buffer containing the disk contents or nothing.
881 */
ba372674 882int
5adc94c2 883xfs_buf_read_uncached(
5adc94c2
DC
884 struct xfs_buftarg *target,
885 xfs_daddr_t daddr,
e70b73f8 886 size_t numblks,
c3f8fc73 887 int flags,
ba372674 888 struct xfs_buf **bpp,
1813dd64 889 const struct xfs_buf_ops *ops)
5adc94c2 890{
eab4e633 891 struct xfs_buf *bp;
5adc94c2 892
ba372674
DC
893 *bpp = NULL;
894
e70b73f8 895 bp = xfs_buf_get_uncached(target, numblks, flags);
5adc94c2 896 if (!bp)
ba372674 897 return -ENOMEM;
5adc94c2
DC
898
899 /* set up the buffer for a read IO */
3e85c868 900 ASSERT(bp->b_map_count == 1);
ba372674 901 bp->b_bn = XFS_BUF_DADDR_NULL; /* always null for uncached buffers */
3e85c868 902 bp->b_maps[0].bm_bn = daddr;
cbb7baab 903 bp->b_flags |= XBF_READ;
1813dd64 904 bp->b_ops = ops;
5adc94c2 905
6af88cda 906 xfs_buf_submit(bp);
ba372674
DC
907 if (bp->b_error) {
908 int error = bp->b_error;
83a0adc3 909 xfs_buf_relse(bp);
ba372674 910 return error;
83a0adc3 911 }
ba372674
DC
912
913 *bpp = bp;
914 return 0;
1da177e4
LT
915}
916
44396476
DC
917/*
918 * Return a buffer allocated as an empty buffer and associated to external
919 * memory via xfs_buf_associate_memory() back to it's empty state.
920 */
921void
922xfs_buf_set_empty(
923 struct xfs_buf *bp,
e70b73f8 924 size_t numblks)
44396476
DC
925{
926 if (bp->b_pages)
927 _xfs_buf_free_pages(bp);
928
929 bp->b_pages = NULL;
930 bp->b_page_count = 0;
931 bp->b_addr = NULL;
4e94b71b 932 bp->b_length = numblks;
aa0e8833 933 bp->b_io_length = numblks;
3e85c868
DC
934
935 ASSERT(bp->b_map_count == 1);
44396476 936 bp->b_bn = XFS_BUF_DADDR_NULL;
3e85c868
DC
937 bp->b_maps[0].bm_bn = XFS_BUF_DADDR_NULL;
938 bp->b_maps[0].bm_len = bp->b_length;
44396476
DC
939}
940
1da177e4
LT
941static inline struct page *
942mem_to_page(
943 void *addr)
944{
9e2779fa 945 if ((!is_vmalloc_addr(addr))) {
1da177e4
LT
946 return virt_to_page(addr);
947 } else {
948 return vmalloc_to_page(addr);
949 }
950}
951
952int
ce8e922c
NS
953xfs_buf_associate_memory(
954 xfs_buf_t *bp,
1da177e4
LT
955 void *mem,
956 size_t len)
957{
958 int rval;
959 int i = 0;
d1afb678
LM
960 unsigned long pageaddr;
961 unsigned long offset;
962 size_t buflen;
1da177e4
LT
963 int page_count;
964
0e6e847f 965 pageaddr = (unsigned long)mem & PAGE_MASK;
d1afb678 966 offset = (unsigned long)mem - pageaddr;
0e6e847f
DC
967 buflen = PAGE_ALIGN(len + offset);
968 page_count = buflen >> PAGE_SHIFT;
1da177e4
LT
969
970 /* Free any previous set of page pointers */
ce8e922c
NS
971 if (bp->b_pages)
972 _xfs_buf_free_pages(bp);
1da177e4 973
ce8e922c
NS
974 bp->b_pages = NULL;
975 bp->b_addr = mem;
1da177e4 976
87937bf8 977 rval = _xfs_buf_get_pages(bp, page_count);
1da177e4
LT
978 if (rval)
979 return rval;
980
ce8e922c 981 bp->b_offset = offset;
d1afb678
LM
982
983 for (i = 0; i < bp->b_page_count; i++) {
984 bp->b_pages[i] = mem_to_page((void *)pageaddr);
0e6e847f 985 pageaddr += PAGE_SIZE;
1da177e4 986 }
1da177e4 987
aa0e8833 988 bp->b_io_length = BTOBB(len);
4e94b71b 989 bp->b_length = BTOBB(buflen);
1da177e4
LT
990
991 return 0;
992}
993
994xfs_buf_t *
686865f7
DC
995xfs_buf_get_uncached(
996 struct xfs_buftarg *target,
e70b73f8 997 size_t numblks,
686865f7 998 int flags)
1da177e4 999{
e70b73f8 1000 unsigned long page_count;
1fa40b01 1001 int error, i;
3e85c868
DC
1002 struct xfs_buf *bp;
1003 DEFINE_SINGLE_BUF_MAP(map, XFS_BUF_DADDR_NULL, numblks);
1da177e4 1004
c891c30a
BF
1005 /* flags might contain irrelevant bits, pass only what we care about */
1006 bp = _xfs_buf_alloc(target, &map, 1, flags & XBF_NO_IOACCT);
1da177e4
LT
1007 if (unlikely(bp == NULL))
1008 goto fail;
1da177e4 1009
e70b73f8 1010 page_count = PAGE_ALIGN(numblks << BBSHIFT) >> PAGE_SHIFT;
87937bf8 1011 error = _xfs_buf_get_pages(bp, page_count);
1fa40b01 1012 if (error)
1da177e4
LT
1013 goto fail_free_buf;
1014
1fa40b01 1015 for (i = 0; i < page_count; i++) {
686865f7 1016 bp->b_pages[i] = alloc_page(xb_to_gfp(flags));
1fa40b01
CH
1017 if (!bp->b_pages[i])
1018 goto fail_free_mem;
1da177e4 1019 }
1fa40b01 1020 bp->b_flags |= _XBF_PAGES;
1da177e4 1021
611c9946 1022 error = _xfs_buf_map_pages(bp, 0);
1fa40b01 1023 if (unlikely(error)) {
4f10700a 1024 xfs_warn(target->bt_mount,
08e96e1a 1025 "%s: failed to map pages", __func__);
1da177e4 1026 goto fail_free_mem;
1fa40b01 1027 }
1da177e4 1028
686865f7 1029 trace_xfs_buf_get_uncached(bp, _RET_IP_);
1da177e4 1030 return bp;
1fa40b01 1031
1da177e4 1032 fail_free_mem:
1fa40b01
CH
1033 while (--i >= 0)
1034 __free_page(bp->b_pages[i]);
ca165b88 1035 _xfs_buf_free_pages(bp);
1da177e4 1036 fail_free_buf:
3e85c868 1037 xfs_buf_free_maps(bp);
4347b9d7 1038 kmem_zone_free(xfs_buf_zone, bp);
1da177e4
LT
1039 fail:
1040 return NULL;
1041}
1042
1043/*
1da177e4
LT
1044 * Increment reference count on buffer, to hold the buffer concurrently
1045 * with another thread which may release (free) the buffer asynchronously.
1da177e4
LT
1046 * Must hold the buffer already to call this function.
