]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - fs/xfs/xfs_buf.c
block: Abstract out bvec iterator
[mirror_ubuntu-bionic-kernel.git] / fs / xfs / xfs_buf.c
CommitLineData
1da177e4 1/*
f07c2250 2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
7b718769 3 * All Rights Reserved.
1da177e4 4 *
7b718769
NS
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
1da177e4
LT
7 * published by the Free Software Foundation.
8 *
7b718769
NS
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
1da177e4 13 *
7b718769
NS
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
1da177e4 17 */
93c189c1 18#include "xfs.h"
1da177e4
LT
19#include <linux/stddef.h>
20#include <linux/errno.h>
5a0e3ad6 21#include <linux/gfp.h>
1da177e4
LT
22#include <linux/pagemap.h>
23#include <linux/init.h>
24#include <linux/vmalloc.h>
25#include <linux/bio.h>
26#include <linux/sysctl.h>
27#include <linux/proc_fs.h>
28#include <linux/workqueue.h>
29#include <linux/percpu.h>
30#include <linux/blkdev.h>
31#include <linux/hash.h>
4df08c52 32#include <linux/kthread.h>
b20a3503 33#include <linux/migrate.h>
3fcfab16 34#include <linux/backing-dev.h>
7dfb7103 35#include <linux/freezer.h>
1da177e4 36
239880ef 37#include "xfs_log_format.h"
7fd36c44 38#include "xfs_trans_resv.h"
239880ef 39#include "xfs_sb.h"
b7963133 40#include "xfs_ag.h"
b7963133 41#include "xfs_mount.h"
0b1b213f 42#include "xfs_trace.h"
239880ef 43#include "xfs_log.h"
b7963133 44
7989cb8e 45static kmem_zone_t *xfs_buf_zone;
23ea4032 46
7989cb8e 47static struct workqueue_struct *xfslogd_workqueue;
1da177e4 48
ce8e922c
NS
49#ifdef XFS_BUF_LOCK_TRACKING
50# define XB_SET_OWNER(bp) ((bp)->b_last_holder = current->pid)
51# define XB_CLEAR_OWNER(bp) ((bp)->b_last_holder = -1)
52# define XB_GET_OWNER(bp) ((bp)->b_last_holder)
1da177e4 53#else
ce8e922c
NS
54# define XB_SET_OWNER(bp) do { } while (0)
55# define XB_CLEAR_OWNER(bp) do { } while (0)
56# define XB_GET_OWNER(bp) do { } while (0)
1da177e4
LT
57#endif
58
ce8e922c 59#define xb_to_gfp(flags) \
aa5c158e 60 ((((flags) & XBF_READ_AHEAD) ? __GFP_NORETRY : GFP_NOFS) | __GFP_NOWARN)
1da177e4 61
1da177e4 62
73c77e2c
JB
63static inline int
64xfs_buf_is_vmapped(
65 struct xfs_buf *bp)
66{
67 /*
68 * Return true if the buffer is vmapped.
69 *
611c9946
DC
70 * b_addr is null if the buffer is not mapped, but the code is clever
71 * enough to know it doesn't have to map a single page, so the check has
72 * to be both for b_addr and bp->b_page_count > 1.
73c77e2c 73 */
611c9946 74 return bp->b_addr && bp->b_page_count > 1;
73c77e2c
JB
75}
76
77static inline int
78xfs_buf_vmap_len(
79 struct xfs_buf *bp)
80{
81 return (bp->b_page_count * PAGE_SIZE) - bp->b_offset;
82}
83
430cbeb8
DC
84/*
85 * When we mark a buffer stale, we remove the buffer from the LRU and clear the
86 * b_lru_ref count so that the buffer is freed immediately when the buffer
87 * reference count falls to zero. If the buffer is already on the LRU, we need
88 * to remove the reference that LRU holds on the buffer.
89 *
90 * This prevents build-up of stale buffers on the LRU.
91 */
92void
93xfs_buf_stale(
94 struct xfs_buf *bp)
95{
43ff2122
CH
96 ASSERT(xfs_buf_islocked(bp));
97
430cbeb8 98 bp->b_flags |= XBF_STALE;
43ff2122
CH
99
100 /*
101 * Clear the delwri status so that a delwri queue walker will not
102 * flush this buffer to disk now that it is stale. The delwri queue has
103 * a reference to the buffer, so this is safe to do.
104 */
105 bp->b_flags &= ~_XBF_DELWRI_Q;
106
a4082357
DC
107 spin_lock(&bp->b_lock);
108 atomic_set(&bp->b_lru_ref, 0);
109 if (!(bp->b_state & XFS_BSTATE_DISPOSE) &&
e80dfa19
DC
110 (list_lru_del(&bp->b_target->bt_lru, &bp->b_lru)))
111 atomic_dec(&bp->b_hold);
112
430cbeb8 113 ASSERT(atomic_read(&bp->b_hold) >= 1);
a4082357 114 spin_unlock(&bp->b_lock);
430cbeb8 115}
1da177e4 116
3e85c868
DC
117static int
118xfs_buf_get_maps(
119 struct xfs_buf *bp,
120 int map_count)
121{
122 ASSERT(bp->b_maps == NULL);
123 bp->b_map_count = map_count;
124
125 if (map_count == 1) {
f4b42421 126 bp->b_maps = &bp->__b_map;
3e85c868
DC
127 return 0;
128 }
129
130 bp->b_maps = kmem_zalloc(map_count * sizeof(struct xfs_buf_map),
131 KM_NOFS);
132 if (!bp->b_maps)
133 return ENOMEM;
134 return 0;
135}
136
137/*
138 * Frees b_pages if it was allocated.
139 */
140static void
141xfs_buf_free_maps(
142 struct xfs_buf *bp)
143{
f4b42421 144 if (bp->b_maps != &bp->__b_map) {
3e85c868
DC
145 kmem_free(bp->b_maps);
146 bp->b_maps = NULL;
147 }
148}
149
4347b9d7 150struct xfs_buf *
3e85c868 151_xfs_buf_alloc(
4347b9d7 152 struct xfs_buftarg *target,
3e85c868
DC
153 struct xfs_buf_map *map,
154 int nmaps,
ce8e922c 155 xfs_buf_flags_t flags)
1da177e4 156{
4347b9d7 157 struct xfs_buf *bp;
3e85c868
DC
158 int error;
159 int i;
4347b9d7 160
aa5c158e 161 bp = kmem_zone_zalloc(xfs_buf_zone, KM_NOFS);
4347b9d7
CH
162 if (unlikely(!bp))
163 return NULL;
164
1da177e4 165 /*
12bcb3f7
DC
166 * We don't want certain flags to appear in b_flags unless they are
167 * specifically set by later operations on the buffer.
1da177e4 168 */
611c9946 169 flags &= ~(XBF_UNMAPPED | XBF_TRYLOCK | XBF_ASYNC | XBF_READ_AHEAD);
ce8e922c 170
ce8e922c 171 atomic_set(&bp->b_hold, 1);
430cbeb8 172 atomic_set(&bp->b_lru_ref, 1);
b4dd330b 173 init_completion(&bp->b_iowait);
430cbeb8 174 INIT_LIST_HEAD(&bp->b_lru);
ce8e922c 175 INIT_LIST_HEAD(&bp->b_list);
74f75a0c 176 RB_CLEAR_NODE(&bp->b_rbnode);
a731cd11 177 sema_init(&bp->b_sema, 0); /* held, no waiters */
a4082357 178 spin_lock_init(&bp->b_lock);
ce8e922c
NS
179 XB_SET_OWNER(bp);
180 bp->b_target = target;
3e85c868 181 bp->b_flags = flags;
de1cbee4 182
1da177e4 183 /*
aa0e8833
DC
184 * Set length and io_length to the same value initially.
185 * I/O routines should use io_length, which will be the same in
1da177e4
LT
186 * most cases but may be reset (e.g. XFS recovery).
187 */
3e85c868
DC
188 error = xfs_buf_get_maps(bp, nmaps);
189 if (error) {
190 kmem_zone_free(xfs_buf_zone, bp);
191 return NULL;
192 }
193
194 bp->b_bn = map[0].bm_bn;
195 bp->b_length = 0;
196 for (i = 0; i < nmaps; i++) {
197 bp->b_maps[i].bm_bn = map[i].bm_bn;
198 bp->b_maps[i].bm_len = map[i].bm_len;
199 bp->b_length += map[i].bm_len;
200 }
201 bp->b_io_length = bp->b_length;
202
ce8e922c
NS
203 atomic_set(&bp->b_pin_count, 0);
204 init_waitqueue_head(&bp->b_waiters);
205
206 XFS_STATS_INC(xb_create);
0b1b213f 207 trace_xfs_buf_init(bp, _RET_IP_);
4347b9d7
CH
208
209 return bp;
1da177e4
LT
210}
211
212/*
ce8e922c
NS
213 * Allocate a page array capable of holding a specified number
214 * of pages, and point the page buf at it.
1da177e4
LT
215 */
216STATIC int
ce8e922c
NS
217_xfs_buf_get_pages(
218 xfs_buf_t *bp,
1da177e4 219 int page_count,
ce8e922c 220 xfs_buf_flags_t flags)
1da177e4
LT
221{
222 /* Make sure that we have a page list */
ce8e922c 223 if (bp->b_pages == NULL) {
ce8e922c
NS
224 bp->b_page_count = page_count;
225 if (page_count <= XB_PAGES) {
226 bp->b_pages = bp->b_page_array;
1da177e4 227 } else {
ce8e922c 228 bp->b_pages = kmem_alloc(sizeof(struct page *) *
aa5c158e 229 page_count, KM_NOFS);
ce8e922c 230 if (bp->b_pages == NULL)
1da177e4
LT
231 return -ENOMEM;
232 }
ce8e922c 233 memset(bp->b_pages, 0, sizeof(struct page *) * page_count);
1da177e4
LT
234 }
235 return 0;
236}
237
238/*
ce8e922c 239 * Frees b_pages if it was allocated.