1047 */
1048void
ce8e922c
NS
1049xfs_buf_hold(
1050 xfs_buf_t *bp)
1da177e4 1051{
0b1b213f 1052 trace_xfs_buf_hold(bp, _RET_IP_);
ce8e922c 1053 atomic_inc(&bp->b_hold);
1da177e4
LT
1054}
1055
1056/*
9c7504aa
BF
1057 * Release a hold on the specified buffer. If the hold count is 1, the buffer is
1058 * placed on LRU or freed (depending on b_lru_ref).
1da177e4
LT
1059 */
1060void
ce8e922c
NS
1061xfs_buf_rele(
1062 xfs_buf_t *bp)
1da177e4 1063{
74f75a0c 1064 struct xfs_perag *pag = bp->b_pag;
9c7504aa
BF
1065 bool release;
1066 bool freebuf = false;
1da177e4 1067
0b1b213f 1068 trace_xfs_buf_rele(bp, _RET_IP_);
1da177e4 1069
74f75a0c 1070 if (!pag) {
430cbeb8 1071 ASSERT(list_empty(&bp->b_lru));
9c7504aa
BF
1072 if (atomic_dec_and_test(&bp->b_hold)) {
1073 xfs_buf_ioacct_dec(bp);
fad3aa1e 1074 xfs_buf_free(bp);
9c7504aa 1075 }
fad3aa1e
NS
1076 return;
1077 }
1078
3790689f 1079 ASSERT(atomic_read(&bp->b_hold) > 0);
a4082357 1080
37fd1678
DC
1081 /*
1082 * We grab the b_lock here first to serialise racing xfs_buf_rele()
1083 * calls. The pag_buf_lock being taken on the last reference only
1084 * serialises against racing lookups in xfs_buf_find(). IOWs, the second
1085 * to last reference we drop here is not serialised against the last
1086 * reference until we take bp->b_lock. Hence if we don't grab b_lock
1087 * first, the last "release" reference can win the race to the lock and
1088 * free the buffer before the second-to-last reference is processed,
1089 * leading to a use-after-free scenario.
1090 */
9c7504aa 1091 spin_lock(&bp->b_lock);
37fd1678 1092 release = atomic_dec_and_lock(&bp->b_hold, &pag->pag_buf_lock);
9c7504aa
BF
1093 if (!release) {
1094 /*
1095 * Drop the in-flight state if the buffer is already on the LRU
1096 * and it holds the only reference. This is racy because we
1097 * haven't acquired the pag lock, but the use of _XBF_IN_FLIGHT
1098 * ensures the decrement occurs only once per-buf.
1099 */
1100 if ((atomic_read(&bp->b_hold) == 1) && !list_empty(&bp->b_lru))
63db7c81 1101 __xfs_buf_ioacct_dec(bp);
9c7504aa
BF
1102 goto out_unlock;
1103 }
1104
1105 /* the last reference has been dropped ... */
63db7c81 1106 __xfs_buf_ioacct_dec(bp);
9c7504aa
BF
1107 if (!(bp->b_flags & XBF_STALE) && atomic_read(&bp->b_lru_ref)) {
1108 /*
1109 * If the buffer is added to the LRU take a new reference to the
1110 * buffer for the LRU and clear the (now stale) dispose list
1111 * state flag
1112 */
1113 if (list_lru_add(&bp->b_target->bt_lru, &bp->b_lru)) {
1114 bp->b_state &= ~XFS_BSTATE_DISPOSE;
1115 atomic_inc(&bp->b_hold);
1da177e4 1116 }
9c7504aa
BF
1117 spin_unlock(&pag->pag_buf_lock);
1118 } else {
1119 /*
1120 * most of the time buffers will already be removed from the
1121 * LRU, so optimise that case by checking for the
1122 * XFS_BSTATE_DISPOSE flag indicating the last list the buffer
1123 * was on was the disposal list
1124 */
1125 if (!(bp->b_state & XFS_BSTATE_DISPOSE)) {
1126 list_lru_del(&bp->b_target->bt_lru, &bp->b_lru);
1127 } else {
1128 ASSERT(list_empty(&bp->b_lru));
1da177e4 1129 }
9c7504aa
BF
1130
1131 ASSERT(!(bp->b_flags & _XBF_DELWRI_Q));
6031e73a
LS
1132 rhashtable_remove_fast(&pag->pag_buf_hash, &bp->b_rhash_head,
1133 xfs_buf_hash_params);
9c7504aa
BF
1134 spin_unlock(&pag->pag_buf_lock);
1135 xfs_perag_put(pag);
1136 freebuf = true;
1da177e4 1137 }
9c7504aa
BF
1138
1139out_unlock:
1140 spin_unlock(&bp->b_lock);
1141
1142 if (freebuf)
1143 xfs_buf_free(bp);
1da177e4
LT
1144}
1145
1146
1147/*
0e6e847f 1148 * Lock a buffer object, if it is not already locked.
90810b9e
DC
1149 *
1150 * If we come across a stale, pinned, locked buffer, we know that we are
1151 * being asked to lock a buffer that has been reallocated. Because it is
1152 * pinned, we know that the log has not been pushed to disk and hence it
1153 * will still be locked. Rather than continuing to have trylock attempts
1154 * fail until someone else pushes the log, push it ourselves before
1155 * returning. This means that the xfsaild will not get stuck trying
1156 * to push on stale inode buffers.
1da177e4
LT
1157 */
1158int
0c842ad4
CH
1159xfs_buf_trylock(
1160 struct xfs_buf *bp)
1da177e4
LT
1161{
1162 int locked;
1163
ce8e922c 1164 locked = down_trylock(&bp->b_sema) == 0;
fa6c668d 1165 if (locked)
479c6412 1166 trace_xfs_buf_trylock(bp, _RET_IP_);
fa6c668d 1167 else
479c6412 1168 trace_xfs_buf_trylock_fail(bp, _RET_IP_);
0c842ad4 1169 return locked;
1da177e4 1170}
1da177e4
LT
1171
1172/*
0e6e847f 1173 * Lock a buffer object.
ed3b4d6c
DC
1174 *
1175 * If we come across a stale, pinned, locked buffer, we know that we
1176 * are being asked to lock a buffer that has been reallocated. Because
1177 * it is pinned, we know that the log has not been pushed to disk and
1178 * hence it will still be locked. Rather than sleeping until someone
1179 * else pushes the log, push it ourselves before trying to get the lock.
1da177e4 1180 */
ce8e922c
NS
1181void
1182xfs_buf_lock(
0c842ad4 1183 struct xfs_buf *bp)
1da177e4 1184{
0b1b213f
CH
1185 trace_xfs_buf_lock(bp, _RET_IP_);
1186
ed3b4d6c 1187 if (atomic_read(&bp->b_pin_count) && (bp->b_flags & XBF_STALE))
ebad861b 1188 xfs_log_force(bp->b_target->bt_mount, 0);
ce8e922c 1189 down(&bp->b_sema);
0b1b213f
CH
1190
1191 trace_xfs_buf_lock_done(bp, _RET_IP_);
1da177e4
LT
1192}
1193
1da177e4 1194void
ce8e922c 1195xfs_buf_unlock(
0c842ad4 1196 struct xfs_buf *bp)
1da177e4 1197{
20e8a063
BF
1198 ASSERT(xfs_buf_islocked(bp));
1199
ce8e922c 1200 up(&bp->b_sema);
0b1b213f 1201 trace_xfs_buf_unlock(bp, _RET_IP_);
1da177e4
LT
1202}
1203
ce8e922c
NS
1204STATIC void
1205xfs_buf_wait_unpin(
1206 xfs_buf_t *bp)
1da177e4
LT
1207{
1208 DECLARE_WAITQUEUE (wait, current);
1209
ce8e922c 1210 if (atomic_read(&bp->b_pin_count) == 0)
1da177e4
LT
1211 return;
1212
ce8e922c 1213 add_wait_queue(&bp->b_waiters, &wait);
1da177e4
LT
1214 for (;;) {
1215 set_current_state(TASK_UNINTERRUPTIBLE);
ce8e922c 1216 if (atomic_read(&bp->b_pin_count) == 0)
1da177e4 1217 break;
7eaceacc 1218 io_schedule();
1da177e4 1219 }
ce8e922c 1220 remove_wait_queue(&bp->b_waiters, &wait);
1da177e4
LT
1221 set_current_state(TASK_RUNNING);
1222}
1223
1224/*
1225 * Buffer Utility Routines
1226 */
1227
e8aaba9a
DC
1228void
1229xfs_buf_ioend(
1230 struct xfs_buf *bp)
1da177e4 1231{
e8aaba9a
DC
1232 bool read = bp->b_flags & XBF_READ;
1233
1234 trace_xfs_buf_iodone(bp, _RET_IP_);
1813dd64
DC
1235
1236 bp->b_flags &= ~(XBF_READ | XBF_WRITE | XBF_READ_AHEAD);
d5929de8 1237
61be9c52
DC
1238 /*
1239 * Pull in IO completion errors now. We are guaranteed to be running
1240 * single threaded, so we don't need the lock to read b_io_error.
1241 */
1242 if (!bp->b_error && bp->b_io_error)
1243 xfs_buf_ioerror(bp, bp->b_io_error);
1244
e8aaba9a
DC
1245 /* Only validate buffers that were read without errors */
1246 if (read && !bp->b_error && bp->b_ops) {
1247 ASSERT(!bp->b_iodone);
1813dd64 1248 bp->b_ops->verify_read(bp);
e8aaba9a
DC
1249 }
1250
1251 if (!bp->b_error)
1252 bp->b_flags |= XBF_DONE;
1da177e4 1253
80f6c29d 1254 if (bp->b_iodone)
ce8e922c
NS
1255 (*(bp->b_iodone))(bp);
1256 else if (bp->b_flags & XBF_ASYNC)
1da177e4 1257 xfs_buf_relse(bp);
595bff75 1258 else
1813dd64 1259 complete(&bp->b_iowait);
1da177e4
LT
1260}
1261
e8aaba9a
DC
1262static void
1263xfs_buf_ioend_work(
1264 struct work_struct *work)
1da177e4 1265{
e8aaba9a 1266 struct xfs_buf *bp =
b29c70f5 1267 container_of(work, xfs_buf_t, b_ioend_work);
0b1b213f 1268
e8aaba9a
DC
1269 xfs_buf_ioend(bp);
1270}
1da177e4 1271
211fe1a4 1272static void
e8aaba9a
DC
1273xfs_buf_ioend_async(
1274 struct xfs_buf *bp)
1275{
b29c70f5
BF
1276 INIT_WORK(&bp->b_ioend_work, xfs_buf_ioend_work);
1277 queue_work(bp->b_ioend_wq, &bp->b_ioend_work);
1da177e4
LT
1278}
1279
1da177e4 1280void
31ca03c9 1281__xfs_buf_ioerror(
ce8e922c 1282 xfs_buf_t *bp,
31ca03c9
DW
1283 int error,
1284 xfs_failaddr_t failaddr)
1da177e4 1285{
2451337d
DC
1286 ASSERT(error <= 0 && error >= -1000);
1287 bp->b_error = error;
31ca03c9 1288 trace_xfs_buf_ioerror(bp, error, failaddr);
1da177e4
LT
1289}
1290
901796af
CH
1291void
1292xfs_buf_ioerror_alert(
1293 struct xfs_buf *bp,
1294 const char *func)
1295{
1296 xfs_alert(bp->b_target->bt_mount,
c219b015
DW
1297"metadata I/O error in \"%s\" at daddr 0x%llx len %d error %d",
1298 func, (uint64_t)XFS_BUF_ADDR(bp), bp->b_length,
1299 -bp->b_error);
901796af
CH
1300}
1301
a2dcf5df
CH
1302int
1303xfs_bwrite(
1304 struct xfs_buf *bp)
1305{
1306 int error;
1307
1308 ASSERT(xfs_buf_islocked(bp));
1309
1310 bp->b_flags |= XBF_WRITE;
27187754
DC
1311 bp->b_flags &= ~(XBF_ASYNC | XBF_READ | _XBF_DELWRI_Q |
1312 XBF_WRITE_FAIL | XBF_DONE);
a2dcf5df 1313
6af88cda 1314 error = xfs_buf_submit(bp);
a2dcf5df
CH
1315 if (error) {
1316 xfs_force_shutdown(bp->b_target->bt_mount,
1317 SHUTDOWN_META_IO_ERROR);
1318 }
1319 return error;
1320}
1321
9bdd9bd6 1322static void
ce8e922c 1323xfs_buf_bio_end_io(
4246a0b6 1324 struct bio *bio)
1da177e4 1325{
9bdd9bd6 1326 struct xfs_buf *bp = (struct xfs_buf *)bio->bi_private;
1da177e4 1327
37eb17e6
DC
1328 /*
1329 * don't overwrite existing errors - otherwise we can lose errors on
1330 * buffers that require multiple bios to complete.
1331 */
4e4cbee9
CH
1332 if (bio->bi_status) {
1333 int error = blk_status_to_errno(bio->bi_status);
1334
1335 cmpxchg(&bp->b_io_error, 0, error);
1336 }
1da177e4 1337
37eb17e6 1338 if (!bp->b_error && xfs_buf_is_vmapped(bp) && (bp->b_flags & XBF_READ))
73c77e2c
JB
1339 invalidate_kernel_vmap_range(bp->b_addr, xfs_buf_vmap_len(bp));
1340
e8aaba9a
DC
1341 if (atomic_dec_and_test(&bp->b_io_remaining) == 1)
1342 xfs_buf_ioend_async(bp);
1da177e4 1343 bio_put(bio);
1da177e4
LT
1344}
1345
3e85c868
DC
1346static void
1347xfs_buf_ioapply_map(
1348 struct xfs_buf *bp,
1349 int map,
1350 int *buf_offset,
1351 int *count,
50bfcd0c
MC
1352 int op,
1353 int op_flags)
1da177e4 1354{
3e85c868
DC
1355 int page_index;
1356 int total_nr_pages = bp->b_page_count;
1357 int nr_pages;
1358 struct bio *bio;
1359 sector_t sector = bp->b_maps[map].bm_bn;
1360 int size;
1361 int offset;
1da177e4 1362
3e85c868
DC
1363 /* skip the pages in the buffer before the start offset */
1364 page_index = 0;
1365 offset = *buf_offset;
1366 while (offset >= PAGE_SIZE) {
1367 page_index++;
1368 offset -= PAGE_SIZE;
f538d4da
CH
1369 }
1370
3e85c868
DC
1371 /*
1372 * Limit the IO size to the length of the current vector, and update the
1373 * remaining IO count for the next time around.