1da177e4
LT
240 */
241STATIC void
ce8e922c 242_xfs_buf_free_pages(
1da177e4
LT
243 xfs_buf_t *bp)
244{
ce8e922c 245 if (bp->b_pages != bp->b_page_array) {
f0e2d93c 246 kmem_free(bp->b_pages);
3fc98b1a 247 bp->b_pages = NULL;
1da177e4
LT
248 }
249}
250
251/*
252 * Releases the specified buffer.
253 *
254 * The modification state of any associated pages is left unchanged.
b46fe825 255 * The buffer must not be on any hash - use xfs_buf_rele instead for
1da177e4
LT
256 * hashed and refcounted buffers
257 */
258void
ce8e922c 259xfs_buf_free(
1da177e4
LT
260 xfs_buf_t *bp)
261{
0b1b213f 262 trace_xfs_buf_free(bp, _RET_IP_);
1da177e4 263
430cbeb8
DC
264 ASSERT(list_empty(&bp->b_lru));
265
0e6e847f 266 if (bp->b_flags & _XBF_PAGES) {
1da177e4
LT
267 uint i;
268
73c77e2c 269 if (xfs_buf_is_vmapped(bp))
8a262e57
AE
270 vm_unmap_ram(bp->b_addr - bp->b_offset,
271 bp->b_page_count);
1da177e4 272
948ecdb4
NS
273 for (i = 0; i < bp->b_page_count; i++) {
274 struct page *page = bp->b_pages[i];
275
0e6e847f 276 __free_page(page);
948ecdb4 277 }
0e6e847f
DC
278 } else if (bp->b_flags & _XBF_KMEM)
279 kmem_free(bp->b_addr);
3fc98b1a 280 _xfs_buf_free_pages(bp);
3e85c868 281 xfs_buf_free_maps(bp);
4347b9d7 282 kmem_zone_free(xfs_buf_zone, bp);
1da177e4
LT
283}
284
285/*
0e6e847f 286 * Allocates all the pages for buffer in question and builds it's page list.
1da177e4
LT
287 */
288STATIC int
0e6e847f 289xfs_buf_allocate_memory(
1da177e4
LT
290 xfs_buf_t *bp,
291 uint flags)
292{
aa0e8833 293 size_t size;
1da177e4 294 size_t nbytes, offset;
ce8e922c 295 gfp_t gfp_mask = xb_to_gfp(flags);
1da177e4 296 unsigned short page_count, i;
795cac72 297 xfs_off_t start, end;
1da177e4
LT
298 int error;
299
0e6e847f
DC
300 /*
301 * for buffers that are contained within a single page, just allocate
302 * the memory from the heap - there's no need for the complexity of
303 * page arrays to keep allocation down to order 0.
304 */
795cac72
DC
305 size = BBTOB(bp->b_length);
306 if (size < PAGE_SIZE) {
aa5c158e 307 bp->b_addr = kmem_alloc(size, KM_NOFS);
0e6e847f
DC
308 if (!bp->b_addr) {
309 /* low memory - use alloc_page loop instead */
310 goto use_alloc_page;
311 }
312
795cac72 313 if (((unsigned long)(bp->b_addr + size - 1) & PAGE_MASK) !=
0e6e847f
DC
314 ((unsigned long)bp->b_addr & PAGE_MASK)) {
315 /* b_addr spans two pages - use alloc_page instead */
316 kmem_free(bp->b_addr);
317 bp->b_addr = NULL;
318 goto use_alloc_page;
319 }
320 bp->b_offset = offset_in_page(bp->b_addr);
321 bp->b_pages = bp->b_page_array;
322 bp->b_pages[0] = virt_to_page(bp->b_addr);
323 bp->b_page_count = 1;
611c9946 324 bp->b_flags |= _XBF_KMEM;
0e6e847f
DC
325 return 0;
326 }
327
328use_alloc_page:
f4b42421
MT
329 start = BBTOB(bp->b_maps[0].bm_bn) >> PAGE_SHIFT;
330 end = (BBTOB(bp->b_maps[0].bm_bn + bp->b_length) + PAGE_SIZE - 1)
cbb7baab 331 >> PAGE_SHIFT;
795cac72 332 page_count = end - start;
ce8e922c 333 error = _xfs_buf_get_pages(bp, page_count, flags);
1da177e4
LT
334 if (unlikely(error))
335 return error;
1da177e4 336
ce8e922c 337 offset = bp->b_offset;
0e6e847f 338 bp->b_flags |= _XBF_PAGES;
1da177e4 339
ce8e922c 340 for (i = 0; i < bp->b_page_count; i++) {
1da177e4
LT
341 struct page *page;
342 uint retries = 0;
0e6e847f
DC
343retry:
344 page = alloc_page(gfp_mask);
1da177e4 345 if (unlikely(page == NULL)) {
ce8e922c
NS
346 if (flags & XBF_READ_AHEAD) {
347 bp->b_page_count = i;
0e6e847f
DC
348 error = ENOMEM;
349 goto out_free_pages;
1da177e4
LT
350 }
351
352 /*
353 * This could deadlock.
354 *
355 * But until all the XFS lowlevel code is revamped to
356 * handle buffer allocation failures we can't do much.
357 */
358 if (!(++retries % 100))
4f10700a
DC
359 xfs_err(NULL,
360 "possible memory allocation deadlock in %s (mode:0x%x)",
34a622b2 361 __func__, gfp_mask);
1da177e4 362
ce8e922c 363 XFS_STATS_INC(xb_page_retries);
8aa7e847 364 congestion_wait(BLK_RW_ASYNC, HZ/50);
1da177e4
LT
365 goto retry;
366 }
367
ce8e922c 368 XFS_STATS_INC(xb_page_found);
1da177e4 369
0e6e847f 370 nbytes = min_t(size_t, size, PAGE_SIZE - offset);
1da177e4 371 size -= nbytes;
ce8e922c 372 bp->b_pages[i] = page;
1da177e4
LT
373 offset = 0;
374 }
0e6e847f 375 return 0;
1da177e4 376
0e6e847f
DC
377out_free_pages:
378 for (i = 0; i < bp->b_page_count; i++)
379 __free_page(bp->b_pages[i]);
1da177e4
LT
380 return error;
381}
382
383/*
25985edc 384 * Map buffer into kernel address-space if necessary.
1da177e4
LT
385 */
386STATIC int
ce8e922c 387_xfs_buf_map_pages(
1da177e4
LT
388 xfs_buf_t *bp,
389 uint flags)
390{
0e6e847f 391 ASSERT(bp->b_flags & _XBF_PAGES);
ce8e922c 392 if (bp->b_page_count == 1) {
0e6e847f 393 /* A single page buffer is always mappable */
ce8e922c 394 bp->b_addr = page_address(bp->b_pages[0]) + bp->b_offset;
611c9946
DC
395 } else if (flags & XBF_UNMAPPED) {
396 bp->b_addr = NULL;
397 } else {
a19fb380
DC
398 int retried = 0;
399
400 do {
401 bp->b_addr = vm_map_ram(bp->b_pages, bp->b_page_count,
402 -1, PAGE_KERNEL);
403 if (bp->b_addr)
404 break;
405 vm_unmap_aliases();
406 } while (retried++ <= 1);
407
408 if (!bp->b_addr)
1da177e4 409 return -ENOMEM;
ce8e922c 410 bp->b_addr += bp->b_offset;
1da177e4
LT
411 }
412
413 return 0;
414}
415
416/*
417 * Finding and Reading Buffers
418 */
419
420/*
ce8e922c 421 * Look up, and creates if absent, a lockable buffer for
1da177e4 422 * a given range of an inode. The buffer is returned
eabbaf11 423 * locked. No I/O is implied by this call.
1da177e4
LT
424 */
425xfs_buf_t *
ce8e922c 426_xfs_buf_find(
e70b73f8 427 struct xfs_buftarg *btp,
3e85c868
DC
428 struct xfs_buf_map *map,
429 int nmaps,
ce8e922c
NS
430 xfs_buf_flags_t flags,
431 xfs_buf_t *new_bp)
1da177e4 432{
e70b73f8 433 size_t numbytes;
74f75a0c
DC
434 struct xfs_perag *pag;
435 struct rb_node **rbp;
436 struct rb_node *parent;
437 xfs_buf_t *bp;
3e85c868 438 xfs_daddr_t blkno = map[0].bm_bn;
10616b80 439 xfs_daddr_t eofs;
3e85c868
DC
440 int numblks = 0;
441 int i;
1da177e4 442
3e85c868
DC
443 for (i = 0; i < nmaps; i++)
444 numblks += map[i].bm_len;
e70b73f8 445 numbytes = BBTOB(numblks);
1da177e4
LT
446
447 /* Check for IOs smaller than the sector size / not sector aligned */
e70b73f8 448 ASSERT(!(numbytes < (1 << btp->bt_sshift)));
de1cbee4 449 ASSERT(!(BBTOB(blkno) & (xfs_off_t)btp->bt_smask));
1da177e4 450
10616b80
DC
451 /*
452 * Corrupted block numbers can get through to here, unfortunately, so we
453 * have to check that the buffer falls within the filesystem bounds.
454 */
455 eofs = XFS_FSB_TO_BB(btp->bt_mount, btp->bt_mount->m_sb.sb_dblocks);
456 if (blkno >= eofs) {
457 /*
458 * XXX (dgc): we should really be returning EFSCORRUPTED here,
459 * but none of the higher level infrastructure supports
460 * returning a specific error on buffer lookup failures.
461 */
462 xfs_alert(btp->bt_mount,
463 "%s: Block out of range: block 0x%llx, EOFS 0x%llx ",
464 __func__, blkno, eofs);
7bc0dc27 465 WARN_ON(1);
10616b80
DC
466 return NULL;
467 }
468
74f75a0c
DC
469 /* get tree root */
470 pag = xfs_perag_get(btp->bt_mount,
e70b73f8 471 xfs_daddr_to_agno(btp->bt_mount, blkno));
74f75a0c
DC
472
473 /* walk tree */
474 spin_lock(&pag->pag_buf_lock);
475 rbp = &pag->pag_buf_tree.rb_node;
476 parent = NULL;
477 bp = NULL;
478 while (*rbp) {
479 parent = *rbp;
480 bp = rb_entry(parent, struct xfs_buf, b_rbnode);
481
de1cbee4 482 if (blkno < bp->b_bn)
74f75a0c 483 rbp = &(*rbp)->rb_left;
de1cbee4 484 else if (blkno > bp->b_bn)
74f75a0c
DC
485 rbp = &(*rbp)->rb_right;
486 else {
487 /*
de1cbee4 488 * found a block number match. If the range doesn't
74f75a0c
DC
489 * match, the only way this is allowed is if the buffer
490 * in the cache is stale and the transaction that made
491 * it stale has not yet committed. i.e. we are
492 * reallocating a busy extent. Skip this buffer and
493 * continue searching to the right for an exact match.
494 */
4e94b71b 495 if (bp->b_length != numblks) {
74f75a0c
DC
496 ASSERT(bp->b_flags & XBF_STALE);
497 rbp = &(*rbp)->rb_right;
498 continue;
499 }
ce8e922c 500 atomic_inc(&bp->b_hold);
1da177e4
LT
501 goto found;
502 }
503 }
504
505 /* No match found */
ce8e922c 506 if (new_bp) {
74f75a0c
DC
507 rb_link_node(&new_bp->b_rbnode, parent, rbp);
508 rb_insert_color(&new_bp->b_rbnode, &pag->pag_buf_tree);
509 /* the buffer keeps the perag reference until it is freed */
510 new_bp->b_pag = pag;
511 spin_unlock(&pag->pag_buf_lock);
1da177e4 512 } else {
ce8e922c 513 XFS_STATS_INC(xb_miss_locked);
74f75a0c
DC
514 spin_unlock(&pag->pag_buf_lock);
515 xfs_perag_put(pag);
1da177e4 516 }
ce8e922c 517 return new_bp;
1da177e4
LT
518
519found:
74f75a0c
DC
520 spin_unlock(&pag->pag_buf_lock);
521 xfs_perag_put(pag);
1da177e4 522
0c842ad4
CH
523 if (!xfs_buf_trylock(bp)) {
524 if (flags & XBF_TRYLOCK) {
ce8e922c
NS
525 xfs_buf_rele(bp);
526 XFS_STATS_INC(xb_busy_locked);
527 return NULL;
1da177e4 528 }
0c842ad4
CH
529 xfs_buf_lock(bp);
530 XFS_STATS_INC(xb_get_locked_waited);
1da177e4
LT
531 }
532
0e6e847f
DC
533 /*
534 * if the buffer is stale, clear all the external state associated with
535 * it. We need to keep flags such as how we allocated the buffer memory
536 * intact here.
537 */
ce8e922c
NS
538 if (bp->b_flags & XBF_STALE) {
539 ASSERT((bp->b_flags & _XBF_DELWRI_Q) == 0);
cfb02852 540 ASSERT(bp->b_iodone == NULL);
611c9946 541 bp->b_flags &= _XBF_KMEM | _XBF_PAGES;
1813dd64 542 bp->b_ops = NULL;
2f926587 543 }
0b1b213f
CH
544
545 trace_xfs_buf_find(bp, flags, _RET_IP_);
ce8e922c
NS
546 XFS_STATS_INC(xb_get_locked);
547 return bp;
1da177e4
LT
548}
549
550/*
3815832a
DC
551 * Assembles a buffer covering the specified range. The code is optimised for
552 * cache hits, as metadata intensive workloads will see 3 orders of magnitude
553 * more hits than misses.
1da177e4 554 */
3815832a 555struct xfs_buf *
6dde2707
DC
556xfs_buf_get_map(
557 struct xfs_buftarg *target,
558 struct xfs_buf_map *map,
559 int nmaps,
ce8e922c 560 xfs_buf_flags_t flags)
1da177e4 561{
3815832a
DC
562 struct xfs_buf *bp;
563 struct xfs_buf *new_bp;
0e6e847f 564 int error = 0;
1da177e4 565
6dde2707 566 bp = _xfs_buf_find(target, map, nmaps, flags, NULL);
3815832a
DC
567 if (likely(bp))
568 goto found;
569
6dde2707 570 new_bp = _xfs_buf_alloc(target, map, nmaps, flags);
ce8e922c 571 if (unlikely(!new_bp))
1da177e4
LT
572 return NULL;
573
fe2429b0
DC
574 error = xfs_buf_allocate_memory(new_bp, flags);
575 if (error) {
3e85c868 576 xfs_buf_free(new_bp);
fe2429b0
DC
577 return NULL;
578 }
579
6dde2707 580 bp = _xfs_buf_find(target, map, nmaps, flags, new_bp);
3815832a 581 if (!bp) {
fe2429b0 582 xfs_buf_free(new_bp);
3815832a
DC
583 return NULL;
584 }
585
fe2429b0
DC
586 if (bp != new_bp)
587 xfs_buf_free(new_bp);
1da177e4 588
3815832a 589found:
611c9946 590 if (!bp->b_addr) {
ce8e922c 591 error = _xfs_buf_map_pages(bp, flags);
1da177e4 592 if (unlikely(error)) {
4f10700a 593 xfs_warn(target->bt_mount,
08e96e1a 594 "%s: failed to map pagesn", __func__);
a8acad70
DC
595 xfs_buf_relse(bp);
596 return NULL;
1da177e4
LT
597 }
598 }
599
ce8e922c 600 XFS_STATS_INC(xb_get);
0b1b213f 601 trace_xfs_buf_get(bp, flags, _RET_IP_);
ce8e922c 602 return bp;
1da177e4
LT
603}
604
5d765b97
CH
605STATIC int
606_xfs_buf_read(
607 xfs_buf_t *bp,
608 xfs_buf_flags_t flags)
609{
43ff2122 610 ASSERT(!(flags & XBF_WRITE));
f4b42421 611 ASSERT(bp->b_maps[0].bm_bn != XFS_BUF_DADDR_NULL);
5d765b97 612
43ff2122 613 bp->b_flags &= ~(XBF_WRITE | XBF_ASYNC | XBF_READ_AHEAD);
1d5ae5df 614 bp->b_flags |= flags & (XBF_READ | XBF_ASYNC | XBF_READ_AHEAD);
5d765b97 615
0e95f19a
DC
616 xfs_buf_iorequest(bp);
617 if (flags & XBF_ASYNC)
618 return 0;
ec53d1db 619 return xfs_buf_iowait(bp);
5d765b97
CH
620}
621
1da177e4 622xfs_buf_t *
6dde2707
DC
623xfs_buf_read_map(
624 struct xfs_buftarg *target,
625 struct xfs_buf_map *map,
626 int nmaps,
c3f8fc73 627 xfs_buf_flags_t flags,
1813dd64 628 const struct xfs_buf_ops *ops)
1da177e4 629{
6dde2707 630 struct xfs_buf *bp;
ce8e922c
NS
631
632 flags |= XBF_READ;
633
6dde2707 634 bp = xfs_buf_get_map(target, map, nmaps, flags);
ce8e922c 635 if (bp) {
0b1b213f
CH
636 trace_xfs_buf_read(bp, flags, _RET_IP_);
637
ce8e922c 638 if (!XFS_BUF_ISDONE(bp)) {
ce8e922c 639 XFS_STATS_INC(xb_get_read);
1813dd64 640 bp->b_ops = ops;
5d765b97 641 _xfs_buf_read(bp, flags);
ce8e922c 642 } else if (flags & XBF_ASYNC) {
1da177e4
LT
643 /*
644 * Read ahead call which is already satisfied,
645 * drop the buffer
646 */
a8acad70
DC
647 xfs_buf_relse(bp);
648 return NULL;
1da177e4 649 } else {
1da177e4 650 /* We do not want read in the flags */
ce8e922c 651 bp->b_flags &= ~XBF_READ;
1da177e4
LT
652 }
653 }
654
ce8e922c 655 return bp;
1da177e4
LT
656}
657
1da177e4 658/*
ce8e922c
NS
659 * If we are not low on memory then do the readahead in a deadlock
660 * safe manner.
1da177e4
LT
661 */
662void
6dde2707
DC
663xfs_buf_readahead_map(
664 struct xfs_buftarg *target,
665 struct xfs_buf_map *map,
c3f8fc73 666 int nmaps,
1813dd64 667 const struct xfs_buf_ops *ops)
1da177e4 668{
0e6e847f 669 if (bdi_read_congested(target->bt_bdi))
1da177e4
LT
670 return;
671
6dde2707 672 xfs_buf_read_map(target, map, nmaps,
1813dd64 673 XBF_TRYLOCK|XBF_ASYNC|XBF_READ_AHEAD, ops);
1da177e4
LT
674}
675
5adc94c2
DC
676/*
677 * Read an uncached buffer from disk. Allocates and returns a locked
678 * buffer containing the disk contents or nothing.
679 */
680struct xfs_buf *
681xfs_buf_read_uncached(
5adc94c2
DC
682 struct xfs_buftarg *target,
683 xfs_daddr_t daddr,
e70b73f8 684 size_t numblks,
c3f8fc73 685 int flags,
1813dd64 686 const struct xfs_buf_ops *ops)
5adc94c2 687{
eab4e633 688 struct xfs_buf *bp;
5adc94c2 689
e70b73f8 690 bp = xfs_buf_get_uncached(target, numblks, flags);
5adc94c2
DC
691 if (!bp)
692 return NULL;
693
694 /* set up the buffer for a read IO */
3e85c868
DC
695 ASSERT(bp->b_map_count == 1);
696 bp->b_bn = daddr;
697 bp->b_maps[0].bm_bn = daddr;
cbb7baab 698 bp->b_flags |= XBF_READ;
1813dd64 699 bp->b_ops = ops;
5adc94c2 700
e70b73f8 701 xfsbdstrat(target->bt_mount, bp);
eab4e633 702 xfs_buf_iowait(bp);
5adc94c2 703 return bp;
1da177e4
LT
704}
705
44396476
DC
706/*
707 * Return a buffer allocated as an empty buffer and associated to external
708 * memory via xfs_buf_associate_memory() back to it's empty state.