1374 */
1375 size = min_t(int, BBTOB(bp->b_maps[map].bm_len), *count);
1376 *count -= size;
1377 *buf_offset += size;
34951f5c 1378
1da177e4 1379next_chunk:
ce8e922c 1380 atomic_inc(&bp->b_io_remaining);
c908e380 1381 nr_pages = min(total_nr_pages, BIO_MAX_PAGES);
1da177e4
LT
1382
1383 bio = bio_alloc(GFP_NOIO, nr_pages);
74d46992 1384 bio_set_dev(bio, bp->b_target->bt_bdev);
4f024f37 1385 bio->bi_iter.bi_sector = sector;
ce8e922c
NS
1386 bio->bi_end_io = xfs_buf_bio_end_io;
1387 bio->bi_private = bp;
50bfcd0c 1388 bio_set_op_attrs(bio, op, op_flags);
0e6e847f 1389
3e85c868 1390 for (; size && nr_pages; nr_pages--, page_index++) {
0e6e847f 1391 int rbytes, nbytes = PAGE_SIZE - offset;
1da177e4
LT
1392
1393 if (nbytes > size)
1394 nbytes = size;
1395
3e85c868
DC
1396 rbytes = bio_add_page(bio, bp->b_pages[page_index], nbytes,
1397 offset);
ce8e922c 1398 if (rbytes < nbytes)
1da177e4
LT
1399 break;
1400
1401 offset = 0;
aa0e8833 1402 sector += BTOBB(nbytes);
1da177e4
LT
1403 size -= nbytes;
1404 total_nr_pages--;
1405 }
1406
4f024f37 1407 if (likely(bio->bi_iter.bi_size)) {
73c77e2c
JB
1408 if (xfs_buf_is_vmapped(bp)) {
1409 flush_kernel_vmap_range(bp->b_addr,
1410 xfs_buf_vmap_len(bp));
1411 }
4e49ea4a 1412 submit_bio(bio);
1da177e4
LT
1413 if (size)
1414 goto next_chunk;
1415 } else {
37eb17e6
DC
1416 /*
1417 * This is guaranteed not to be the last io reference count
595bff75 1418 * because the caller (xfs_buf_submit) holds a count itself.
37eb17e6
DC
1419 */
1420 atomic_dec(&bp->b_io_remaining);
2451337d 1421 xfs_buf_ioerror(bp, -EIO);
ec53d1db 1422 bio_put(bio);
1da177e4 1423 }
3e85c868
DC
1424
1425}
1426
1427STATIC void
1428_xfs_buf_ioapply(
1429 struct xfs_buf *bp)
1430{
1431 struct blk_plug plug;
50bfcd0c
MC
1432 int op;
1433 int op_flags = 0;
3e85c868
DC
1434 int offset;
1435 int size;
1436 int i;
1437
c163f9a1
DC
1438 /*
1439 * Make sure we capture only current IO errors rather than stale errors
1440 * left over from previous use of the buffer (e.g. failed readahead).
1441 */
1442 bp->b_error = 0;
1443
b29c70f5
BF
1444 /*
1445 * Initialize the I/O completion workqueue if we haven't yet or the
1446 * submitter has not opted to specify a custom one.
1447 */
1448 if (!bp->b_ioend_wq)
1449 bp->b_ioend_wq = bp->b_target->bt_mount->m_buf_workqueue;
1450
3e85c868 1451 if (bp->b_flags & XBF_WRITE) {
50bfcd0c 1452 op = REQ_OP_WRITE;
3e85c868 1453 if (bp->b_flags & XBF_SYNCIO)
70fd7614 1454 op_flags = REQ_SYNC;
3e85c868 1455 if (bp->b_flags & XBF_FUA)
50bfcd0c 1456 op_flags |= REQ_FUA;
3e85c868 1457 if (bp->b_flags & XBF_FLUSH)
28a8f0d3 1458 op_flags |= REQ_PREFLUSH;
1813dd64
DC
1459
1460 /*
1461 * Run the write verifier callback function if it exists. If
1462 * this function fails it will mark the buffer with an error and
1463 * the IO should not be dispatched.
1464 */
1465 if (bp->b_ops) {
1466 bp->b_ops->verify_write(bp);
1467 if (bp->b_error) {
1468 xfs_force_shutdown(bp->b_target->bt_mount,
1469 SHUTDOWN_CORRUPT_INCORE);
1470 return;
1471 }
400b9d88
DC
1472 } else if (bp->b_bn != XFS_BUF_DADDR_NULL) {
1473 struct xfs_mount *mp = bp->b_target->bt_mount;
1474
1475 /*
1476 * non-crc filesystems don't attach verifiers during
1477 * log recovery, so don't warn for such filesystems.
1478 */
1479 if (xfs_sb_version_hascrc(&mp->m_sb)) {
1480 xfs_warn(mp,
c219b015 1481 "%s: no buf ops on daddr 0x%llx len %d",
400b9d88 1482 __func__, bp->b_bn, bp->b_length);
9c712a13
DW
1483 xfs_hex_dump(bp->b_addr,
1484 XFS_CORRUPTION_DUMP_LEN);
400b9d88
DC
1485 dump_stack();
1486 }
1813dd64 1487 }
3e85c868 1488 } else if (bp->b_flags & XBF_READ_AHEAD) {
50bfcd0c
MC
1489 op = REQ_OP_READ;
1490 op_flags = REQ_RAHEAD;
3e85c868 1491 } else {
50bfcd0c 1492 op = REQ_OP_READ;
3e85c868
DC
1493 }
1494
1495 /* we only use the buffer cache for meta-data */
50bfcd0c 1496 op_flags |= REQ_META;
3e85c868
DC
1497
1498 /*
1499 * Walk all the vectors issuing IO on them. Set up the initial offset
1500 * into the buffer and the desired IO size before we start -
1501 * _xfs_buf_ioapply_vec() will modify them appropriately for each
1502 * subsequent call.
1503 */
1504 offset = bp->b_offset;
1505 size = BBTOB(bp->b_io_length);
1506 blk_start_plug(&plug);
1507 for (i = 0; i < bp->b_map_count; i++) {
50bfcd0c 1508 xfs_buf_ioapply_map(bp, i, &offset, &size, op, op_flags);
3e85c868
DC
1509 if (bp->b_error)
1510 break;
1511 if (size <= 0)
1512 break; /* all done */
1513 }
1514 blk_finish_plug(&plug);
1da177e4
LT
1515}
1516
595bff75 1517/*
bb00b6f1 1518 * Wait for I/O completion of a sync buffer and return the I/O error code.
595bff75 1519 */
eaebb515 1520static int
bb00b6f1 1521xfs_buf_iowait(
595bff75 1522 struct xfs_buf *bp)
1da177e4 1523{
bb00b6f1
BF
1524 ASSERT(!(bp->b_flags & XBF_ASYNC));
1525
1526 trace_xfs_buf_iowait(bp, _RET_IP_);
1527 wait_for_completion(&bp->b_iowait);
1528 trace_xfs_buf_iowait_done(bp, _RET_IP_);
1529
1530 return bp->b_error;
1531}
1532
1533/*
1534 * Buffer I/O submission path, read or write. Asynchronous submission transfers
1535 * the buffer lock ownership and the current reference to the IO. It is not
1536 * safe to reference the buffer after a call to this function unless the caller
1537 * holds an additional reference itself.
1538 */
1539int
1540__xfs_buf_submit(
1541 struct xfs_buf *bp,
1542 bool wait)
1543{
1544 int error = 0;
1545
595bff75 1546 trace_xfs_buf_submit(bp, _RET_IP_);
1da177e4 1547
43ff2122 1548 ASSERT(!(bp->b_flags & _XBF_DELWRI_Q));
595bff75
DC
1549
1550 /* on shutdown we stale and complete the buffer immediately */
1551 if (XFS_FORCED_SHUTDOWN(bp->b_target->bt_mount)) {
1552 xfs_buf_ioerror(bp, -EIO);
1553 bp->b_flags &= ~XBF_DONE;
1554 xfs_buf_stale(bp);
465fa17f 1555 xfs_buf_ioend(bp);
eaebb515 1556 return -EIO;
595bff75 1557 }
1da177e4 1558
bb00b6f1
BF
1559 /*
1560 * Grab a reference so the buffer does not go away underneath us. For
1561 * async buffers, I/O completion drops the callers reference, which
1562 * could occur before submission returns.
1563 */
1564 xfs_buf_hold(bp);
1565
375ec69d 1566 if (bp->b_flags & XBF_WRITE)
ce8e922c 1567 xfs_buf_wait_unpin(bp);
e11bb805 1568
61be9c52
DC
1569 /* clear the internal error state to avoid spurious errors */
1570 bp->b_io_error = 0;
1571
8d6c1210 1572 /*
e11bb805
DC
1573 * Set the count to 1 initially, this will stop an I/O completion
1574 * callout which happens before we have started all the I/O from calling
1575 * xfs_buf_ioend too early.
1da177e4 1576 */
ce8e922c 1577 atomic_set(&bp->b_io_remaining, 1);
eaebb515
BF
1578 if (bp->b_flags & XBF_ASYNC)
1579 xfs_buf_ioacct_inc(bp);
ce8e922c 1580 _xfs_buf_ioapply(bp);
e11bb805 1581
8d6c1210 1582 /*
595bff75
DC
1583 * If _xfs_buf_ioapply failed, we can get back here with only the IO
1584 * reference we took above. If we drop it to zero, run completion so
1585 * that we don't return to the caller with completion still pending.
8d6c1210 1586 */
e8aaba9a 1587 if (atomic_dec_and_test(&bp->b_io_remaining) == 1) {
eaebb515 1588 if (bp->b_error || !(bp->b_flags & XBF_ASYNC))
e8aaba9a
DC
1589 xfs_buf_ioend(bp);
1590 else
1591 xfs_buf_ioend_async(bp);
1592 }
1da177e4 1593
6af88cda
BF
1594 if (wait)
1595 error = xfs_buf_iowait(bp);
bb00b6f1 1596
595bff75 1597 /*
6af88cda
BF
1598 * Release the hold that keeps the buffer referenced for the entire
1599 * I/O. Note that if the buffer is async, it is not safe to reference
1600 * after this release.
595bff75
DC
1601 */
1602 xfs_buf_rele(bp);
1603 return error;
1da177e4
LT
1604}
1605
88ee2df7 1606void *
ce8e922c 1607xfs_buf_offset(
88ee2df7 1608 struct xfs_buf *bp,
1da177e4
LT
1609 size_t offset)
1610{
1611 struct page *page;
1612
611c9946 1613 if (bp->b_addr)
62926044 1614 return bp->b_addr + offset;
1da177e4 1615
ce8e922c 1616 offset += bp->b_offset;
0e6e847f 1617 page = bp->b_pages[offset >> PAGE_SHIFT];
88ee2df7 1618 return page_address(page) + (offset & (PAGE_SIZE-1));
1da177e4
LT
1619}
1620
1621/*
1da177e4
LT
1622 * Move data into or out of a buffer.
1623 */
1624void
ce8e922c
NS
1625xfs_buf_iomove(
1626 xfs_buf_t *bp, /* buffer to process */
1da177e4
LT
1627 size_t boff, /* starting buffer offset */
1628 size_t bsize, /* length to copy */
b9c48649 1629 void *data, /* data address */
ce8e922c 1630 xfs_buf_rw_t mode) /* read/write/zero flag */
1da177e4 1631{
795cac72 1632 size_t bend;
1da177e4
LT
1633
1634 bend = boff + bsize;
1635 while (boff < bend) {
795cac72
DC
1636 struct page *page;
1637 int page_index, page_offset, csize;
1638
1639 page_index = (boff + bp->b_offset) >> PAGE_SHIFT;
1640 page_offset = (boff + bp->b_offset) & ~PAGE_MASK;
1641 page = bp->b_pages[page_index];
1642 csize = min_t(size_t, PAGE_SIZE - page_offset,
1643 BBTOB(bp->b_io_length) - boff);
1da177e4 1644
795cac72 1645 ASSERT((csize + page_offset) <= PAGE_SIZE);
1da177e4
LT
1646
1647 switch (mode) {
ce8e922c 1648 case XBRW_ZERO:
795cac72 1649 memset(page_address(page) + page_offset, 0, csize);
1da177e4 1650 break;
ce8e922c 1651 case XBRW_READ:
795cac72 1652 memcpy(data, page_address(page) + page_offset, csize);
1da177e4 1653 break;
ce8e922c 1654 case XBRW_WRITE:
795cac72 1655 memcpy(page_address(page) + page_offset, data, csize);
1da177e4
LT
1656 }
1657
1658 boff += csize;
1659 data += csize;
1660 }
1661}
1662
1663/*
ce8e922c 1664 * Handling of buffer targets (buftargs).
1da177e4
LT
1665 */
1666
1667/*
430cbeb8
DC
1668 * Wait for any bufs with callbacks that have been submitted but have not yet
1669 * returned. These buffers will have an elevated hold count, so wait on those
1670 * while freeing all the buffers only held by the LRU.
1da177e4 1671 */
e80dfa19
DC
1672static enum lru_status
1673xfs_buftarg_wait_rele(
1674 struct list_head *item,
3f97b163 1675 struct list_lru_one *lru,
e80dfa19
DC
1676 spinlock_t *lru_lock,
1677 void *arg)
1678
1da177e4 1679{
e80dfa19 1680 struct xfs_buf *bp = container_of(item, struct xfs_buf, b_lru);
a4082357 1681 struct list_head *dispose = arg;
430cbeb8 1682
e80dfa19 1683 if (atomic_read(&bp->b_hold) > 1) {
a4082357 1684 /* need to wait, so skip it this pass */
e80dfa19 1685 trace_xfs_buf_wait_buftarg(bp, _RET_IP_);
a4082357 1686 return LRU_SKIP;
1da177e4 1687 }
a4082357
DC
1688 if (!spin_trylock(&bp->b_lock))
1689 return LRU_SKIP;
e80dfa19 1690
a4082357
DC
1691 /*
1692 * clear the LRU reference count so the buffer doesn't get
1693 * ignored in xfs_buf_rele().
1694 */
1695 atomic_set(&bp->b_lru_ref, 0);
1696 bp->b_state |= XFS_BSTATE_DISPOSE;
3f97b163 1697 list_lru_isolate_move(lru, item, dispose);
a4082357
DC
1698 spin_unlock(&bp->b_lock);
1699 return LRU_REMOVED;
1da177e4
LT
1700}
1701
e80dfa19
DC
1702void
1703xfs_wait_buftarg(
1704 struct xfs_buftarg *btp)
1705{
a4082357
DC
1706 LIST_HEAD(dispose);
1707 int loop = 0;
1708
85bec546 1709 /*
9c7504aa
BF
1710 * First wait on the buftarg I/O count for all in-flight buffers to be
1711 * released. This is critical as new buffers do not make the LRU until
1712 * they are released.
1713 *
1714 * Next, flush the buffer workqueue to ensure all completion processing
1715 * has finished. Just waiting on buffer locks is not sufficient for
1716 * async IO as the reference count held over IO is not released until
1717 * after the buffer lock is dropped. Hence we need to ensure here that
1718 * all reference counts have been dropped before we start walking the
1719 * LRU list.