709 */
710void
711xfs_buf_set_empty(
712 struct xfs_buf *bp,
e70b73f8 713 size_t numblks)
44396476
DC
714{
715 if (bp->b_pages)
716 _xfs_buf_free_pages(bp);
717
718 bp->b_pages = NULL;
719 bp->b_page_count = 0;
720 bp->b_addr = NULL;
4e94b71b 721 bp->b_length = numblks;
aa0e8833 722 bp->b_io_length = numblks;
3e85c868
DC
723
724 ASSERT(bp->b_map_count == 1);
44396476 725 bp->b_bn = XFS_BUF_DADDR_NULL;
3e85c868
DC
726 bp->b_maps[0].bm_bn = XFS_BUF_DADDR_NULL;
727 bp->b_maps[0].bm_len = bp->b_length;
44396476
DC
728}
729
1da177e4
LT
730static inline struct page *
731mem_to_page(
732 void *addr)
733{
9e2779fa 734 if ((!is_vmalloc_addr(addr))) {
1da177e4
LT
735 return virt_to_page(addr);
736 } else {
737 return vmalloc_to_page(addr);
738 }
739}
740
741int
ce8e922c
NS
742xfs_buf_associate_memory(
743 xfs_buf_t *bp,
1da177e4
LT
744 void *mem,
745 size_t len)
746{
747 int rval;
748 int i = 0;
d1afb678
LM
749 unsigned long pageaddr;
750 unsigned long offset;
751 size_t buflen;
1da177e4
LT
752 int page_count;
753
0e6e847f 754 pageaddr = (unsigned long)mem & PAGE_MASK;
d1afb678 755 offset = (unsigned long)mem - pageaddr;
0e6e847f
DC
756 buflen = PAGE_ALIGN(len + offset);
757 page_count = buflen >> PAGE_SHIFT;
1da177e4
LT
758
759 /* Free any previous set of page pointers */
ce8e922c
NS
760 if (bp->b_pages)
761 _xfs_buf_free_pages(bp);
1da177e4 762
ce8e922c
NS
763 bp->b_pages = NULL;
764 bp->b_addr = mem;
1da177e4 765
aa5c158e 766 rval = _xfs_buf_get_pages(bp, page_count, 0);
1da177e4
LT
767 if (rval)
768 return rval;
769
ce8e922c 770 bp->b_offset = offset;
d1afb678
LM
771
772 for (i = 0; i < bp->b_page_count; i++) {
773 bp->b_pages[i] = mem_to_page((void *)pageaddr);
0e6e847f 774 pageaddr += PAGE_SIZE;
1da177e4 775 }
1da177e4 776
aa0e8833 777 bp->b_io_length = BTOBB(len);
4e94b71b 778 bp->b_length = BTOBB(buflen);
1da177e4
LT
779
780 return 0;
781}
782
783xfs_buf_t *
686865f7
DC
784xfs_buf_get_uncached(
785 struct xfs_buftarg *target,
e70b73f8 786 size_t numblks,
686865f7 787 int flags)
1da177e4 788{
e70b73f8 789 unsigned long page_count;
1fa40b01 790 int error, i;
3e85c868
DC
791 struct xfs_buf *bp;
792 DEFINE_SINGLE_BUF_MAP(map, XFS_BUF_DADDR_NULL, numblks);
1da177e4 793
3e85c868 794 bp = _xfs_buf_alloc(target, &map, 1, 0);
1da177e4
LT
795 if (unlikely(bp == NULL))
796 goto fail;
1da177e4 797
e70b73f8 798 page_count = PAGE_ALIGN(numblks << BBSHIFT) >> PAGE_SHIFT;
1fa40b01
CH
799 error = _xfs_buf_get_pages(bp, page_count, 0);
800 if (error)
1da177e4
LT
801 goto fail_free_buf;
802
1fa40b01 803 for (i = 0; i < page_count; i++) {
686865f7 804 bp->b_pages[i] = alloc_page(xb_to_gfp(flags));
1fa40b01
CH
805 if (!bp->b_pages[i])
806 goto fail_free_mem;
1da177e4 807 }
1fa40b01 808 bp->b_flags |= _XBF_PAGES;
1da177e4 809
611c9946 810 error = _xfs_buf_map_pages(bp, 0);
1fa40b01 811 if (unlikely(error)) {
4f10700a 812 xfs_warn(target->bt_mount,
08e96e1a 813 "%s: failed to map pages", __func__);
1da177e4 814 goto fail_free_mem;
1fa40b01 815 }
1da177e4 816
686865f7 817 trace_xfs_buf_get_uncached(bp, _RET_IP_);
1da177e4 818 return bp;
1fa40b01 819
1da177e4 820 fail_free_mem:
1fa40b01
CH
821 while (--i >= 0)
822 __free_page(bp->b_pages[i]);
ca165b88 823 _xfs_buf_free_pages(bp);
1da177e4 824 fail_free_buf:
3e85c868 825 xfs_buf_free_maps(bp);
4347b9d7 826 kmem_zone_free(xfs_buf_zone, bp);
1da177e4
LT
827 fail:
828 return NULL;
829}
830
831/*
1da177e4
LT
832 * Increment reference count on buffer, to hold the buffer concurrently
833 * with another thread which may release (free) the buffer asynchronously.
1da177e4
LT
834 * Must hold the buffer already to call this function.
835 */
836void
ce8e922c
NS
837xfs_buf_hold(
838 xfs_buf_t *bp)
1da177e4 839{
0b1b213f 840 trace_xfs_buf_hold(bp, _RET_IP_);
ce8e922c 841 atomic_inc(&bp->b_hold);
1da177e4
LT
842}
843
844/*
ce8e922c
NS
845 * Releases a hold on the specified buffer. If the
846 * the hold count is 1, calls xfs_buf_free.
1da177e4
LT
847 */
848void
ce8e922c
NS
849xfs_buf_rele(
850 xfs_buf_t *bp)
1da177e4 851{
74f75a0c 852 struct xfs_perag *pag = bp->b_pag;
1da177e4 853
0b1b213f 854 trace_xfs_buf_rele(bp, _RET_IP_);
1da177e4 855
74f75a0c 856 if (!pag) {
430cbeb8 857 ASSERT(list_empty(&bp->b_lru));
74f75a0c 858 ASSERT(RB_EMPTY_NODE(&bp->b_rbnode));
fad3aa1e
NS
859 if (atomic_dec_and_test(&bp->b_hold))
860 xfs_buf_free(bp);
861 return;
862 }
863
74f75a0c 864 ASSERT(!RB_EMPTY_NODE(&bp->b_rbnode));
430cbeb8 865
3790689f 866 ASSERT(atomic_read(&bp->b_hold) > 0);
74f75a0c 867 if (atomic_dec_and_lock(&bp->b_hold, &pag->pag_buf_lock)) {
a4082357
DC
868 spin_lock(&bp->b_lock);
869 if (!(bp->b_flags & XBF_STALE) && atomic_read(&bp->b_lru_ref)) {
870 /*
871 * If the buffer is added to the LRU take a new
872 * reference to the buffer for the LRU and clear the
873 * (now stale) dispose list state flag
874 */
875 if (list_lru_add(&bp->b_target->bt_lru, &bp->b_lru)) {
876 bp->b_state &= ~XFS_BSTATE_DISPOSE;
877 atomic_inc(&bp->b_hold);
878 }
879 spin_unlock(&bp->b_lock);
430cbeb8 880 spin_unlock(&pag->pag_buf_lock);
1da177e4 881 } else {
a4082357
DC
882 /*
883 * most of the time buffers will already be removed from
884 * the LRU, so optimise that case by checking for the
885 * XFS_BSTATE_DISPOSE flag indicating the last list the
886 * buffer was on was the disposal list
887 */
888 if (!(bp->b_state & XFS_BSTATE_DISPOSE)) {
889 list_lru_del(&bp->b_target->bt_lru, &bp->b_lru);
890 } else {
891 ASSERT(list_empty(&bp->b_lru));
892 }
893 spin_unlock(&bp->b_lock);
894
43ff2122 895 ASSERT(!(bp->b_flags & _XBF_DELWRI_Q));
74f75a0c
DC
896 rb_erase(&bp->b_rbnode, &pag->pag_buf_tree);
897 spin_unlock(&pag->pag_buf_lock);
898 xfs_perag_put(pag);
ce8e922c 899 xfs_buf_free(bp);
1da177e4
LT
900 }
901 }
902}
903
904
905/*
0e6e847f 906 * Lock a buffer object, if it is not already locked.
90810b9e
DC
907 *
908 * If we come across a stale, pinned, locked buffer, we know that we are
909 * being asked to lock a buffer that has been reallocated. Because it is
910 * pinned, we know that the log has not been pushed to disk and hence it
911 * will still be locked. Rather than continuing to have trylock attempts
912 * fail until someone else pushes the log, push it ourselves before
913 * returning. This means that the xfsaild will not get stuck trying
914 * to push on stale inode buffers.
1da177e4
LT
915 */
916int
0c842ad4
CH
917xfs_buf_trylock(
918 struct xfs_buf *bp)
1da177e4
LT
919{
920 int locked;
921
ce8e922c 922 locked = down_trylock(&bp->b_sema) == 0;
0b1b213f 923 if (locked)
ce8e922c 924 XB_SET_OWNER(bp);
0b1b213f 925
0c842ad4
CH
926 trace_xfs_buf_trylock(bp, _RET_IP_);
927 return locked;
1da177e4 928}
1da177e4
LT
929
930/*
0e6e847f 931 * Lock a buffer object.
ed3b4d6c
DC
932 *
933 * If we come across a stale, pinned, locked buffer, we know that we
934 * are being asked to lock a buffer that has been reallocated. Because
935 * it is pinned, we know that the log has not been pushed to disk and
936 * hence it will still be locked. Rather than sleeping until someone
937 * else pushes the log, push it ourselves before trying to get the lock.
1da177e4 938 */
ce8e922c
NS
939void
940xfs_buf_lock(
0c842ad4 941 struct xfs_buf *bp)
1da177e4 942{
0b1b213f
CH
943 trace_xfs_buf_lock(bp, _RET_IP_);
944
ed3b4d6c 945 if (atomic_read(&bp->b_pin_count) && (bp->b_flags & XBF_STALE))
ebad861b 946 xfs_log_force(bp->b_target->bt_mount, 0);
ce8e922c
NS
947 down(&bp->b_sema);
948 XB_SET_OWNER(bp);
0b1b213f
CH
949
950 trace_xfs_buf_lock_done(bp, _RET_IP_);
1da177e4
LT
951}
952
1da177e4 953void
ce8e922c 954xfs_buf_unlock(
0c842ad4 955 struct xfs_buf *bp)
1da177e4 956{
ce8e922c
NS
957 XB_CLEAR_OWNER(bp);
958 up(&bp->b_sema);
0b1b213f
CH
959
960 trace_xfs_buf_unlock(bp, _RET_IP_);
1da177e4
LT
961}
962
ce8e922c
NS
963STATIC void
964xfs_buf_wait_unpin(
965 xfs_buf_t *bp)
1da177e4
LT
966{
967 DECLARE_WAITQUEUE (wait, current);
968
ce8e922c 969 if (atomic_read(&bp->b_pin_count) == 0)
1da177e4
LT
970 return;
971
ce8e922c 972 add_wait_queue(&bp->b_waiters, &wait);
1da177e4
LT
973 for (;;) {
974 set_current_state(TASK_UNINTERRUPTIBLE);
ce8e922c 975 if (atomic_read(&bp->b_pin_count) == 0)
1da177e4 976 break;
7eaceacc 977 io_schedule();
1da177e4 978 }
ce8e922c 979 remove_wait_queue(&bp->b_waiters, &wait);
1da177e4
LT
980 set_current_state(TASK_RUNNING);
981}
982
983/*
984 * Buffer Utility Routines
985 */
986
1da177e4 987STATIC void
ce8e922c 988xfs_buf_iodone_work(
c4028958 989 struct work_struct *work)
1da177e4 990{
1813dd64 991 struct xfs_buf *bp =
c4028958 992 container_of(work, xfs_buf_t, b_iodone_work);
1813dd64
DC
993 bool read = !!(bp->b_flags & XBF_READ);
994
995 bp->b_flags &= ~(XBF_READ | XBF_WRITE | XBF_READ_AHEAD);
d5929de8
DC
996
997 /* only validate buffers that were read without errors */
998 if (read && bp->b_ops && !bp->b_error && (bp->b_flags & XBF_DONE))
1813dd64 999 bp->b_ops->verify_read(bp);
1da177e4 1000
80f6c29d 1001 if (bp->b_iodone)
ce8e922c
NS
1002 (*(bp->b_iodone))(bp);
1003 else if (bp->b_flags & XBF_ASYNC)
1da177e4 1004 xfs_buf_relse(bp);
1813dd64
DC
1005 else {
1006 ASSERT(read && bp->b_ops);
1007 complete(&bp->b_iowait);
1008 }
1da177e4
LT
1009}
1010
1011void
ce8e922c 1012xfs_buf_ioend(
1813dd64
DC
1013 struct xfs_buf *bp,
1014 int schedule)
1da177e4 1015{
1813dd64
DC
1016 bool read = !!(bp->b_flags & XBF_READ);
1017
0b1b213f
CH
1018 trace_xfs_buf_iodone(bp, _RET_IP_);
1019
ce8e922c
NS
1020 if (bp->b_error == 0)
1021 bp->b_flags |= XBF_DONE;
1da177e4 1022
1813dd64 1023 if (bp->b_iodone || (read && bp->b_ops) || (bp->b_flags & XBF_ASYNC)) {
1da177e4 1024 if (schedule) {
c4028958 1025 INIT_WORK(&bp->b_iodone_work, xfs_buf_iodone_work);
ce8e922c 1026 queue_work(xfslogd_workqueue, &bp->b_iodone_work);
1da177e4 1027 } else {
c4028958 1028 xfs_buf_iodone_work(&bp->b_iodone_work);
1da177e4
LT
1029 }
1030 } else {
1813dd64 1031 bp->b_flags &= ~(XBF_READ | XBF_WRITE | XBF_READ_AHEAD);
b4dd330b 1032 complete(&bp->b_iowait);
1da177e4
LT
1033 }
1034}
1035
1da177e4 1036void
ce8e922c
NS
1037xfs_buf_ioerror(
1038 xfs_buf_t *bp,
1039 int error)
1da177e4
LT
1040{
1041 ASSERT(error >= 0 && error <= 0xffff);
ce8e922c 1042 bp->b_error = (unsigned short)error;
0b1b213f 1043 trace_xfs_buf_ioerror(bp, error, _RET_IP_);
1da177e4
LT
1044}
1045
901796af
CH
1046void
1047xfs_buf_ioerror_alert(
1048 struct xfs_buf *bp,
1049 const char *func)
1050{
1051 xfs_alert(bp->b_target->bt_mount,
aa0e8833
DC
1052"metadata I/O error: block 0x%llx (\"%s\") error %d numblks %d",
1053 (__uint64_t)XFS_BUF_ADDR(bp), func, bp->b_error, bp->b_length);
901796af
CH
1054}
1055
4e23471a
CH
1056/*
1057 * Called when we want to stop a buffer from getting written or read.
1a1a3e97 1058 * We attach the EIO error, muck with its flags, and call xfs_buf_ioend
4e23471a
CH
1059 * so that the proper iodone callbacks get called.
1060 */
1061STATIC int
1062xfs_bioerror(
1063 xfs_buf_t *bp)
1064{
1065#ifdef XFSERRORDEBUG
1066 ASSERT(XFS_BUF_ISREAD(bp) || bp->b_iodone);
1067#endif
1068
1069 /*
1070 * No need to wait until the buffer is unpinned, we aren't flushing it.
1071 */
5a52c2a5 1072 xfs_buf_ioerror(bp, EIO);
4e23471a
CH
1073
1074 /*
1a1a3e97 1075 * We're calling xfs_buf_ioend, so delete XBF_DONE flag.
4e23471a
CH
1076 */
1077 XFS_BUF_UNREAD(bp);
4e23471a 1078 XFS_BUF_UNDONE(bp);
c867cb61 1079 xfs_buf_stale(bp);
4e23471a 1080
1a1a3e97 1081 xfs_buf_ioend(bp, 0);
4e23471a
CH
1082
1083 return EIO;
1084}
1085
1086/*
1087 * Same as xfs_bioerror, except that we are releasing the buffer
1a1a3e97 1088 * here ourselves, and avoiding the xfs_buf_ioend call.
4e23471a
CH
1089 * This is meant for userdata errors; metadata bufs come with
1090 * iodone functions attached, so that we can track down errors.
1091 */
1092STATIC int
1093xfs_bioerror_relse(
1094 struct xfs_buf *bp)
1095{
ed43233b 1096 int64_t fl = bp->b_flags;
4e23471a
CH
1097 /*
1098 * No need to wait until the buffer is unpinned.
1099 * We aren't flushing it.
1100 *
1101 * chunkhold expects B_DONE to be set, whether
1102 * we actually finish the I/O or not. We don't want to
1103 * change that interface.
1104 */
1105 XFS_BUF_UNREAD(bp);
4e23471a 1106 XFS_BUF_DONE(bp);
c867cb61 1107 xfs_buf_stale(bp);
cb669ca5 1108 bp->b_iodone = NULL;
0cadda1c 1109 if (!(fl & XBF_ASYNC)) {
4e23471a
CH
1110 /*
1111 * Mark b_error and B_ERROR _both_.
1112 * Lot's of chunkcache code assumes that.
1113 * There's no reason to mark error for
1114 * ASYNC buffers.
1115 */
5a52c2a5 1116 xfs_buf_ioerror(bp, EIO);
5fde0326 1117 complete(&bp->b_iowait);
4e23471a
CH
1118 } else {
1119 xfs_buf_relse(bp);
1120 }
1121
1122 return EIO;
1123}
1124
a2dcf5df 1125STATIC int
4e23471a
CH
1126xfs_bdstrat_cb(
1127 struct xfs_buf *bp)
1128{
ebad861b 1129 if (XFS_FORCED_SHUTDOWN(bp->b_target->bt_mount)) {
4e23471a
CH
1130 trace_xfs_bdstrat_shut(bp, _RET_IP_);
1131 /*
1132 * Metadata write that didn't get logged but
1133 * written delayed anyway. These aren't associated
1134 * with a transaction, and can be ignored.
1135 */
1136 if (!bp->b_iodone && !XFS_BUF_ISREAD(bp))
1137 return xfs_bioerror_relse(bp);
1138 else
1139 return xfs_bioerror(bp);
1140 }
1141
1142 xfs_buf_iorequest(bp);
1143 return 0;
1144}
1145
a2dcf5df
CH
1146int
1147xfs_bwrite(
1148 struct xfs_buf *bp)
1149{
1150 int error;
1151
1152 ASSERT(xfs_buf_islocked(bp));
1153
1154 bp->b_flags |= XBF_WRITE;
1155 bp->b_flags &= ~(XBF_ASYNC | XBF_READ | _XBF_DELWRI_Q);
1156
1157 xfs_bdstrat_cb(bp);
1158
1159 error = xfs_buf_iowait(bp);
1160 if (error) {
1161 xfs_force_shutdown(bp->b_target->bt_mount,
1162 SHUTDOWN_META_IO_ERROR);
1163 }
1164 return error;
1165}
1166
4e23471a
CH
1167/*
1168 * Wrapper around bdstrat so that we can stop data from going to disk in case
1169 * we are shutting down the filesystem. Typically user data goes thru this
1170 * path; one of the exceptions is the superblock.