85bec546 1720 */
9c7504aa
BF
1721 while (percpu_counter_sum(&btp->bt_io_count))
1722 delay(100);
800b2694 1723 flush_workqueue(btp->bt_mount->m_buf_workqueue);
85bec546 1724
a4082357
DC
1725 /* loop until there is nothing left on the lru list. */
1726 while (list_lru_count(&btp->bt_lru)) {
e80dfa19 1727 list_lru_walk(&btp->bt_lru, xfs_buftarg_wait_rele,
a4082357
DC
1728 &dispose, LONG_MAX);
1729
1730 while (!list_empty(&dispose)) {
1731 struct xfs_buf *bp;
1732 bp = list_first_entry(&dispose, struct xfs_buf, b_lru);
1733 list_del_init(&bp->b_lru);
ac8809f9
DC
1734 if (bp->b_flags & XBF_WRITE_FAIL) {
1735 xfs_alert(btp->bt_mount,
c219b015 1736"Corruption Alert: Buffer at daddr 0x%llx had permanent write failures!",
ac8809f9 1737 (long long)bp->b_bn);
f41febd2
JP
1738 xfs_alert(btp->bt_mount,
1739"Please run xfs_repair to determine the extent of the problem.");
ac8809f9 1740 }
a4082357
DC
1741 xfs_buf_rele(bp);
1742 }
1743 if (loop++ != 0)
1744 delay(100);
1745 }
e80dfa19
DC
1746}
1747
1748static enum lru_status
1749xfs_buftarg_isolate(
1750 struct list_head *item,
3f97b163 1751 struct list_lru_one *lru,
e80dfa19
DC
1752 spinlock_t *lru_lock,
1753 void *arg)
1754{
1755 struct xfs_buf *bp = container_of(item, struct xfs_buf, b_lru);
1756 struct list_head *dispose = arg;
1757
a4082357
DC
1758 /*
1759 * we are inverting the lru lock/bp->b_lock here, so use a trylock.
1760 * If we fail to get the lock, just skip it.
1761 */
1762 if (!spin_trylock(&bp->b_lock))
1763 return LRU_SKIP;
e80dfa19
DC
1764 /*
1765 * Decrement the b_lru_ref count unless the value is already
1766 * zero. If the value is already zero, we need to reclaim the
1767 * buffer, otherwise it gets another trip through the LRU.
1768 */
19957a18 1769 if (atomic_add_unless(&bp->b_lru_ref, -1, 0)) {
a4082357 1770 spin_unlock(&bp->b_lock);
e80dfa19 1771 return LRU_ROTATE;
a4082357 1772 }
e80dfa19 1773
a4082357 1774 bp->b_state |= XFS_BSTATE_DISPOSE;
3f97b163 1775 list_lru_isolate_move(lru, item, dispose);
a4082357 1776 spin_unlock(&bp->b_lock);
e80dfa19
DC
1777 return LRU_REMOVED;
1778}
1779
addbda40 1780static unsigned long
e80dfa19 1781xfs_buftarg_shrink_scan(
ff57ab21 1782 struct shrinker *shrink,
1495f230 1783 struct shrink_control *sc)
a6867a68 1784{
ff57ab21
DC
1785 struct xfs_buftarg *btp = container_of(shrink,
1786 struct xfs_buftarg, bt_shrinker);
430cbeb8 1787 LIST_HEAD(dispose);
addbda40 1788 unsigned long freed;
430cbeb8 1789
503c358c
VD
1790 freed = list_lru_shrink_walk(&btp->bt_lru, sc,
1791 xfs_buftarg_isolate, &dispose);
430cbeb8
DC
1792
1793 while (!list_empty(&dispose)) {
e80dfa19 1794 struct xfs_buf *bp;
430cbeb8
DC
1795 bp = list_first_entry(&dispose, struct xfs_buf, b_lru);
1796 list_del_init(&bp->b_lru);
1797 xfs_buf_rele(bp);
1798 }
1799
e80dfa19
DC
1800 return freed;
1801}
1802
addbda40 1803static unsigned long
e80dfa19
DC
1804xfs_buftarg_shrink_count(
1805 struct shrinker *shrink,
1806 struct shrink_control *sc)
1807{
1808 struct xfs_buftarg *btp = container_of(shrink,
1809 struct xfs_buftarg, bt_shrinker);
503c358c 1810 return list_lru_shrink_count(&btp->bt_lru, sc);
a6867a68
DC
1811}
1812
1da177e4
LT
1813void
1814xfs_free_buftarg(
b7963133 1815 struct xfs_buftarg *btp)
1da177e4 1816{
ff57ab21 1817 unregister_shrinker(&btp->bt_shrinker);
9c7504aa
BF
1818 ASSERT(percpu_counter_sum(&btp->bt_io_count) == 0);
1819 percpu_counter_destroy(&btp->bt_io_count);
f5e1dd34 1820 list_lru_destroy(&btp->bt_lru);
ff57ab21 1821
2291dab2 1822 xfs_blkdev_issue_flush(btp);
a6867a68 1823
f0e2d93c 1824 kmem_free(btp);
1da177e4
LT
1825}
1826
3fefdeee
ES
1827int
1828xfs_setsize_buftarg(
1da177e4 1829 xfs_buftarg_t *btp,
3fefdeee 1830 unsigned int sectorsize)
1da177e4 1831{
7c71ee78 1832 /* Set up metadata sector size info */
6da54179
ES
1833 btp->bt_meta_sectorsize = sectorsize;
1834 btp->bt_meta_sectormask = sectorsize - 1;
1da177e4 1835
ce8e922c 1836 if (set_blocksize(btp->bt_bdev, sectorsize)) {
4f10700a 1837 xfs_warn(btp->bt_mount,
a1c6f057
DM
1838 "Cannot set_blocksize to %u on device %pg",
1839 sectorsize, btp->bt_bdev);
2451337d 1840 return -EINVAL;
1da177e4
LT
1841 }
1842
7c71ee78
ES
1843 /* Set up device logical sector size mask */
1844 btp->bt_logical_sectorsize = bdev_logical_block_size(btp->bt_bdev);
1845 btp->bt_logical_sectormask = bdev_logical_block_size(btp->bt_bdev) - 1;
1846
1da177e4
LT
1847 return 0;
1848}
1849
1850/*
3fefdeee
ES
1851 * When allocating the initial buffer target we have not yet
1852 * read in the superblock, so don't know what sized sectors
1853 * are being used at this early stage. Play safe.