1171 */
1172void
1173xfsbdstrat(
1174 struct xfs_mount *mp,
1175 struct xfs_buf *bp)
1176{
1177 if (XFS_FORCED_SHUTDOWN(mp)) {
1178 trace_xfs_bdstrat_shut(bp, _RET_IP_);
1179 xfs_bioerror_relse(bp);
1180 return;
1181 }
1182
1183 xfs_buf_iorequest(bp);
1184}
1185
b8f82a4a 1186STATIC void
ce8e922c
NS
1187_xfs_buf_ioend(
1188 xfs_buf_t *bp,
1da177e4
LT
1189 int schedule)
1190{
0e6e847f 1191 if (atomic_dec_and_test(&bp->b_io_remaining) == 1)
ce8e922c 1192 xfs_buf_ioend(bp, schedule);
1da177e4
LT
1193}
1194
782e3b3b 1195STATIC void
ce8e922c 1196xfs_buf_bio_end_io(
1da177e4 1197 struct bio *bio,
1da177e4
LT
1198 int error)
1199{
ce8e922c 1200 xfs_buf_t *bp = (xfs_buf_t *)bio->bi_private;
1da177e4 1201
37eb17e6
DC
1202 /*
1203 * don't overwrite existing errors - otherwise we can lose errors on
1204 * buffers that require multiple bios to complete.
1205 */
1206 if (!bp->b_error)
1207 xfs_buf_ioerror(bp, -error);
1da177e4 1208
37eb17e6 1209 if (!bp->b_error && xfs_buf_is_vmapped(bp) && (bp->b_flags & XBF_READ))
73c77e2c
JB
1210 invalidate_kernel_vmap_range(bp->b_addr, xfs_buf_vmap_len(bp));
1211
ce8e922c 1212 _xfs_buf_ioend(bp, 1);
1da177e4 1213 bio_put(bio);
1da177e4
LT
1214}
1215
3e85c868
DC
1216static void
1217xfs_buf_ioapply_map(
1218 struct xfs_buf *bp,
1219 int map,
1220 int *buf_offset,
1221 int *count,
1222 int rw)
1da177e4 1223{
3e85c868
DC
1224 int page_index;
1225 int total_nr_pages = bp->b_page_count;
1226 int nr_pages;
1227 struct bio *bio;
1228 sector_t sector = bp->b_maps[map].bm_bn;
1229 int size;
1230 int offset;
1da177e4 1231
ce8e922c 1232 total_nr_pages = bp->b_page_count;
1da177e4 1233
3e85c868
DC
1234 /* skip the pages in the buffer before the start offset */
1235 page_index = 0;
1236 offset = *buf_offset;
1237 while (offset >= PAGE_SIZE) {
1238 page_index++;
1239 offset -= PAGE_SIZE;
f538d4da
CH
1240 }
1241
3e85c868
DC
1242 /*
1243 * Limit the IO size to the length of the current vector, and update the
1244 * remaining IO count for the next time around.
1245 */
1246 size = min_t(int, BBTOB(bp->b_maps[map].bm_len), *count);
1247 *count -= size;
1248 *buf_offset += size;
34951f5c 1249
1da177e4 1250next_chunk:
ce8e922c 1251 atomic_inc(&bp->b_io_remaining);
1da177e4
LT
1252 nr_pages = BIO_MAX_SECTORS >> (PAGE_SHIFT - BBSHIFT);
1253 if (nr_pages > total_nr_pages)
1254 nr_pages = total_nr_pages;
1255
1256 bio = bio_alloc(GFP_NOIO, nr_pages);
ce8e922c 1257 bio->bi_bdev = bp->b_target->bt_bdev;
4f024f37 1258 bio->bi_iter.bi_sector = sector;
ce8e922c
NS
1259 bio->bi_end_io = xfs_buf_bio_end_io;
1260 bio->bi_private = bp;
1da177e4 1261
0e6e847f 1262
3e85c868 1263 for (; size && nr_pages; nr_pages--, page_index++) {
0e6e847f 1264 int rbytes, nbytes = PAGE_SIZE - offset;
1da177e4
LT
1265
1266 if (nbytes > size)
1267 nbytes = size;
1268
3e85c868
DC
1269 rbytes = bio_add_page(bio, bp->b_pages[page_index], nbytes,
1270 offset);
ce8e922c 1271 if (rbytes < nbytes)
1da177e4
LT
1272 break;
1273
1274 offset = 0;
aa0e8833 1275 sector += BTOBB(nbytes);
1da177e4
LT
1276 size -= nbytes;
1277 total_nr_pages--;
1278 }
1279
4f024f37 1280 if (likely(bio->bi_iter.bi_size)) {
73c77e2c
JB
1281 if (xfs_buf_is_vmapped(bp)) {
1282 flush_kernel_vmap_range(bp->b_addr,
1283 xfs_buf_vmap_len(bp));
1284 }
1da177e4
LT
1285 submit_bio(rw, bio);
1286 if (size)
1287 goto next_chunk;
1288 } else {
37eb17e6
DC
1289 /*
1290 * This is guaranteed not to be the last io reference count
1291 * because the caller (xfs_buf_iorequest) holds a count itself.
1292 */
1293 atomic_dec(&bp->b_io_remaining);
ce8e922c 1294 xfs_buf_ioerror(bp, EIO);
ec53d1db 1295 bio_put(bio);
1da177e4 1296 }
3e85c868
DC
1297
1298}
1299
1300STATIC void
1301_xfs_buf_ioapply(
1302 struct xfs_buf *bp)
1303{
1304 struct blk_plug plug;
1305 int rw;
1306 int offset;
1307 int size;
1308 int i;
1309
c163f9a1
DC
1310 /*
1311 * Make sure we capture only current IO errors rather than stale errors
1312 * left over from previous use of the buffer (e.g. failed readahead).
1313 */
1314 bp->b_error = 0;
1315
3e85c868
DC
1316 if (bp->b_flags & XBF_WRITE) {
1317 if (bp->b_flags & XBF_SYNCIO)
1318 rw = WRITE_SYNC;
1319 else
1320 rw = WRITE;
1321 if (bp->b_flags & XBF_FUA)
1322 rw |= REQ_FUA;
1323 if (bp->b_flags & XBF_FLUSH)
1324 rw |= REQ_FLUSH;
1813dd64
DC
1325
1326 /*
1327 * Run the write verifier callback function if it exists. If
1328 * this function fails it will mark the buffer with an error and
1329 * the IO should not be dispatched.
1330 */
1331 if (bp->b_ops) {
1332 bp->b_ops->verify_write(bp);
1333 if (bp->b_error) {
1334 xfs_force_shutdown(bp->b_target->bt_mount,
1335 SHUTDOWN_CORRUPT_INCORE);
1336 return;
1337 }
1338 }
3e85c868
DC
1339 } else if (bp->b_flags & XBF_READ_AHEAD) {
1340 rw = READA;
1341 } else {
1342 rw = READ;
1343 }
1344
1345 /* we only use the buffer cache for meta-data */
1346 rw |= REQ_META;
1347
1348 /*
1349 * Walk all the vectors issuing IO on them. Set up the initial offset
1350 * into the buffer and the desired IO size before we start -
1351 * _xfs_buf_ioapply_vec() will modify them appropriately for each
1352 * subsequent call.
1353 */
1354 offset = bp->b_offset;
1355 size = BBTOB(bp->b_io_length);
1356 blk_start_plug(&plug);
1357 for (i = 0; i < bp->b_map_count; i++) {
1358 xfs_buf_ioapply_map(bp, i, &offset, &size, rw);
1359 if (bp->b_error)
1360 break;
1361 if (size <= 0)
1362 break; /* all done */
1363 }
1364 blk_finish_plug(&plug);
1da177e4
LT
1365}
1366
0e95f19a 1367void
ce8e922c
NS
1368xfs_buf_iorequest(
1369 xfs_buf_t *bp)
1da177e4 1370{
0b1b213f 1371 trace_xfs_buf_iorequest(bp, _RET_IP_);
1da177e4 1372
43ff2122 1373 ASSERT(!(bp->b_flags & _XBF_DELWRI_Q));
1da177e4 1374
375ec69d 1375 if (bp->b_flags & XBF_WRITE)
ce8e922c 1376 xfs_buf_wait_unpin(bp);
ce8e922c 1377 xfs_buf_hold(bp);
1da177e4
LT
1378
1379 /* Set the count to 1 initially, this will stop an I/O
1380 * completion callout which happens before we have started
ce8e922c 1381 * all the I/O from calling xfs_buf_ioend too early.
1da177e4 1382 */
ce8e922c
NS
1383 atomic_set(&bp->b_io_remaining, 1);
1384 _xfs_buf_ioapply(bp);
08023d6d 1385 _xfs_buf_ioend(bp, 1);
1da177e4 1386
ce8e922c 1387 xfs_buf_rele(bp);
1da177e4
LT
1388}
1389
1390/*
0e95f19a
DC
1391 * Waits for I/O to complete on the buffer supplied. It returns immediately if
1392 * no I/O is pending or there is already a pending error on the buffer. It
1393 * returns the I/O error code, if any, or 0 if there was no error.
1da177e4
LT
1394 */
1395int
ce8e922c
NS
1396xfs_buf_iowait(
1397 xfs_buf_t *bp)
1da177e4 1398{
0b1b213f
CH
1399 trace_xfs_buf_iowait(bp, _RET_IP_);
1400
0e95f19a
DC
1401 if (!bp->b_error)
1402 wait_for_completion(&bp->b_iowait);
0b1b213f
CH
1403
1404 trace_xfs_buf_iowait_done(bp, _RET_IP_);
ce8e922c 1405 return bp->b_error;
1da177e4
LT
1406}
1407
ce8e922c
NS
1408xfs_caddr_t
1409xfs_buf_offset(
1410 xfs_buf_t *bp,
1da177e4
LT
1411 size_t offset)
1412{
1413 struct page *page;
1414
611c9946 1415 if (bp->b_addr)
62926044 1416 return bp->b_addr + offset;
1da177e4 1417
ce8e922c 1418 offset += bp->b_offset;
0e6e847f
DC
1419 page = bp->b_pages[offset >> PAGE_SHIFT];
1420 return (xfs_caddr_t)page_address(page) + (offset & (PAGE_SIZE-1));
1da177e4
LT
1421}
1422
1423/*
1da177e4
LT
1424 * Move data into or out of a buffer.
1425 */
1426void
ce8e922c
NS
1427xfs_buf_iomove(
1428 xfs_buf_t *bp, /* buffer to process */
1da177e4
LT
1429 size_t boff, /* starting buffer offset */
1430 size_t bsize, /* length to copy */
b9c48649 1431 void *data, /* data address */
ce8e922c 1432 xfs_buf_rw_t mode) /* read/write/zero flag */
1da177e4 1433{
795cac72 1434 size_t bend;
1da177e4
LT
1435
1436 bend = boff + bsize;
1437 while (boff < bend) {
795cac72
DC
1438 struct page *page;
1439 int page_index, page_offset, csize;
1440
1441 page_index = (boff + bp->b_offset) >> PAGE_SHIFT;
1442 page_offset = (boff + bp->b_offset) & ~PAGE_MASK;
1443 page = bp->b_pages[page_index];
1444 csize = min_t(size_t, PAGE_SIZE - page_offset,
1445 BBTOB(bp->b_io_length) - boff);
1da177e4 1446
795cac72 1447 ASSERT((csize + page_offset) <= PAGE_SIZE);
1da177e4
LT
1448
1449 switch (mode) {
ce8e922c 1450 case XBRW_ZERO:
795cac72 1451 memset(page_address(page) + page_offset, 0, csize);
1da177e4 1452 break;
ce8e922c 1453 case XBRW_READ:
795cac72 1454 memcpy(data, page_address(page) + page_offset, csize);
1da177e4 1455 break;
ce8e922c 1456 case XBRW_WRITE:
795cac72 1457 memcpy(page_address(page) + page_offset, data, csize);
1da177e4
LT
1458 }
1459
1460 boff += csize;
1461 data += csize;
1462 }
1463}
1464
1465/*
ce8e922c 1466 * Handling of buffer targets (buftargs).
1da177e4
LT
1467 */
1468
1469/*
430cbeb8
DC
1470 * Wait for any bufs with callbacks that have been submitted but have not yet
1471 * returned. These buffers will have an elevated hold count, so wait on those
1472 * while freeing all the buffers only held by the LRU.
1da177e4 1473 */
e80dfa19
DC
1474static enum lru_status
1475xfs_buftarg_wait_rele(
1476 struct list_head *item,
1477 spinlock_t *lru_lock,
1478 void *arg)
1479
1da177e4 1480{
e80dfa19 1481 struct xfs_buf *bp = container_of(item, struct xfs_buf, b_lru);
a4082357 1482 struct list_head *dispose = arg;
430cbeb8 1483
e80dfa19 1484 if (atomic_read(&bp->b_hold) > 1) {
a4082357 1485 /* need to wait, so skip it this pass */
e80dfa19 1486 trace_xfs_buf_wait_buftarg(bp, _RET_IP_);
a4082357 1487 return LRU_SKIP;
1da177e4 1488 }
a4082357
DC
1489 if (!spin_trylock(&bp->b_lock))
1490 return LRU_SKIP;
e80dfa19 1491
a4082357
DC
1492 /*
1493 * clear the LRU reference count so the buffer doesn't get
1494 * ignored in xfs_buf_rele().
1495 */
1496 atomic_set(&bp->b_lru_ref, 0);
1497 bp->b_state |= XFS_BSTATE_DISPOSE;
1498 list_move(item, dispose);
1499 spin_unlock(&bp->b_lock);
1500 return LRU_REMOVED;
1da177e4
LT
1501}
1502
e80dfa19
DC
1503void
1504xfs_wait_buftarg(
1505 struct xfs_buftarg *btp)
1506{
a4082357
DC
1507 LIST_HEAD(dispose);
1508 int loop = 0;
1509
1510 /* loop until there is nothing left on the lru list. */
1511 while (list_lru_count(&btp->bt_lru)) {
e80dfa19 1512 list_lru_walk(&btp->bt_lru, xfs_buftarg_wait_rele,
a4082357
DC
1513 &dispose, LONG_MAX);
1514
1515 while (!list_empty(&dispose)) {
1516 struct xfs_buf *bp;
1517 bp = list_first_entry(&dispose, struct xfs_buf, b_lru);
1518 list_del_init(&bp->b_lru);
1519 xfs_buf_rele(bp);
1520 }
1521 if (loop++ != 0)
1522 delay(100);
1523 }
e80dfa19
DC
1524}
1525
1526static enum lru_status
1527xfs_buftarg_isolate(
1528 struct list_head *item,
1529 spinlock_t *lru_lock,
1530 void *arg)
1531{
1532 struct xfs_buf *bp = container_of(item, struct xfs_buf, b_lru);
1533 struct list_head *dispose = arg;
1534
a4082357
DC
1535 /*
1536 * we are inverting the lru lock/bp->b_lock here, so use a trylock.
1537 * If we fail to get the lock, just skip it.
1538 */
1539 if (!spin_trylock(&bp->b_lock))
1540 return LRU_SKIP;
e80dfa19
DC
1541 /*
1542 * Decrement the b_lru_ref count unless the value is already
1543 * zero. If the value is already zero, we need to reclaim the
1544 * buffer, otherwise it gets another trip through the LRU.
1545 */
a4082357
DC
1546 if (!atomic_add_unless(&bp->b_lru_ref, -1, 0)) {
1547 spin_unlock(&bp->b_lock);
e80dfa19 1548 return LRU_ROTATE;
a4082357 1549 }
e80dfa19 1550
a4082357 1551 bp->b_state |= XFS_BSTATE_DISPOSE;
e80dfa19 1552 list_move(item, dispose);
a4082357 1553 spin_unlock(&bp->b_lock);
e80dfa19
DC
1554 return LRU_REMOVED;
1555}
1556
addbda40 1557static unsigned long
e80dfa19 1558xfs_buftarg_shrink_scan(
ff57ab21 1559 struct shrinker *shrink,
1495f230 1560 struct shrink_control *sc)
a6867a68 1561{
ff57ab21
DC
1562 struct xfs_buftarg *btp = container_of(shrink,
1563 struct xfs_buftarg, bt_shrinker);
430cbeb8 1564 LIST_HEAD(dispose);
addbda40 1565 unsigned long freed;
e80dfa19 1566 unsigned long nr_to_scan = sc->nr_to_scan;
430cbeb8 1567
e80dfa19
DC
1568 freed = list_lru_walk_node(&btp->bt_lru, sc->nid, xfs_buftarg_isolate,
1569 &dispose, &nr_to_scan);
430cbeb8
DC
1570
1571 while (!list_empty(&dispose)) {
e80dfa19 1572 struct xfs_buf *bp;
430cbeb8
DC
1573 bp = list_first_entry(&dispose, struct xfs_buf, b_lru);
1574 list_del_init(&bp->b_lru);
1575 xfs_buf_rele(bp);
1576 }
1577
e80dfa19
DC
1578 return freed;
1579}
1580
addbda40 1581static unsigned long
e80dfa19
DC
1582xfs_buftarg_shrink_count(
1583 struct shrinker *shrink,
1584 struct shrink_control *sc)
1585{
1586 struct xfs_buftarg *btp = container_of(shrink,
1587 struct xfs_buftarg, bt_shrinker);
1588 return list_lru_count_node(&btp->bt_lru, sc->nid);
a6867a68
DC
1589}
1590
1da177e4
LT
1591void
1592xfs_free_buftarg(
b7963133
CH
1593 struct xfs_mount *mp,
1594 struct xfs_buftarg *btp)
1da177e4 1595{
ff57ab21 1596 unregister_shrinker(&btp->bt_shrinker);
f5e1dd34 1597 list_lru_destroy(&btp->bt_lru);
ff57ab21 1598
b7963133
CH
1599 if (mp->m_flags & XFS_MOUNT_BARRIER)
1600 xfs_blkdev_issue_flush(btp);
a6867a68 1601
f0e2d93c 1602 kmem_free(btp);
1da177e4
LT
1603}
1604
1da177e4
LT
1605STATIC int
1606xfs_setsize_buftarg_flags(
1607 xfs_buftarg_t *btp,
1608 unsigned int blocksize,
1609 unsigned int sectorsize,
1610 int verbose)
1611{
ce8e922c
NS
1612 btp->bt_bsize = blocksize;
1613 btp->bt_sshift = ffs(sectorsize) - 1;
1614 btp->bt_smask = sectorsize - 1;
1da177e4 1615
ce8e922c 1616 if (set_blocksize(btp->bt_bdev, sectorsize)) {
02b102df
CH
1617 char name[BDEVNAME_SIZE];
1618
1619 bdevname(btp->bt_bdev, name);
1620
4f10700a 1621 xfs_warn(btp->bt_mount,
08e96e1a 1622 "Cannot set_blocksize to %u on device %s",
02b102df 1623 sectorsize, name);
1da177e4
LT
1624 return EINVAL;
1625 }
1626
1da177e4
LT
1627 return 0;
1628}
1629
1630/*
ce8e922c
NS
1631 * When allocating the initial buffer target we have not yet
1632 * read in the superblock, so don't know what sized sectors
8b4ad79c 1633 * are being used at this early stage. Play safe.