ce8e922c 1854 */
1da177e4
LT
1855STATIC int
1856xfs_setsize_buftarg_early(
1857 xfs_buftarg_t *btp,
1858 struct block_device *bdev)
1859{
a96c4151 1860 return xfs_setsize_buftarg(btp, bdev_logical_block_size(bdev));
1da177e4
LT
1861}
1862
1da177e4
LT
1863xfs_buftarg_t *
1864xfs_alloc_buftarg(
ebad861b 1865 struct xfs_mount *mp,
486aff5e
DW
1866 struct block_device *bdev,
1867 struct dax_device *dax_dev)
1da177e4
LT
1868{
1869 xfs_buftarg_t *btp;
1870
b17cb364 1871 btp = kmem_zalloc(sizeof(*btp), KM_SLEEP | KM_NOFS);
1da177e4 1872
ebad861b 1873 btp->bt_mount = mp;
ce8e922c
NS
1874 btp->bt_dev = bdev->bd_dev;
1875 btp->bt_bdev = bdev;
486aff5e 1876 btp->bt_daxdev = dax_dev;
0e6e847f 1877
1da177e4 1878 if (xfs_setsize_buftarg_early(btp, bdev))
d210a987 1879 goto error_free;
5ca302c8
GC
1880
1881 if (list_lru_init(&btp->bt_lru))
d210a987 1882 goto error_free;
5ca302c8 1883
9c7504aa 1884 if (percpu_counter_init(&btp->bt_io_count, 0, GFP_KERNEL))
d210a987 1885 goto error_lru;
9c7504aa 1886
e80dfa19
DC
1887 btp->bt_shrinker.count_objects = xfs_buftarg_shrink_count;
1888 btp->bt_shrinker.scan_objects = xfs_buftarg_shrink_scan;
ff57ab21 1889 btp->bt_shrinker.seeks = DEFAULT_SEEKS;
e80dfa19 1890 btp->bt_shrinker.flags = SHRINKER_NUMA_AWARE;
d210a987
MH
1891 if (register_shrinker(&btp->bt_shrinker))
1892 goto error_pcpu;
1da177e4
LT
1893 return btp;
1894
d210a987
MH
1895error_pcpu:
1896 percpu_counter_destroy(&btp->bt_io_count);
1897error_lru:
1898 list_lru_destroy(&btp->bt_lru);
1899error_free:
f0e2d93c 1900 kmem_free(btp);
1da177e4
LT
1901 return NULL;
1902}
1903
20e8a063
BF
1904/*
1905 * Cancel a delayed write list.
1906 *
1907 * Remove each buffer from the list, clear the delwri queue flag and drop the
1908 * associated buffer reference.
1909 */
1910void
1911xfs_buf_delwri_cancel(
1912 struct list_head *list)
1913{
1914 struct xfs_buf *bp;
1915
1916 while (!list_empty(list)) {
1917 bp = list_first_entry(list, struct xfs_buf, b_list);
1918
1919 xfs_buf_lock(bp);
1920 bp->b_flags &= ~_XBF_DELWRI_Q;
1921 list_del_init(&bp->b_list);
1922 xfs_buf_relse(bp);
1923 }
1924}
1925
1da177e4 1926/*
43ff2122
CH
1927 * Add a buffer to the delayed write list.
1928 *
1929 * This queues a buffer for writeout if it hasn't already been. Note that
1930 * neither this routine nor the buffer list submission functions perform
1931 * any internal synchronization. It is expected that the lists are thread-local
1932 * to the callers.
1933 *
1934 * Returns true if we queued up the buffer, or false if it already had
1935 * been on the buffer list.
1da177e4 1936 */
43ff2122 1937bool
ce8e922c 1938xfs_buf_delwri_queue(
43ff2122
CH
1939 struct xfs_buf *bp,
1940 struct list_head *list)
1da177e4 1941{
43ff2122 1942 ASSERT(xfs_buf_islocked(bp));
5a8ee6ba 1943 ASSERT(!(bp->b_flags & XBF_READ));
1da177e4 1944
43ff2122
CH
1945 /*
1946 * If the buffer is already marked delwri it already is queued up
1947 * by someone else for imediate writeout. Just ignore it in that
1948 * case.
1949 */
1950 if (bp->b_flags & _XBF_DELWRI_Q) {
1951 trace_xfs_buf_delwri_queued(bp, _RET_IP_);
1952 return false;
1da177e4 1953 }
1da177e4 1954
43ff2122 1955 trace_xfs_buf_delwri_queue(bp, _RET_IP_);
d808f617
DC
1956
1957 /*
43ff2122
CH
1958 * If a buffer gets written out synchronously or marked stale while it
1959 * is on a delwri list we lazily remove it. To do this, the other party
1960 * clears the _XBF_DELWRI_Q flag but otherwise leaves the buffer alone.
1961 * It remains referenced and on the list. In a rare corner case it
1962 * might get readded to a delwri list after the synchronous writeout, in
1963 * which case we need just need to re-add the flag here.
d808f617 1964 */
43ff2122
CH
1965 bp->b_flags |= _XBF_DELWRI_Q;
1966 if (list_empty(&bp->b_list)) {
1967 atomic_inc(&bp->b_hold);
1968 list_add_tail(&bp->b_list, list);
585e6d88 1969 }
585e6d88 1970
43ff2122 1971 return true;
585e6d88
DC
1972}
1973
089716aa
DC
1974/*
1975 * Compare function is more complex than it needs to be because
1976 * the return value is only 32 bits and we are doing comparisons
1977 * on 64 bit values
1978 */
1979static int
1980xfs_buf_cmp(
1981 void *priv,
1982 struct list_head *a,
1983 struct list_head *b)
1984{
1985 struct xfs_buf *ap = container_of(a, struct xfs_buf, b_list);
1986 struct xfs_buf *bp = container_of(b, struct xfs_buf, b_list);
1987 xfs_daddr_t diff;
1988
f4b42421 1989 diff = ap->b_maps[0].bm_bn - bp->b_maps[0].bm_bn;
089716aa
DC
1990 if (diff < 0)
1991 return -1;
1992 if (diff > 0)
1993 return 1;
1994 return 0;
1995}
1996
26f1fe85 1997/*
e339dd8d
BF
1998 * Submit buffers for write. If wait_list is specified, the buffers are
1999 * submitted using sync I/O and placed on the wait list such that the caller can
2000 * iowait each buffer. Otherwise async I/O is used and the buffers are released
2001 * at I/O completion time. In either case, buffers remain locked until I/O
2002 * completes and the buffer is released from the queue.
26f1fe85 2003 */
43ff2122 2004static int
26f1fe85 2005xfs_buf_delwri_submit_buffers(
43ff2122 2006 struct list_head *buffer_list,
26f1fe85 2007 struct list_head *wait_list)
1da177e4 2008{
43ff2122
CH
2009 struct xfs_buf *bp, *n;
2010 int pinned = 0;
26f1fe85 2011 struct blk_plug plug;
43ff2122 2012
26f1fe85 2013 list_sort(NULL, buffer_list, xfs_buf_cmp);
43ff2122 2014
26f1fe85 2015 blk_start_plug(&plug);
43ff2122 2016 list_for_each_entry_safe(bp, n, buffer_list, b_list) {
26f1fe85 2017 if (!wait_list) {
43ff2122
CH
2018 if (xfs_buf_ispinned(bp)) {
2019 pinned++;
2020 continue;
2021 }
2022 if (!xfs_buf_trylock(bp))
2023 continue;
2024 } else {
2025 xfs_buf_lock(bp);
2026 }
978c7b2f 2027
43ff2122
CH
2028 /*
2029 * Someone else might have written the buffer synchronously or
2030 * marked it stale in the meantime. In that case only the
2031 * _XBF_DELWRI_Q flag got cleared, and we have to drop the
2032 * reference and remove it from the list here.