ce8e922c 1634 */
1da177e4
LT
1635STATIC int
1636xfs_setsize_buftarg_early(
1637 xfs_buftarg_t *btp,
1638 struct block_device *bdev)
1639{
1640 return xfs_setsize_buftarg_flags(btp,
0e6e847f 1641 PAGE_SIZE, bdev_logical_block_size(bdev), 0);
1da177e4
LT
1642}
1643
1644int
1645xfs_setsize_buftarg(
1646 xfs_buftarg_t *btp,
1647 unsigned int blocksize,
1648 unsigned int sectorsize)
1649{
1650 return xfs_setsize_buftarg_flags(btp, blocksize, sectorsize, 1);
1651}
1652
1da177e4
LT
1653xfs_buftarg_t *
1654xfs_alloc_buftarg(
ebad861b 1655 struct xfs_mount *mp,
1da177e4 1656 struct block_device *bdev,
e2a07812
JE
1657 int external,
1658 const char *fsname)
1da177e4
LT
1659{
1660 xfs_buftarg_t *btp;
1661
b17cb364 1662 btp = kmem_zalloc(sizeof(*btp), KM_SLEEP | KM_NOFS);
1da177e4 1663
ebad861b 1664 btp->bt_mount = mp;
ce8e922c
NS
1665 btp->bt_dev = bdev->bd_dev;
1666 btp->bt_bdev = bdev;
0e6e847f
DC
1667 btp->bt_bdi = blk_get_backing_dev_info(bdev);
1668 if (!btp->bt_bdi)
1669 goto error;
1670
1da177e4
LT
1671 if (xfs_setsize_buftarg_early(btp, bdev))
1672 goto error;
5ca302c8
GC
1673
1674 if (list_lru_init(&btp->bt_lru))
1675 goto error;
1676
e80dfa19
DC
1677 btp->bt_shrinker.count_objects = xfs_buftarg_shrink_count;
1678 btp->bt_shrinker.scan_objects = xfs_buftarg_shrink_scan;
ff57ab21 1679 btp->bt_shrinker.seeks = DEFAULT_SEEKS;
e80dfa19 1680 btp->bt_shrinker.flags = SHRINKER_NUMA_AWARE;
ff57ab21 1681 register_shrinker(&btp->bt_shrinker);
1da177e4
LT
1682 return btp;
1683
1684error:
f0e2d93c 1685 kmem_free(btp);
1da177e4
LT
1686 return NULL;
1687}
1688
1da177e4 1689/*
43ff2122
CH
1690 * Add a buffer to the delayed write list.
1691 *
1692 * This queues a buffer for writeout if it hasn't already been. Note that
1693 * neither this routine nor the buffer list submission functions perform
1694 * any internal synchronization. It is expected that the lists are thread-local
1695 * to the callers.
1696 *
1697 * Returns true if we queued up the buffer, or false if it already had
1698 * been on the buffer list.
1da177e4 1699 */
43ff2122 1700bool
ce8e922c 1701xfs_buf_delwri_queue(
43ff2122
CH
1702 struct xfs_buf *bp,
1703 struct list_head *list)
1da177e4 1704{
43ff2122 1705 ASSERT(xfs_buf_islocked(bp));
5a8ee6ba 1706 ASSERT(!(bp->b_flags & XBF_READ));
1da177e4 1707
43ff2122
CH
1708 /*
1709 * If the buffer is already marked delwri it already is queued up
1710 * by someone else for imediate writeout. Just ignore it in that
1711 * case.
1712 */
1713 if (bp->b_flags & _XBF_DELWRI_Q) {
1714 trace_xfs_buf_delwri_queued(bp, _RET_IP_);
1715 return false;
1da177e4 1716 }
1da177e4 1717
43ff2122 1718 trace_xfs_buf_delwri_queue(bp, _RET_IP_);
d808f617
DC
1719
1720 /*
43ff2122
CH
1721 * If a buffer gets written out synchronously or marked stale while it
1722 * is on a delwri list we lazily remove it. To do this, the other party
1723 * clears the _XBF_DELWRI_Q flag but otherwise leaves the buffer alone.
1724 * It remains referenced and on the list. In a rare corner case it
1725 * might get readded to a delwri list after the synchronous writeout, in
1726 * which case we need just need to re-add the flag here.
d808f617 1727 */
43ff2122
CH
1728 bp->b_flags |= _XBF_DELWRI_Q;
1729 if (list_empty(&bp->b_list)) {
1730 atomic_inc(&bp->b_hold);
1731 list_add_tail(&bp->b_list, list);
585e6d88 1732 }
585e6d88 1733
43ff2122 1734 return true;
585e6d88
DC
1735}
1736
089716aa
DC
1737/*
1738 * Compare function is more complex than it needs to be because
1739 * the return value is only 32 bits and we are doing comparisons
1740 * on 64 bit values
1741 */
1742static int
1743xfs_buf_cmp(
1744 void *priv,
1745 struct list_head *a,
1746 struct list_head *b)
1747{
1748 struct xfs_buf *ap = container_of(a, struct xfs_buf, b_list);
1749 struct xfs_buf *bp = container_of(b, struct xfs_buf, b_list);
1750 xfs_daddr_t diff;
1751
f4b42421 1752 diff = ap->b_maps[0].bm_bn - bp->b_maps[0].bm_bn;
089716aa
DC
1753 if (diff < 0)
1754 return -1;
1755 if (diff > 0)
1756 return 1;
1757 return 0;
1758}
1759
43ff2122
CH
1760static int
1761__xfs_buf_delwri_submit(
1762 struct list_head *buffer_list,
1763 struct list_head *io_list,
1764 bool wait)
1da177e4 1765{
43ff2122
CH
1766 struct blk_plug plug;
1767 struct xfs_buf *bp, *n;
1768 int pinned = 0;
1769
1770 list_for_each_entry_safe(bp, n, buffer_list, b_list) {
1771 if (!wait) {
1772 if (xfs_buf_ispinned(bp)) {
1773 pinned++;
1774 continue;
1775 }
1776 if (!xfs_buf_trylock(bp))
1777 continue;
1778 } else {
1779 xfs_buf_lock(bp);
1780 }
978c7b2f 1781
43ff2122
CH
1782 /*
1783 * Someone else might have written the buffer synchronously or
1784 * marked it stale in the meantime. In that case only the
1785 * _XBF_DELWRI_Q flag got cleared, and we have to drop the
1786 * reference and remove it from the list here.
1787 */
1788 if (!(bp->b_flags & _XBF_DELWRI_Q)) {
1789 list_del_init(&bp->b_list);
1790 xfs_buf_relse(bp);
1791 continue;
1792 }
c9c12971 1793
43ff2122
CH
1794 list_move_tail(&bp->b_list, io_list);
1795 trace_xfs_buf_delwri_split(bp, _RET_IP_);
1796 }
1da177e4 1797
43ff2122 1798 list_sort(NULL, io_list, xfs_buf_cmp);
1da177e4 1799
43ff2122
CH
1800 blk_start_plug(&plug);
1801 list_for_each_entry_safe(bp, n, io_list, b_list) {
1802 bp->b_flags &= ~(_XBF_DELWRI_Q | XBF_ASYNC);
1803 bp->b_flags |= XBF_WRITE;
a1b7ea5d 1804
43ff2122
CH
1805 if (!wait) {
1806 bp->b_flags |= XBF_ASYNC;
ce8e922c 1807 list_del_init(&bp->b_list);
1da177e4 1808 }
43ff2122
CH
1809 xfs_bdstrat_cb(bp);
1810 }
1811 blk_finish_plug(&plug);
1da177e4 1812
43ff2122 1813 return pinned;
1da177e4
LT
1814}
1815
1816/*
43ff2122
CH
1817 * Write out a buffer list asynchronously.
1818 *
1819 * This will take the @buffer_list, write all non-locked and non-pinned buffers
1820 * out and not wait for I/O completion on any of the buffers. This interface
1821 * is only safely useable for callers that can track I/O completion by higher
1822 * level means, e.g. AIL pushing as the @buffer_list is consumed in this
1823 * function.
1da177e4
LT
1824 */
1825int
43ff2122
CH
1826xfs_buf_delwri_submit_nowait(
1827 struct list_head *buffer_list)
1da177e4 1828{
43ff2122
CH
1829 LIST_HEAD (io_list);
1830 return __xfs_buf_delwri_submit(buffer_list, &io_list, false);
1831}
1da177e4 1832
43ff2122
CH
1833/*
1834 * Write out a buffer list synchronously.
1835 *
1836 * This will take the @buffer_list, write all buffers out and wait for I/O
1837 * completion on all of the buffers. @buffer_list is consumed by the function,
1838 * so callers must have some other way of tracking buffers if they require such
1839 * functionality.
1840 */
1841int
1842xfs_buf_delwri_submit(
1843 struct list_head *buffer_list)
1844{
1845 LIST_HEAD (io_list);
1846 int error = 0, error2;
1847 struct xfs_buf *bp;
1da177e4 1848
43ff2122 1849 __xfs_buf_delwri_submit(buffer_list, &io_list, true);
1da177e4 1850
43ff2122
CH
1851 /* Wait for IO to complete. */
1852 while (!list_empty(&io_list)) {
1853 bp = list_first_entry(&io_list, struct xfs_buf, b_list);
a1b7ea5d 1854
089716aa 1855 list_del_init(&bp->b_list);
43ff2122
CH
1856 error2 = xfs_buf_iowait(bp);
1857 xfs_buf_relse(bp);
1858 if (!error)
1859 error = error2;
1da177e4
LT
1860 }
1861
43ff2122 1862 return error;
1da177e4
LT
1863}
1864
04d8b284 1865int __init
ce8e922c 1866xfs_buf_init(void)
1da177e4 1867{
8758280f
NS
1868 xfs_buf_zone = kmem_zone_init_flags(sizeof(xfs_buf_t), "xfs_buf",
1869 KM_ZONE_HWALIGN, NULL);
ce8e922c 1870 if (!xfs_buf_zone)
0b1b213f 1871 goto out;
04d8b284 1872
51749e47 1873 xfslogd_workqueue = alloc_workqueue("xfslogd",
6370a6ad 1874 WQ_MEM_RECLAIM | WQ_HIGHPRI, 1);
23ea4032 1875 if (!xfslogd_workqueue)
04d8b284 1876 goto out_free_buf_zone;
1da177e4 1877
23ea4032 1878 return 0;
1da177e4 1879
23ea4032 1880 out_free_buf_zone:
ce8e922c 1881 kmem_zone_destroy(xfs_buf_zone);
0b1b213f 1882 out:
8758280f 1883 return -ENOMEM;
1da177e4
LT
1884}
1885
1da177e4 1886void
ce8e922c 1887xfs_buf_terminate(void)
1da177e4 1888{
04d8b284 1889 destroy_workqueue(xfslogd_workqueue);
ce8e922c 1890 kmem_zone_destroy(xfs_buf_zone);
1da177e4 1891}