2033 */
2034 if (!(bp->b_flags & _XBF_DELWRI_Q)) {
2035 list_del_init(&bp->b_list);
2036 xfs_buf_relse(bp);
2037 continue;
2038 }
c9c12971 2039
43ff2122 2040 trace_xfs_buf_delwri_split(bp, _RET_IP_);
a1b7ea5d 2041
cf53e99d 2042 /*
e339dd8d
BF
2043 * If we have a wait list, each buffer (and associated delwri
2044 * queue reference) transfers to it and is submitted
2045 * synchronously. Otherwise, drop the buffer from the delwri
2046 * queue and submit async.
cf53e99d 2047 */
bbfeb614 2048 bp->b_flags &= ~(_XBF_DELWRI_Q | XBF_WRITE_FAIL);
e339dd8d 2049 bp->b_flags |= XBF_WRITE;
26f1fe85 2050 if (wait_list) {
e339dd8d 2051 bp->b_flags &= ~XBF_ASYNC;
26f1fe85 2052 list_move_tail(&bp->b_list, wait_list);
e339dd8d
BF
2053 } else {
2054 bp->b_flags |= XBF_ASYNC;
ce8e922c 2055 list_del_init(&bp->b_list);
e339dd8d 2056 }
6af88cda 2057 __xfs_buf_submit(bp, false);
43ff2122
CH
2058 }
2059 blk_finish_plug(&plug);
1da177e4 2060
43ff2122 2061 return pinned;
1da177e4
LT
2062}
2063
2064/*
43ff2122
CH
2065 * Write out a buffer list asynchronously.
2066 *
2067 * This will take the @buffer_list, write all non-locked and non-pinned buffers
2068 * out and not wait for I/O completion on any of the buffers. This interface
2069 * is only safely useable for callers that can track I/O completion by higher
2070 * level means, e.g. AIL pushing as the @buffer_list is consumed in this
2071 * function.
efc3289c
BF
2072 *
2073 * Note: this function will skip buffers it would block on, and in doing so
2074 * leaves them on @buffer_list so they can be retried on a later pass. As such,
2075 * it is up to the caller to ensure that the buffer list is fully submitted or
2076 * cancelled appropriately when they are finished with the list. Failure to
2077 * cancel or resubmit the list until it is empty will result in leaked buffers
2078 * at unmount time.
1da177e4
LT
2079 */
2080int
43ff2122
CH
2081xfs_buf_delwri_submit_nowait(
2082 struct list_head *buffer_list)
1da177e4 2083{
26f1fe85 2084 return xfs_buf_delwri_submit_buffers(buffer_list, NULL);
43ff2122 2085}
1da177e4 2086
43ff2122
CH
2087/*
2088 * Write out a buffer list synchronously.
2089 *
2090 * This will take the @buffer_list, write all buffers out and wait for I/O
2091 * completion on all of the buffers. @buffer_list is consumed by the function,
2092 * so callers must have some other way of tracking buffers if they require such
2093 * functionality.
2094 */
2095int
2096xfs_buf_delwri_submit(
2097 struct list_head *buffer_list)
2098{
26f1fe85 2099 LIST_HEAD (wait_list);
43ff2122
CH
2100 int error = 0, error2;
2101 struct xfs_buf *bp;
1da177e4 2102
26f1fe85 2103 xfs_buf_delwri_submit_buffers(buffer_list, &wait_list);
1da177e4 2104
43ff2122 2105 /* Wait for IO to complete. */
26f1fe85
DC
2106 while (!list_empty(&wait_list)) {
2107 bp = list_first_entry(&wait_list, struct xfs_buf, b_list);
a1b7ea5d 2108
089716aa 2109 list_del_init(&bp->b_list);
cf53e99d 2110
e339dd8d
BF
2111 /*
2112 * Wait on the locked buffer, check for errors and unlock and
2113 * release the delwri queue reference.
2114 */
2115 error2 = xfs_buf_iowait(bp);
43ff2122
CH
2116 xfs_buf_relse(bp);
2117 if (!error)
2118 error = error2;
1da177e4
LT
2119 }
2120
43ff2122 2121 return error;
1da177e4
LT
2122}
2123
7912e7fe
BF
2124/*
2125 * Push a single buffer on a delwri queue.
2126 *
2127 * The purpose of this function is to submit a single buffer of a delwri queue
2128 * and return with the buffer still on the original queue. The waiting delwri
2129 * buffer submission infrastructure guarantees transfer of the delwri queue
2130 * buffer reference to a temporary wait list. We reuse this infrastructure to
2131 * transfer the buffer back to the original queue.
2132 *
2133 * Note the buffer transitions from the queued state, to the submitted and wait
2134 * listed state and back to the queued state during this call. The buffer
2135 * locking and queue management logic between _delwri_pushbuf() and
2136 * _delwri_queue() guarantee that the buffer cannot be queued to another list
2137 * before returning.
2138 */
2139int
2140xfs_buf_delwri_pushbuf(
2141 struct xfs_buf *bp,
2142 struct list_head *buffer_list)
2143{
2144 LIST_HEAD (submit_list);
2145 int error;
2146
2147 ASSERT(bp->b_flags & _XBF_DELWRI_Q);
2148
2149 trace_xfs_buf_delwri_pushbuf(bp, _RET_IP_);
2150
2151 /*
2152 * Isolate the buffer to a new local list so we can submit it for I/O
2153 * independently from the rest of the original list.
2154 */
2155 xfs_buf_lock(bp);
2156 list_move(&bp->b_list, &submit_list);
2157 xfs_buf_unlock(bp);
2158
2159 /*
2160 * Delwri submission clears the DELWRI_Q buffer flag and returns with
e339dd8d 2161 * the buffer on the wait list with the original reference. Rather than
7912e7fe
BF
2162 * bounce the buffer from a local wait list back to the original list
2163 * after I/O completion, reuse the original list as the wait list.
2164 */
2165 xfs_buf_delwri_submit_buffers(&submit_list, buffer_list);
2166
2167 /*
e339dd8d
BF
2168 * The buffer is now locked, under I/O and wait listed on the original
2169 * delwri queue. Wait for I/O completion, restore the DELWRI_Q flag and
2170 * return with the buffer unlocked and on the original queue.
7912e7fe 2171 */
e339dd8d 2172 error = xfs_buf_iowait(bp);
7912e7fe
BF
2173 bp->b_flags |= _XBF_DELWRI_Q;
2174 xfs_buf_unlock(bp);
2175
2176 return error;
2177}
2178
04d8b284 2179int __init
ce8e922c 2180xfs_buf_init(void)
1da177e4 2181{
8758280f
NS
2182 xfs_buf_zone = kmem_zone_init_flags(sizeof(xfs_buf_t), "xfs_buf",
2183 KM_ZONE_HWALIGN, NULL);
ce8e922c 2184 if (!xfs_buf_zone)
0b1b213f 2185 goto out;
04d8b284 2186
23ea4032 2187 return 0;
1da177e4 2188
0b1b213f 2189 out:
8758280f 2190 return -ENOMEM;
1da177e4
LT
2191}
2192
1da177e4 2193void
ce8e922c 2194xfs_buf_terminate(void)
1da177e4 2195{
ce8e922c 2196 kmem_zone_destroy(xfs_buf_zone);
1da177e4 2197}
7561d27e
BF
2198
2199void xfs_buf_set_ref(struct xfs_buf *bp, int lru_ref)
2200{
7561d27e
BF
2201 /*
2202 * Set the lru reference count to 0 based on the error injection tag.
2203 * This allows userspace to disrupt buffer caching for debug/testing
2204 * purposes.
2205 */
4eadcf9a
BF
2206 if (XFS_TEST_ERROR(false, bp->b_target->bt_mount,
2207 XFS_ERRTAG_BUF_LRU_REF))
7561d27e
BF
2208 lru_ref = 0;
2209
2210 atomic_set(&bp->b_lru_ref, lru_ref);
2211}